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ABSTRACT

Let G be a finite 2-generated non-cyclic group. The spread of G is the

largest integer k such that for any nontrivial elements x1, . . . , xk, there

exists y ∈ G such that G = 〈xi, y〉 for all i. The more restrictive notion

of uniform spread, denoted u(G), requires y to be chosen from a fixed

conjugacy class of G, and a theorem of Breuer, Guralnick and Kantor

states that u(G) � 2 for every non-abelian finite simple group G. For any

group with u(G) � 1, we define the uniform domination number γu(G) of

G to be the minimal size of a subset S of conjugate elements such that for

each nontrivial x ∈ G there exists y ∈ S with G = 〈x, y〉 (in this situation,

we say that S is a uniform dominating set for G). We introduced the

latter notion in a recent paper, where we used probabilistic methods to

determine close to best possible bounds on γu(G) for all simple groups G.

In this paper we establish several new results on the spread, uniform

spread and uniform domination number of finite groups and finite simple

groups. For example, we make substantial progress towards a classification

of the simple groups G with γu(G) = 2, and we study the associated

probability that two randomly chosen conjugate elements form a uniform

dominating set for G. We also establish new results concerning the 2-

generation of soluble and symmetric groups, and we present several open

problems.
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1. Introduction

Let G be a finite non-cyclic group that can be generated by two elements. It

is natural to study the properties of generating pairs for G and such problems

have attracted a great deal of attention over several decades, especially in the

context of finite simple groups. Here we begin by introducing the generation

invariants and associated probabilities that will be the main focus of this paper.

In [10], Brenner and Wiegold define the spread of G, denoted s(G), to be

the largest integer k such that for any nontrivial elements x1, . . . , xk in G, there

exists y ∈ G such that G = 〈xi, y〉 for all i. This leads naturally to the more

restrictive notion of uniform spread, denoted u(G), which was introduced

more recently by Breuer, Guralnick and Kantor [13]. This is defined to be the

largest integer k such that there is a conjugacy class C of G with the property

that for any nontrivial elements x1, . . . , xk in G, there exists y ∈ C such that

G = 〈xi, y〉 for all i. Clearly,

s(G) � u(G) � 0.

It is easy to see that if s(G) � 1, then every proper quotient of G is cyclic.

In fact, it is conjectured that this condition on quotients is equivalent to the

positive spread property; see [13, Conjecture 1.8], and recent progress towards

a proof of this conjecture in [25, 48, 49].
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In [27], we introduced some new generation invariants, which can be viewed

as natural extensions of spread and uniform spread. Following [27], we say

that a subset S ⊆ G of nontrivial elements is a total dominating set (TDS)

for G if for all nontrivial x ∈ G, there exists y ∈ S such that G = 〈x, y〉. To

explain the terminology, note that if Γ(G) is the generating graph of G, whose

vertices are the nontrivial elements of G and x, y ∈ G are adjacent if and only

if G = 〈x, y〉, then S is a TDS for G if and only if it is a total dominating set

for Γ(G) in the usual graph-theoretic sense. Consequently, if s(G) � 1, then

the total domination number of G is defined by

γt(G) = min{|S| : S is a TDS for G}.

Similarly, if u(G) � 1, then G contains a uniform dominating set (UDS),

which is defined to be a TDS of conjugate elements, and the uniform domi-

nation number of G is

γu(G) = min{|S| : S is a UDS for G}.

Observe that if u(G) � 1, then

2 � γt(G) � γu(G) � |C|

for some conjugacy class C of G (if u(G) = 0, then γu(G) is undefined).

Probabilistic methods play an important role in the study of uniform spread

and the uniform domination number. For an element s ∈ G and a positive

integer c, we define

(1) P (G, s, c) =
|{(x1, . . . , xc) ∈ (sG)c : {x1, . . . , xc} is a UDS for G}|

|sG|c ,

the probability that c randomly chosen conjugates of s form a UDS for G. In

addition, we define

(2) Pc(G) = max{P (G, s, c) : s ∈ G},

so γu(G) � c if and only if Pc(G) > 0.

There is a vast literature on the remarkable generation properties of finite

simple groups. The starting point is a theorem of Steinberg [68], which states

that every finite simple group of Lie type is 2-generated. It is easy to see that

every alternating group is 2-generated and the same is true for all sporadic

simple groups by a theorem of Aschbacher and Guralnick [1]. Therefore, by
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appealing to the Classification of Finite Simple Groups, we conclude that ev-

ery finite simple group is 2-generated (without the classification, there is no

known bound on the number of generators needed for a finite simple group).

This observation leads to many natural problems concerning the distribution of

generating pairs across a simple group, which have been intensively studied in

recent years (see the recent survey article [22] for more details).

The main result on the uniform spread of simple groups is the following

theorem, which combines results from [13] and [46].

Theorem (�):

(i) If G is a finite non-abelian simple group, then u(G) � 2, with equality

if and only if

G ∈ {A5, A6,Ω
+
8 (2), Sp2r(2) (r � 3)}.

(ii) Let (Gn) be a sequence of finite non-abelian simple groups with

|Gn| → ∞. Then either u(Gn) → ∞, or there is an infinite subse-

quence consisting of either

(a) alternating groups of degree all divisible by a fixed prime; or

(b) odd-dimensional orthogonal groups over a field of fixed size; or

(c) symplectic groups over a field of even characteristic and fixed size.

Here part (i) is due to Breuer, Guralnick and Kantor [13, Theorem 1.2],

extending earlier work of Guralnick and Kantor [45], and independently Stein

[67], who established the weaker bound u(G) � 1. The asymptotic statement in

part (ii) is a theorem of Guralnick and Shalev [46, Corollary 2.3]. Note that the

cases described in parts (a)–(c) of part (ii) are genuine exceptions. For example,

if n � 6 is composite, then [46, Proposition 2.4] gives

(3) s(An) <

(
2p+ 1

3

)
,

where p is the smallest prime divisor of n. Similarly, [46, Proposition 2.5] states

that s(Sp2m(q)′) � q if q is even and s(Ω2m+1(q)) � 1
2q(q + 1) if q is odd, for

all m, q � 2.

In view of Theorem (�) it is natural to study the uniform domination number

of simple groups. In [27], we developed probabilistic and computational methods

to study γu(G) and we used these techniques to determine close to best possible

bounds for simple groups. For example, we showed that there are infinitely
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many simple groups G with γu(G) = 2, including the alternating groups An

when n � 13 is prime. In contrast, we proved that the uniform domination

number is in general unbounded for finite simple groups; for instance,

γu(An) � �log2 n	 − 1

for all even integers n � 6 (see [27, Theorems 1 and 2]).

A key observation in [27] is the connection between the uniform domination

number and the classical concept of bases in permutation group theory, which

allows us to apply recent work on bases for almost simple primitive groups. In

order to explain this relationship, recall that if G acts faithfully on a finite set Ω,

then a subset of Ω is a base for G if its pointwise stabiliser in G is trivial. We

write b(G,Ω) for the base size of G, which is the minimal size of a base. The

connection in [27] arises from the easy observation that if there is an element

s ∈ G contained in a unique maximal subgroup H of G, then P (G, s, c) > 0

if and only if b(G,G/H) � c, whence γu(G) � b(G,G/H) (see Section 2.2 for

further details).

Our initial investigations in [27] lead to a number of natural problems, which

we seek to address in this paper. For example, one of our aims is to extend the

study of the simple groups G with the extremal property γu(G) = 2, with a view

towards a complete classification. For such a group G, we will also investigate

the corresponding probability P2(G) (see (2)) and its asymptotic properties

(with respect to a sequence of such groups). We will also revisit earlier work

of Binder [5, 6, 7] from the 1960s on the spread of symmetric groups, together

with results of Brenner and Wiegold [10] from the 1970s on soluble groups and

the simple linear groups L2(q). In particular, we take the opportunity to bring

together several important results on the 2-generation of finite groups that are

somewhat scattered through the literature.

We now present the main results of the paper. Our first theorem concerns

soluble groups.

Theorem 1: Let G be a finite non-abelian soluble group such that every proper

quotient is cyclic. Then G = N :H , where N = (Cp)
f for some prime p and in-

teger f � 1, and H is cyclic and acts faithfully and irreducibly on N . Moreover,

the following hold:

(i) s(G) = |N | − ε and u(G) = |N | − 1, where ε = 0 if |H | is a prime and

ε = 1 otherwise.

(ii) γu(G) = 2 and P2(G) = 1− |N |−1.
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Remark 1: Let us make some comments on the statement of Theorem 1:

(a) In part (i), the result on s(G) is due to Brenner and Wiegold (see [10,

Theorem 2.01]).

(b) Let G = N :H be a soluble group as in the theorem and let s ∈ G be

a nontrivial element. We will show that P (G, s, 2) > 0 if and only if s

generates a complement of N (see Proposition 3.5), in which case any

two distinct conjugates of s form a uniform dominating set and thus

P (G, s, 2) = 1− |N |−1 since s is self-centralising.

(c) The corresponding result for a non-cyclic abelian group G is transpar-

ent. Indeed, the condition on quotients implies that G = Cp × Cp for

some prime p and it is easy to see that s(G) = p and u(G) = 0.

Next we turn to symmetric groups.

Theorem 2: Let G = Sn with n � 5.

(i) We have

s(G) =

⎧⎨⎩2 if n is even

3 if n is odd
and u(G) =

⎧⎨⎩0 if n = 6,

2 otherwise.

(ii) For all n,

γu(G) � γt(G) � �log2 n	 � 3.

(iii) Suppose n is odd and Ω is the set of 
n
2 �-element subsets of {1, . . . , n}.

Then

γu(G) = b(G,Ω) � 2 log2 n.

(iv) If n is even, then

γu(G) � 3n log2 n.

Remark 2: Let us record some comments on the statement of Theorem 2:

(a) The equality u(Sn) = 2 for n �= 6 is the main feature of part (i). Indeed,

the calculation of s(Sn) is due to Binder [5, 6]. In addition, Binder [7]

showed that u(Sn) � 1 if n �= 6 (as noted in [25, Theorem 2], we have

u(S6) = 0).

(b) For (iii), the upper bound (and its proof) is analogous to the upper

bound on γu(A2m) obtained in [27] (see Theorem 3(i) below). It is also

worth noting that the base size b(G,Ω) is not known exactly (see [47]).



Vol. 239, 2020 2-GENERATION OF FINITE GROUPS 277

(c) It is easy to handle the small degree symmetric groups excluded in the

theorem. By Theorem 1 we have s(S3) = 3, u(S3) = 2, γu(S3) = 2

and P2(S3) =
2
3 . Since S4 has a proper non-cyclic quotient, we see that

s(S4) = u(S4) = 0.

For alternating groups, our main result is the following.

Theorem 3: Let G = An with n � 5.

(i) If n is even, then

s(G) = u(G) =

⎧⎨⎩2 if n = 6

4 otherwise

and

log2 n � γt(G) � γu(G) � 2 log2 n.

(ii) If n � 9 is odd, then u(G) � 4 and

logp n � γt(G) � γu(G) � 77 log2 n,

where p is the smallest prime divisor of n.

(iii) We have γu(G) = 2 if and only if n � 13 is a prime.

(iv) If n > 13 is a prime, then P2(G) > 1− n−1.

Remark 3: Some remarks on the statement of Theorem 3:

(a) In part (i), the result on s(G) and u(G) is due to Brenner and Wiegold

[10, (3.01)–(3.05)] and the upper bound on γu(G) is taken from [27,

Theorem 2]. The lower bound is established in Proposition 4.12.

(b) Part (ii) extends the bound u(G) � 3 established in [13] (with essen-

tially the same proof). The excluded cases n ∈ {5, 7} are genuine

exceptions: it is straightforward to show that s(A5) = u(A5) = 2 and

s(A7) = u(A7) = 3. The upper bound on γu(G) is [27, Proposition 3.15]

and the lower bound follows from Proposition 4.12.

(c) In stark contrast to the even degree case, the uniform spread of an

odd-degree alternating group can be arbitrarily large. Indeed, this is a

consequence of part (ii) of Theorem (�). More precisely, [46, Proposition

3.1] states that if n is composite and p is the smallest prime divisor

of n, then

s(An) � cp log p
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for some (undetermined) absolute constant c. We refer the reader to

[46, Propositions 3.2 and 3.3] for explicit bounds on u(An) and s(An)

when n is a prime (also see [10, Section 4]).

(d) Part (iii) extends [27, Theorem 3.7(i)], which states that γu(An) = 2 if

n � 13 is a prime. This can be viewed as a first step towards a classi-

fication of the finite simple groups G with γu(G) = 2 (see Corollary 7

below). In addition, if n � 13 is a prime, then P (An, s, 2) > 0 if and

only if s is an n-cycle (see Proposition 5.5).

(e) In part (iv), the case n = 13 is an anomaly. Indeed, with the aid of

Magma [9], one can show that

P2(A13) =
4979

46200

(see Remark 5.10 for further details).

Next we consider the finite simple groups of Lie type. Our main result for

exceptional groups is the following. Let

E = {2B2(q),
2G2(q) (q � 27), 2F4(q) (q � 8), 3D4(q), E

ε
6(q), E7(q), E8(q)}.

Theorem 4: Let G be a finite simple exceptional group of Lie type over Fq.

(i) We have γu(G) � 5, with γu(G) = 2 if and only if G ∈ E .
(ii) If γu(G) = 2, then P2(G) > 1− q−1.

Remark 4: Let us make some remarks on the statement of Theorem 4:

(a) The bound on γu(G) in part (i) strengthens the result γu(G) � 6 stated

in [27, Theorem 5.2]. The same result states that γu(G) = 2 if G

is 2B2(q),
2G2(q) (with q � 27), or E8(q), and the complete classifica-

tion of the exceptional groups G with γu(G) = 2 is the main feature of

Theorem 4.

(b) The lower bound on P2(G) in part (ii) is essentially best possible. For

example, if G = 2B2(q), then

P2(G) = 1− (q2 − 4)(q −
√
2q + 1) + 4

q2(q − 1)(q +
√
2q + 1)

(see Lemma 6.7 and Remark 6.8). Stronger bounds are obtained in

many cases. For instance, if G = E8(q) then P2(G) > 1 − q−30 by

Lemma 6.11.
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Finally, let us turn to the classical groups. The two-dimensional linear groups

merit special attention and they are handled in the following result.

Theorem 5: Let G = L2(q) with q � 4.

(i) If q � 11 and q �≡ 3 (mod 4), then

s(G) = u(G) =

⎧⎨⎩q − 1 if q ≡ 1 (mod 4),

q − 2 if q is even.

(ii) If q ≡ 3 (mod 4) and q � 11, then u(G) � q − 4 and s(G) � q − 3.

(iii) If q ≡ 3 (mod 4) and q � 11 is a prime, then

s(G) � 1

2
(3q − 7) and s(G)− u(G) =

1

2
(q + 1).

(iv) We have

γu(G) =

⎧⎪⎪⎨⎪⎪⎩
4 if q = 9,

3 if q ∈ {5, 7} or q is even,

2 if q � 11 is odd.

(v) If q � 11 is odd, then

P2(G) =

⎧⎨⎩ 1
2 (1 +

1
q ) if q ≡ 1 (mod 4)

1
2 (1−

q+3
q(q−1) ) if q ≡ 3 (mod 4).

In particular, P2(G) � 24
55 , with equality if and only if q = 11.

Remark 5: Let us make some comments on the statement of Theorem 5:

(a) The spread of G = L2(q) was first studied by Brenner and Wiegold

in [10]. According to [10, Theorem 4.02], if q � 11 or q is even, then

s(G) = f(q) where

f(q) =

⎧⎪⎪⎨⎪⎪⎩
q − 1 if q ≡ 1 (mod 4),

q − 4 if q ≡ 3 (mod 4),

q − 2 if q is even.

However, the proof in [10] is incomplete and only the lower bound

s(G) � f(q) is established. With some additional work, we can show

that s(G) = f(q) when q �≡ 3 (mod 4) and q � 13 (see Theorem 7.3),

which establishes part (i) of Theorem 5. However, the case q≡3 (mod 4)
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is rather more complicated and we have been unable to compute s(G)

and u(G) precisely. Note that part (ii) shows that the statement of [10,

Theorem 4.02] is incorrect in this case.

(b) Part (iii) demonstrates that the difference s(G)−u(G) can be arbitrarily

large. As far as we are aware, this provides the first example of an

infinite family of non-abelian finite groups with this property.

(c) It is straightforward to handle the small values of q excluded in parts

(i), (ii) and (iii). Since L2(4) ∼= L2(5) ∼= A5 and L2(9) ∼= A6, we see

that s(G) = u(G) = 2 if q ∈ {4, 5, 9}. If q = 8, then s(G) = u(G) = 6.

Finally, for q = 7 one can check that s(G) = 5 and u(G) = 3.

(d) Part (iv) extends [27, Proposition 6.4], which states that γu(L2(q)) � 4,

with equality if and only if q = 9. We also note that G = L2(11) is the

smallest simple group with γu(G) = 2.

(e) It is worth highlighting the expression for P2(G) in part (v), which

shows that P2(G) → 1
2 as q tends to infinity (cf. Corollary 8).

In order to state a result for all classical groups, it will be useful to write

A ={Ur+1(q) : r � 7 odd} ∪ {PSp2r(q) : r � 3 odd, q odd}
∪ {PΩ+

2r(q) : r � 5 odd},
B ={Sp2r(q) : r � 2, q even, (r, q) �= (2, 2)} ∪ {Ω2r+1(q) : r � 3, q odd},
C ={PSp2r(q) : r � 5 odd, q odd} ∪ {PΩ±

2r(q) : r � 4 even}.

In the statement of the following result, r denotes the (untwisted) Lie rank

of G, which is the rank of the ambient simple algebraic group.

Theorem 6: Let G be a finite simple classical group over Fq of rank r.

(i) We have γu(G) � 7r + 56.

(ii) We have γu(G) = 2 only if one of the following holds:

(a) G = L2(q) and q � 11 is odd.

(b) G = Lε
n(q), where n is odd and

(n, q, ε) �∈ {(3, 2,+), (3, 4,+), (3, 3,−), (3, 5,−)}.

(c) G ∈ C.
Moreover, γu(G) = 2 for the groups in (a) and (b).
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(iii) If γu(G) = 2 and G �∈ C ∪ {L2(q) : q � 11 odd}, then either P2(G) > 1
2 ,

or G = U5(2) and P2(G) = 605
1728 . Moreover, P2(G) → 1 as |G| → ∞.

Remark 6: Let us make some remarks on the statement of Theorem 6:

(a) The bound on γu(G) in part (i) is from [27, Theorem 6.3], where we

also showed that γu(G) � 15 if G ∈ A and r � γu(G) � 7r if G ∈ B.
(b) In part (ii), we have been unable to determine if γu(G) = 2 for the

groups G in the collection C. We refer the reader to Remarks 8.15 and

8.16 for further comments on the difficulties that arise in these special

cases.

We now present some general results concerning all finite simple groups. Let

us write D for the classical groups arising in parts (ii)(a) and (ii)(b) of Theo-

rem 6, and recall the collection E from Theorem 4. In addition, write

S = {M23, J1, J4,Ru,Ly,O
′N,Fi23,Fi′24,Th,B,M},

T = {J3,He,Co1,HN}.

The following result is an immediate corollary of Theorems 3(iii), 4(i)

and 6(ii), together with [27, Theorem 4.2] on sporadic groups. Note that

γu(G) ∈ {2, 3} for each of the groups in T , but we have been unable to de-

termine the exact value in these cases (see Remark 9.2).

Corollary 7: Let G be a finite simple group. Then γu(G) = 2 only if

(i) G ∈ {An : n � 13 prime} ∪ D ∪ E ∪ S; or
(ii) G ∈ C ∪ T .

Moreover, γu(G) = 2 for the groups in (i).

The next result follows from Theorems 3(iv), 4(ii) and 6(iii).

Corollary 8: Let (Gn) be a sequence of finite simple groups such that

γu(Gn) = 2, Gn �∈ C ∪ {L2(q) : q � 11 odd} and |Gn| → ∞. Then P2(Gn) → 1

as n → ∞.

We will also establish the following non-asymptotic result on the probability

P2(G) (this will be proved in Section 9).
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Theorem 9: Let G be a finite simple group such that γu(G) = 2 and G �∈ C∪T .

Then P2(G) � 1
2 if and only if one of the following holds:

(i) G = L2(q), q � 11, q ≡ 3 (mod 4) and

24

55
� P2(G) =

1

2

(
1− q + 3

q(q − 1)

)
.

(ii) G ∈ {A13,U5(2),Fi23} and

P2(G) =

⎧⎪⎪⎨⎪⎪⎩
4979
46200 if G = A13,

605
1728 if G = U5(2),

7700
137241 if G = Fi23.

Remark 7: In terms of the asymptotics of P2(G), it is natural to ask whether

or not this probability is bounded away from zero. That is, is there an absolute

constant ε > 0 such that P2(G) � ε for every simple group G with γu(G) = 2?

By Theorem 9, this is true for the relevant groups G �∈ C. Therefore, in or-

der to answer this question, it remains to consider the specific symplectic and

orthogonal groups comprising the collection C.

There is a natural generalisation of the uniform domination number for groups

with uniform spread greater than one. Indeed, if G is a finite group with

u(G) � � for some positive integer �, then let γ
(�)
u (G) be the smallest size of a

set S of conjugate elements such that for any nontrivial elements x1, . . . , x� ∈ G,

there exists y ∈ S such that G = 〈xi, y〉 for all i. Evidently, γ
(1)
u (G) = γu(G).

Since u(G) � 2 for all finite non-abelian simple groups G, it is natural to

consider γ
(2)
u (G) for these groups. With this in mind, we can state the following

result (see Section 9).

Theorem 10: LetG be a finite simple group such that γu(G)=2 andG �∈C ∪ T .

Then γ
(2)
u (G) = 3. Moreover, the following hold:

(i) If G = An with n > 13 prime, then γ
(�)
u (G) = �+ 1 for all 1 � � � n.

(ii) If G is an exceptional group of Lie type over Fq, then γ
(�)
u (G) = � + 1

for all 1 � � � q.
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Remark 8: Let us comment on Theorem 10.

(a) Lemma 2.7 states that if G is a finite non-cyclic group, then

γ(�)
u (G) � �+ 1,

with equality if P2(G) > 1 − �−1 (this is clear for � = 1). Therefore,

the probabilistic results in Corollary 8 and Theorem 9 are crucial to the

proof of Theorem 10.

(b) In certain cases, we can establish even stronger results on γ
(�)
u (G). For

example, if G = E8(q), then γ
(�)
u (G) = � + 1 for all � � q30 (see Re-

mark 4(b)).

Remark 9: Suppose G is a finite group with an element s ∈ G that is con-

tained in a unique maximal subgroup H of G. In this situation, the class sG

witnesses γu(G) = 2 if and only if b(G,G/H) = 2, and one needs further infor-

mation on the bases of size two in order to determine if the same class witnesses

γ
(�)
u (G) = �+ 1 for some � � 2. It turns out that this is encoded in the so-called

Saxl graph Σ(G,G/H), which has vertex set G/H and two vertices are adja-

cent if and only if they form a base for G (see [24]). According to Lemma 2.8,

γ
(�)
u (G) = �+1 is witnessed by sG if and only if Σ(G,G/H) has an (�+1)-clique

(that is, a complete subgraph with �+1 vertices). In particular, the probabilis-

tic condition in Remark 8(a) is just a special case of Turán’s Theorem applied

to the graph Σ(G,G/H). In [24], it is conjectured that if G � Sym(Ω) is a finite

primitive group with b(G,Ω) = 2, then any pair of vertices of Σ(G,Ω) have a

common neighbour and thus Σ(G,Ω) contains a triangle. In the above setting,

this would imply that γ
(2)
u (G) = 3.

Finally, let us return to the total domination number γt(G) and recall that

γt(G) � γu(G). It is natural to consider the relationship between these two

numbers. For example, is there an absolute constant C such that

γu(G) � Cγt(G)

for all non-abelian finite simple groups G? By the results stated above, this is

true for all even-degree alternating groups and all exceptional groups of Lie type.

It also holds for the classical groups in the collections denoted A, B and D above

(indeed, one can modify the proof of [27, Theorem 6.3(iii)] to get γt(G) � r for

all G ∈ B). It would be interesting to investigate if this relationship extends to

the remaining classical groups, and also the alternating groups of odd degree.
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Notation. Our group-theoretic notation is fairly standard. In particular, we

adopt the notation from [53] for simple groups, so we write Ln(q) = PSLn(q)

and Un(q) = PSUn(q) for linear and unitary groups, and PΩε
n(q) is a simple or-

thogonal group, etc. In addition, if G is a finite group, then we write G# for the

set of nontrivial elements in G and ir(X) for the number of elements of order r

in a subset X of G. For matrices, it will be convenient to write [An1
1 , . . . , Ank

k ]

for a block-diagonal matrix with a block Ai occurring with multiplicity ni. In

addition, Ji will denote a standard unipotent Jordan block of size i. Finally,

for positive integers a and b, we write (a, b) for their greatest common divisor

and we set [a] = {1, . . . , a}.
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ical Sciences Research Council and the Heilbronn Institute for Mathematical
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2. Methods

In this section, we record some preliminary results which will be needed in

the proofs of our main theorems. Throughout, let G be a finite 2-generated

non-cyclic group and let G# be the set of nontrivial elements of G.

