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ABSTRACT

In the present paper we study Gelfand–Tsetlin modules defined in terms

of BGG differential operators. The structure of these modules is described

with the aid of the Postnikov–Stanley polynomials introduced in [PS09].

These polynomials are used to identify the action of the Gelfand–Tsetlin

subalgebra on the BGG operators. We also provide explicit bases of the

corresponding Gelfand–Tsetlin modules and prove a simplicity criterion

for these modules. The results hold for modules defined over standard

Galois orders of type A—a large class of rings that include the universal

enveloping algebra of gl(n) and the finite W -algebras of type A.

1. Introduction

The category of Gelfand–Tsetlin modules of the general linear Lie algebra

gl(n,C) is an important category of modules that plays a prominent role in

many areas of mathematics and theoretical physics. By definition, a Gelfand–

Tsetlin module of gl(n) is one that has a generalized eigenspace decomposition

over a certain maximal commutative subalgebra (Gelfand–Tsetlin subalgebra) Γ

of the universal enveloping algebra of gl(n). This algebraic definition has a

nice combinatorial flavor. The concept of a Gelfand–Tsetlin module generalizes

the classical realization of the simple finite-dimensional representations of gl(n)

via the so-called Gelfand–Tsetlin tableaux introduced in [GT50]. The explicit

nature of the Gelfand–Tsetlin formulas inevitably raises the question of what

infinite-dimensional modules admit tableaux bases—a question that led to the

systematic study of the theory of Gelfand–Tsetlin modules. This theory has

attracted considerable attention in the last 30 years of the 20th century and

has been studied in [DOF91, DFO94, Maz98, Maz01, Mol99, Zhe73], among

others. Gelfand–Tsetlin bases and modules are also related to Gelfand–Tsetlin

integrable systems that were first introduced for the unitary Lie algebra u(n)

by Guillemin and Sternberg in [GS83], and later for the general linear Lie alge-

bra gl(n) by Kostant and Wallach in [KW06a] and [KW06b].
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Recently, the study of Gelfand–Tsetlin modules took a new direction after the

theory of singular Gelfand–Tsetlin modules was initiated in [FGR16]. Singular

Gelfand–Tsetlin modules are roughly those that have basis of tableaux whose

entries may be zeros of the denominators in the Gelfand–Tsetlin formulas. For

the last three years remarkable progress has been made towards the study of

singular Gelfand–Tsetlin modules of gl(n). Important results in this direction

were obtained in [FGR15, FGR16, FGR17, Zad17, Vis18, Vis17, RZ18]. In par-

ticular, explicit constructions of a Gelfand–Tsetlin module with a fixed singular

Gelfand–Tsetlin character were obtained with algebro-combinatorial methods

in [RZ18] and with geometric methods in [Vis17]. One notable property of

these general constructions is their relations with Schubert calculus and reflec-

tion groups. As explained below, this relation is brought to a higher level in the

present paper and new connections with Schubert polynomials and generalized

Littlewood–Richardson coefficients are established. We hope that these new

connections, combined with combinatorial results on skew Schubert polynomi-

als, will allow us to better understand the structure of simple objects in the

category of Gelfand–Tsetlin modules (a classification of simple Gelfand–Tsetlin

modules was recently announced in [KTW+19, Web19]).

The study of Gelfand–Tsetlin modules is not limited to the cases of gl(n,C)

and sl(n,C). Gelfand–Tsetlin subalgebras are part of a uniform algebraic the-

ory, the theory of Galois orders. Galois orders are special types of rings that

were introduced in [FO10] in an attempt to unify the representation theories

of generalized Weyl algebras and the universal enveloping algebra of gl(n,C).

In addition to the universal enveloping algebra of gl(n,C) examples of Galois

orders include the n-th Weyl algebra, the quantum plane, the Witten–Woro-

nowicz algebra, the q-deformed Heisenberg algebra, and finite W -algebras of

type A (for details and more examples see [Har]).

The representation theory of Galois orders was initiated in [FO14]. In partic-

ular, the following finiteness theorem for Gelfand–Tsetlin modules of a Galois

order U over an integral domain Γ was proven: given a maximal ideal m of Γ

there exist at least one but only finitely many non-isomorphic simple Gelfand–

Tsetlin modules M such that m annihilates some element of M . This theorem

generalizes the finiteness theorem for gl(n,C) obtained in [Ovs02]. Other impor-

tant results of the Gelfand–Tsetlin theory of gl(n,C) were extended to certain

types of Galois orders in [EMV18, Har, Maz99]. One such important result is the
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construction of a Gelfand–Tsetlin module with any fixed Gelfand–Tsetlin char-

acter over an orthogonal Gelfand–Tsetlin algebra obtained recently in [EMV18].