2.1. Spread. Define the spread s(G) and uniform spread u(G) as in the in-

troduction. We begin by outlining a probabilistic approach which was first

used by Guralnick and Kantor in [45] to prove that u(G) � 1 for every non-

abelian finite simple group G and has since been instrumental in establishing

several related results on the uniform spread of simple and almost simple groups

in [13, 25, 46, 48].

For x, s ∈ G, let

(4) P (x, s) = 1− |{z ∈ sG : G = 〈x, z〉}|
|sG|

be the probability that x and a randomly chosen conjugate of s do not gener-

ate G. The following result is [25, Lemma 2.1].



Vol. 239, 2020 2-GENERATION OF FINITE GROUPS 285

Lemma 2.1: Let k be a positive integer and assume there is an element s ∈ G

such that
k∑

i=1

P (xi, s) < 1

for all k-tuples (x1, . . . , xk) of prime order elements in G. Then u(G) � k (with

respect to the conjugacy class sG).

We can use fixed point ratios to estimate the sum in Lemma 2.1. Recall that

if G acts transitively on a finite set Ω, then

fpr(x,Ω) =
|CΩ(x)|
|Ω| =

|xG ∩H |
|xG|

is the fixed point ratio of x ∈ G, where CΩ(x) is the set of fixed points of x

and H is a point stabiliser. By [25, Lemma 2.2], we have

(5) P (x, s) �
∑

H∈M(G,s)

fpr(x,G/H),

where M(G, s) is the set of maximal subgroups of G which contain s. This

yields the following corollary.

Corollary 2.2: Let k be a positive integer and assume there is an element

s ∈ G such that ∑
H∈M(G,s)

fpr(x,G/H) <
1

k

for all x ∈ G of prime order. Then u(G) � k.

Therefore, upper bounds on fixed point ratios can be used to bound the

probability P (x, s). In order to effectively apply this approach, one needs to

identify an element s ∈ G for which we can control the maximal overgroups

in M(G, s) (ideally, s should be contained in very few maximal subgroups).

When it is feasible to do so, this probabilistic approach will be complemented

by computational methods implemented in Magma [9]. These methods are

outlined in [48, Section 2.3] and we refer the reader to Breuer’s manuscript [12]

for a more detailed discussion.

2.2. Uniform domination number. Let G be a finite group with u(G) � 1.

Recall that a subset S of G# is a total dominating set (TDS) for G if for all

x ∈ G#, there exists y ∈ S such that G = 〈x, y〉, and the uniform domination

number of γu(G) is the minimal size of a TDS for G consisting of conjugate
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elements. This notion was first introduced in [27], where close to best possible

bounds on γu(G) for simple groups G were determined. Let us briefly recall the

main methods developed in [27] to bound the uniform domination number.

Recall that if G acts faithfully on a finite set Ω, then a subset of Ω is a

base for G if its pointwise stabiliser in G is trivial; the base size of G, written

b(G,Ω), is the minimal size of a base. The following result reveals an important

connection between bases and total dominating sets consisting of conjugate

elements.

Lemma 2.3: Let s ∈ G#, let H ∈ M(G, s) and assume that H is core-free.

Then

min{|S| : S ⊆ sG is a TDS for G} � b(G,G/H),

with equality if M(G, s) = {H}. In particular, if for each s ∈ G# there exists

H ∈ M(G, s) with b(G,G/H) � c, then γu(G) � c.

Proof. This follows from [27, Corollaries 2.2 and 2.3].

Probabilistic methods also play a key role in [27]. As in the introduction, for

an element s ∈ G and integer c � 1, we define P (G, s, c) to be the probability

that c randomly chosen conjugates of s form a TDS for G (see (1)). Note that

γu(G) � c if and only if P (G, s, c) > 0 for some s. The next lemma provides a

means of computing P (G, s, 2) in an important special case.

Lemma 2.4: Suppose s ∈ G# and M(G, s) = {H} with H core-free. Then

P (G, s, 2) =
r|H |2
|G| ,

where r is the number of regular orbits of H on G/H .

Proof. First observe that if {x, y} is a TDS for G, then so is {xg, yg} for all

g ∈ G, hence

P (G, s, 2) =
|{sg ∈ sG : {s, sg} is a TDS for G}|

|sG| .

Now {s, sg} is a TDS for G if and only if H ∩Hg = 1, so

P (G, s, 2) =
|{g ∈ G : H ∩Hg = 1}|

|CG(s)||sG|
=

r|H |2
|G|

as required.
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The next result, which is [27, Lemma 2.5], shows that fixed point ratios can

be used to bound the complementary probability Q(G, s, c) = 1− P (G, s, c).

Lemma 2.5: Let s ∈ G# and c ∈ N. Then

Q(G, s, c) �
k∑

i=1

|xG
i |
( ∑

H∈M(G,s)

fpr(xi, G/H)

)c

=: Q̂(G, s, c),

where the xi represent the conjugacy classes in G of elements of prime order.

We can use the following result to estimate the bound that arises in Lemma

2.5 (see [27, Lemma 2.7]).

Lemma 2.6: Let {H1, . . . , H�} be proper subgroups of G. Suppose that

x1, . . . , xm represent distinct G-classes such that
∑

i |xG
i ∩Hj | � Aj and |xG

i |�B

for all i, j. Then

m∑
i=1

|xG
i |
( �∑

j=1

fpr(xi, G/Hj)

)c

� B1−c

( �∑
j=1

Aj

)c

for all positive integers c.

Recall the definition of γ
(�)
u (G) from the introduction, where � is a positive

integer. In particular, notice that γ
(1)
u (G) = γu(G).

Lemma 2.7: Let � be a positive integer. Then γ
(�)
u (G) � �+ 1, with equality if

Q(G, s, 2) < 1/� for some s ∈ G.

Proof. Fix s ∈ G and consider a subset S = {z1, z2, . . . , z�} of sG of size �.

Since G is not cyclic, there is no j such that G = 〈zi, zj〉 for all i ∈ [�], whence

γ
(�)
u (G) � �+ 1.

Now assume that Q(G, s, 2) < 1/�. We will use induction on � to prove that

there exists a subset S of sG of size � + 1 such that {z, z′} is a TDS for G for

all distinct z, z′ ∈ S. The base case � = 1 is clear, so let us assume � � 2.

Since Q(G, s, 2) < 1/� < 1/(� − 1), by induction, there exist z1, . . . , z� ∈ sG

such that {zi, zj} is a TDS for all distinct i, j ∈ [�]. For i ∈ [�], let Ni ⊆ sG be

the set of conjugates z of s such that {zi, z} is not a TDS for G. The bound

Q(G, s, 2) < 1/� implies that |Ni| < |sG|/�, so there exists z�+1 ∈ sG such that

z�+1 �∈
�⋃

i=1

Ni

and hence {zi, zj} is a TDS for all distinct i, j ∈ [�+ 1].
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Now fix S ⊆ sG such that |S| = � + 1 and {z, z′} is a TDS for G for all

distinct z, z′ ∈ S. Let x1, . . . , x� ∈ G# be arbitrary elements. We claim that

there exists z ∈ S such that G = 〈xi, z〉 for all i ∈ [�]. Seeking a contradiction,

suppose that for all z ∈ S, there exists i ∈ [�] such that G �= 〈xi, z〉. Since

|S| > �, there exists i ∈ [�] and distinct z, z′ ∈ S such that G �= 〈xi, z〉 and

G �= 〈xi, z
′〉, but this contradicts the fact that {z, z′} is a TDS. This completes

the proof of the lemma.

Recall that if G is a group acting faithfully on a set Ω, then the Saxl graph

Σ(G,Ω) has vertex set Ω and α, β ∈ Ω are adjacent if and only if {α, β} is a

base for the action of G on Ω (see [24]).

Lemma 2.8: Fix s ∈ G and assume that M(G, s) = {H} for a core-free sub-

group H with b(G,G/H) = 2. Then γ
(�)
u (G) = � + 1 is witnessed by sG if and

only if Σ(G,G/H) has an (�+ 1)-clique.

Proof. First assume that Σ(G,G/H) has an (�+1)-clique. Then there exist �+1

distinct conjugates Hg1 , . . . , Hg�+1 such that Hgi ∩Hgj = 1 for all i �= j, which

is equivalent to {sgi , sgj} being a TDS. Therefore, by the proof of Lemma 2.7,

{sg1 , . . . , sg�+1} witnesses γ
(�)
u (G) = �+ 1.

Now suppose γ
(�)
u (G) = �+1 is witnessed by a set S= {sg1 , . . . , sg�+1}. To

prove that Σ(G,G/H) has an (� + 1)-clique, it suffices to prove that

Hgi ∩Hgj = 1

for all i �= j. Suppose otherwise, say 1 �= x ∈ Hg1 ∩ Hg2 . Then there is

no element z ∈ S such that G = 〈y, z〉 for all y ∈ {x, sg3 , . . . , sg�+1}, which
contradicts S witnessing γ

(�)
u (G) = �+ 1. This completes the proof.

In addition to the techniques described above, we will also use computational

methods in GAP [41] and Magma [9] to study γu(G). We refer the reader to

[27, Section 2.3] and [28] for a detailed discussion of these methods.

3. Soluble groups

In this section we will prove Theorem 1. With this goal in mind, we begin by

recording an elementary lemma on the structure of the finite soluble groups we

are interested in. Throughout this section, it will be convenient to let S be

the set of finite non-abelian soluble groups with the property that every proper

quotient is cyclic.
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Lemma 3.1: Each G ∈ S is a primitive Frobenius group of the form G = N :H ,

where N , the socle of G, is an elementary abelian p-group for some prime p,

and H = 〈h〉 acts faithfully and irreducibly on N . In particular, H = CG(h)

has |N | distinct N -conjugates and these subgroups intersect pairwise trivially.

Proof. This is straightforward; see the proof of [14, Proposition 1.1], for

example.

Since the spread of soluble groups has been studied by Brenner and Wiegold

in [10, Theorem 2.01], we may focus on the uniform spread and the uniform

domination number.

Proposition 3.2: Let G = N :H ∈ S as above. Let 1 � k � |N | − 1 and let S

be a subset of hG of size k + 1. Then for any k nontrivial elements x1, . . . , xk

in G, there exists s ∈ S such that G = 〈xi, s〉 for all i.

Proof. Write S = {hn : n ∈ M} where M is a subset of N of size k + 1. Let

x1, . . . , xk be arbitrary nontrivial elements of G. Since the distinct conjugates

of H have pairwise trivial intersection, each xi is contained in at most one

conjugate of H . Therefore, there exists n ∈ M such that xi �∈ Hn for all i. Fix

1 � i � k and write xi = nihi with ni ∈ N and hi ∈ Hn. Note that ni �= 1

since xi �∈ Hn. We claim that G = 〈xi, h
n〉. To see this, first observe that

Hn � 〈xi, h
n〉 since Hn = 〈hn〉. In addition, ni ∈ 〈xi, h

n〉 and N = 〈nHn

i 〉 since
Hn acts irreducibly on N . Therefore G = 〈xi, h

n〉 and the result follows.

Corollary 3.3: If G = N :H ∈ S as above, then u(G) = |N | − 1.

Proof. Since u(G) � |N | − 1 by Proposition 3.2, it suffices to show that

u(G) � |N | − 1.

Seeking a contradiction, suppose that G has uniform spread |N | with respect

to an element s ∈ G. Consider the set {hn : n ∈ N} of |N | nontrivial elements.

Since G has uniform spread |N | with respect to s, it follows that there exists

g ∈ G such that G = 〈sg, hn〉 for all n ∈ N . Therefore,

sg ∈ G \
⋃
n∈N

Hn = N

and thus s ∈ N . However, 〈n, sx〉 � N < G for all n ∈ N and x ∈ G, which is

a contradiction. Therefore, u(G) � |N | − 1 and the proof is complete.
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Corollary 3.4: If G = N :H ∈ S as above, then γu(G) = 2 and

P (G, h, 2) = 1− |N |−1.

Proof. Both claims follow from the special case of Proposition 3.2 with k = 1,

noting that any two distinct G-conjugates of h form a uniform dominating

set.

Finally, we determine the conjugacy classes that witness the properties es-

tablished above. This completes the proof of Theorem 1.

Proposition 3.5: If G = N :H ∈ S as above, then the following are equivalent:

(i) sG witnesses u(G) � 1.

(ii) sG witnesses γu(G) = 2.

(iii) s generates a complement of N .

In particular, P2(G) = 1− |N |−1.

Proof. Proposition 3.2 proves that (iii) implies (ii), and evidently (ii) implies (i).

We will prove that (i) implies (iii). Suppose that u(G) � 1 with respect to sG.

Then for 1 �= n ∈ N , there exists g ∈ G such that G = 〈n, sg〉. In particu-

lar, G/N = 〈Nn,Nsg〉 = 〈Nsg〉. Since Nsg generates G/N , the element sg

generates a complement of N .

Remark 3.6: It follows from the proofs of Propositions 3.2 and 3.5 that two

elements of G = N :H ∈ S form a total dominating set if and only if they

generate distinct complements of N .

4. Symmetric groups

In this section, we will focus on symmetric groups and our main aim is to prove

Theorem 2; alternating groups will be handled in Section 5.

The spread of symmetric groups has been the subject of many papers, span-

ning several decades. In 1939, Piccard [63] proved that if n � 3, then Sn has

positive spread if and only if n �= 4. In addition, she showed that the alter-

nating group An has positive spread for n � 4. Building on these results, the

spread and uniform spread of symmetric and alternating groups were studied

by Binder in a series of papers [5, 6, 7, 8] in the late 1960s. In particular, he
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shows that

(6) s(Sn) =

⎧⎪⎪⎨⎪⎪⎩
0 if n = 4

2 if n �= 4 is even

3 if n is odd

for n � 3 (see [5, 6]). Here Binder uses the term k-fold coherent to describe a

group G with s(G) � k, and he refers to a total dominating set as a complete set

of complements (the term spread was first introduced by Brenner and Wiegold

in [10]). Binder studies the uniform spread of symmetric groups in [7], proving

that u(Sn) � 1 for n �∈ {4, 6}. Note that the two excluded cases are genuine

exceptions. Indeed, s(S4) = u(S4) = 0 since S4 has a non-cyclic proper quotient,

and one can check that u(S6) = 0 (see [25, Theorem 2], for example).

As a consequence of Binder’s work, it follows that u(Sn) ∈ {1, 2} if n � 8 is

even, and u(Sn) ∈ {1, 2, 3} if n is odd. Our first aim is to determine the exact

uniform spread of Sn for all n; the main results are Theorems 4.3 and 4.11.

Along the way, we will also prove (6). With this goal in mind, the following

preliminary result will be useful.

Lemma 4.1: Let G = Sn with n � 9, let s = (1, 2, . . . , n) ∈ G and let

i, j, k, l ∈ [n] be distinct numbers.

(i) G = 〈(i, j), s〉 if and only if j − i and n are coprime.

(ii) 〈(i, j, k), s〉 � An if and only if j − i and k − j are coprime.

(iii) 〈(i, j)(k, l), s〉 � An if j − i and n are coprime and i, j, k, l � n/2.

Proof. Let x be (i, j), (i, j, k) and (i, j)(k, l) in parts (i), (ii) and (iii), respec-

tively. In all three cases, it suffices to show that 〈x, s〉 acts primitively on [n]

since any primitive permutation group of degree n � 9 and minimal degree

at most 4 must contain An (see [35, Example 3.3.1]). Cases (i) and (ii) are

straightforward, so let us consider (iii). Let Π be a nontrivial partition of [n]

stabilised by s. Then each part of Π is a congruence class modulo a, where

1 < a < n and a divides n. If x also stabilises Π, then either each cycle of x is

contained in a part of Π, or a = n/2 and either {i, k} and {j, l} are parts of Π,

or {i, l} and {j, k} are parts of Π. The first of these possibilities is excluded by

the condition that j − i and n are coprime, and the second is ruled out by the

condition i, j, k, l � n/2 since each part of Π contains a number greater than

n/2. The result follows.
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Remark 4.2: By Lemma 4.1(i), if z ∈ Sn is an n-cycle then Sn = 〈z, (i, iz)〉 for
each i ∈ [n].

Finally, we will refer to the shape of a permutation x ∈ Sn to mean the list

of lengths of the disjoint cycles comprising x. For example, (1, 2)(3, 4) ∈ S7 has

shape [22, 13].

4.1. Uniform spread for odd degrees. We will first determine the uniform

spread of odd-degree symmetric groups, which is significantly easier than the

even-degree case. We will also compute the spread of these groups.

Theorem 4.3: Let G = Sn with n � 5 odd. Then u(G) = 2 and s(G) = 3.

Proof. The case n = 5 can be handled using Magma, so let us assume n � 7.

We begin by establishing lower bounds. Write n = 2m + 1 and let C be the

class of elements of shape [m,m+ 1]. Let x1, x2 and x3 be nontrivial elements

of G and assume that

{x1, x2, x3} �= {(1, 2), (2, 3), (1, 3)}g

for all g ∈ G. Therefore, we may fix two disjoint subsets {a1, a2, a3}, {b1, b2, b3}
of {1, 2, . . . , n} such that aixi = bi for each i. Choose z ∈ C so that a1, a2, a3 are

contained in the m-cycle of z, and b1, b2, b3 are contained in the (m+ 1)-cycle.

Clearly, z is contained in a unique maximal intransitive subgroup H . Since

(m,m + 1) = 1, z is not contained in a transitive imprimitive subgroup. In

addition, since z is odd and zm+1 is an m-cycle, a theorem of Marggraf (see [73,

Theorem 13.5]) implies that z is not contained in a primitive maximal subgroup.

Therefore, M(G, z) = {H} with H = Sm × Sm+1. However, by construction

〈xi, z〉 is transitive for each i, so

G = 〈x1, z〉 = 〈x2, z〉 = 〈x3, z〉.

In particular, by setting x3 = x2 in the above paragraph, we have shown that

u(G) � 2 with respect to the class C. Moreover, to show that s(G) � 3, it

suffices to prove that there exists an element w ∈ G such that

G = 〈(1, 2), w〉 = 〈(2, 3), w〉 = 〈(1, 3), w〉.

By Lemma 4.1(i), we can take w = (1, 2, . . . , n), hence s(G) � 3.
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Let us now turn to upper bounds. Let s ∈ G be such that

G = 〈(1, 2), s〉 = 〈(1, 3), s〉 = 〈(2, 3), s〉.

Suppose s stabilises a k-element subset A of [n] with k < n, and let B be

the complement of A. Since G = 〈(1, 2), s〉, we may assume, without loss of

generality, 1 ∈ A and 2 ∈ B. Since G = 〈(1, 3), s〉 and 1 ∈ A we must have

3 ∈ B. However, this gives 〈(2, 3), s〉 � G{B} < G, which is a contradiction.

Therefore, s is an n-cycle.

Let us draw two conclusions from this observation. First, suppose that

u(G) � 3 is witnessed by a class sG. We have just demonstrated that s is

an n-cycle. However, n is odd, so s ∈ An and thus 〈(1, 2, 3), sg〉 � An < G for

all g ∈ G, which is a contradiction. Therefore, u(G) � 2 and thus u(G) = 2.

Second, suppose that s(G) � 4. Then there exists t ∈ G such that

G = 〈(1, 2), t〉 = 〈(2, 3), t〉 = 〈(1, 3), t〉 = 〈(1, 2, 3), t〉.

As before, t must be an n-cycle and once again we reach a contradiction since

〈(1, 2, 3), t〉 � An < G. Therefore, s(G) � 3 and the proof is complete.

4.2. Uniform spread for even degrees. Now let us turn to the uniform

spread of symmetric groups of even degree. Our main aim is to prove the

following result.

Theorem 4.4: Let G = Sn with n � 8 even. Then u(G) � 2.

Our proof of Theorem 4.4 relies on the probabilistic method described in

Section 2.1 and it is based on the arguments in [45, Section 7] and [13, Section 6].

In addition, we use some of the ideas in Binder’s proof of the weaker bound

u(G) � 1 in [7].

Our first priority is to establish some fixed point ratio estimates for the action

of G = Sn on partitions. For a divisor l of n with 1 < l < n, let Πl be the set

of partitions of [n] into l parts of equal size. Then G has a natural action on Πl

and for each x ∈ G we write Fixl(x) for the set of partitions in Πl stabilised

by x. Whenever we refer to partitions we mean partitions whose parts have

equal size.

We will establish the following bounds, which may be of independent interest

(note that in both lemmas, there are no conditions on the parity of n).
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Lemma 4.5: Let G = Sn with n � 8 and assume that x ∈ G has shape

[pk, 1n−pk] where p is an odd prime and k � 1. Then

fpr(x,Πl) <

⎧⎨⎩1/l2 if (p, k) = (3, 1) or l > n/6,

1/l3 otherwise.

Lemma 4.6: Let G = Sn with n � 14 and assume that x ∈ G has shape

[2k, 1n−2k] where k � 1. Then

fpr(x,Πl) <

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/l if k = 1,

6/n2 if k = 2 and l = n/2,

1/l2 if k = 2 and 2 < l < n/2,

33/128 if k = 2 and l = 2,

1/l2 if k � 3 and l > n/6,

1/l3 if k � 3 and l � n/6.

Remark 4.7: Let us comment on Lemmas 4.5 and 4.6.

(a) In [13, Proposition 6.7], similar upper bounds on fpr(x,Πl) are obtained

when n is odd and x ∈ An has prime order. Therefore, we can view

Lemmas 4.5 and 4.6 as an extension of this result to all n and all x ∈ Sn

of prime order.

(b) When n is small, it is straightforward to verify the bounds in Lem-

mas 4.5 and 4.6 with the aid of Magma. Indeed, we will prove these

results in this way for n < 30.

We begin by recording some preliminary results (once again, note that there

are no conditions on the parity of n in Lemmas 4.8 and 4.9).

Lemma 4.8: Let G = Sn and assume that x ∈ G has shape [pk, 1n−pk], where

p is an odd prime and k � 1.

(i) If l � n
3 , then

fpr(x,Πl) � fpr((1, 2, 3),Πl).

(ii) If p � 5 and l � n
5 , then

fpr(x,Πl) � fpr((1, 2, 3, 4, 5),Πl).

(iii) If p = 3, k � 2 and l � n
6 , then

fpr(x,Πl) � fpr((1, 2, 3)(4, 5, 6),Πl).
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Proof. The bound in part (i) is obtained by constructing an injection

f : Fixl(x) → Fixl((1, 2, 3)),

as in the proof of [13, Proposition 6.7(c1)]. Similarly, we refer the reader to

[45, Proposition 7.4(ii)] for parts (ii) and (iii), which are established in a similar

fashion.

Lemma 4.9: Let G = Sn with n � 30 and let x = (1, 2)(3, 4) · · · (2k−1, 2k) ∈ G

with k � 2.

(i) If 3 � l � n
3 , then

fpr(x,Πl) � fpr((1, 2)(3, 4),Πl).

(ii) If k � 3 and 3 � l � n
6 , then

fpr(x,Πl) � fpr((1, 2)(3, 4)(5, 6),Πl).

In the proof of Lemma 4.9 we will make use of the convenient notation for

partitions introduced by Guralnick and Kantor in [45, Section 7].

Notation: When defining a map f between subsets of Πl, for a partition Π

we will specify the image f(Π) by giving some of the elements of {1, 2, . . . , n},
separating parts by / and assuming that the unspecified points, denoted by ∗,
are in the same parts of f(Π) as they are in Π. For

x = (1, 2)(3, 4) · · · (2k − 1, 2k) ∈ Sn

and i ∈ [n] in the support of x, we will write i′ = i− 1 if i is even and i′ = i+1

if i is odd (so (i, i′) is the cycle of x containing i).

Proof of Lemma 4.9. To establish part (i), we proceed as in the proof of [13,

Proposition 6.7(c2)] (note that in [13], it is assumed that k is even and n is

odd). The claim is clear if k = 2, so let us assume k � 3. Define a map

f : Fixl(x) → Fixl((1, 2)(3, 4))

as follows. Let Π ∈ Fixl(x). If Π ∈ Fixl((1, 2)(3, 4)), then set f(Π) = Π. Other-

wise, by considering the possible types of partitions in Fixl(x)\Fixl((1, 2)(3, 4)),
we define f(Π) as in Table 1. Note that

f(Π) ∈ Fixl((1, 2)(3, 4)) \ Fixl(x)

in each case.
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Table 1. The map f in the proof of Lemma 4.9(i)

(I)
(1, a, b, ∗ / 2, a′, b′, ∗ / 3, ∗ / 4, ∗ / . . . )

�→ (1, 2, a, ∗ / 3, 4, b, ∗ / a′, ∗ / b′, ∗ / . . . )

(II)
(1, 2, a, ∗ / 3, b, ∗ / 4, b′, ∗ / . . . )

�→ (1, 2, b, ∗ / 3, 4, ∗ / a, b′, ∗ / . . . )

(III)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(3, 4, a, ∗ / 1, b, ∗ / 2, b′, ∗ / . . . )

�→ (3, 4, b, ∗ / 1, 2, ∗ / a, b′, ∗ / . . . )
if n

l � 4

(3, 4, a / 1, b, c / 2, b′, c′ / d, ∗ / . . . )

�→ (3, 4, c′ / 1, 2, d / a, b, c / b′, ∗ / . . . )
if n

l = 3

(IV)
(1, 3, ∗ / 2, 4, ∗ / . . . )

�→ (1, 2, ∗ / 3, 4, ∗ / . . . )

(V)
(1, 4, a, ∗ / 2, 3, a′, ∗ / b, c, d, ∗ / . . . ) where b′ �∈ {c, d}

�→ (1, 2, a, ∗ / 3, 4, b, ∗ / a′, c, d, ∗ / . . . )

In order to establish the desired bound in part (i), it suffices to show that f is

injective. To do this, let Σ be a partition in the image of f and write f(Π) = Σ

for some Π ∈ Fixl(x). We need to show that there is a unique choice for Π.

Clearly, if Σ ∈ Fixl(x) then Π = Σ, so let us assume Σ �∈ Fixl(x). Note that

in every case, {1, 2} is a subset of a part A of Σ, and {3, 4} is a subset of some

other part B.

From the definition of f , we see that there are three separate cases to consider,

according to the number m ∈ {2, 3, 4} of parts of Σ that are not mapped to

parts of Σ by x. We will refer to the type of Π by the label recorded in the

first column of Table 1.

First assume m = 4, so Π has type (I) or (III) (with n/l = 3 in the latter

case). If no point in any of these four parts is fixed by x, then Π has type (I).

To prove that Π is uniquely determined in this case, it suffices to show that a

and b are uniquely determined (indeed, these numbers determine a′ and b′ and,
together with Σ, these four values determine Π). Now a is the unique point

in A \ {1, 2} which is not mapped by x into B, and similarly b is the unique

point in B \ {3, 4} not mapped into A. Therefore, Π is uniquely determined

by Σ. Now assume Π has type (III) and n/l = 3. Here, d is the unique point

in A \ {1, 2} and c′ is the unique point in B \ {3, 4}, so we have determined c
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and d. Now a is the unique point fixed by x in the part of Σ containing c, and b

is the remaining point in this part. The values of a, b, c and d, together with

the partition Σ, uniquely determine Π.

Now assume m = 3, so Π is of type (II), (III) (with n/l � 4) or (V). Necessar-

ily, A and B are two of the three parts of Σ that are not mapped to parts of Σ

by x. Let C be the third such part. We begin by demonstrating that the type

of Π is determined by Σ. First assume that n/l = 3. If a point of B is mapped

by x into C, then Π has type (II), otherwise, Π has type (V). Now assume

that n/l � 4. If a point of A is mapped by x into B, then Π has type (V).

Otherwise, if at least two points of A are mapped into C by x, then Π has

type (III); else Π has type (II).

We now show that Π is determined by Σ when m = 3. First assume that Π

has type (II). The unique point of A not mapped into A by x is b, and the

unique point in C \ {b′} not mapped into B is a; this determines Π. Next

assume that n/l � 4 and Π has type (III). The unique point in B not mapped

into B is b, and the unique point in C \ {b′} not mapped into A is a; this

determines Π. Finally, suppose Π has type (V). Now a is the unique point in A

not mapped by x into B, and b is the unique point in B not mapped into A;

this determines Π (since c and d are not moved by f).

Finally, suppose m = 2. Here Π has type (IV) and thus Π is the partition

obtained by interchanging 2 and 3 in Σ. Therefore, Π is uniquely determined

in this case.

We have now shown that the map f is injective, which completes the proof

of part (i).

Now consider (ii) and note that we may assume k � 4. We define a map

f : Fixl(x) → Fixl((1, 2)(3, 4)(5, 6))

as follows. Let Π ∈ Fixl(x). If Π ∈ Fixl((1, 2)(3, 4)(5, 6)), then we define

f(Π) = Π. Now assume that Π �∈ Fixl((1, 2)(3, 4)(5, 6)). For brevity, we will

handle multiple possibilities at once by letting

(7) σ ∈ {1, (1, 3, 5)(2, 4, 6), (1, 5, 3)(2, 6, 4)}

and writing i = iσ for 1 � i � 6. With this notation, we define f as in Table 2.

Note that

f(Π) ∈ Fixl((1, 2)(3, 4)(5, 6)).



298 T. C. BURNESS AND S. HARPER Isr. J. Math.

Table 2. The map f in the proof of Lemma 4.9(ii). (In cases

(IX)–(XI), {a, b, d} ∩ {a′, b′, d′} = ∅. In case (XII), if c′ or d′

is in {c, d, e, g, ∗} then c′ = d, and if e′ or g′ is in {c, d, e, g, ∗}
then e′ = g.)

(I)
(1, a, b, ∗ / 2, a′, b′, ∗ / 3, c, ∗ / 4, c′, ∗ /5, ∗ /6, ∗ / . . . )

�→ (1, 2, a, ∗ / 3, 4, b, ∗ / 5, 6, ∗ / c, a′, ∗ / b′, ∗ / c′, ∗ / . . . )

(II)
(1,2, ∗ / 3, a, b, ∗ / 4, a′, b′, ∗ /5, ∗ / 6, ∗ / . . . )

�→ (1,2, ∗ / 3,4, a, ∗ /5,6, b, ∗ / a′, ∗ / b′, ∗ / . . . )

(III)
(1,2, ∗ / 3,4, a, ∗ / 5, b, ∗ / 6, b′, ∗ / . . . )

�→ (1,2, ∗ / 3,4, b, ∗ / 5,6, ∗ / a, b′, ∗ / . . . )

(IV)
(1,2,3,4, a, ∗ / 5, b, ∗ / 6, b′, ∗ / . . . )

�→ (1,2,3,4, b, ∗ / 5,6, ∗ / a, b′, ∗ / . . . )

(V)
(1,2, ∗ / 3,5, ∗ / 4,6, ∗ / . . . )

�→ (1,2, ∗ / 3,4, ∗ / 5,6, ∗ / . . . )

(VI)
(1,2, a, ∗ / 3,6, b, ∗ / 4,5, ∗ / . . . )

�→ (1,2, b, ∗ / 3,4, a, ∗ / 5,6, ∗ / . . . )

(VII)
(1,3, a, ∗ / 2,4, a′, ∗ / 5, b, ∗ / 6, b′, ∗ / . . . )

�→ (1,2, a, ∗ / 3,4, b, ∗ / 5,6, ∗ / a′, b′, ∗ / . . . )

(VIII)

(1,4, a, ∗ / 2,3, a′, ∗ / 5, b, c, ∗ / 6, b′, c′, ∗ / . . . )

�→

⎧⎨⎩(1,2, a, ∗ /3,4, a′, ∗ /5,6, c, ∗ / b, b′, c′, ∗ /. . . ) if b is even

(1,2, a, ∗ /3,4, c, ∗ / 5,6, a′, ∗ / b, b′, c′, ∗ /. . . ) if b is odd

(IX)
(1, 3, 5, ∗ / 2, 4, 6, c, ∗ / a, b, d, ∗ / . . . )

�→ (1, 2, a, ∗ / 3, 4, b, d, ∗ / 5, 6, c, ∗ / . . . )

(X)
(1, 3, 6, ∗ / 2, 4, 5, c, ∗ / a, b, d, ∗ / . . . )

�→ (3, 4, a, ∗ / 5, 6, b, d, ∗ / 1, 2, c, ∗ / . . . )

(XI)
(1, 4, 5, ∗ / 2, 3, 6, c, ∗ / a, b, d, ∗ / . . . )

�→ (5, 6, a, ∗ / 1, 2, b, d, ∗ / 3, 4, c, ∗ / . . . )

(XII)
(1, 4, 6, a, b, ∗ / 2, 3, 5, a′, b′, ∗ / c, d, e, g, ∗ / . . . )

�→ (1, 2, a, c, d, ∗ / 3, 4, b, e, g, ∗ / 5, 6, a′, b′, ∗ / . . . )
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We claim that f is injective. To see this, let Σ = f(Π) be a partition in the

image of f . As before, we need to show that Π is uniquely determined by Σ.

We may assume that Σ �∈ Fixl(x).

First assume that {1, 2}, {3, 4} and {5, 6} are not subsets of distinct parts

of Σ, so Π has type (IV). Here b is the unique point in the part of Σ

containing 1, 2, 3 and 4 which is not mapped by x into that part. In ad-

dition, there is a unique part all of whose points other than exactly two are

mapped into the part containing 5 and 6; a is the unique point other than b′ in
this part not mapped into the part containing 5 and 6. This determines Π.

For the remainder, we may assume that {1, 2}, {3, 4} and {5, 6} are subsets

of distinct parts A, B and C of Σ. Where appropriate, we will write A = Aσ,

B = Bσ and C = Cσ for σ as in (7). There are four cases to consider, according

to the number m ∈ {2, 3, 4, 6} of parts of Σ that are not mapped to parts of Σ

by x.

First assume m = 6, so Π has type (I). The unique point in A \ {1, 2} not

mapped into B by x is a, and the unique point in B \ {3, 4} not mapped into A

is b. There is a unique part of Σ all of whose points other than exactly two are

mapped into C, and c is the unique such point other than a′. This determines Π.

Next assume m = 4, so Π has type (II), (VII) or (VIII). If one of A, B or C

is fixed by x, then Π has type (II). In this case, the unique point in B \ {3,4}
not mapped into C is a, and the unique point in C \ {5,6} not mapped into B

is b; this determines Π. Now assume that none of the parts A, B and C are

fixed by x. Let P be the unique part of Σ other than A, B or C which is

not mapped to a part by x. There are two cases to consider. First suppose P

contains a cycle Z of x, in which case Π has type (VIII) and Z = {b, b′}. If

A \ {1,2} and B \ {3,4} are interchanged by x, then b is even; otherwise, b

is odd and c is the unique point in B not mapped into A. In both cases, this

uniquely determines Π (since c is not moved by f when b is even). Now suppose

that P does not contain a cycle of x, so Π has type (VII). Here, the unique point

in A \ {1,2} not mapped into B by x is a, and the unique point in B \ {3,4}
not mapped into A by x is b; this determines Π.

Now suppose m = 3, so Π has type (III), (VI) or (IX)–(XII). First assume

one of A, B or C is fixed by x, so Π has type (III). The unique point in B

not mapped back into B is b. There is a unique part of Σ all of whose points

other than exactly two are mapped into C, and a is the unique such point other

than b′. This determines Π.
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Now assume none of A,B and C are fixed by x. If all but one point of one of

A, B or C is mapped back into that part, then Π has type (VI). Here the unique

point in A not mapped back into A is b, and the unique point in B \ {3,4} not

mapped into C is a; this determines Π.

To complete the analysis of the case m = 3, we may assume that Π is of type

(IX)–(XII). If all but one point of A \ {1, 2} are mapped into B, then Π has

type (IX). The unique point in A \ {1, 2} not mapped into B is a, the point

in C that is mapped into A is c and the points in B \ {3, 4} not mapped into A

are b and d; this determines Π. If all but one point of B \ {3, 4} are mapped

into C, then Π has type (X), and if all but one point of C \ {5, 6} are mapped

into A, then Π has type (XI); in both cases Π is determined as before. Finally,

suppose Π has type (XII). The point in A mapped into C is a, and the point

in B mapped into C is b. In addition, the two points in A\{1, 2, a} not mapped

into B are c and d, and the two points in B \ {3, 4, b} not mapped into A are e

and g. This determines Π.

Finally, if m = 2 then Π has type (V) and we can determine Π by interchang-

ing 4 and 5 in Σ.

This proves that f is injective and completes the proof of (ii).

Lemma 4.10: Let G = Sn with n � 30 even and suppose x ∈ G has shape

[pk, 1n−pk], where p is a prime, k � 1 and (p, k) �∈ {(2, 1), (2, 2), (2, 3), (3, 2)}. If
l = n

2 , then fpr(x,Πl) <
1
l2 .

Proof. First assume that p is odd. Let Π ∈ Fixl(x). Since n/l = 2 < p, no

cycle of x is contained in a part of Π. Consequently, if k is odd, then Fixl(x)

is empty, so we will assume that k � 2 is even. Then x moves t = pk/2 parts

in k/2 orbits of size p and thus l − t parts of Π are fixed by x. With this in

mind, let us compute fpr(x,Πl).

First observe that |Πl| = (2l)!/(l! 2l). To construct an x-stable partition in Πl,

we must first partition the 2l − 2t fixed points of x into l − t parts of size 2.

The number of ways this can be done is (2l − 2t)!/((l − t)! 2l−t). We must

then partition the remaining 2t = pk points into pk/2 parts of size 2, which are

permuted by x in k/2 orbits of size p. This amounts to partitioning the pk/2

parts into k/2 sets of the form

{{i1, j1}, . . . , {ip, jp}}
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where (i1, . . . , ip) and (j1, . . . , jp) are cycles of x. Therefore, an x-stable

partition of these pk points corresponds to a partition of the cycles of x into

pairs, together with a choice of partition {{i1, jiσ}, . . . , {ip, jpσ}} for each

pair {(i1, . . . , ip), (j1, . . . , jp)}, where σ is a power of (1, 2, . . . , p). There are

k!/((k/2)! 2k/2) ways of partitioning the k cycles of x into pairs, and for each

pair there are p choices for σ. Therefore, there are pk/2 ·k!/((k/2)! 2k/2) different
ways to partition the pk points moved by x. In this way, we conclude that

fpr(x,Πl) = pk/2 · k!

(k2 )! 2
k/2

· (2l − 2t)!

(l − t)! 2l−t
· l! 2l

(2l)!
.

By applying Stirling’s approximation, we calculate

fpr(x,Πl) = pk/2 · k!

(k2 )! 2
k/2

· (2l − 2t)!

(l − t)! 2l−t
· l! 2l

(2l)!

� e3

23/2π3/2
· p

k/2kk+1/2e−k22l−2t+1/2(l − t)2l−2t+1/2

kk/2+1/2e−k/22k/2(l − t)l−t+1/2

× e−(2l−2t)ll+1/2e−l2l2k/2+1/2

e−(l−t)2l−tl2l+1/2e−2l22l+1/2

=
e3

2π3/2
·
( e

2t

)(p−1)k/2

· t
t(l − t)l−t

ll

which in turn is at most

tt(l − t)l−t

ll
� 55(l − 5)l−5

ll
<

55

153
· 1

l2
<

1

l2

since l = n/2 � 15 and t = pk/2 � 5 (because p � 3 and we are assuming

(p, k) �= (3, 2)).

Now assume that p = 2 and k � 4. In this case, a partition Π ∈ Fixl(x) has i

pairs of parts interchanged by x, and l − 2i parts stabilised by x. Moreover,

l− k of these l− 2i parts are fixed pointwise. Therefore, by counting as we did

above,

fpr(x,Πl) =

( �k/2�∑
i=0

k!

(k − 2i)! i! 2i
· 2i
)
· (2l − 2k)!

(l − k)! 2l−k
· l! 2l

(2l)!
.
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Observe that

�k/2�∑
i=0


k/2�!
(k − 2i)!i!

=

�k/2�∑
i=0

(

k/2�

i

)
(
k/2� − i)!

(k − 2i)!

�
�k/2�∑
i=0

(

k/2�

i

)
1

(
k/2� − i + 1)�k/2�−i

which is at most
�k/2�∑
i=0

(

k/2�

i

)
1

2i
=
(3
2

)�k/2�
.

Therefore,

fpr(x,Πl) �
(3
2

)�k/2�
· k!


k/2�! ·
(2l − 2k)!

(l − k)! 2l−k
· l! 2l

(2l)!

�
(3
2

)�k/2�
· �k/2	 · 2k/2 · k!

�k/2	! 2k/2 · (2l− 2k)!

(l − k)! 2l−k
· l! 2l

(2l)!
.

By arguing as above, we get

fpr(x,Πl) �
(3
2

)�k/2�⌈k
2

⌉ e3

2π3/2

( e

2k

)k/2 kk(l − k)l−k

ll

� 3e4

8π3/2

( 3e
4k

)k/2−1 kk(l − k)l−k

ll
.

If k � 5, then

fpr(x,Πl) �
kk(l − k)l−k

ll
� 55(l − 5)l−5

ll
<

55

153
1

l2
<

1

l2
,

and for k = 4 we get

fpr(x,Πl) �
3e4

8π3/2

3e

16

441111

1513
1

l2
<

1

l2
.

This completes the proof.

We can now establish the main fixed point ratio bounds.

Proof of Lemma 4.5. Let x ∈ G have shape [pk, 1n−pk], where p is an odd prime

and k � 1. For n < 30 we can verify the desired bound usingMagma, so assume

that n � 30.
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First assume (p, k) = (3, 1). Up to conjugacy, we may assume x = (1, 2, 3). A

partition in Πl is stabilised by x if and only if it has a part containing {1, 2, 3}.
By counting the partitions with this property, we deduce that

fpr(x,Πl) �
(n− 3)!

(nl − 3)! ((nl )!)
l−1 (l − 1)!

·
((nl )!)

l l!

n!

=
(nl )(

n
l − 1)(nl − 2)l

n(n− 1)(n− 2)
<

1

l2
.

A similar calculation shows that fpr(x,Πl) <
1
l4 when (p, k) = (5, 1).

Next assume (p, k) = (3, 2), say x = (1, 2, 3)(4, 5, 6). If l < n/2, then a

partition stabilised by x either has a part containing {1, 2, 3, 4, 5, 6}, or a part

containing {1, 2, 3} and another containing {4, 5, 6}. Therefore,

fpr(x,Πl)

�
( (n− 6)!

(nl − 6)! ((nl )!)
l−1 (l − 1)!

+
(n− 6)!

((nl − 3)!)2 ((nl )!)
l−2 (l − 2)!

)
·
((nl )!)

l l!

n!

<
1

l5
+

l − 1

l5
· n(n− 1)(n− 2)

(n− 3)(n− 4)(n− 5)
<

1

l5
+

1.4

l4

and thus fpr(x,Πl) <
1
l3 . Now assume l = n/2, so l � 15. Here we must also

consider the partitions containing three parts for which {1, 2, 3} and {4, 5, 6}
are transversals. The proportion in Πl of such partitions is

3 · (n− 6)!

2l−3 (l − 3)!
· 2

l l!

n!
� 3

(2l − 3)(2l− 4)(2l − 5)
� 0.6

l3

and this gives fpr(x,Πl) <
1
l5 + 1.4

l4 + 0.6
l3 < 1

l3 .

Now assume (p, k) �∈ {(3, 1), (3, 2)}. If l = n/2, then the desired result follows

from Lemma 4.10. Similarly, if n/6 < l � n/3, then we combine Lemma 4.8(i)

with the above calculation in the case (p, k) = (3, 1). Finally, let us assume

l � n/6. If p = 3 and k � 3, then we appeal to Lemma 4.8(iii) and the above

calculation for (p, k) = (3, 2). Similarly, if p � 5 then the desired bound follows

via Lemma 4.8(ii) and the case (p, k) = (5, 1) handled above.

Proof of Lemma 4.6. Set x = (1, 2)(3, 4) · · · (2k − 1, 2k). As in the proof of

Lemma 4.5, we may assume that n � 30. The desired bound is straightforward

to verify when k = 1 or 2 (we proceed as in the proof of Lemma 4.5 with (1, 2, 3)

and (1, 2, 3)(4, 5, 6), respectively).
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Next assume k = 3 and l � n/6. The partitions stabilised by x are ex-

actly those which have a part containing {1, 2, 3, 4, 5, 6}, or a part containing

the union of two of {1, 2}, {3, 4}, {5, 6} and another part containing the third,

or a part containing {1, 2}, another containing {3, 4} and a third which con-

tains {5, 6}. Therefore,

fpr(x,Πl) �
( (n− 6)!

(nl − 6)! ((nl )!)
l−1 (l − 1)!

+
3(n− 6)!

(nl − 2)! (nl − 4)! ((nl )!)
l−2 (l − 2)!

+
(n− 6)!

((nl − 2)!)3 ((nl )!)
l−3 (l − 3)!

)
·
((nl )!)

l l!

n!

<
1

l5
+

3(l − 1)

l5
+

(l − 1)(l − 2)

l5
� 1

l3
.

Now assume k = 3 and l = n/2. Here there are three additional types of

partition to consider. In one case, we consider those partitions which contain

two parts for which {1, 2} and {3, 4} are transversals and a third part which

is {5, 6}. We calculate that the proportion of l-part partitions satisfying this

condition is equal to

(n− 6)!

2l−3 (l − 3)!
· 2

l l!

n!
� 1

(n− 3)(n− 4)(n− 5)
� 1.6

n3
.

The two other cases arise from interchanging the roles of {1, 2}, {3, 4} and {5, 6},
so we obtain the same proportion and fpr(x,Πl) <

8
n3 + 4.8

n3 < 1
l2 .

To complete the argument, we may assume that either k=3 and n/6<l<n/2,

or k � 4. If k � 4 and l = n/2 then Lemma 4.10 gives fpr(x,Πl) < 1
l2 as

required, so we may assume l < n/2. Here Lemma 4.9 and the above bounds

imply that

fpr(x,Πl) �

⎧⎨⎩fpr((1, 2)(3, 4)(5, 6),Πl) < 1/l3 if 3 � l � n/6,

fpr((1, 2)(3, 4),Πl) < 1/l2 if n/6 < l < n/2.

Therefore, to complete the proof of the lemma, we may assume that l = 2.

First assume k < n/2. If Π ∈ Fixl(x), then each cycle of x must be contained

in one of the two parts of Π, so Fixl(x) ⊆ Fixl((1, 2)(3, 4)(5, 6)) and

fpr(x,Πl) � fpr((1, 2)(3, 4)(5, 6),Πl) <
1

l3
.
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Finally, suppose k = n/2. If Π ∈ Fixl(x), then either each cycle of x is

contained in a part of Π, or each cycle of x contains a point from each part

of Π. Since there are at most 2n/2−1 partitions of each of these types, it follows

that

fpr(x,Πl) � 2 · 2n/2−1 ·
2 ((n2 )!)

2

n!
� 2n/2 ·

2 (n2 )
n+1 e−ne2

nn+1/2e−n(2π)1/2
<

1

8
=

1

l3
,

noting that n � 30. This completes the proof.

We are now in a position to prove Theorem 4.4.

Proof of Theorem 4.4. If n < 30, then the result can be verified computation-

ally with Magma (see the end of Section 2.1). Now assume n � 30.

Let G = Sn and let s be an n-cycle. Then M(G, s) = I ∪ P , where I
consists of exactly one imprimitive subgroup Sn/l �Sl for each divisor 1 < l < n

of n, and P contains primitive subgroups of the form PΓLd(q) for pairs (q, d)

satisfying n = (qd − 1)/(q − 1) (see [52, Theorem 3]). Moreover, by the proof

of [13, Proposition 6.7] we see that P contains at most (n− 1)/d subgroups of

the form PΓLd(q) for each pair (q, d).

Suppose x ∈ G has prime order and let H ∈ M(G, s). First assume H ∈ P ,

say H = PΓLd(q) with n = (qd − 1)/(q − 1). Then |H | � nlog2 n+1 and

|xG| �
23n/4(ne )

n/4

8
√
πn

,

by [13, Lemma 6.6]. Since |P| � 1
2 (n−1) log2 n (see [27, Lemma 3.9]), it follows

that ∑
H∈P

fpr(x,G/H) �
∑
H∈P

|H |
|xG| �

1

2
(n− 1) log2 n · 8n

log2 n+1
√
πn

23n/4(ne )
n/4

�nlog2 n+34
√
π

nn/4(8e )
n/4

< 0.01.

Now assume H ∈ I, say H = Sn/l � Sl. Note that the action of G on G/H is

equivalent to the action of G on Πl. Therefore, if

x �∈ (1, 2)G ∪ (1, 2)(3, 4)G ∪ (1, 2, 3)G,
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then Lemmas 4.5 and 4.6 imply that∑
H∈I

fpr(x,G/H) <
∑
l|n

1<l�n
6

1

l3
+

52 + 42 + 32 + 22

n2

<
∞∑
l=2

1

l3
+

54

n2
< 0.21 +

54

302
< 0.27.

Similarly, if x ∈ (1, 2)(3, 4)G ∪ (1, 2, 3)G, then∑
H∈I

fpr(x,G/H) <
33

128
+
∑
l|n

2<l< n
2

1

l2
+

6

n2
<

33

128
+

π2

6
− 5

4
+

6

302
< 0.66.

In order to establish the desired bound u(G) � 2, it suffices to show that if

x, y ∈ G have prime order, then there exists an n-cycle z such that

G = 〈x, z〉 = 〈y, z〉.

Let P (x, s) be the probability that x and a randomly chosen conjugate of s do

not generate G (see (4)). Then by Lemma 2.1, it is sufficient to show that

P (x, s) + P (y, s) < 1.

There are three cases to consider, according to the possibilities for x and y.

Case 1. x, y �∈ (1, 2)G and either x or y is not in (1, 2)(3, 4)G ∪ (1, 2, 3)G.

By applying the bound in (5), together with the above fixed point ratio

estimates, we obtain

P (x, s) + P (y, s) �
∑

H∈M(G,s)

fpr(x,G/H) +
∑

H∈M(G,s)

fpr(y,G/H)

<0.02 + 0.27 + 0.66 = 0.95

and the result follows.

Case 2. x ∈ (1, 2)G.

Without loss of generality, we may assume that x = (i, j) and

y = (1, 2, . . . , p)(p+ 1, p+ 2, . . . , 2p) · · · ((k − 1)p+ 1, (k − 1)p+ 2, . . . , kp)

for some prime p and integer k � 1. In the proof of [7, Theorem 2], Binder

constructs an n-cycle z such that G = 〈y, z〉. Typically, we will show that there

exists g ∈ NG(〈y〉) such that G = 〈xg, z〉, whence G = 〈x, zg−1〉 = 〈y, zg−1〉 (in
one particular case below, we work with a different n-cycle to the one given by
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Binder). Let S ⊆ [n] be the set of points moved by both x and y. We will

consider five cases.