Another notable contribution is the new framework of rational and co-rational

Galois orders established in [Har]. Examples of co-rational Galois orders are the

universal enveloping algebra of gl(n), restricted Yangians of gl(n), orthogonal

Gelfand–Tsetlin algebras, finite W -algebras of type A, among others.

The first goal of the present paper is to establish a closer connection of the

singular Gelfand–Tsetlin theory with the theory of Schubert polynomials and

reflection groups. We study a natural class of Γ-modules that consists of dif-

ferential operators related to the polynomials introduced in [BGG73]. These Γ-

modules are denoted by D(Ω, v) parameterized by a base of roots Ω and an

element v in the vector space V . The BGG differential operators have nu-

merous applications in the cohomology theory of flag varieties. In the present

paper, we use a particular aspect of these applications—the Postnikov–Stanley

operators. Postnikov–Stanley polynomials were originally defined in [PS09] in

order to express degrees of Schubert varieties in the generalized complex flag

manifold G/B. The polynomials are given by weighted sums over saturated

chains in the Bruhat order and have intimate relations with Schubert polynomi-

als, harmonic polynomials, Demazure characters, and generalized Littlewood–

Richardson coefficients. One of our main theorems can be written in the fol-

lowing non-technical terms.

Theorem A: The space of BGG differential operatorsD(Ω, v) is a Γ-submodule

of Γ∗ and the action of Γ on D(Ω, v) is given explicitly in terms of Postnikov–

Stanley operators.

Using the explicit action of Γ we prove the following useful result.

Corollary B: Let v ∈ V be standard and let γ ∈ Γ. Then the Jordan form of

the endomorphism of D(Ω, v) given by the action of γ consists of Jordan blocks

of size at most �(ωv
0) + 1 and eigenvalue γ(v). Furthermore, there is at most

one block of this maximal size, and for a generic element γ of Γ there is exactly

one such block.

It turns out that to each v ∈ V and each co-rational Galois order U we can

associate a module spanned by certain BGG operators, which we denote by

V (Ω, T (v)). Since the action of Γ on BGG operators is locally finite this is a

Gelfand–Tsetlin module. We summarize our main results regarding this module

in the following (minuscule elements are defined prior to Proposition 7.2).
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Theorem C: If U is a co-rational Galois order then the module of BGG differ-

ential operators V (Ω, T (v)) is a Gelfand–Tsetlin module over U . Furthermore,

under mild conditions on v, an explicit basis of BGG operators for V (Ω, T (v))

can be provided. Finally, if U is generated by minuscule elements, then the

matrix coefficients coming from the U -action of the generators on this basis are

rational functions expressed in terms of Postnikov–Stanley operators.

The detailed statements that are included in Theorem C are Theorem 6.4,

Proposition 7.1 and Proposition 7.2. All the examples given in [Har] are gener-

ated by minuscule elements, so Theorem C applies to a large class of algebras.

The explicitness of the bases and the action is in the spirit of Gelfand and

Tsetlin’s original paper and will be useful when Gelfand–Tsetlin character for-

mulas are studied. In particular, we use this explicitness in our very recent

work [FGRZ20], where the Gelfand–Tsetlin support of simple Gelfand–Tsetlin

modules and Verma modules of gl(n) are described.

One further application is our last result, Corollary 7.3, which is a sufficient

condition for our U -modules to be simple in certain special cases. This simplicity

criterion generalizes the criterion for orthogonal Gelfand–Tsetlin algebras ob-

tained in [EMV18]. It is worth noting that, as an immediate corollary, our result

provides new examples of simple modules of any finite W -algebra of type A.

The organization of the paper is as follows. Preliminary results on reflection

groups, BGG differential operators, and Postnikov–Stanley differential opera-

tors are collected in Section 2. Definitions and properties of Galois orders and

Gelfand–Tsetlin modules are included in Section 3. In Section 4 we discuss gen-

eralities on rational Galois orders. The Γ-module of BGG operators is defined

in Section 5, where we study its structure with the aid of Postnikov–Stanley

operators. In this section we also give an upper bound for the size of a Jordan

block of any γ of Γ considered as an endomorphism of the Γ-module of BGG

differential operators. The U -action on the U -module of (a larger space of)

BGG differential operators is studied in Section 6. In Section 7 we provide a

basis of this U -module, prove that it is a Gelfand–Tsetlin module, and provide

a sufficient condition for its simplicity.