Case 2(a). k = 1.

Set z = (1, 2, . . . , n) and note that G = 〈y, z〉. By conjugating by an element

of NG(〈y〉) if necessary, we may assume that x is (p + 1, p + 2), (p, p + 1) or

(1, 2) if |S| = 0, 1 or 2, respectively. In each case, G = 〈x, z〉 by Lemma 4.1(i)

and the result follows.

Case 2(b). k � 2, p � 3 and kp < n.

Let u = 1 if 3 divides n− kp and u = 0 otherwise. Then consider the n-cycle

z = (1, α1, p+ 1, 2p+ 1, . . . , (k − 1)p+ 1,

kp, kp− 1, . . . , 3, β1, β2, . . . , βt, 2, γ1, . . . , γu),

where the first ellipsis represents an arithmetic sequence with difference p and

the second ellipsis represents the entire decreasing sequence from kp − 2 to 4,

omitting any numbers that occur earlier in the cycle. By [7, Theorem 2], we

have G = 〈y, z〉.
By arguing as in Case 2(a), we may assume that x = (1, α1) if |S| = 1 and

x = (kp − 1, kp) or x = (p, p + 2) if |S| = 2. In both cases, G = 〈x, z〉 (see

Remark 4.2). Now assume |S| = 0, so n− kp � 2. If n− kp > 2 then we may

assume that x = (β1, β2) and again G = 〈x, z〉.
Therefore, to complete the analysis of Case 2(b), we may assume that

n − kp = 2 and x = (kp + 1, kp + 2). Here we must deviate from the proof

of [7, Theorem 2] and we choose a different n-cycle z. (Indeed, if 3 divides n,

then x = (α1, β1) and β1z
3 = α1, so it is straightforward to see that G �= 〈x, z〉.)

In particular, let

z = (p+ 1, 2p+ 1, . . . , (k − 1)p+ 1, kp, . . . , 2, 1, kp+ 1, kp+ 2)

(adopting the same conventions as above for the ellipses) and observe that

yz = (p+ 1, p, kp+ 1, kp+ 2)(2p, 2p+ 1) · · · ((k − 1)p, (k − 1)p+ 1),

(yz)2 = (p+ 1, kp+ 1)(p, kp+ 2).

First we claim that G = 〈y, z〉. To see this, suppose that 〈y, z〉 stabilises

a nontrivial partition Π of [n] (into parts of equal size). Then (yz)2 sta-

bilises Π. If (yz)2 acts nontrivially on the set of parts of Π, then each part

has size two and two parts of Π are either {p, p+ 1} and {kp + 1, kp + 2}, or
{p, kp + 1} and {p + 1, kp + 2}. However, since z stabilises Π, the parts of Π
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must be of the form {a, azn/2} with a ∈ [n]. Since kp + 2 = (kp + 1)z and

p+ 1 = (kp+ 2)z, both of these options are impossible and we have reached a

contradiction. Therefore, each cycle of (yz)2 is contained in a part of Π. Let A

be the part of Π containing p and kp + 2. Since y fixes kp + 2, we conclude

that y fixes A. In particular, 1, 2, . . . , p ∈ A. Since z stabilises Π, we know that

A = {1zli | 1 � i � n/l}

for some divisor 1 < l < n. But this is a contradiction since 2z = 1 ∈ A

and we conclude that 〈y, z〉 does not stabilise a nontrivial partition of [n]. In

particular, 〈y, z〉 is a primitive subgroup of G containing a double transposition,

so G = 〈y, z〉 (see [35, Example 3.3.1], noting that z is odd).

Finally, G = 〈x, z〉 since x = (kp + 1, kp + 2) and (kp + 1)z = kp + 2 (see

Remark 4.2).

Case 2(c). k � 2, p � 3 and kp = n.

Here we set

z = (1, 2, p+ 1, . . . , (k − 1)p+ 1, pk, pk + 1, . . . , 3)

and we note that G = 〈y, z〉 by the proof of [7, Theorem 2]. By replacing x by a

suitable NG(〈y〉)-conjugate, we may assume that x = (1, 2) or x = (pk, pk+1).

In both cases, it is easy to see that G = 〈x, z〉.

Case 2(d). k � 2, p = 2 and 2k < n.

Here we define

z = (1, 2k + 1, 2k + 2, . . . , n, 2, 3, 5, . . . , 2k − 1, 2k, 2k− 2, . . . , 6, 4).

Again, we have G = 〈y, z〉 by the proof of [7, Theorem 2], and without loss of

generality we may assume that x is one of (2k−1, 2k), (2k−2, 2k), (2k+1, 2k+2)

or (1, 2k + 1). In every case, one checks that G = 〈x, z〉.

Case 2(e). k � 2, p = 2 and 2k = n.

Set

z = (1, 3, 2, 4, 5, 7, . . . , 2k − 1, 2k, 2k− 2, . . . , 6)

and note that G = 〈y, z〉 by the proof of [7, Theorem 2]. Without loss of

generality, we may assume that x = (1, 3) or x = (2k− 1, 2k) and in both cases

we have G = 〈x, z〉.
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Case 3. x, y ∈ (1, 2)(3, 4)G ∪ (1, 2, 3)G.

If x, y ∈ (1, 2, 3)G, then we may assume that x = (1, 2, 3) and depending on

the size of S we may assume that the support of y is one of {2, 3, 4}, {3, 4, 5}
and {4, 5, 6}. Moreover, since we are at liberty to replace y by y−1, we may

assume that

y ∈ {(2, 3, 4), (3, 4, 5), (4, 5, 6)}.

Similarly, if x ∈ (1, 2)(3, 4)G and y ∈ (1, 2, 3)G, then we may assume that

x = (1, 2)(3, 4) and

y ∈ {(1, 2, 3), (1, 2, 5), (2, 3, 5), (4, 5, 6), (5, 6, 7)}.

Finally, if x, y ∈ (1, 2)(3, 4)G, then we may assume that x = (1, 2)(3, 4) and

y ∈ {(1, 3)(2, 4), (1, 2)(3, 5), (1, 2)(5, 6), (2, 3)(5, 6),
(3, 6)(4, 5), (1, 6)(4, 5), (1, 5)(6, 7), (5, 6)(7, 8)}.

In all three cases, Lemma 4.1 implies thatG=〈x, z〉 = 〈y, z〉 for z = (1, 2, . . . , n),

unless x = (1, 2)(3, 4) and y = (1, 3)(2, 4). In this exceptional case,

z = (1, 2, . . . , n)(2,3)

has the desired property.

This completes the proof of Theorem 4.4.

We can now determine the spread and uniform spread of even-degree sym-

metric groups.

Theorem 4.11: Let G = Sn with n � 8 even. Then s(G) = u(G) = 2.

Proof. By Theorem 4.4, we have 2 � u(G) � s(G), so it suffices to prove that

s(G) � 2. As noted in the proof of Proposition 4.3, if

G = 〈(1, 2), s〉 = 〈(2, 3), s〉 = 〈(1, 3), s〉,

then s is an n-cycle. By Lemma 4.1(i), if

G = 〈(1, 2), (1, 2, . . . , n)g〉 = 〈(2, 3), (1, 2, . . . , n)g〉,

then 1g �≡ 2g (mod 2) and 2g �≡ 3g (mod 2). This implies that 1g≡ 3g (mod 2)

and thus G �=〈(1, 3), (1, 2, . . . , n)g〉. This shows that s(G)�2, as required.
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4.3. Uniform domination. In order to complete the proof of Theorem 2, it

remains to establish the bounds on the total and uniform domination numbers.

We begin by establishing lower bounds on the total domination numbers (for

use in Section 5, it is convenient to include alternating groups in the following

proposition).

Proposition 4.12: Let n � 5 and let p be the smallest prime divisor of n.

(i) γt(Sn) � log2 n.

(ii) γt(An) � logp n.

(iii) γt(An) � 3 if n is composite.

Proof. Let G be Sn or An and let S = {s1, . . . , sc} be a total dominating

set for G. Without loss of generality, assume that s1, . . . , sj are n-cycles and

sj+1, . . . , sc are not n-cycles (we allow j = 0). To begin with, we will prove that

γt(G) � logp n.

This is clear if n is prime, so we may assume n is composite.

If 1 � i � j then si stabilises a partition Ci of [n] with parts Ci1, . . . , Cip

of size n/p. Similarly, if j < i � c then si stabilises a proper subset Ai of [n].

For j < i � c, it will be convenient to write

Ci = (Ci1, Ci2) = (Ai, [n] \Ai).

Set R = [p]j× [2]c−j and define f : [n] → R as f(x) = (l1, . . . , lc) where x ∈ Cili .

For 1 � i � j, let GCi be the stabiliser in G of the partition Ci (so GCi is

isomorphic to (Sn/p � Sp) ∩ G). Similarly, if j < i � c then let G{Ai} be the

setwise stabiliser of Ai.

We claim that |R| � n− 1. To see this, suppose that f(x) = f(y) = f(z) for

three distinct points x, y, z ∈ [n]. Then (x, y, z) is contained in GCi for i � j

and G{Ai} for i > j. Therefore, G �= 〈si, (x, y, z)〉 for all 1 � i � c, which

is a contradiction since S is a total dominating set for G. It follows that the

preimage under f of any point has size at most two. In fact, if f(x) = f(y)

and f(z) = f(w) for four distinct points x, y, z, w ∈ [n], then (x, y)(z, w) ∈ G

is contained in GCi for i � j and in G{Ai} for i > j. As before, this is a

contradiction and we deduce that at most one point in R has a preimage of size

two. This justifies the claim.
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Now |R| = pj2c−j � pc, so pc � n−1. Since p divides n, it follows that pc � n

and thus γt(G) � logp n. This establishes part (ii) of the proposition, and also

part (i) when n is even. Therefore, it remains to prove part (iii), together with

part (i) when n is odd.

In view of part (ii), in order to prove (iii) we may assume that G = An

and n = p2, so p is odd. Suppose γt(G) = 2, say {s1, s2} is a total dominating

set. If s1 and s2 are both n-cycles, then s1 ∈ H1 and s2 ∈ H2 for stabilisers H1

and H2 of p-part partitions of [n]. But Lemma 2.3 implies that G has a base of

size two in its action on the set Πp of p-part partitions, which is a contradiction

(see [50, Remark 5.3]). Therefore, we may assume that s2 is not an n-cycle, so

2p � |R| � n− 1 = p2 − 1, which is absurd. We conclude that γt(G) � 3.

Finally, let us assume G = Sn and n is odd. Here we allow n to be prime.

As above, if i > j, then si stabilises a proper subset Ai of [n] and we write

(Ci1, Ci2) = (Ai, [n]\Ai). Also observe that s1, . . . , sj ∈ An, so for each g ∈ An

there exists j < i � c such that Sn = 〈g, si〉. In particular, note that j < c.

Define a map f ′ : [n] → [2]c−j as f ′(x) = (lj+1, . . . , lc) where x ∈ Cili . First

assume that j = 0. Suppose that there exist two distinct points x, y ∈ [n]

such that f ′(x) = f ′(y). Then (x, y) ∈ G is contained in G{Ai} for all i, so

G �= 〈si, (x, y)〉 and we have reached a contradiction. Therefore, f ′ is injective,
which implies that 2c � n and γt(G) � log2 n. Now assume j � 1. The above

argument for f implies that the map f ′ has the property that the preimage of

any point has size at most two, and at most one point has a preimage of size

two. Therefore, 2c−j � n− 1 and γt(G) � log2(n− 1) + j � log2 n.

Corollary 4.13: Let G = Sn with n � 5. Then γu(G) � 3.

Proof. Since n � 5, Proposition 4.12 implies that

γu(G) � γt(G) � �log2 n	 � 3.

We will now complete the proof of Theorem 2 when n is odd.

Proposition 4.14: Let G = Sn with n = 2m+ 1 and m � 2. Then

log2 n � γt(G) � γu(G) = b(G,Ω) � 2 log2 n,

where Ω is the set of m-element subsets of [n].
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Proof. By Proposition 4.12, we have

log2 n � γt(G) � γu(G).

Let s ∈ G be a witness to the bound u(G) � 1. Since s must be an odd

permutation, it follows that s ∈ H = Sk × Sn−k for some 1 � k � m. Now [47,

Corollary 2.2] gives

b(G,G/H) � b(G,Ω)

and thus γu(G) � b(G,Ω) by Lemma 2.3. Now fix an element s ∈ G of shape

[m,m+ 1]. As explained in the proof of Theorem 4.3, we have M(G, s) = {H}
with H = Sm × Sm+1. Therefore,

γu(G) � b(G,G/H) = b(G,Ω).

This proves that γu(G) = b(G,Ω). Finally, by applying [47, Theorem 4.2], we

conclude that

b(G,Ω) � log� n
m � n ·

⌈m+ 1

m

⌉
� 2 log2 n,

and the result follows.

It remains to prove Theorem 2 when n is even.

Proposition 4.15: Let G = Sn with n � 6 even. Then

γu(G) � 3n log2 n.

Proof. Let s = (1, 2, . . . , n) and x ∈ P , where P is the set of elements of prime

order in G. If x �∈ (1, 2)G, then P (x, s) < 0.67 by the proof of Theorem 4.4.

Therefore, ∑
x∈P\(1,2)G

P (x, s)2n log2 n < n! · 0.67−n log0.67 n = n!/nn < 1.

Consequently, there exists a subset A ⊆ sG such that |A| � 2n log2 n and for

all x ∈ P \ (1, 2)G there exists z ∈ A with G = 〈x, z〉.
Let 1 � k < n. If (k, n) = 1, then let

Bk = {(1, 1 + k, 1 + 2k, . . . , 1 + (n− 1)k)},

where addition is carried out modulo n. If (k, n) = d > 1, then write l = n/d−1

and let

Bk = {bk, ck}
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where

bk = (1, 1 + k, 1 + 2k, . . . , 1 + lk,

2, 2 + k, 2 + 2k, . . . , 2 + lk, . . . , d, d+ k, d+ 2k, . . . , d+ lk),

ck = (1 + k, 1 + 2k, . . . , 1 + lk,

1, 2 + k, 2 + 2k, . . . , 2 + lk, 2, . . . , d+ k, d+ 2k, . . . , d+ lk, d).

Set

B =

n−1⋃
k=1

Bk

and note that |B| � 2(n− 1). Let x = (i, j) ∈ (1, 2)G with k = j − i > 0. Then

there exists z ∈ Bk such that iz = j, which implies that G = 〈x, z〉.
We conclude that for all x ∈ P , there exists z ∈ A ∪B such that G = 〈x, z〉.

Moreover,

|A ∪B| � 2n log2 n+ 2(n− 1) � 3n log2 n

and the proof of the proposition is complete.

Remark 4.16: By combining Propositions 4.12 and 4.15, we deduce that

log2 n � γu(Sn) � 3n log2 n

when n is even. It would be interesting to see if it is possible to close the gap

between the lower and upper bounds on γu(Sn) in this case.

5. Alternating groups

In this section we prove Theorem 3. We start by recording the spread and

uniform spread of even-degree alternating groups, which were determined by

Brenner and Wiegold in [10, (3.01)–(3.05)]. If n � 4 is even, then

s(An) = u(An) =

⎧⎨⎩2 if n = 6,

4 otherwise.

The situation for odd-degree alternating groups is more complicated. With

the aid of Magma, one can check that

s(A5) = u(A5) = 2, s(A7) = u(A7) = 3.
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Now assume G = An with n � 9 odd. By [13, Proposition 6.7], we have

u(G) � 3 and by making a minor modification to the proof of this result, we

can establish the following slightly stronger bound.

Proposition 5.1: Let G = An with n � 9 odd. Then u(G) � 4.

Proof. If n � 29, then the result can be verified computationally (see [13,

Table 6]). Now assume n � 31 and let s ∈ G be an n-cycle. As in the proof of

[13, Proposition 6.7], we have

M(G, s) = I ∪ P1 ∪ P2,

where I consists of exactly one imprimitive subgroup (Sn/l � Sl) ∩ G for each

divisor l of n with 1 < l < n, P1 contains at most (n−1)/d subgroups isomorphic

to PΓLd(q)∩G for each pair (q, d) with n = (qd−1)/(q−1), and P2 = {NG(〈s〉)}
if n is prime (otherwise P2 is empty).

Suppose x ∈ G has prime order. As in the proof of [13, Proposition 6.7], we

have ∑
H∈P1

fpr(x,G/H) �nlog2 n+34
√
π

nn/4(8e )
n/4

< 10−6,

∑
H∈P2

fpr(x,G/H) �2
( 4

n+ 1

)(n−3)/2

< 10−8.

The action of G on the set of cosets of H = (Sn/l � Sl) ∩G is equivalent to the

action on Πl, so by applying Lemmas 4.5 and 4.6, noting that x is even and

2 < l < n
2 since n is odd, we see that fpr(x,Πl) <

1
l2 . Therefore,∑

H∈I
fpr(x,G/H) �

∑
l|n

1<l<n

1

l2
<

∞∑
m=1

1

(2m+ 1)2
=

π2

8
− 1

and thus ∑
H∈M(G,s)

fpr(x,G/H) <
π2

8
− 1 + 10−6 + 10−8 <

1

4
.

By applying Corollary 2.2, we conclude that u(G) � 4.

Remark 5.2: As noted in Remark 3(c), the uniform spread of odd-degree alter-

nating groups can be arbitrarily large. Indeed, [46, Theorem 1.1] states that

if (ni) is a sequence of natural numbers tending to infinity, then u(Ani) tends

to infinity if and only if the least prime divisor of ni tends to infinity (see

Theorem (�)(ii) and (3)).
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We now turn to uniform domination.

Proposition 5.3: Let G = An with n � 5 and let p be the smallest prime

divisor of n. Then

logp n � γt(G) � γu(G) � c log2 n

where c = 2 if n is even and c = 77 if n is odd.

Proof. This is a combination of Proposition 4.12(ii) and [27, Theorem 2].

Remark 5.4: Let us consider the upper bound in Proposition 5.3. Let G = An,

where n = 2m � 8 is even, and let k be the greatest odd integer strictly less

than m. For 1 < � < n, let Σ� be the set of �-element subsets of [n]. To

establish the upper bound on γu(G) in the proposition, we show that if s ∈ G

has shape [k, n − k] then M(G, s) = {H} with H = (Sk × Sn−k) ∩ G and

thus γu(G) � b(G,Σk). This is very similar to Proposition 4.14 for odd-degree

symmetric groups, where we showed that γu(S2m+1) = b(S2m+1,Ω) for the

set Ω of m-element subsets of [2m+1]. Therefore, it is natural to ask if equality

holds, that is, do we have γu(G) = b(G,Σk)?

Let S ⊆ sG be a TDS for G and note that s acts intransitively on [n] since n

is even. By [47, Corollary 2.2(2)], b(G,Σi) � b(G,Σj) if i � j � m. Therefore,

we can conclude that |S| � b(G,Σk) unless s has shape [m,m], or m is odd and

s has shape [m+ 1,m− 1]. In particular, if γu(G) < b(G,Σk), then this has to

be witnessed by a conjugacy class sG of elements of shape [m,m], or of shape

[m + 1,m− 1] if m is odd. In these two cases, s could be contained in several

imprimitive maximal overgroups and since the base size b(G,Σk) is not known

exactly, it is difficult to use our probabilistic method to determine if sG does

indeed witness γu(G) < b(G,Σk).

Proposition 5.5: Let G = An with n � 5.

(i) γu(G) = 2 if and only if n � 13 is a prime number.

(ii) If γu(G) = 2, then P (G, s, 2) > 0 if and only if s is an n-cycle.

Proof. If γu(G) = 2, then Proposition 4.12(iii) implies that n is prime and thus

part (i) follows via [27, Proposition 3.8 and Remark 3.12]. For (ii), if s ∈ G is

not an n-cycle, then s is contained in a maximal intransitive subgroup H and

thus Lemma 2.3 implies that P (G, s, 2) = 0 since b(G,G/H) � 3.
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Remark 5.6: The proof of Proposition 5.5 shows that if G = An with n � 13,

then γt(G) = 2 if and only if n is prime. Moreover, the only possible witnesses

are two (not necessarily conjugate) n-cycles.

In order to complete the proof of Theorem 3, it remains to consider the

probability P2(An) when n � 13 is a prime. Set

H = {n ∈ N : n = qd−1
q−1 for some prime power q and integer d � 2}

and observe that 3, 5, 7, 13, 17, 31, 73, 127, 257, 307 are the ten smallest primes

in H.

Proposition 5.7: Let G = An, where n � 13 is a prime with n �∈ H. Then

P2(G) > 1− n−2.

Proof. By Proposition 5.5, we have P2(G) = P (G, s, 2) where s ∈ G is an n-

cycle. To begin with, let us assume n �= 23. Then M(G, s) = {H}, where
H = NG(〈s〉) = Cn:C(n−1)/2, and we have P2(G) = 1 − Q(G, s, 2). Moreover,

Lemma 2.5 gives

Q(G, s, 2) �
k∑

i=1

|xG
i | · fpr(xi, G/H)2 = Q̂(G, s, 2),

where the xi represent the conjugacy classes in G of elements of prime order.

Let x ∈ H be an element of prime order t. If t = n then

|xG ∩H | = 1

2
(n− 1) = a and |xG| = 1

2
(n− 1)! = b.

Now assume t divides (n− 1)/2. Here x has a unique fixed point on [n], so

|xG ∩H | = it(H) = n(t− 1) = at, |xG| = n!

((n− 1)/t)!t(n−1)/t
= bt

and thus

Q̂(G, s, 2) = a2/b+
∑
t∈π

a2t/bt,

where π is the set of prime divisors of (n− 1)/2. Now |π| � log2((n− 1)/2) and

one checks that a2t/bt � a22/b2 for all t ∈ π, so

P2(G) � 1− n− 1

2(n− 2)!
− log2((n− 1)/2) · n

2((n− 1)/2)!2(n−1)/2

n!

and the desired bound follows.



Vol. 239, 2020 2-GENERATION OF FINITE GROUPS 317

Finally, let us assume that n = 23. Here M(G, s)={H,K} with H∼=K∼=M23

and with the aid of Magma we calculate that

Q̂(G, s, 2) = 4

k∑
i=1

|xG
i | · fpr(xi, G/H)2 =

27704

178562475
.

The result follows.

Remark 5.8: In the previous proposition, it is easy to compute P2(G) precisely

when m = (n− 1)/2 is a prime and n �= 23. As before, let s ∈ G be an n-cycle

and write M(G, s) = {H}. Let r be the number of regular orbits of H on G/H .

By arguing as in the proof of [24, Proposition 3.2] we calculate that

r =
|G : H | − n(m2 −m− 1)− 1

|H |

and thus

P2(G) = 1− n3 − 4n2 − n+ 4

4(n− 2)!

by Lemma 2.4.

Proposition 5.9: Let G = An, where n > 13 is a prime. Then

P2(G) > 1− n−1.

Proof. In view of the previous proposition, we may assume n ∈ H. Let s ∈ G

be an n-cycle, so P2(G) = P (G, s, 2). If n � 73, then by arguing as in the proof

of [27, Proposition 3.8], we obtain

P2(G) > 1−
(2 log2 n

n− 1

)2
and the result follows if n > 257. For n ∈ {73, 127, 257}, the desired bound is

easily obtained by inspecting the proof of [27, Proposition 3.8]. For example,

the proof gives

P2(G) > 1−
( �

C

)2
,

where � = 1 + (n− 1)
∑

(q,d)
1
d and C = n(n− 1)/2 (the sum in the expression

for � is over all prime powers q and integers d � 2 with n = (qd − 1)/(q − 1)).

For n = 73 we have n = (83 − 1)/(8 − 1) only, so � = 25, C = 2628 and

the desired bound quickly follows. The cases when n is 127 or 257 are just as

straightforward.



318 T. C. BURNESS AND S. HARPER Isr. J. Math.

Finally, if n = 17 then M(G, s) = {H,K}, where H and K are non-conjugate

maximal subgroups isomorphic to PΓL2(16). Here we calculate

Q̂(G, s, 2) =
335848

42567525
<

1

17

and the result follows. Similarly, if n = 31 then Q̂(G, s, 2) < 1
31 .

Remark 5.10: The case G = A13 requires special attention. As above, we have

P2(G) = P (G, s, 2) with s ∈ G a 13-cycle and we observe that

M(G, s) = {H,K1,K2, L1, L2},

where H = NG(〈s〉) = C13:C6 and each of the remaining subgroups are iso-

morphic to PΓL3(3), with K1,K2 conjugate, and L1, L2 conjugate. One checks

that

Q̂(G, s, 2) =
4230997

1108800
> 1,

so the probabilistic approach does not yield P2(G) > 0. However, as noted in

the proof of [27, Proposition 3.8], by randomly choosing conjugates of a fixed

13-cycle, we can identify a TDS for G. For example,

{(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), (1, 2, 3, 4, 5, 6, 8, 9, 12, 7, 11, 10, 13)}

has the desired property (see [28, Section 1.2.4] for further details). This shows

that P2(G) > 0, but further work is needed to compute this probability precisely.

To do this, we use the fact that {s, sg} is a TDS for G if and only if A∩B = 1

for all A ∈ M(G, s) and all B ∈ M(G, sg) (see [27, Lemma 2.1]). In this way,

we can use Magma to show that

P2(G) =
|{sg ∈ sG : {s, sg} is a TDS for G}|

|sG| =
4979

46200

and we conclude that A13 is a genuine exception to the bound in Proposition 5.9.

6. Exceptional groups of Lie type

In this section, we assume G is a finite simple exceptional group of Lie type

over Fq. Our aim is to prove Theorem 4. Note that Theorem (�) (see the

introduction) implies that u(G) � 3, and u(G) → ∞ as q → ∞.

Remark 6.1: By applying Corollary 2.2, it is possible to determine explicit

lower bounds on u(G) in terms of q. For example, suppose G = 2B2(q) with

q = 22m+1 and m � 1. Let s ∈ G be an element of order q −
√
2q + 1. By
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inspecting [69, Theorem 9], which lists the maximal subgroups of G, one can

show that M(G, s) = {H} with H = NG(〈s〉) = Cq−√
2q+1:C4 (see the proof of

Lemma 6.7). Let x ∈ G be an element of prime order r. Since G contains a

unique conjugacy class of involutions, it follows that

fpr(x,G/H) =
i2(H)

i2(G)
=

q −
√
2q + 1

(q2 + 1)(q − 1)
=

1

(q +
√
2q + 1)(q − 1)

if r = 2. Similarly, if r is odd then we may assume r divides q −
√
2q + 1

(otherwise fpr(x,G/H) = 0), so |CG(x)| = q −
√
2q + 1 and we deduce that

fpr(x,G/H) � r − 1

|xG| � (q −
√
2q + 1)(q −

√
2q)

q2(q − 1)(q2 + 1)
<

1

(q +
√
2q + 1)(q − 1)

.

Therefore, Corollary 2.2 implies that

u(G) � (q +
√
2q + 1)(q − 1)− 1.

Let us now turn to the uniform domination number. In [27, Theorem 5.2], we

established the bound γu(G) � 6 for every finite simple exceptional group G.

By applying recent work of the first author in [23], we can prove a stronger

result.

Theorem 6.2: If G is a finite simple exceptional group of Lie type, then

γu(G) � 5.

Proof. First assume there exists an element s ∈ G with M(G, s) = {H} for

some maximal subgroupH ofG. Then Lemma 2.3 implies that γu(G) = b(G,H)

and by applying the main theorem of [23], noting that H is non-parabolic, it

follows that γu(G) � 5.

By arguing as in the proof of [27, Theorem 5.2], it remains to consider the cases

(a) G = F4(q), q = 2a, a � 2; and

(b) G = G2(q), q = 3a, a � 2.

First consider (a). As noted in the proof of [27, Theorem 5.2], there exists

an element s ∈ G with M(G, s) = {H,K} and H ∼= K ∼= 3D4(q).3. It suffices

to show that

(8) Q̂(G, s, 5) := 32

k∑
i=1

|xG
i | · fpr(xi, G/H)5 < 1,

where x1, . . . , xk are representatives of the conjugacy classes in G of elements

of prime order. Let Ḡ = F4 and H̄ = D4 be the corresponding algebraic groups
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defined over the algebraic closure of Fq. Let V26 be one of the 26-dimensional

irreducible modules for Ḡ and note that

(9) V26 ↓ H̄ = V (λ1)⊕ V (λ3)⊕ V (λ4)⊕ 02,

where V (λ1) is the natural module for H̄ , V (λ3) and V (λ4) are the two spin

modules and 0 is the trivial module (see [70, Chapter 12], for example). Let

x ∈ H be an element of prime order r.

First assume r = 2, so x ∈ 3D4(q). There are two classes of involutions

in 3D4(q), labelled A1 and A3
1 in the notation of [66]. As elements of H̄ , the

involutions in the first class are of type a2 and those in the second are of type c4

(in the notation of [2]). By considering the decomposition in (9), we deduce

that if x is in the A1 class of 3D4(q), then it has Jordan form [J6
2 , J

14
1 ] on V26,

and similarly [J12
2 , J2

1 ] if it is in the class labelled A3
1. By inspecting [54, Table

3], we conclude that the involutions in the A1 class of 3D4(q) are in the G-class

labelled A1, and the others are in G-class A1Ã1. The relevant class sizes in G

are given in [59, Table 22.2.4] and we deduce that the contribution to Q̂(G, s, 5)

from involutions is precisely 32(a1b
5
1 + a2b

5
2), where

a1 = (q4 + 1)(q12 − 1), b1 =
1

q6 + q4 + q2 + 1

and

a2 = q4(q4 + q2 + 1)(q8 − 1)(q12 − 1), b2 =
1

q2(q2 + 1)(q8 − 1)
.

Now assume r > 2, so x is semisimple. By arguing as in the proof of [23,

Lemma 3.17], we deduce that the combined contribution to Q̂(G, s, 5) from the

elements with CḠ(x)
0 = B3T1 or C3T1 is at most

32 · 2q15(q4 + 1)(q12 − 1) ·
( 48(q + 1)

q9(q − 1)4

)5
< q−7.

Similarly, the contribution from regular semisimple elements is less than 32q−33.

For all other semisimple elements, the bound in [23, (17)] gives

fpr(x,G/H) < q−11

and it follows that the remaining contribution is less than 32q50(q−11)5 = 32q−5.

In conclusion,

Q̂(G, s, 5) < 32(a1b
5
1 + a2b

5
2) + q−7 + 32q−33 + 32q−5 < 1

and thus γu(G) � 5.
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Finally, let us consider case (b). Here there is an element s ∈ G such that

M(G, s) = {H,K} with H ∼= K ∼= SU3(q).2 and so it suffices to show that (8)

holds. Let x ∈ H be an element of prime order r. Let Ḡ = G2 and H̄ = A2 be

the corresponding algebraic groups over the algebraic closure of Fq.

First assume r = 3, so x ∈ SU3(q). Let V7 be one of the 7-dimensional

irreducible modules for Ḡ and note that

V7 ↓ H̄ = V3 ⊕ V ∗
3 ⊕ 0,

where V3 is the natural module for H̄ (and V ∗
3 is its dual). If x ∈ H has Jordan

form [J2, J1] on V3, then the above decomposition implies that [J2
2 , J

3
1 ] is the

Jordan form of x on V7. Similarly, the regular unipotent elements in H have

Jordan form [J2
3 , J1]. By inspecting [54, Table 1], we deduce that x belongs to

the G-classes labelled A1 and G2(a1) in the two respective cases, whence the

contribution to Q̂(G, s, 5) from elements of order 3 is precisely 32(a1b
5
1 + a2b

5
2),

where

a1 = q6 − 1, b1 =
1

q2 + q + 1
, a2 =

1

2
q2(q2 − 1)(q6 − 1), b2 =

2

q(q3 − 1)
.

Next assume r = 2. Now G contains a3 = q4(q4 + q2 + 1) involutions, which

form a single conjugacy class, and thus

|xG ∩H | = i2(H) =
|GU3(q)|

|GU2(q)||GU1(q)|
+

|SU3(q)|
|SO3(q)|

= q2(q2 − q + 1)(q + 2).

Therefore,

fpr(x,G/H) =
q2(q2 − q + 1)(q + 2)

q4(q4 + q2 + 1)
=

(q2 − q + 1)(q + 2)

q2(q4 + q2 + 1)
= b3

and 32a3b
5
3 is the contribution from involutions. Finally, if r � 5 then the proof

of [29, Lemma 4.31] gives

fpr(x,G/H) <
4(q + 1)2

(q − 1)2
· q−4 � 25

4
q−4

and thus the total contribution to Q̂(G, s, 5) from elements of order at least 5

is less than

32q14 ·
(25
4
q−4
)5

< 6q−1.

We conclude that

Q̂(G, s, 5) < 32
3∑

i=1

aib
5
i + 6q−1 < 1.

The result follows.
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By [27, Theorem 5.2], we have γu(G) = 2 if G is one of 2B2(q),
2G2(q)

(with q � 27) or E8(q). The following theorem, which is the main result of this

section, completely determines the simple exceptional groups G with γu(G) = 2.

Theorem 6.3: Let G be a finite simple exceptional group of Lie type over Fq.

Then γu(G) = 2 if and only if

G ∈ {2B2(q),
2G2(q) (q � 27), 2F4(q) (q � 8), 3D4(q), E

ε
6(q), E7(q), E8(q)}.

Moreover, if γu(G) = 2 then P2(G) > 1− q−1.

In order to prove Theorem 6.3, we need to record some preliminary results.

Lemma 6.4: Let G be a finite simple group of Lie type and let P be the union

of the parabolic subgroups of G. Then G \ P is the set of regular semisimple

elements that are not contained in a maximal torus of a Levi factor of a parabolic

subgroup of G.

Proof. If u ∈ G is a nontrivial unipotent element, then CG(u) is contained in

a parabolic subgroup of G. Therefore, each x ∈ G \ P is a regular semisimple

element and the result follows.

Recall that if G is a finite simple exceptional group and H is a maximal

subgroup of G, then b(G,G/H) � 6 by the main theorem of [29]. The next two

lemmas, which may be of independent interest, show that b(G,G/H) = 2 in two

special cases. These results will play an essential role in the proof of Theorem

6.3 when G = E7(q) or E
ε
6(q).

Notation: In Lemmas 6.5 and 6.6, we use the notation P (G,H, 2) to denote the

probability that H ∩ Hg = 1 for a randomly chosen conjugate Hg.

Equivalently, this is the probability that two randomly chosen points in G/H

form a base for G, with respect to the natural action of G on G/H . In

particular, b(G,G/H) = 2 if and only if P (G,H, 2) > 0. Moreover, if

Q(G,H, 2) = 1− P (G,H, 2) denotes the complementary probability, then

(10) Q(G,H, 2) �
k∑

i=1

|xG
i | · fpr(xi, G/H)2 =: Q̂(G,H, 2),

where x1, . . . , xk represent the conjugacy classes of elements of prime order in G

(see the proof of [61, Theorem 1.3], for example).
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Lemma 6.5: If G = E7(q) and H = (L2(q
3)× 3D4(q)).3, then

P (G,H, 2) > 1− q−2.

Proof. It suffices to show that Q̂(G,H, 2) < q−2. Let Ḡ = E7 and H̄ = A3
1D4.S3

be the corresponding ambient algebraic groups over the algebraic closure of Fq.

Let L(Ḡ) be the Lie algebra of Ḡ and let V56 be the 56-dimensional irreducible

module for Ḡ. Fix a set of fundamental dominant weights {λ1, λ2, λ3, λ4} for

the D4 factor of H̄ . It will be useful to record the restrictions

L(Ḡ) ↓ A3
1D4 =L(A3

1D4)⊕ (V2 ⊗ V2 ⊗ 0⊗ V (λ4))

⊕ (V2 ⊗ 0⊗ V2 ⊗ V (λ3))⊕ (0⊗ V2 ⊗ V2 ⊗ V (λ1)),
(11)

V56 ↓ A3
1D4 =(V2 ⊗ V2 ⊗ V2 ⊗ 0)⊕ (V2 ⊗ 0⊗ 0⊗ V (λ1))

⊕ (0⊗ V2 ⊗ 0⊗ V (λ3))⊕ (0⊗ 0⊗ V2 ⊗ V (λ4))
(12)

(see [70, Chapter 12], for example). Here V2 and 0 denote the natural and

trivial modules for A1, respectively, and we write V (λi), with i = 1, 3, 4, for

the 8-dimensional irreducible module for D4 with highest weight λi (so V (λ1)

is the natural module, and V (λ3), V (λ4) are the two spin modules).

Set H = H0.〈τ〉 = H0.3, where H0 = L2(q
3) × 3D4(q) and τ induces a field

automorphism ϕ on L2(q
3) and a graph automorphism on 3D4(q). If we view

H0 as a subgroup of the connected component H̄0, then we may assume that

H0 = {(x, xϕ, xϕ2

, y) : x ∈ L2(q
3), y ∈ 3D4(q)} < H̄0.

In particular, note that τ cyclically permutes the three A1 factors of H̄0. Write

(13) Q̂(G,H, 2) = α+ β,

where α and β denote the contributions from unipotent and semisimple ele-

ments, respectively. We refer the reader to [59, Table 22.2.2] and [40, Section 3]

for detailed information on the unipotent and semisimple conjugacy classes in G

(including centraliser orders). In particular, we will adopt the notation from [59]

for labelling the unipotent classes in Ḡ, which is consistent with the standard

Bala–Carter notation.

Let x ∈ H be an element of prime order r and write q = pf with p a prime.

First assume r = p = 2. If x is a long root element, then [56, Proposition

1.13(iii)] implies that xG ∩ H is the set of long root elements in the 3D4(q)

factor of H0, so |xG ∩H | < q10, |xG| > 1
2q

34 and the contribution to α is less
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than 2q−14. In the remaining cases, we have |xG| > 1
2q

52 and we note that

i2(H) = (i2(L2(q
3)) + 1)(i2(

3D4(q)) + 1)− 1 < q21,

so the contribution to α from these elements is less than 1
2q

52(2q−31)2 = 2q−10.

Therefore, α < 2q−14 + 2q−10 when p = 2.

Next assume r = p � 3. If x ∈ H \ H0 then r = 3 and x belongs

to one of the G-classes labelled A2
2 or A2

2A1 (see the proof of [26, Proposi-

tion 5.12]). Therefore, |xG| > 1
2q

84 and thus the contribution to α is less

than 1
2q

84(2q−45)2 = 2q−6 since |H | < q39. Now assume xG ∩ H ⊆ H0. If

dim xḠ � 64 then |xG| > 1
2q

64 and thus the contribution to α from these ele-

ments is less than 1
2q

64(2q−34)2=2q−4 sinceH0 contains fewer than q6 · q24=q30

elements of order p. Now assume dimxḠ < 64, in which case x belongs to one of

the Ḡ-classes labelled A1, A
2
1 or (A3

1)
(1). As above, the contribution from long

root elements is less than 2q−14. More generally, we can use (12) to calculate

the Jordan form of each unipotent element x ∈ H0 on V56, which in turn allows

us to determine the Ḡ-class of x by inspecting [54, Table 7].

For example, suppose x = yz ∈ H0, where y ∈ L2(q
3) is a long root element

and z ∈ 3D4(q) is in the class labelled A′
2 in [66]. In terms of (12), y has Jordan

form [J2] on V2 and z has Jordan form [J2
3 , J

2
1 ] on each V (λi). Therefore, x has

Jordan form

(J2 ⊗ J2 ⊗ J2)⊕ (J2 ⊗ [J2
3 , J

2
1 ])

3 =

⎧⎨⎩[J7
4 , J

14
2 ] if p � 5

[J14
3 , J7

2 ] if p = 3

on V56 and by inspecting [54, Table 7] we conclude that x is in the Ḡ-class

A2A
3
1.

In this way, we see that there are no unipotent elements in H0 that be-

long to the Ḡ-class A2
1. Similarly, the elements in the class (A3

1)
(1) correspond

to long root elements in the L2(q
3) factor. Therefore, if x is in (A3

1)
(1) then

|xG| > 1
2q

54, |xG ∩H | < q6 and so the contribution from these elements is less

than 1
2q

54(2q−48)2 = 2q−42. To summarise, we have

α < 2q−6 + 2q−4 + 2q−14 + 2q−42

for all q � 2.

Now let us turn to β. If r = 2 then |xG| > 1
2 (q + 1)−1q55 and we calculate

that

i2(H) = (i2(L2(q
3))+1)(i2(

3D4(q))+1)−1 < (q6+1)(q8(q8+q4+1)+1) < q23,
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which means that the contribution to β from involutions is less than 4q−8. Now

assume r � 3. If dimxḠ � 84 then |xG| > 1
2 (q + 1)−1q85 and since |H | < q39

we see that the contribution to β from these elements is less than 4q−6.

Finally, let us assume r � 3 and dimxḠ < 84, so CḠ(x)
0 = D6T1 or E6T1.

Set V = L(Ḡ) and note that

dimCV (x) = dimCḠ(x)

(see [32, Section 1.14]). If x ∈ H \H0 then r = 3 and by considering (11) we

calculate that dimCV (x) = 35 + a, where a = dimCL(D4)(x). Since a � 28 we

have dimCV (x) � 63 and thus CḠ(x)
0 �∈ {D6T1, E6T1}. For the remainder, we

may assume that xG ∩ H ⊆ H0. Write x = yz ∈ H0, where y ∈ L2(q
3) and

z ∈ 3D4(q).

We claim that dimCV (x) < 67 if y �= 1 and z �= 1. To see this, let d

denote the codimension of the largest eigenspace of z on the natural D4-module

V (λ1). Since z ∈ 3D4(q), it follows that d is also the codimension of the

largest eigenspace of z on both V (λ3) and V (λ4). In addition, d � 4 and

dimCD4(z) � 10 (see the proof of [20, Lemma 2.12], for example). Set

W1 = L(A3
1D4), W2 = V2 ⊗ V2 ⊗ 0⊗ V (λ4).

Then dimCW1(x) � 1 + 1 + 1 + 10 = 13 and by applying [60, Lemma 3.7] we

deduce that dimCW2(x) � 32 − 4d � 16. Similarly, the 1-eigenspace of x on

each of the other two summands in the decomposition (11) has dimension at

most 16, so dimCV (x) � 13 + 48 = 61 and the claim follows. In a similar

fashion, one checks that dimCV (x) < 79 if y = 1 and z �= 1. It follows

that H contains fewer than q9 semisimple elements x with CḠ(x) = E6T1,

and since |xG| > 1
2 (q + 1)−1q55 we deduce that their contribution to β is less

than q−34. Similarly, if CḠ(x) = D6T1 then |xG| > 1
2 (q+1)−1q67 = b and there

are fewer than a = q9 + q28 semisimple elements x ∈ H0 of the form x = yz

with y = 1 or z = 1, so the contribution here is less than q−8.

We conclude that

β < 4q−8 + 4q−6 + q−34 + q−8.

By combining this estimate with the above bound on α, we see that

Q̂(G,H, 2) < 2q−6 + 2q−4 + 2q−14 + 2q−42 + 4q−8 + 4q−6 + q−34 + q−8 < q−2

and the result follows.
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Lemma 6.6: If G = Eε
6(q) and H = Lε

3(q
3).3, then P (G,H, 2) > 1− q−4.

Proof. It suffices to show that Q̂(G,H, 2) < q−4. Let Ḡ = E6 and H̄ = A3
2.S3

be the corresponding algebraic groups over the algebraic closure of Fq and let

V = L(Ḡ) be the Lie algebra of Ḡ. We have

(14) V ↓ A3
2 = L(A3

2)⊕ (V3 ⊗ V3 ⊗ V3)⊕ (V ∗
3 ⊗ V ∗

3 ⊗ V ∗
3 ),

where V3 denotes the natural module for A2. It will be convenient to set

W1 = L(A3
2), W2 = V3 ⊗ V3 ⊗ V3.

Also set F = Fq3u , where u = 1 if ε = + and u = 2 if ε = −.

Write H = H0.〈ϕ〉 = H0.3, where H0 = Lε
3(q

3) and ϕ is a field automorphism

of order 3. Without any loss of generality, we may assume that

H0 = {(x, xϕ, xϕ2

) : x ∈ Lε
3(q

3)} < H̄0,

so ϕ cyclically permutes the three A2 factors of H̄0. In order to estimate α

and β, as defined in (13), we will refer repeatedly to the information on unipo-

tent and semisimple conjugacy classes in [59, Table 22.2.3] and [40, Section 2],

respectively. As in the proof of the previous lemma, we will use the notation

from [59] for labelling unipotent classes.

Write q = pf , with p a prime, and let x ∈ H be an element of prime order r.

We begin by considering α. First assume r = p = 2. Here H0 has a unique

class of involutions (with Jordan form [J2, J1] on V3) and by considering the

decomposition in (14) we calculate that x has Jordan form [J38
2 , J2

1 ] on V . By

inspecting [54, Table 6], it follows that x is in the Ḡ-class A3
1, so |xG| > 1

2q
40,

|xG ∩H | = i2(H) = (q3 + ε)(q9 − ε) and we deduce that α < 2q−15 when p = 2.

Now assume r = p � 3. If x ∈ H \ H0 then r = 3 and the proof of

[26, Proposition 5.13] implies that x is in one of the Ḡ-classes labelled A2
2

or A2
2A1. Therefore, |xG| > 1

2q
48 = a and we note that there are fewer than

i3(H) < 2q15(q3 + 1) = b such elements in H (see [57, Proposition 1.3]). It fol-

lows that the contribution to α from these elements is less than a(b/a)2 < q−10.

Now assume xG ∩ H ⊆ H0, so x ∈ H0. As above, we calculate that the long

root elements x ∈ H0 are contained in the Ḡ-class labelled A3
1. In this case,

|xG| > 1
2q

40, |xG ∩ H | < 2q12 and thus the contribution is less than q−14.
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Similarly, if x ∈ H0 is a regular unipotent element then it has Jordan form⎧⎨⎩[J5, J3]
3

[J2
3 , J

2
1 ]

3
⊕ (J3 ⊗ J3 ⊗ J3)

2 =

⎧⎨⎩[J11
5 , J7

3 , J
2
1 ] if p � 5

[J24
3 , J3

2 ] if p = 3

on V . By inspecting [54, Table 6], it follows that x is in the Ḡ-class A2
2A1 if

p = 3 and D4(a1) if p � 5. Therefore |xG| > 1
6q

54 and there are fewer than 2q18

such elements in H , so the contribution to α is less than q−15. We conclude that

α < q−10 + q−14 + q−15.

To complete the proof, it remains to estimate β. Set D̄ = CḠ(x) and let

us first assume dim xḠ = 54, in which case D̄0 = A3
2, r = 3 and |xG| > 1

6q
54.

Since i3(H) < 2q15(q3 + 1) by [57, Proposition 1.3], it follows that the contri-

bution to β from these elements is less than 2q−14. Similarly, if dimxḠ � 56

then |xG| > 1
2 (q + 1)−1q57 = a, r � 5 and the bound |H0| < q24 implies that

the contribution to β is less than 2q−7.

For the remainder, we may assume that dimxḠ � 52 and thus

D̄0 ∈ {D5T1, A5A1, A5T1, D4T2, A4A1T1, A4T2}.

Suppose r = 2. Now H has a unique conjugacy class of involutions and by con-

sidering (14) we calculate that dimCV (x) = 38 and thus D̄0 = A5A1. Therefore,

|xG| > 1
2q

40 and |xG ∩H | = i2(H) = q6(q6 + εq3 + 1), so the contribution to β

from involutions is less than q−15.

Now assume r � 3. If x ∈ H \H0 then r = 3 and x acts as a field automor-

phism onH0, inducing a cyclic permutation on the three factors of H̄0. It follows

that dimCW1 (x) = 8 and dimCW2(x) = dimCW∗
2
(x) = 11, so dimCV (x) = 30

and thus D̄0=D4T2. Therefore, |xG|> 1
6 (q + 1)−2q50 and there are fewer than

i3(H)<2q15(q3+1) such elements inH , so the contribution to β is less than q−5.

For the remainder, we may assume r�3 and xG∩H⊆H0. In particular, x∈H0.

If x is a regular semisimple element of H0 then dimCW1(x) = 6 and by

applying [60, Lemma 3.7] we deduce that

(15) dimCW2 (x) = dimCW∗
2
(x) � 9.

Therefore, dimCV (x) � 24 and thus dimxḠ � 54, which means that the con-

tribution from these elements has already been accounted for. Now assume x

is non-regular, so r divides q3 − ε and we may assume x lifts to an element of

GLε
3(q

3) with eigenvalues 1, 1, λ for some nontrivial r-th root of unity λ ∈ F. In
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particular, note that r � q2 + q+1. Now dimCW1(x) = 12 and one checks that

(15) holds, which gives dimxḠ � 48. Therefore, |xG| > 1
6 (q + 1)−2q50 = a and

we calculate that there are fewer than∑
r∈π

(r − 1) · |GLε
3(q

3)|
(q3 − ε)|GLε

2(q
3)| < log(q3 + 1) · q(q + 1) · 2q12 = b

such elements in H , where π is the set of odd prime divisors of q3 − ε. It

follows that the combined contribution to β from these elements is less than

a(b/a)2 < q−10. Therefore,

β < 2q−14 + 2q−7 + q−15 + q−5 + q−10

and by combining this with the above estimate for α, we deduce that

Q̂(G,H, 2) < q−10 + q−14 + q−15 + 2q−14 + 2q−7 + q−15 + q−5 + q−10 < q−4

as required.

We are now ready to prove Theorem 6.3. We partition the proof into a se-

quence of lemmas. We begin by handling the rank 1 groupsG∈{2B2(q),
2G2(q)}

where we can compute P (G, s, 2) precisely for an appropriate element s ∈ G.

Lemma 6.7: Let G = 2B2(q), where q = 22m+1 and m � 1, and let s ∈ G be

an element of order q −
√
2q + 1. Then

P (G, s, 2) = 1− (q2 − 4)(q −
√
2q + 1) + 4

q2(q − 1)(q +
√
2q + 1)

> 1− q−1

and thus γu(G) = 2.

Proof. First we claim that M(G, s) = {H}, where

H = NG(〈s〉) = K:L

and K,L are cyclic groups of order q−
√
2q+1 and 4, respectively. By consid-

ering the orders of the maximal subgroups of G (see [69, Theorem 9]), we see

that every subgroup in M(G, s) is a conjugate of H . Now, if r is a prime divisor

of |K|, then H has a unique subgroup J of order r, which is contained in K.

Therefore, if g ∈ G and J � H ∩ Hg, then J = Jg and thus g ∈ NG(J) = H .

Therefore, |H ∩ Hg| ∈ {1, 2, 4} for all g ∈ G \ H and thus M(G, s) = {H}
as claimed. Moreover, it follows that the nontrivial, non-regular H-orbits on

Ω = G/H have length q −
√
2q + 1 and 2(q −

√
2q + 1).
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Let t be the number of regular orbits of H on Ω. Then Lemma 2.4 gives

(16) P (G, s, 2) =
t|H |2
|G|

and so it remains to determine t. By [69, Proposition 18], G has two (non-real)

conjugacy classes of elements of order 4, both of size |G|/2q (see [37, Lemma

3.2], for example). Similarly, H also has two classes of such elements, both of

size q −
√
2q + 1, which are not fused in G. Also note that G and H both

have unique conjugacy classes of involutions, of size |G|/q2 and q −
√
2q + 1,

respectively.

Write H = Gα for a point α ∈ Ω. Any element x ∈ H of order 4 has

|xG ∩H |
|xG| · |G : H | = 1

2
q

fixed points on Ω = G/H , one of which is α. Clearly, x acts fixed-point-freely

on the orbits of length 2(q −
√
2q + 1) and 4(q −

√
2q + 1). If Γ = H/J with

J = C4, then x has

|xH ∩ J |
|xH | · |H : J | = 1

fixed point on Γ. This implies that H has precisely q/2 − 1 orbits of size

q−
√
2q+1. Similarly, any element y ∈ H of order 2 has 1

4q
2 fixed points on Ω,

which are distributed so that y has 1 fixed point on each H-orbit of length

q −
√
2q + 1 and 2 on those of length 2(q −

√
2q + 1). It follows that H has

1
4q

2 − 1− (12q − 1)

2
=

1

8
q(q − 2)

orbits of length 2(q −
√
2q + 1) and we conclude that

t =
|G : H | − 1

2 (q − 2) · (q −
√
2q + 1)− 1

8q(q − 2) · 2(q −
√
2q + 1)− 1

|H | .

The result follows.

Remark 6.8: Define G and s as in Lemma 6.7. We claim that

P2(G)=P (G, s, 2),

which shows that the general bound P2(G) > 1 − q−1 in Theorem 6.3 is es-

sentially best possible. To see this, let x be any nontrivial element of G and

observe that x is either contained in a Borel subgroup B of G, or it normalises

a cyclic maximal torus of order q+ ε
√
2q+1 with ε = {+,−} (this follows from



330 T. C. BURNESS AND S. HARPER Isr. J. Math.

Lemma 6.4). If x ∈ B, then P (G, x, 2) = 0 since b(G,G/B) > 2. Therefore, we

may assume x is a regular semisimple element and Hε ∈ M(G, x), where

Hε = NG(〈y〉) = Cq+ε
√
2q+1:C4

for some element y ∈ G of order q + ε
√
2q + 1. Note that

|CG(x)| = |CG(y)| = q + ε
√
2q + 1 and M(G, y) = {Hε},

so P (G, x, 2) � P (G, y, 2). If ε = −, then P (G, y, 2) = P (G, s, 2). On the other

hand, if ε = +, then

P (G, y, 2) =
r|H+|2
|G| ,

where r is the number of regular orbits of H+ on G/H+. By arguing as in the

proof of Lemma 6.7, we deduce that

r =
|G : H+| − 1

2 (q − 2) · (q +
√
2q + 1)− 1

8q(q − 2) · 2(q +
√
2q + 1)− 1

|H+|
and one checks that P (G, y, 2) < P (G, s, 2). This justifies the claim.

Lemma 6.9: Let G = 2G2(q), where q = 32m+1 and m � 1, and let s ∈ G be

an element of order q −
√
3q + 1. Then

P (G, s, 2) = 1− (q3 + 2q2 − 3q − 6)(q −
√
3q + 1) + 6

q3(q2 − 1)(q +
√
3q + 1)

> 1− q−2

and thus γu(G) = 2.

Proof. This is very similar to the proof of Lemma 6.7. Firstly, we observe that

M(G, s) = {H} and H = K:L, where K and L are cyclic groups of order

q +
√
3q + 1 and 6, respectively. In view of (16), it suffices to compute t,

the number of regular H-orbits on Ω = G/H . By arguing as in the proof of

Lemma 6.7, we see that |H∩Hg| ∈ {1, 2, 3, 6} for all g ∈ G\H , so the nontrivial,

non-regular H-orbits on Ω have length c(q −
√
3q + 1) for c ∈ {1, 2, 3}.

In order to compute t, we need to consider the conjugacy classes of elements

of order 2, 3 and 6 in both G and H (the conjugacy classes of G are determined

in [71] and we refer the reader to [51, Section 3] for a convenient summary

of the main facts we need). Both G and H have unique conjugacy classes of

involutions, of size q −
√
3q + 1 and |G|/q(q2 − 1), respectively. Similarly, H

has two (non-real) classes of elements of order 3, both of size q −
√
3q + 1, and

the same is true for elements of order 6. Now G has three classes of elements
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of order 3, two of size |G|/2q2 and one of size |G|/q3; the first two classes are

non-real and they both meet H (see [38, Lemma 2.3(b)]). Similarly, G has two

(non-real) classes of elements of order 6, both of size |G|/2q.
Let x ∈ H be an element of order 6. In the usual manner, we calculate

that x has q/3 fixed points on Ω. Moreover, if Γ = H/J is an H-orbit of length

q−
√
3q+1, then x has a unique fixed point on Γ, whence H has q/3− 1 orbits

of length q−
√
3q+1. Next suppose y ∈ H has order 3 and note that y has 1

3q
2

fixed points on Ω. Then y has a unique fixed point on each H-orbit of length

q −
√
3q + 1, and two fixed points on the orbits of length 2(q −

√
3q + 1). This

implies that H has

1
3q

2 − (13q − 1)− 1

2
=

1

6
q(q − 1)

orbits of length 2(q −
√
3q + 1). Finally, let z ∈ H be an involution. First we

calculate that z has q(q2 − 1)/6 fixed points on Ω. Now z has a unique fixed

point on each H-orbit of length q −
√
3q + 1, and three fixed points on the

H-orbits of length 3(q −
√
3q + 1). Therefore, H has

1
6q(q

2 − 1)− (13q − 1)− 1

3
=

1

18
q(q2 − 3)

orbits of length 3(q −
√
3q + 1).

Putting this together, we conclude that

t =
|G : H | − (13q − 1)a− 1

3q(q − 1)a− 1
6q(q

2 − 3)a− 1

|H | ,

where a = q −
√
3q + 1. The result follows.

Remark 6.10: Note that 2G2(3)
′ ∼= L2(8), so γu(

2G2(3)
′) = 3 by Proposi-

tion 7.10.

To complete the proof of Theorem 6.3, it remains to handle the simple ex-

ceptional groups of rank at least two.

Lemma 6.11: Let G = E8(q) and let s ∈ G be an element of order

q8 + q7 − q5 − q4 − q3 + q + 1.

Then P (G, s, 2) > 1− q−30 and γu(G) = 2.

Proof. This follows from the proof of [27, Theorem 5.2].
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Lemma 6.12: If G = 2F4(q)
′, then γu(G) = 2 if and only if q � 8. Moreover, if

q � 8 and s ∈ G has order q2 +
√
2q3 + q+

√
2q+1, then P (G, s, 2) > 1− q−3.

Proof. First assume q = 2. Here

G =
⋃
g∈G

Hg ∪
⋃
g∈G

Kg,

where H = 2.[28].5.4 and K = L3(3).2 (see [62], for example), and it is easy to

check that

b(G,G/H) = b(G,G/K) = 3.

Therefore γu(G) � 3. In fact, by carrying out a random search in Magma (see

[28, Section 1.2.4]) we can demonstrate that γu(G) = 3 (witnessed by the class

16A in the notation of the Atlas [33]).

Now assume q � 8 and let s ∈ G be an element of order

� = q2 +
√
2q3 + q +

√
2q + 1.

By [72, Section 4(c)], we have M(G, s) = {H} with H = C�:C12. Since

|xG| > 1

2
q11

for all 1 �= x ∈ G (see [65]), by applying Lemma 2.6 we deduce that

Q̂(G, s, 2) <
1

2
q11(2q−11 · |H |)2 < q−3

and the result follows.

Lemma 6.13: Let G = 3D4(q) and let s ∈ G be an element of order q4− q2+1.

Then P (G, s, 2) > 1− q−4 and γu(G) = 2.

Proof. By [72, Section 4(e)], we have M(G, s) = {H} with H = Cq4−q2+1:C4.

Let x ∈ H be an element of prime order r. We claim that |xG| > q16. If x is

semisimple, then |xG| can be read off from [34, Proposition 2.2] and the desired

bound follows. Now assume r = p = 2. From the proof of [31, Lemma 4.6], we

deduce that H contains a unique class of involutions and they belong to the A3
1

class of G (in the notation of [66]). This gives |xG| > q16 as required and by

applying Lemma 2.6 we conclude that

Q̂(G, s, 2) < q16(q−16 · |H |)2 < q−4

for all q � 2. The result follows.
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Lemma 6.14: Let G = E7(q) and let s ∈ G be an element of order

(q3 − 1)(q4 − q2 + 1)

(2, q − 1)
.

Then P (G, s, 2) > 1− q−2 and γu(G) = 2.

Proof. In view of Lemma 6.5, it suffices to show that M(G, s) = {H} with

H = (L2(q
3)× 3D4(q)).3.

Set T = 〈s〉 and N = NG(T ). By the main theorem of [58], N is not maximal

in G, so N < H < G for some maximal rank subgroup H . By considering the

order of s, it is clear thatH is not a maximal parabolic subgroup ofG. Moreover,

further inspection of [58, Tables 5.1 and 5.2] shows that H = (L2(q
3)×3D4(q)).3

is the only option. Now G has a unique conjugacy class of maximal subgroups of

this form and we will write n for the number of G-conjugates of H containing s.

We need to show that n = 1. Note that CG(s) = CH(s), so

n =
|sG ∩H |

|sG| · |G|
|H | �

|sH |
|sG| ·

|G|
|H | = 1

and thus n = 1 if and only if sG ∩H = sH .

Suppose t ∈ H is G-conjugate to s, say s = tg for some g ∈ G. We need

to show that s and t are H-conjugate. From the structure of H , it is easy to

determine the H-classes of maximal tori ofH ; we see that there is a unique class

of maximal tori of order |s|, so T = 〈s〉 and 〈t〉 are H-conjugate. Therefore, by

replacing t by an appropriate H-conjugate, if necessary, we may assume that

〈s〉 = 〈t〉. But then g normalises T and we have NG(T ) < H , so s and t are

indeed H-conjugate and we conclude that n = 1 as required.

Lemma 6.15: Let G = Eε
6(q) and let s ∈ G be an element of order

(q6 + εq3 + 1)/(3, q − ε).

Then P (G, s, 2) > 1− q−4 and γu(G) = 2.

Proof. By [72, Section 4(g,h)] and [45, Proposition 6.2] we haveM(G, s) = {H}
with H = Lε

3(q
3).3. Now apply Lemma 6.6.

Finally, we prove that γu(G) � 3 for the remaining two families of exceptional

groups.

Lemma 6.16: If G = G2(q)
′, then γu(G) � 3.
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Proof. If q = 2, then G ∼= U3(3) and with the aid of Magma it is easy to check

that γu(G) = 3. For the remainder, we may assume q � 3.

As in Lemma 6.4, let P be the union of the parabolic subgroups of G. In

addition, let Hε be the union of the maximal rank subgroups of G of the form

SLε
3(q):2 for ε = ±. We claim that

G = P ∪H+ ∪H−.

Notice that this implies that every element in G is contained in a maximal

subgroup H with b(G,G/H) � 3, so Lemma 2.3 gives γu(G) � 3 as required.

(In fact, if q � 4 is even, then a theorem of Bubboloni et al. [16] implies that

G = H+ ∪H−.)
By Lemma 6.4, it suffices to show that every maximal torus of G is either

contained in a Levi factor of a maximal parabolic subgroup, or in a maximal

subgroup of the form SLε
3(q):2. There are six conjugacy classes of maximal tori

in G (corresponding to the six conjugacy classes in the Weyl group of G, which

is isomorphic to D12):

C2
q−ε, Cq2−εq+1, Cq2−1 (two classes).

There are two classes of maximal parabolic subgroups, both with Levi fac-

tor GL2(q), so the maximal tori C2
q−1 and Cq2−1 (both classes) are contained

in Levi factors. In addition, SU3(q) contains C2
q+1 and Cq2−q+1, and SL3(q)

contains Cq2+q+1. The result follows.

Lemma 6.17: If G = F4(q), then γu(G) � 3.

Proof. This is similar to the proof of the previous lemma. Define P as before

and let H and K be the union of the maximal rank subgroups of the form B4(q)

and 3D4(q), respectively. It suffices to show that

G = P ∪H ∪ K.

The Weyl group of G has 25 conjugacy classes, so there are 25 classes of max-

imal tori. Similarly, B4(q) has 20 classes of maximal tori and by studying the

embedding of these tori in G, we find that all but 7 classes of maximal tori of G

have representatives contained in a B4(q) subgroup (see [55, pp. 95–96]). The

exceptions are

C(q3−ε)(q+ε), Cq3−ε × Cq−ε, C
2
q2+εq+1, Cq4−q2+1.
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However, these are precisely the maximal tori of 3D4(q), so H∪K contains every

maximal torus in G and the result follows. (Note that if q = 3f then G = H∪K
by [16].)

This completes the proof of Theorem 6.3. In particular, the proof of Theo-

rem 4 is complete.

7. Two-dimensional linear groups

In this section we prove Theorem 5. Set G = L2(q) with q � 4.

7.1. Spread. We start by studying the spread and uniform spread of G. Define

f(q) =

⎧⎪⎪⎨⎪⎪⎩
q − 1 if q ≡ 1 (mod 4),

q − 4 if q ≡ 3 (mod 4),

q − 2 if q is even.

Lemma 7.1: Let G = L2(q) with q � 4. Assume q � 11 if q is odd. Then

u(G) � f(q).

Proof. First assume q is odd and let s ∈ G be an element of order (q+1)/2, so

M(G, s) = {H} with H = Dq+1. Let x ∈ H be an element of prime order r.

If r = 2 then fpr(x,G/H) = i2(H)/i2(G) since G has a unique class of involu-

tions and we get

fpr(x,G/H) =

⎧⎨⎩1
q if q ≡ 1 (mod 4),
q+3

q(q−1) if q ≡ 3 (mod 4).

Similarly, if r is odd then |xG ∩H | = 2, |xG| = q(q − 1) and thus

fpr(x,G/H) =
2

q(q − 1)
.

We conclude that if x ∈ G has prime order, then

fpr(x,G/H) <

⎧⎨⎩ 1
q−1 if q ≡ 1 (mod 4)

1
q−4 if q ≡ 3 (mod 4)

and the result follows by Corollary 2.2. A very similar argument applies when q

is even, working with an element of order q + 1.
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Remark 7.2: As noted in Remark 5, the spread of G = L2(q) is studied by

Brenner and Wiegold in [10] and the bound s(G) � f(q) is established in [10,

Theorem 4.02]. In fact, this result states that s(G) = f(q) for all q � 11, but

we will show below that this is false when q ≡ 3 (mod 4).

Fix subgroups A and B of G, where A = De(q+1), B is a Borel subgroup and

e = 2 if q is even, otherwise e = 1. It will be useful to record that

(17) G =
⋃
g∈G

Ag ∪
⋃
g∈G

Bg

(see [15, Corollary 4.3], for example).

Theorem 7.3: Let G = L2(q) with q � 4 and q �≡ 3 (mod 4). Assume that

q � 13 if q is odd. Then s(G) = u(G) = f(q).

Proof. In view of Lemma 7.1, it suffices to show that s(G) � f(q). First

assume q ≡ 1 (mod 4). Fix a Borel subgroup B of G and let xB be the unique

class of involutions in B. Note that |xB| = q, say xB = {x1, . . . , xq}. Let

A = CG(x1) = Dq+1, which is a maximal subgroup of G. We claim that there

is no element y ∈ G such that G = 〈xi, y〉 for all i. In view of (17), it suffices

to show that
⋃

iM(G, xi) contains every G-conjugate of A and B.

First note that G has q+1 Borel subgroups, say B,B1, . . . , Bq. By considering

fixed points, one checks that each involution in G is contained in exactly two

Borel subgroups. Moreover, we have

B ∩Bi = C(q−1)/2

for all i, so B∩Bi contains a unique involution. Therefore, we may assume that

xi ∈ B ∩Bi and thus
⋃

iM(G, xi) contains every conjugate of B.

Now let us consider the conjugates of A. First note that (|Ag|, |B|) = 2 and

thus |Ag ∩ B| � 2 for all g ∈ G (in fact, equality holds for all g ∈ G). Now

each xi is contained in (q−1)/2 conjugates of A; if xi and xj are both contained

in Ag, then 〈xi, xj〉 � Ag ∩ B and thus i = j. This shows that
⋃

i M(G, xi)

contains all q(q − 1)/2 conjugates of A and the result follows.

To complete the proof, let us assume q is even. Let B be a Borel subgroup

of G and fix maximal subgroups A = D2(q+1) and C = D2(q−1). Let

xB = {x1, . . . , xq−1}
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be the set of involutions in B. We claim that there is no y ∈ G such that

G = 〈xi, y〉 for all i. To see this, let us first observe that each xi is contained in

a unique Borel subgroup (namely B itself), and also q/2 conjugates of both A

and C. Moreover, |Ag ∩ B| = 2 and |Cg ∩ B| ∈ {2, q − 1} for all g ∈ G,

so
⋃

i M(G, xi) contains q(q − 1)/2 subgroups of the form D2(q±1). In particu-

lar,
⋃

iM(G, xi) contains every conjugate of A and all but q conjugates of C.

Let H1, . . . , Hq be the conjugates of C that are not contained in
⋃

i M(G, xi)

Seeking a contradiction, suppose there is an element y ∈ G with G = 〈xi, y〉
for all i. By considering (17), it follows that y must be contained in a Borel

subgroup and |y| > 1 is a divisor of q− 1. Without loss of generality, we may as

well assume y has order q−1. In particular, y is contained in a unique conjugate

of C, namely NG(〈y〉). Since we are assuming y �∈
⋃

i M(G, xi), it follows that

y ∈ Hi for some i. As noted above, we have |Hi∩B| ∈ {2, q−1}. If Hi∩B = 〈z〉
for an involution z, then z = xj for some j and we get Hi ∈ M(G, xj), which

is a contradiction. Therefore, |Hi ∩B| = q − 1 and thus Hi ∩B = 〈y〉 since Hi

has a unique subgroup of order q − 1. But this implies that y ∈ B, which is a

contradiction since B ∈ M(G, x1). The result follows.

Now assume q ≡ 3 (mod 4) and q � 11. By Lemma 7.1 we have

u(G) � f(q) = q − 4.

In the proof of Theorem 7.3, we worked with the set of involutions in a

fixed Borel subgroup B of G. However, a different approach is needed when

q ≡ 3 (mod 4) since |B| = q(q− 1)/2 is odd and it is more difficult to determine

the exact spread of G. Indeed, this remains an open problem.

The next result gives a lower bound on s(G) when q is a prime. In particular,

we see that the difference s(G)− u(G) for a non-abelian simple group G can be

arbitrarily large.

Proposition 7.4: Let G = L2(q), where q ≡ 3 (mod 4) and q � 11 is a prime.

Then s(G) � (3q − 7)/2 and s(G)− u(G) = (q + 1)/2.

Proof. Fix a maximal subgroup A = Dq+1 and let B be a Borel subgroup of G.

Consider a subset {x1, . . . , xm} of nontrivial elements in G.

If s ∈ G has order (q+1)/2, then s is contained in a unique maximal subgroup

of G, namely NG(〈s〉), which is a conjugate of A. Similarly, each element of

order q is contained in a unique maximal subgroup (here we are using the
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hypothesis that q is a prime), which is a conjugate of B. In view of (17), it

follows that there is no element y ∈ G such that G = 〈xi, y〉 for all i if and only

if
⋃

iM(G, xi) contains every conjugate of A and B. Since (|A|, |B|) = 1, we

deduce that

(18) s(G) = |S|+ |T | − 1,

where S and T are subsets of G# of minimal size such that
⋃

x∈S M(G, x)

contains every conjugate of A and
⋃

x∈T M(G, x) contains every conjugate of B.

Note that there are q(q − 1)/2 conjugates of A and q + 1 conjugates of B.

First consider |S|. Let x ∈ G be a nontrivial element. As observed in the

proof of [10, Theorem 4.02], if |x| = 2 then x is contained in precisely (q+3)/2

conjugates of A. On the other hand, if |x| > 2 divides q+1, then x is contained

in a unique conjugate of A. Therefore,

|S| �
1
2q(q − 1)
1
2 (q + 3)

> q − 4

and thus |S| � q − 3.

Now let us consider |T |. As noted above, each x ∈ G of order q is contained

in a unique conjugate of B. Similarly, any nontrivial element of order divid-

ing (q − 1)/2 is contained in exactly two conjugates of B. This implies that

|T | � (q + 1)/2. We claim that |T | = (q+1)/2. To see this, let B1, . . . , Bq+1 be

the Borel subgroups of G and note that Bi∩Bj = C(q−1)/2 and Bi∩Bj∩Bk = 1

for distinct i, j, k. In particular, if we write Bi ∩Bj = 〈xi,j〉, then

T = {x1,2, x3,4, . . . , xq,q+1}

has the desired property. This justifies the claim and we conclude that

s(G) = |S|+ |T | − 1 � (q − 3) +
1

2
(q + 1)− 1 =

1

2
(3q − 7)

as required.

Finally, let us consider u(G). Fix a conjugacy class xG with x �= 1 and note

that x is contained in a conjugate of A or B (see (17)). If x is contained in

a conjugate of A, then there is no g ∈ G such that G = 〈s, xg〉 for all s ∈ S.

Similarly, if x is in a conjugate of B, then there is no g ∈ G such that G = 〈t, xg〉
for all t ∈ T . Therefore,

u(G) = max{|S|, |T |} − 1 = |S| − 1

and thus s(G) − u(G) = |T | = (q + 1)/2.
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Remark 7.5: Let G = L2(q), where q � 11 is a prime with q ≡ 3 (mod 4). As

noted in the proof of the previous proposition, in order to compute s(G) we

need to determine |S| in (18). For q = 11, we can use Magma to show that

|S| = 9, which gives s(G) = 9 + 6− 1 = 14 and u(G) = 8.

Remark 7.6: The case G = L2(7) requires special attention. In [10, Section 4],

it is observed that s(G) � 3. Using Magma, we can identify 6 elements in G

to show that s(G) < 6. For instance, if we take

G = 〈(3, 6, 7)(4, 5, 8), (1, 8, 2)(4, 5, 6)〉< S8

then

A = {(2, 3, 8)(4, 5, 7), (1, 8, 5)(2, 7, 6), (2, 3, 4)(6, 8, 7),
(2, 7, 8)(3, 5, 6), (1, 6, 4)(3, 5, 7), (1, 5, 2)(3, 8, 4)}

has the desired property (that is, there is no y ∈ G such that G = 〈x, y〉
for all x ∈ A). In addition, an exhaustive search shows that s(G) � 5,

whence s(G) = 5. Finally, one checks that u(G) = 3. For example, the class

(1, 7, 2, 3, 8, 5, 6)G is a witness to the bound u(G) � 3.

The next result gives a lower bound on s(L2(q)) which is valid for all q � 11

with q ≡ 3 (mod 4). In particular, this shows that the claim s(L2(q)) = q − 4

in [10, Theorem 4.0.2] is incorrect for all such q.

Proposition 7.7: Let G = L2(q), where q ≡ 3 (mod 4) and q � 11. Then

s(G) � q − 3.

Proof. Define A and B as before (see (17)) and set C = Dq−1. Note that G

contains 1
2q(q − 1) conjugates of A. Let {x1, . . . , xq−3} be a set of nontrivial

elements of G.

First observe that each y ∈ G of order (q + 1)/2 is contained in a unique

maximal subgroup of G, namelyNG(〈y〉), which is a conjugate ofA. In addition,

each involution is contained in 1
2 (q + 3) conjugates of A, whereas every other

nontrivial element of G is contained in at most one conjugate of A. This implies

that if at least one xi is not an involution, then
⋃

i M(G, xi) does not contain

every conjugate of A and it follows that there exists an element y ∈ G of order

(q + 1)/2 such that G = 〈xi, y〉 for all i. Therefore, we may assume each xi

is an involution. We claim that there is an element y ∈ G of order (q − 1)/2
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such that G = 〈xi, y〉 for all i. In particular, this shows that s(G) � q − 3, as

required.

To justify the claim, first observe that G contains q(q + 1)/2 distinct con-

jugates of C. If s ∈ G has order (q − 1)/2, then M(G, y) comprises a unique

conjugate of C (namely, NG(〈s〉)) and two conjugates of B. Now each invo-

lution in G is contained in (q + 1)/2 conjugates of C and no conjugates of B

(since |B| is odd). In particular,
⋃

i M(G, xi) does not contain every conjugate

of C. Moreover, if NG(〈y〉) is such a conjugate of C, then G = 〈xi, y〉 for all i
and the result follows.

To conclude this section, we briefly consider the spread and uniform spread

of G = PGL2(q), where q � 5 is odd.

If q = 5, then G ∼= S5 and thus s(G) = 3 and u(G) = 2 by Theorem 4.3. If

q = 7, then a computation inMagma yields s(G) � u(G) = 4. Now assume that

q � 9. In her PhD thesis [42], Garion states that s(G) = q−4 (see [42, Proposi-

tion 6.2.4]), but her argument only establishes the bound u(G) � q−4. Indeed,

the problem of determining the exact values of s(G) and u(G) is still open.

Our main result is the following.

Proposition 7.8: Let G = PGL2(q) with q � 9 odd. Then

q − 4 � u(G) � s(G) � q − 1.

Proof. First we show that u(G) � q− 4. Let s ∈ G be an element of order q+1

and note that M(G, s) = {H} with

H = NG(〈s〉) = D2(q+1).

Fix an element x ∈ H of prime order r.

Suppose r = 2. Now H has three classes of involutions (a central involution,

plus two classes of size (q + 1)/2) and G contains two classes (represented by

the elements t1 and t′1 in the notation of [44, Table 4.5.1]). We calculate that

fpr(x,G/H) =

⎧⎨⎩ 1
q if x is conjugate to t1,
q+3

q(q−1) if x is conjugate to t′1.

If r > 2, then r divides (q+1)/2, |xG| = q(q−1) and |xG∩H | � r−1 � (q−1)/2,

so fpr(x,G/H) < 1/2q. Therefore,

fpr(x,G/H) <
1

q − 4
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for all x ∈ G of prime order, whence u(G) � q − 4 by Corollary 2.2.

Finally, let us turn to the upper bound on s(G); here we essentially repeat

the argument in the proof of Theorem 7.3 with q ≡ 1 (mod 4). Fix a maximal

subgroup A = D2(q+1) and letB be a Borel subgroup ofG. Note that G contains

q+1 Borel subgroups, say B,B1, . . . , Bq. Let {x1, . . . , xq} be the unique class of

involutions in B and set M =
⋃

i M(G, xi). It suffices to show that M contains

every conjugate of A and B.

Since B ∩ Bi = Cq−1 contains a unique involution, we may assume that

xi ∈ Bi for all i and thus M contains every Borel subgroup. Now each xi is

contained in (q− 1)/2 conjugates of A, and there are q(q− 1)/2 conjugates of A

in total. We have |Ag ∩B| = 2 for all g ∈ G, so no two of the xi are contained

in the same conjugate of A. Therefore, M contains every conjugate of A and

the result follows.

7.2. Uniform domination. By [27, Proposition 6.4], we have γu(L2(q)) � 4,

with equality if and only if q = 9. Our first aim is to determine the exact value

of γu(L2(q)) for all q. We begin by recording a preliminary lemma.

Lemma 7.9: Let G = L2(q) where q � 11 is odd and consider the action of G

on the set of cosets of H = Dq+1. The nontrivial subdegrees are as follows:

(i) q ≡ 1 (mod 4): (q + 1)/2 and q + 1, with multiplicities (q − 3)/2 and

(q − 1)/4, respectively.

(ii) q ≡ 3 (mod 4): (q + 1)/4, (q + 1)/2 and q + 1, with multiplicities 2,

(q − 3)/2 and (q − 3)/4, respectively.

In particular, b(G,G/H) = 2.

Proof. First observe that

H ∩Hg � C2 × C2

for all g ∈ G\H (see [64, Lemma 2(b)], for example). Suppose q ≡ 1 (mod 4), so

|H∩Hg| ∈ {1, 2} for all g ∈ G\H . If y ∈ H has order 2 then |yG∩H | = (q+1)/2

and |yG| = q(q + 1)/2, so y has (q − 1)/2 fixed points on Ω = G/H . Moreover,

each H-orbit of length (q + 1)/2 contains a unique fixed point of y, so H has

(q − 3)/2 such orbits in total and we deduce that H has

1
2q(q − 1)− 1

4 (q + 1)(q − 3)− 1

q + 1
=

1

4
(q − 1)

regular orbits.
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Now assume q ≡ 3 (mod 4), so H = CG(x) for an involution x ∈ G. For

g ∈ G\H we observe that H ∩Hg = 〈x, xg〉 = C2×C2 if and only if [x, xg ] = 1.

Similarly, H ∩Hg = 1 if and only if there is no involution in G that commutes

with both x and xg. Now x commutes with (q+1)/2 involutions (other than x

itself) and thus H has
1
2 (q + 1)
1
4 (q + 1)

= 2

orbits of length (q + 1)/4. By [3, Theorem 1.1(ii)], there are precisely

(q + 1)(q − 3)/4

elements xg for which there is no involution commuting with both x and xg.

This implies that H has

1
4 (q + 1)(q − 3)

q + 1
=

1

4
(q − 3)

regular orbits. Finally, we deduce that H has

1
2q(q − 1)− 1

2 (q + 1)− 1
4 (q + 1)(q − 3)− 1

1
2 (q + 1)

=
1

2
(q − 3)

orbits of length (q + 1)/2. The result follows.

Proposition 7.10: Let G = L2(q) with q � 4. Then

γu(G) =

⎧⎪⎪⎨⎪⎪⎩
4 if q = 9,

3 if q ∈ {5, 7} or q is even,

2 if q � 11 is odd.

Proof. The cases with q � 9 can be checked directly, so let us assume q � 11.

Note that γu(G) ∈ {2, 3} by [27, Proposition 6.4].

First assume that q is odd and let s ∈ G be an element of order (q + 1)/2.

As noted in the proof of [27, Proposition 6.4], we have M(G, s) = {H} with

H = Dq+1, and thus

γu(G) � b(G,G/H) = 2,

by Lemma 7.9.

Now assume q � 16 is even. We claim that each g ∈ G is contained in a

maximal subgroup H of G with b(G,G/H) � 3, which implies that γu(G) � 3

(and hence equality holds by [27, Proposition 6.4]). To see this, we consider

the action of g on the natural module for G. If g acts reducibly, then g is



Vol. 239, 2020 2-GENERATION OF FINITE GROUPS 343

contained in the stabiliser of a 1-space (that is, a Borel subgroup of G) and the

claim follows. On the other hand, if g acts irreducibly then it is contained in

a maximal dihedral subgroup H = D2(q+1) and the subdegrees for the action

of G on G/H are presented in [39, Table 2]. We see that there are no regular

suborbits and thus b(G,G/H) � 3. This justifies the claim and the proof of the

proposition is complete.

The next result completes the proof of Theorem 5.

Proposition 7.11: Let G = L2(q) with q � 11 odd. Then P2(G) = g(q),

where

g(q) =

⎧⎨⎩ 1
2 (1 +

1
q ) if q ≡ 1 (mod 4),

1
2 (1−

q+3
q(q−1) ) if q ≡ 3 (mod 4).

In particular, P2(G) � 24
55 , with equality if and only if q = 11.

Proof. Let s ∈ G be an element of order (q + 1)/2. Then, as noted above,

M(G, s) = {H} with H = NG(〈s〉) = Dq+1, whence

P (G, s, 2) =
r|H |2
|G| ,

where r is the number of regular orbits of H on G/H (see Lemma 2.4). By

applying Lemma 7.9, we deduce that P (G, s, 2) = g(q) and thus P2(G) � g(q).

To complete the proof, we need to show that

P (G, t, 2) � P (G, s, 2)

for all t ∈ G#. If t is contained in a Borel subgroup B, then P (G, t, 2) = 0

since b(G,G/B) � 3. Therefore, by replacing t by a suitable conjugate, if

necessary, we may assume that t = sm ∈ H for some positive integerm. Clearly,

P (G, t, 2) = 0 if |t| = 2, so assume |t| > 2. Then the map sg �→ tg is a bijection

from sG to tG and we observe that if {tg1 , tg2} is a TDS then {sg1 , sg2} is a

TDS. Therefore P (G, t, 2) � P (G, s, 2) and the result follows.

8. Classical groups

In the previous section, we studied the two-dimensional linear groups L2(q) and

we now turn our attention to finite simple classical groups in general. We will

focus on the uniform domination number and our aim is to prove the results
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stated in parts (ii) and (iii) of Theorem 6 (recall that part (i) is established

in [27]).

The main result of this section is the following, which makes substantial

progress towards a complete classification of the finite simple classical groups G

with γu(G) = 2. As in the introduction, write

(19) C = {PSp2r(q) : r � 5 odd, q odd} ∪ {PΩ±
2r(q) : r � 4 even}.

Theorem 8.1: Let G be a finite simple classical group. Then γu(G) = 2 only

if one of the following holds:

(i) G = L2(q) with q � 11 odd;

(ii) G = Lε
n(q) with n odd and

(n, q, ε) �∈ {(3, 2,+), (3, 4,+), (3, 3,−), (3, 5,−)};

(iii) G ∈ C.

Moreover, γu(G) = 2 in cases (i) and (ii). In addition, for the groups G in

part (ii) we have

(a) P2(G) > 1
2 , unless G = U5(2) with P2(G) = 605

1728 ; and

(b) P2(G) → 1 as |G| → ∞.

Remark 8.2: We have been unable to determine if γu(G) = 2 for the groups

G ∈ C and we refer the reader to Remarks 8.15 and 8.16 for a brief discussion

of the difficulties that arise in these special cases.

We present the proof of Theorem 8.1 in a sequence of lemmas. We begin by

recording some useful preliminary results.

Lemma 8.3: LetG be a finite simple classical group and let s ∈ G be an element

that acts reducibly on the natural module V . Then one of the following holds:

(i) s is contained in a proper subgroup H of G with b(G,G/H) � 3.

(ii) G = U2m(q), m is odd and s is a regular semisimple element that

fixes an orthogonal decomposition V = U ⊥ U⊥ into nondegenerate

m-spaces and acts irreducibly on both summands.

(iii) G = PΩ+
2m(q), m is even and s is a regular semisimple element that

fixes an orthogonal decomposition V = U ⊥ U⊥ into nondegenerate

minus-type m-spaces and acts irreducibly on both summands.
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Proof. Let U be a proper nonzero subspace of V fixed by s of minimal possible

dimension. In particular, note that s acts irreducibly on U . Since s also fixes

the radical U ∩U⊥, we deduce that U is either totally singular or nondegenerate

(recall that if G is linear, then every subspace of V is totally singular). Let GU

be the stabiliser of U in G and set H = NG(GU ). Let n be the dimension of V .

If U is totally singular, then H is a maximal parabolic subgroup and it is

easy to check that |H |2 > |G| (see [36], for example), whence

b(G,G/H) � log |G|
log |G/H | > 2

and (i) holds. Therefore, we may assume U is nondegenerate and s is not

contained in a proper parabolic subgroup of G, so Lemma 6.4 implies that s is

a regular semisimple element. If G = PSpn(q)
′ then |H |2 > |G| and thus (i)

holds. If G = Ωn(q) then dimU = 1 (since every element of G fixes a 1-space)

and once again we see that |H |2 > |G|.
We have now reduced to the case where U is a nondegenerate �-space and G

is a unitary or even-dimensional orthogonal group. Note that s fixes the or-

thogonal decomposition V = U ⊥ U⊥ and � � n/2.

First assume G = Un(q). Since s acts irreducibly on U , we see that � is

odd. If n = 2�, then (ii) holds, so we may assume that � < n/2. Let W be

any nondegenerate �-dimensional subspace of V . We claim that there exists a

nontrivial element of G that fixes both U and W . In particular, b(G,G/H) � 3

and thus (i) holds. To see this, consider the sum X = U + W . Begin by

assuming that X is degenerate and fix a nonzero vector v in the radical X∩X⊥.
Then X ⊆ 〈v〉⊥ and we can define a transvection g ∈ G that acts trivially on

the hyperplane 〈v〉⊥. In particular, g fixes U and W . Now assume that X is

nondegenerate and note that V = X ⊥ X⊥. Suppose that dimX = n−1. Then,

since � < n/2, we must have n = 2�+1. The element s stabilises U⊥, a subspace

of dimension � + 1, which is even. Therefore, s stabilises a nonzero subspace

of U⊥ of dimension strictly less than �, which is a contradiction. Therefore,

dimX � n− 2, and there is clearly an element g ∈ G# that acts trivially on X ,

so g fixes both U and W . This implies that b(G,G/H) � 3 as required.

Finally, suppose G = PΩε
n(q) with n = 2m � 8. Let ( , ) be the symmetric

bilinear form on V corresponding to the quadratic form defining G. Since s

acts irreducibly on U , we deduce that � is even and U is minus-type. If m = �,

then U and U⊥ must both be minus-type spaces, so ε = + and case (iii) holds,

so we may assume that � < m.
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Let W be any nondegenerate �-dimensional subspace of V of the same type

as U . Again we claim that there exists a nontrivial element of G that fixes

both U and W . Write X = U + W . If X is nondegenerate, then since

dimX � 2m− 2, there exists g ∈ G# that acts trivially on X and consequently

stabilises U and W .

Now assume X is degenerate. If there exist linearly independent vectors u, v

in X ∩X⊥, then X ⊆ 〈u, v〉⊥ and the long root element defined as

x �→ x+ (x, u)v − (x, v)u

(see [74, Section 3.7.3]) acts trivially on 〈u, v〉⊥ and hence stabilises U and W .

Now assume X ∩X⊥ = 〈u〉 is 1-dimensional and write X = Y ⊥ 〈u〉 where Y

is nondegenerate. Then V = Y ⊥ Y ⊥ and u ∈ Y ⊥. Since Y ⊥ is nondegenerate,

there exists v ∈ Y ⊥ such that (u, v) = 1, which implies that 〈u, v〉 ⊆ Y ⊥ is

nondegenerate. Therefore, Z = Y ⊥ 〈u, v〉 is a nondegenerate subspace of V

containing X . Since � < m, it follows that dimZ � 2�+ 1 < 2m and thus Z is

a proper nondegenerate subspace of V containing X . If dimZ � 2m− 2, then

there exists g ∈ G# that acts trivially on Z, so we may assume dimZ = 2m− 1

(in which case, q must be odd). Now dimY ⊥ = 3 and we can define an element

g ∈ G# so that it acts trivially on Y and as a regular unipotent element on Y ⊥.
Moreover, we may choose g so that it fixes the singular vector u ∈ Y ⊥. Then g

acts trivially on X = Y ⊥ 〈u〉 and thus g fixes U and W . We conclude that

b(G,G/H) � 3 and (i) holds. This completes the proof.

Remark 8.4: In the proof of Lemma 8.11 we will show that if G and s are as in

part (ii) of Lemma 8.3, then the conclusion stated in part (i) still holds (with H

the stabiliser of the given orthogonal decomposition of V ).

Corollary 8.5: Let G be one of the following finite simple classical groups:

U2m(q) (m even), Ωn(q), PΩ
+
2m(q) (m odd).

Then γu(G) � 3.

Proof. Notice that every element s ∈ G acts reducibly on the natural module

for G and thus Lemma 8.3 implies that s is contained in a proper subgroup H

with b(G,G/H) � 3. Now apply Lemma 2.3 to conclude.

Next we recall the definition of a Singer cycle.
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Definition 8.6: Let G be a finite simple classical group over Fq with natural

module V . An element s ∈ G is a Singer cycle if 〈s〉 is an irreducible subgroup

(with respect to the action on V ) of maximal possible order. In particular, s is

a regular semisimple element and

|s| =

⎧⎪⎪⎨⎪⎪⎩
qn−1

(q−1)(n,q−1) if G = Ln(q)

qn+1
(q+1)(n,q+1) if G = Un(q) and n is odd
qn/2+1
(2,q−1) if G = PSpn(q) or PΩ

−
n (q)

where n = dim V . Note that any element in G that acts irreducibly on V is

equal to sk for some Singer cycle s ∈ G and integer k. Let us also note that

none of the groups Un(q) (n � 4 even), Ωn(q) and PΩ+
n (q) contain elements

that act irreducibly on V , so Singer cycles do not exist in these cases.

In the statement of the next result, we say that H is a field extension

subgroup if it is contained in Aschbacher’s C3 collection of maximal subgroups

of G (see [53, Section 4.3]).

Lemma 8.7: Let G be a finite simple classical group over Fq with natural

module V and let s ∈ G be a Singer cycle. Let H be a field extension subgroup

of G containing s. Then s is contained in a unique conjugate of H .

Proof. First observe that CG(s) = CH(s) = 〈s〉, so it suffices to show that

sG ∩H = sH .

By considering the structure of H , we see that H contains a unique conjugacy

class of maximal tori of order |s| and we can complete the proof by repeating

the argument in the proof of Lemma 6.14.

Lemma 8.8: Suppose G = PSp2m(q)′, where m � 2 and either m or q is even.

Then γu(G) � 3.

Proof. First assume m is even and fix an element s ∈ G#. If s acts reducibly

on the natural module for G, then Lemma 8.3 implies that P (G, s, 2) = 0. Now

assume s acts irreducibly, in which case s = xk for some Singer cycle x ∈ G

and integer k. Now M(G, x) (and thus M(G, s)) contains a field extension

subgroup H of type Spm(q2) and it is easy to check that |H |2 > |G| (note that

|H | = 2|PSpm(q2)| by [53, Proposition 4.3.10]). Therefore b(G,G/H) � 3 and

we conclude that P (G, s, 2) = 0, so γu(G) � 3.
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Finally, if m � 3 is odd and q is even, then [27, Theorem 6.3(iii)] implies that

γu(G) � m and the result follows.

Lemma 8.9: If G = PSp6(q), then γu(G) � 3.

Proof. In view of the previous lemma, we may assume q is odd and it suffices

to show that P (G, s, 2) = 0 when s ∈ G is a Singer cycle. Since M(G, s)

contains a field extension subgroup H of type Sp2(q
3), it is sufficient to show

that b(G,G/H) � 3. Write G = Ĝ/Z, where Ĝ = Sp6(q) and Z = Z(Ĝ). By

applying [43, Lemmas 2.2 and 4.1], we see that there is an element x ∈ GL6(q)

such that Ĝ ∩ Ĝx = Sp2(q
3). In particular, if y ∈ Ĝ then

Sp2(q
3) ∩ Sp2(q

3)y = Ĝ ∩ Ĝx ∩ Ĝxy

and thus [43, Lemma 5.7] implies that Z is a proper subgroup of

Sp2(q
3) ∩ Sp2(q

3)y. Therefore, by passing to the quotient group G = Ĝ/Z,

we deduce that the intersection of any two conjugates of H in G is nontrivial

and thus b(G,G/H) � 3.

Lemma 8.10: If G = Ln(q), where n � 4 is even, then γu(G) � 3.

Proof. Set n = 2m with m � 2. As in the proof of the previous lemma, it

suffices to show that P (G, s, 2) = 0 for a Singer cycle s ∈ G. To see this,

first observe that M(G, s) contains a field extension subgroup H of the form

GLm(q2). According to [53, Proposition 4.3.6], we have

|H | = 2(q + 1)|PGLm(q2)|
(2m, q − 1)

and one checks that |H |2 > |G| when q = 2, so b(G,G/H) � 3 and the desired

result follows.

Now assume q > 2. Set Ḡ = SL2m(K), where K is the algebraic closure of Fq,

and let σ be a Steinberg endomorphism of Ḡ such that Ḡσ = SL2m(q). Then

there exists a maximal closed σ-stable subgroup H̄ of Ḡ such that H̄σ is of type

GLm(q2). Here H̄ is of type GLm(K) �S2 and without loss of generality we may

assume that G = Ḡσ/Z and H = H̄σ/Z with Z = Z(Ḡσ). By [26, Corollary

3.15], we have

dim(H̄ ∩ H̄g) � m− 1

for all g ∈ Ḡ and thus [43, Proposition 8.1] implies that the intersection of any

two conjugates of H̄σ in Ḡσ is nontrivial. In fact, the proof of [43, Proposition
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8.1] implies that any such intersection either contains a nontrivial unipotent

element, or it has order at least (q − 1)m−1. Now

|Z| = (2m, q − 1)

and by excluding the cases (m, q) = (2, 3), (2, 5) we deduce that Z is a proper

subgroup of every such intersection and it follows that the intersection of any

two conjugates of H in G is nontrivial. It is straightforward to check directly

that the same conclusion holds when (m, q) = (2, 3) or (2, 5). We conclude that

b(G,G/H) � 3 and the proof of the lemma is complete.

Lemma 8.11: If G = Un(q), where n � 4 is even, then γu(G) � 3.

Proof. First recall that every element ofG acts reducibly on the natural module.

Therefore, by Lemma 8.3, we may assume that n = 2m with m � 3 odd, and

it suffices to show that b(G,G/H) � 3 for a maximal subgroup H of type

GUm(q) �S2. If q = 2 then |H |2 > |G| and the result follows, so we may assume

q > 2. We can now repeat the argument in the proof of the previous lemma,

working with the algebraic group Ḡ = SL2m(K) and an appropriate Steinberg

endomorphism. We omit the details.

To complete the proof of Theorem 6, we may assume that G = Lε
n(q) with n

odd. We start by studying the special case n = 3.

Lemma 8.12: If G = Lε
3(q), then

γu(G) =

⎧⎪⎪⎨⎪⎪⎩
4 if (ε, q) = (+, 4),

3 if (ε, q) ∈ {(+, 2), (−, 3), (−, 5)},
2 otherwise.

Moreover, if γu(G) = 2 then

P2(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(q2+εq+1)(q2−εq−3)

q2(q2−1) if q ≡ 0 (mod 3)

3q5−5q3+3q+ε8
3q3(q2−1) if q ≡ ε (mod 3)

(q3−ε3q2+q+ε2)(q2+εq+1)
q3(q−ε)2 otherwise

and thus P2(G) � 13
24 , with equality if and only if G = L3(3). In particular,

P2(G) → 1 as q → ∞.
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Proof. The special cases with (ε, q)∈{(+,2), (+,4), (−,3), (−,5)} can be checked

directly with the aid of Magma. For the remainder, we may assume G does

not correspond to one of these cases.

Let s ∈ G#. If s is reducible then P (G, s, 2) = 0 by Lemma 8.3, so let us

assume s is irreducible, in which case s = xk for some Singer cycle x ∈ G and

integer k. Since CG(s) = CG(x) = 〈x〉, it follows that P (G, s, 2) � P (G, x, 2).

Therefore, we may as well assume s ∈ G is a Singer cycle, so P2(G) = P (G, s, 2).

Set a = (q2+εq+1)/(3, q−ε). By applying the main theorem of [4] and Lemma

8.7, we deduce that M(G, s) = {H}, where H = NG(〈s〉) = Ca:C3 is a field

extension subgroup of type GLε
1(q

3). By Lemma 2.4 we have P2(G) = r|H |2/|G|
and so it remains to determine the number r of regular orbits of H on G/H .

By arguing as in the proof of [24, Proposition 3.2], we see that

(20) r =
|G : H | − a(b− 1)− 1

|H | and b =
2a|G : H |

|yG|

for any element y ∈ H of order 3. Since such an element y is regular, it follows

that

|yG| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q(q2 − 1)(q3 − ε) if q ≡ 0 (mod 3)

1
3q

3(q + ε)(q2 + εq + 1) if q ≡ ε (mod 3)

q3(q3 − ε) otherwise

and one can check that this gives the stated expression for P2(G).

Next we handle the case where n � 5 is a prime.

Lemma 8.13: If G = Lε
n(q) with n � 5 prime, then γu(G) = 2 and either

P2(G) > 1
2 , or G = U5(2) and P2(G) = 605

1728 . Moreover, P2(G) → 1 as |G| tends
to infinity.

Proof. First assume G = U5(2) and let s ∈ G be a Singer cycle, so s has

order 11 and P (G, s, 2) = P2(G). Then M(G, s) = {H} with H = L2(11) and

using Magma we calculate that H has 11 regular orbits on G/H . By applying

Lemma 2.4, we deduce that P2(G) = 605
1728 .

For the remainder, let us assume G �= U5(2). Fix a Singer cycle s ∈ G and

observe that M(G, s) = {H}, where H = NG(〈s〉) = Ca:Cn and

a = |s| = qn − ε

(q − ε)(n, q − ε)
.
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Let y ∈ H be any element of order n and set

b =
2a|G : H |

|yG| .

Then (20) holds, where r denotes the number of regular orbits of H on G/H .

Since y is a regular element of G, it follows that

|CG(y)| � (q + 1)n−1

and thus b � (1− n−1)(q + 1)n−1. Now,

P (G, s, 2) =
r|H |2
|G| � 1− b|H |2

n|G|
and we observe that

|H | �
(qn − 1

q − 1

)
n, |G| > (2n)−1qn

2−1.

Therefore

P (G, s, 2) >1− 2n2
(qn − 1

q − 1

)2
(1− n−1)(q + 1)n−1 · q1−n2

>1− 2n2q4n−2−n2

and the result follows.

Finally, to complete the proof of Theorem 8.1 we address the general case

with n composite.

Lemma 8.14: If G = Lε
n(q) with n � 3 composite and odd, then γu(G) = 2

and P2(G) > 1
2 . Moreover, P2(G) → 1 as |G| tends to infinity.

Proof. Let s ∈ G be a Singer cycle and note that n � 9. By [4] and Lemma 8.7,

we have

M(G, s) = {Hk : k ∈ π(n)},

where Hk is a field extension subgroup of type GLε
n/k(q

k) and π(n) is the set

of prime divisors of n. More precisely, [53, Proposition 4.3.10] gives

(21) Hk = Bk.k �
((qk − ε

q − ε

)
.PGLε

n/k(q
k)
)
.〈ϕ〉,

where Bk is the image of GLε
n/k(q

k) in Lε
n(q) and ϕ is a field automorphism of

order k.
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Let {x1, . . . , xa} be a set of representatives of the conjugacy classes in G of

elements of prime order and set

Q̂(G, s, 2) :=

a∑
i=1

|xG
i |
( ∑

k∈π(n)

fpr(xi, G/Hk)

)2

.

In order to prove the lemma, it suffices to show that Q̂(G, s, 2) < 1
2 and

Q̂(G, s, 2) → 0 as |G| → ∞. To do this, it will be convenient to observe that

|π(n)| < logn, so

Q̂(G, s, 2) < α logn

where

α =
∑

k∈π(n)

( a∑
i=1

|xG
i | · fpr(xi, G/Hk)

2

)
.

Let V be the natural module for G and let p be the characteristic of Fq. Let

Ḡ = PSLn(K), where K is the algebraic closure of Fq, and let σ be a Steinberg

endomorphism of Ḡ such that (Ḡσ)
′ = G. For any element x ∈ G, write x = x̂Z

with x̂ ∈ GLε
n(q) and Z = Z(GLε

n(q)), and let ν(x) be the codimension of the

largest eigenspace of x̂ as an element of GLn(K) (note that this is independent

of the choice of x̂). Write

{x1, . . . , xa} = {y1, . . . , yb} ∪ {z1, . . . , zc},

where ν(yi) < n/2 and ν(zi) � n/2 for all i.

It will be useful to write α = α1+α2+α3, where the αi are defined as follows.

Firstly, if 3 ∈ π(n) then

α1 =

a∑
i=1

|xG
i | · fpr(xi, G/H3)

2,

otherwise α1 = 0. Similarly,

α2 =
∑

k∈π(n), k�5

( b∑
i=1

|yGi | · fpr(yi, G/Hk)
2

)
and

α3 =
∑

k∈π(n), k�5

( c∑
i=1

|zGi | · fpr(zi, G/Hk)
2

)
if π(n) �= {3}, otherwise α2 = α3 = 0.



Vol. 239, 2020 2-GENERATION OF FINITE GROUPS 353

First consider α3. Fix k ∈ π(n) with k � 5 and set H = Hk. Let x ∈ H be

an element of prime order with ν(x) � n/2. Then

|H | < 2kq
1
kn2−1 � 10q

1
5n

2−1, |xG| > 1

2

( q

q + 1

)2
q

1
2n

2−1

(see [18, Corollary 3.38]) and thus

c∑
i=1

|zGi | · fpr(zi, G/H)2 <2
(q + 1

q

)2
q1−

1
2n

2

(10qn
2/5−1)2

=200
(q + 1

q

)2
q−

1
10n

2−1.

It follows that α3 � δ1, where δ1 = 0 if π(n) = {3}, otherwise

δ1 =
(
200
(q + 1

q

)2
q−

1
10n

2−1
)
logn.

Now let us turn to α1 and α2. Fix k ∈ π(n) and set H = Hk and B = Bk as

in (21). In addition, let us define m = n
k and set β = α1 if k = 3, otherwise

β =

b∑
i=1

|yGi | · fpr(yi, G/H)2.

Our aim is to determine a bound β < γ which is valid for all k � 3, in which

case α1 + α2 < γ logn.

Let x ∈ H be an element of prime order r and assume ν(x) < n/2 if k � 5.

There are several cases to consider and we will closely follow the proof of [19,

Proposition 3.1].

First assume xG∩(H\B) is non-empty. Here r=k and ν(x)=n(1−k−1)>n/2

(see [19, (66)]), so we may assume k = 3. Now

|xG| > 1

6

( q

q + 1

)2
q

2
3n

2

and we calculate that H \B contains fewer than

2
(q3 − ε

q − ε

)
·
|PGLε

n/3(q
3)|

|PGLε
n/3(q)|

< 8q
2
9n

2

such elements. In addition, there are at most 4q
2
9n

2

in B (there are none if n is

indivisible by 9). By applying Lemma 2.6, it follows that the contribution to β

from the elements with xG ∩ (H \B) �= ∅ is less than

6
(q + 1

q

)2
q−

2
3n

2

(12q
2
9n

2

)2 = 864
(q + 1

q

)2
q−

2
9n

2

= δ2.
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For the remainder, we may assume xG ∩H ⊆ B.

Next suppose r = p > 2 and let λ be the partition of n corresponding to the

Jordan form of x on V (this uniquely determines the Ḡ-class of x). By consider-

ing the embedding of GLε
n/k(q

k) in GLε
n(q), it follows that λ = (mkam , . . . , 1ka1)

for some non-negative integers ai (recall that this notation indicates that x

has kai Jordan blocks of size i). Let t � 1 be the number of nonzero ai in λ.

Then as explained in the proof of [19, Proposition 3.1], we have

|xG| > 1

2

( q

q + 1

)t
qdimxḠ−1

and there are fewer than 2tq
1
k dimxḠ

elements in B that are Ḡ-conjugate to x.

Therefore, the contribution to β from unipotent elements when p is odd is less

than ∑
22t+1

(q + 1

q

)t
q1+( 2

k−1) dimxḠ

<
∑

q2t+2+( 2
k−1) dim xḠ

,

where the sum is over a set of Ḡ-class representatives x of order p with the

appropriate Jordan form on V . We claim that

2t+ 2 +
(2
k
− 1
)
dimxḠ � 12− 2n.

If t = 1 then dimxḠ � 1
2n

2 and the desired bound holds. For t � 2 we have

n � 1
2kt(t+ 1),

dim xḠ � k2
(
m(t2 − t)− 1

4
t4 +

1

6
t3 +

1

4
t2 − 1

6
t
)

(see [18, Lemma 3.25]) and the claim quickly follows. Since there are fewer

than 2n/k partitions of n/k, we conclude that the entire contribution to β from

unipotent elements when p is odd is less than

2n/3 · q12−2n < q5−n = δ3.

Next we focus on the contribution from semisimple elements of odd order, so

let us assume r �= p is odd. Let i � 1 be minimal such that r divides qi − 1.

Similarly, let i0 � 1 be minimal such that r divides qki0 − 1 and note that

i0 =

⎧⎨⎩i/k if k divides i,

i otherwise.
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We define the integer c = c(i, ε) as in [18, Lemma 3.33], so

c =

⎧⎪⎪⎨⎪⎪⎩
2i if ε = − and i is odd,

i/2 if ε = − and i ≡ 2 (mod 4),

i otherwise.

First assume CḠ(x) is disconnected and c = 1. By [18, Lemma 3.34], it

follows that r divides n and ν(x) = n(1 − r−1), so we may assume k = 3. In

addition, the condition xG ∩H ⊆ B implies that r � 5, hence n � 15 and q � 4

(since c = 1). Now

|xG| > 1

2r

( q

q + 1

)r−1

qn
2(1− 1

r ) � 1

10

( q

q + 1

)4
q

4
5n

2

and |B| < 2qn
2/3−1, so the contribution to β from these elements is less than

40
(q + 1

q

)4
q−

2
15n

2−2.

For the remainder of our analysis of semisimple elements of odd order, we

may assume that either CḠ(x) is connected or c > 1.

First assume that k does not divide i, so i0 = i. As explained in [18, Sec-

tion 3.4], the G-class of x is determined by a tuple (a1, . . . , at) of non-negative

integers (where t = (r − 1)/c) and we have

(22) dimxḠ = n2 − (n− v)2 − c
t∑

j=1

a2j

where

v = n− c

t∑
j=1

aj .

In addition, if c = 1 we may assume that v � aj for all j. Since i0 = i, it

follows that each aj is divisible by k, so n � kdc where d � 1 is the number of

nonzero aj. As in the proof of [19, Proposition 3.1], we have

|xG ∩H | < 2dq
1
k dimxḠ

, |xG| > 1

2

( q

q + 1

)d
qdim xḠ

and it follows that the combined contribution to β from these semisimple ele-

ments is less than∑
2
(q + 1

q

)d
q− dim xḠ

(2dq
1
k dimxḠ

)2 <
∑

q3d+1−(1− 2
k ) dimxḠ

,
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where the sum is over a set of representatives of the relevant G-classes. Now

one can check that

dimxḠ �

⎧⎨⎩4nkd− 4k2d2 − 2dk2 − 2k2 if c � 2

2nkd− k2d2 − dk2 if c = 1

and by setting k = 3 and d = 1 we deduce that

3d+ 1−
(
1− 2

k

)
dimxḠ � 12− 2n.

Now assume k divides i, so i0 = i/k. As before, the G-class of x is determined

by a tuple (a1, . . . , at) and we write d for the number of nonzero aj , so n � dc

and

|xG| > 1

2

( q

q + 1

)d
qdim xḠ

.

Note that in this case, the aj need not be divisible by k, in general. Now, if

k = 3 then the proof of [19, Proposition 3.1] gives

(23) |xG ∩H | < 23d
( q3

q3 − 1

)d
q

1
3 dimxḠ

and we claim that the same bound holds for k � 5.

To see this, let y ∈ xG ∩ H and write ν(y) = t and ν0(y) = t0 with respect

to the natural modules V and V0 for G and PGLε
n/k(q

k), respectively. Recall

that we may assume t < n/2 since k � 5. Then t0 � t/k (see the proof of [61,

Lemma 4.2]) and by appealing to the proof of [18, Proposition 3.36] we deduce

that

|yB| <2
( qk

qk − 1

)kd
qkt0(

2n
k −t0−1) � 2

( q5

q5 − 1

)5d
qt(

2n
k − t

k−1)

<4
( q3

q3 − 1

)d
qt(

2n
k − t

k−1).

From [18, Proposition 3.40] we see that there are fewer than

�t/k�∑
t0=1

qkt0 < 2qt

distinct B-classes in xG ∩H , whence

|xG ∩H | < 8
( q3

q3 − 1

)d
q

1
k t(2n−t).
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Now dim xḠ � 2t(n− t) by [17, Proposition 2.9] and it is easy to check that

1

5
t(2n− t) <

2

3
t(n− t).

This shows that (23) holds for all k.

It follows that the contribution to β from these semisimple elements is less

than ∑
26d+1

(q + 1

q

)d( q3

q3 − 1

)2d
q−

1
3 dimxḠ

<
∑

q7d+1− 1
3 dimxḠ

,

where we sum over a set of G-class representatives. In view of (22), we calculate

that

dimxḠ � 2ndc− d2c2 − dc

and thus

7d+ 1− 1

3
dimxḠ � 12− 2n.

By combining the above estimates, noting that G has at most qn−1 semisimple

conjugacy classes, we conclude that the entire contribution to β from semisimple

elements x ∈ G of odd order with xG ∩H ⊆ B is less than

qn−1 · q12−2n + 40
(q + 1

q

)4
q−

2
15n

2−2.

Notice that this is larger than 1 when n = 9, so this case requires special

attention. Here k = 3, i ∈ {1, 2, 3, 6, 92 (3 − ε)} and we can estimate the contri-

bution to β by considering each possibility for i in turn. For example, suppose

ε = + and i = 6, so i0 = 2 and r divides q2 − q + 1. Then

|xG ∩H | � 3
( |GL3(q

3)|
|GL1(q3)||GL1(q6)|

)
< 3q18, |xG| = |GL9(q)|

|GL3(q)||GL1(q6)|
>

1

2
q66

and there are fewer than 1
6q(q − 1) such G-classes for a fixed value of r. Since

q2 − q + 1 has less than log(q2 − q + 1) odd prime divisors, we deduce that the

total contribution to β from semisimple elements with i = 6 is less than

1

6
q(q − 1) log(q2 − q + 1) · 2q−66(3q18)2 < q−26.

In a similar fashion, we can estimate the contribution for the other values of i.

Indeed, one can check that if n = 9 then the total contribution to β from
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semisimple elements of odd order is less than q−8 (this estimate is valid for

ε = ±). Set

δ4 =

⎧⎨⎩q11−n + 40( q+1
q )4q−

2
15n

2−2 if n � 15,

q−8 if n = 9.

To complete the proof of the lemma, it remains to estimate the contribution

to β from involutions. Let x ∈ H be an involution and first assume p = 2.

Here x has Jordan form [Jk�
2 , Jn−2k�

1 ] on V , for some 1 � � � 
n/2k�, and we

get

(24) |xG ∩H | < 2q2�(n−k�), |xG| > 1

2

( q

q + 1

)
q2k�(n−k�).

Therefore, the contribution to β is less than

�n/2k�∑
�=1

8
(q + 1

q

)
q−2�(n−k�) <

n

6
· 8
(q + 1

q

)
q6−2n < q2−n.

Now assume p �= 2. Here x has Jordan form [−I�, In−�] on V for some

1 � � � 
n/2k� and we get the same bounds as in (24). In particular, the

contribution to β is less than q2−n = δ5.

By bringing together the above estimates, we deduce that

β < δ2 + δ3 + δ4 + δ5 = γ

and thus

Q̂(G, s, 2) < (α1 + α2 + α3) logn < (γ logn+ δ1) logn.

This implies that Q̂(G, s, 2) < 1
2 for all possible values of n and q. Moreover,

we deduce that Q̂(G, s, 2) → 0 as n or q tends to infinity. This completes the

proof of the lemma.

This completes the proof of Theorem 6. We close this section by commenting

on the classical groups arising in part (iii) of Theorem 8.1; these are the groups

that comprise the collection C (see (19)).

Remark 8.15: Suppose G = PSp2m(q), where mq is odd and m � 5. Let V

be the natural module for G and fix an element s ∈ G#. If s acts reducibly

on V , then Lemma 8.3 implies that s is contained in a proper subgroup H with

b(G,G/H) � 3, so P (G, s, 2) = 0. Now assume s is irreducible, so s is a power

of a Singer cycle x ∈ G. Clearly, if g ∈ G then {s, sg} is a TDS only if {x, xg}
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is a TDS, so γu(G) = 2 if and only if P (G, x, 2) > 0. Therefore, we may as well

assume that s is a Singer cycle.

By combining Lemma 8.7 with a theorem of Bereczky [4], we deduce that

M(G, s) = {Ht,K : t ∈ π(m)},
where Ht is a field extension subgroup of type Sp2m/t(q

t), K is a subgroup of

type GUm(q) and π(m) is the set of prime divisors of m. The main theorem of

[21] gives
b(G,G/Ht), b(G,G/K) ∈ {2, 3, 4},

but the precise base sizes in these cases have not been determined. One can

check that |K|2 < |G| and Q̂(G,K, 2) > 1 (as defined in (10)), so our probabilis-

tic methods do not yield b(G,G/K) = 2. In particular, we have Q̂(G, s, 2) > 1

and so a different approach is needed to determine whether or not γu(G) = 2.

For G = PSp10(3), which is the smallest group satisfying the conditions in

part (iii) of the theorem, we can use Magma [9] to show that b(G,G/K) = 2.

Moreover, we can find an element g ∈ G by random search such that

H5 ∩Hg
5 = H5 ∩Kg = K ∩Kg = K ∩Hg

5 = 1,

which implies that {s, sg} is a total dominating set and thus γu(PSp10(3)) = 2

in this case. We have not been able to estimate P2(PSp10(3)) and the general

problem remains open.

Remark 8.16: Similar difficulties arise when G = PΩε
2m(q) and m � 4 is even.

First assume ε = −. As before, we may as well assume that s ∈ G is a Singer

cycle, in which case
M(G, s) = {Ht : t ∈ π(m)}

by [4], where Ht is a field extension subgroup of type O−
2m/t(q

t) and π(m) is

the set of prime divisors t of m with 2m/t � 4. The main theorem of [21]

gives b(G,G/Ht) � 4, but the exact base size is not known. In particular, we

have |H2|2 < |G| and Q̂(G,H2, 2) > 1, so our probabilistic methods will not

determine b(G,G/H2) precisely. For m = 4 we have γu(G) = b(G,G/H2) and

we can use Magma when q is small. Indeed, if m = 4 then γu(G) = 3 if q = 2

and γu(G) = 2 if q ∈ {3, 5}. Moreover, if q = 3 we calculate that H2 has exactly

10 regular orbits on G/H2, whence

P2(PΩ
−
8 (3)) =

2050

7371

by Lemma 2.4. A similar computation is out of reach when q = 5 since the

index |G : H2| is too large.
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Now assume ε = +. Here every element of G acts reducibly on the nat-

ural module V , so Lemma 8.3 implies that P (G, s, 2) = 0, with the possible

exception of the case where s ∈ G is a regular semisimple element fixing an

orthogonal decomposition V = U ⊥ U⊥ into minus-type m-spaces, acting irre-

ducibly on both summands. Clearly, in this case M(G, s) contains a maximal

subgroup H of type O−
m(q) �S2. For m = 4, a computation with Magma shows

that b(G,G/H) = 3 if q = 2 and b(G,G/H) = 2 if q ∈ {3, 5}, but the exact base
size is not known in general (as before, [21] gives the bound b(G,G/H) � 4).

In addition, if (m, q) �= (4, 2) then

|H |2 < |G| and Q̂(G,H, 2) > 1,

so the probabilistic approach is inconclusive in this case. Finally, let us also

observe that further work is needed to determine the complete set of maximal

overgroups of s (since s is not a Singer cycle, we cannot appeal to [4]).

9. Proofs of Theorems 9 and 10

In this final section we prove Theorems 9 and 10.

Proof of Theorem 9. Let G be a finite simple group such that γu(G) = 2

and G �∈ C ∪ T . By applying Theorems 3, 4, 5 and 6, we immediately re-

duce to the case where G is a sporadic group (see Remark 5.10 for the precise

value of P2(A13)).

Let G be a sporadic group and recall that G �∈ T . First assume that

G �∈ {Fi23,B,M}. As explained in [28], we can use the GAP Character Table

Library [11] to compute Q̂(G, s, 2) precisely for any element s ∈ G. We obtain

the following results, where we adopt the Atlas [33] notation for conjugacy

classes (we round up real numbers to 3 decimal places):

G M23 J1 J4 Ru Ly O′N Fi′24 Th

s 23A 15A 29A 29A 37A 31A 29A 27A

Q̂(G, s, 2) 0.030 0.364 0.001 0.168 0.001 0.337 0.001 0.060

In particular, we deduce that P2(G) > 1
2 .
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We will now consider the three remaining groups. First letG = Fi23 and s∈G.

If s is not in the class 35A, then one can verify that there exists H ∈ M(G, s)

such that b(G,G/H) � 3 and consequently P (G, s, 2) = 0 (the base size for

every primitive action of a sporadic group is given in [30]). Now assume that s

does belong to 35A. In this case M(G, s) = {H} with H = S12. Therefore,

P2(G) = P (G, s, 2), which Lemma 2.4 implies is equal to r|H |2/|G|, where r is

the number of regular orbits ofH on G/H . A computation in GAP by Alexander

Hulpke establishes r = 1, so

P2(G) = P (G, s, 2) =
|H |2
|G| =

7700

137241
.

Now let G = B and let s be in 47A. Then M(G, s) = {H} where H = 47:23

(see [45, Table IV]). Since |xG| � 1010 for all prime order elements x ∈ G, we

deduce that

P2(G) � P (G, s, 2) � 1− 11042

1010
> 1− 10−3.

Finally, let G = M and let s be in 59A. Then M(G, s) = {H} where

H = L2(59) (see [45, Table IV]) and we proceed as in the previous case.

Since |H | = 102660 and |xG| � 1019 for all prime order elements x ∈ G,

we conclude that

P2(G) � P (G, s, 2) � 1− 1026602

1019
> 1− 10−9.

This completes the proof.

Remark 9.1: Let G be a sporadic simple group with γu(G) = 2 and G �∈ T . If

there is an element s ∈ G such that M(G, s) = {H} and b(G,G/H) = 2, then

in some cases we can determine the probability P2(G) precisely.

For example, let G = M23 and s ∈ G. If |s| �= 23, then s is contained in a

maximal subgroup H with b(G,G/H) � 3. Now assume |s| = 23, in which case

M(G, s) = {H} with H = NG(〈s〉) = 23:11 and P2(G) = P (G, s, 2). Using

Magma, we calculate that H has 159 regular orbits on G/H , so Lemma 2.4

yields

P2(G) =
159|H |2

|G| =
13409

13440
> 0.997.

Remark 9.2: In Remarks 8.15 and 8.16, we briefly discussed some of the special

difficulties that arise when we try to determine if γu(G) = 2 for the classical
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groups in C. Here we discuss the groups in

T = {J3,He,Co1,HN}.

For each G ∈ T , there exists at least one class sG such that b(G,G/H) = 2 for

all H ∈ M(G, s). Indeed, the relevant classes are as follows:

J3 3B, 8A, 9A, 9B, 9C, 12A, 19A, 19B

He 7C, 7D, 7E, 21A, 21B

Co1 35A

HN 5C, 5D, 10D, 10E, 15B, 15C, 20D, 20E, 25A, 25B, 30B, 30C

However, Q̂(G, s, 2) > 1 in all cases, and we never have M(G, s) = {H} with

b(G,G/H) = 2. Therefore, our methods are inconclusive and we have not been

able to determine if γu(G) = 2 in these cases (in particular, we have been

unable to apply computational methods to answer this question). However,

we can verify the bound Q̂(G, s, 3) < 1 for a suitable element s, which implies

that γu(G) ∈ {2, 3} (see [27, Theorem 4.2]).

Finally, let us remark that if G = Co1 and s is in 35A, then

M(G, s) = {H,K,L1, L2}

where H = (A5 × J2):2, K = (A7 × L2(7)):2 and L1
∼= L2 = (A6 ×U3(3)):2.

We now turn to the proof of Theorem 10.

Proof of Theorem 10. Let G be a finite simple group such that γu(G) = 2 and

G �∈ C ∪ T . By Lemma 2.7, the claims in parts (i) and (ii) are immediate

consequences of Theorems 3(iv) and 4(ii). Moreover, Theorem 9 implies that

γ
(2)
u (G) = 3 unless G ∈ {A13,U5(2),Fi23} or G = L2(q) with q � 11 and

q ≡ 3 (mod 4). In the first three cases, we can verify the claim in Magma by

carrying out a random search.

Now assume that G = L2(q) for q � 11 and q ≡ 3 (mod 4). Let s ∈ G be an

element of order (q + 1)/2. As noted in the proof of Proposition 7.4, we have

M(G, s) = {H} with H = Dq+1. By Lemma 2.8, it suffices to show that there

exist α, β, γ ∈ G/H such that {α, β}, {α, γ} and {β, γ} are bases for the action

of G on G/H . To prove this, we will identify G with PSU2(q) and G/H with

the set Ω of orthogonal pairs of nondegenerate 1-dimensional subspaces of the

natural module V for PSU2(q).
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Fix an orthonormal basis {u, v} for V and write α = {〈u〉, 〈v〉}. Then

Ω = {α} ∪ {ωλ : λ ∈ F
×
q2 and λq+1 �= −1},

where

ωλ = {〈u+ λv〉, 〈u − λ−qv〉}.
Note that ωλ = ω−λ−q and the condition λq+1 �= −1 ensures that

〈u+ λv〉 �= 〈u− λ−qv〉.

We claim that if λ ∈ F
×
q2 and λq+1 �= −1, then {α, ωλ} is a base if and only if λ

is a nonsquare in Fq2 .

By Proposition 7.9(ii), H has exactly (q−3)/4 regular orbits on Ω. Therefore,

there are exactly (q+1)(q− 3)/4 points ω ∈ Ω such that {α, ω} is a base. Now,

there are exactly (q2 − 1)/2 − (q + 1) = (q + 1)(q − 3)/2 nonsquare λ ∈ F
×
q2

such that λq+1 �= −1. Therefore, it suffices to prove that {α, ωλ} is not a base

if λ is a square. To this end, suppose that λ = κ2 for some κ ∈ F
×
q2 and fix

g = ĝZ(SU2(q)), where

ĝ =

(
0 κ1−q

−κq−1 0

)
,

with respect to the ordered basis (u, v). It is straightforward to check that g

fixes α and ωλ, which proves that {α, ωλ} is not a base, as claimed.

Now write

F
×
q2 = 〈μ〉, β = ωμ and γ = ω−μ.

Since μ has multiplicative order q2− 1, we see that {α, β} and {α, γ} are bases.

It now remains to prove that {β, γ} is a base. The norm of u+ μv is 1 + μq+1,

which is in F
×
q , so there exists ν ∈ F

×
q2 such that νq+1 = 1 + μq+1. Now

(νμ−1)q+1 = (1 + μq+1)μ−(q+1) = 1+ μ−(q+1),

which is the norm of u − μ−qv, so {a, b} is an orthonormal basis for V , where

a = ν−1(u + μv) and b = ν−1μ(u − μ−qv). Moreover, it is straightforward to

check that

〈u− μv〉 = 〈a+ δb〉, 〈u− μ−qv〉 = 〈a− δ−qb〉
where δ = 2(μ−q − μ)−1. Therefore,

β = {〈a〉, 〈b〉}, γ = {〈a+ δb〉, 〈a− δ−qb〉}

and thus the argument in the previous paragraph implies that {β, γ} is a base

if and only if δ is a nonsquare. Since 2 is square and μ is nonsquare it remains
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to prove that μ−(q+1) − 1 is square. However, this follows immediately from

the fact that μ−(q+1) − 1 ∈ F
×
q . Therefore, {β, γ} is a base for G on Ω, which

completes the proof that γ
(2)
u (G) = 3.
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