We finish the introduction with a few notational conventions, which will be

used throughout the paper. Unless otherwise stated, the ground field will be C.

By N we denote the set of positive integer numbers. A reflection group will

always be a finite group isomorphic to a subgroup of O(n,R) for some n ∈ N
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and generated by reflections. Given a ring R and a monoid M acting on R by

ring morphisms, by R#M we denote the smash product of R and M, i.e., the

free R-module with basis M and product given by

r1m1 · r2m2 = r1m1(r2)m1m2

for any r1, r2 ∈ R and any m1,m2 ∈ M.

Acknowledgments. We are grateful to the referee for the valuable sugges-

tions that improved the quality of the paper. V. F. is supported in part by

CNPq grant (304467/2017-0) and by Fapesp grant (2018/23690-6). D. G. is
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ported in part by Fapesp grant (2018/17955-7). P. Z. was supported by Fapesp

fellowship (2016-25984-1) and is a CONICET Postdoctoral fellow. Parts of this

paper were written during P. Z.’s stay at the MPIM in Bonn, and he thanks

the institute for the working environment and resources.

2. Preliminaries on Schubert calculus

We recall some basic facts and fix notation on root systems and reflection groups.

Our definition of root system is slightly different from the classical one, but is

easily seen to be equivalent.

2.1. Root systems and reflection groups. Let V be a finite-dimensional

complex vector space with a fixed inner product which we denote by (−,−).

We use this inner product to identify V with its dual V ∗ and for each α ∈ V ∗

we denote by vα the unique element of V such that α(v′) = (v′, vα) for all

v′ ∈ V . Given α ∈ V ∗ we denote by sα the orthogonal reflection through the

hyperplane kerα, and by s∗α the corresponding endomorphism of V ∗. In this

article a finite root system over V will be a finite set Φ ⊂ V ∗ such that for

each α ∈ Φ we have

(R1) Φ ∩ Cα = {±α} and

(R2) s∗α(Φ) ⊂ Φ.

In classical references such as [Hum90] and [Hil82] root systems are defined as

subsets of a Euclidean vector space VR with R instead of C in (R1). Taking

V = C⊗R VR for an adequate VR our definition is equivalent to theirs. We use

the definition above since we work with complex vector spaces endowed with

the action of a reflection group.
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We now review the basic features of the theory of root systems. For more

details we refer the reader to the two references above. Fix a root system Φ.

The Weyl group associated to Φ is the group W (Φ) generated by {sα | α ∈ Φ}.
Since we do not assume that the root systems are reduced or crystallographic,

nor that Φ generates V ∗
R
, the group W (Φ) is a finite reflection group which may

be decomposable, and its action on V may have a nontrivial stabilizer. Any

reflection group G ⊂ GL(V ) is the Weyl group of some root system Φ ⊂ V ∗

[Hil82, §1.2].

Just as in the case of root systems for Lie algebras, for each root system Φ

we can choose a linearly independent subset Σ ⊂ Φ which is a basis of the R-

span of Φ such that the coefficients of each root of Φ in this basis are either all

nonnegative or all nonpositive. Such sets are called bases or simple systems,

and their elements are called simple roots. Each choice of a base defines a

partition Φ = Φ+ ∪ −Φ+, where Φ+ is the set of all positive roots, i.e., those

whose coordinates over Σ are nonnegative. If we fix a base Σ then the set S

of reflections corresponding to simple roots is a minimal generating set of the

reflection group W = W (Φ), and hence (W,S) is a finite Coxeter system in the

sense of [Hum90, 1.9]. Each s ∈ W of order two is of the form sα for some

α ∈ Φ+ [Hum90, Proposition 2.14], and given s ∈ W of order two we denote

by αs the corresponding positive root.

Fixing a base Σ, or equivalently, a minimal generating set S ⊂ W , we define

the length �(σ) of σ ∈ W as the least positive integer � such that σ can be

written as a composition of � reflections in S. Any sequence s1, . . . , s�(σ) such

that σ = s1 · · · s�(σ) is called a reduced decomposition; notice that reduced

decompositions are not unique. The group W acts faithfully and transitively

on Φ. Furthermore,

�(σ) = |σ(Φ+) ∩ −Φ+|,
so W has a unique longest element whose length equals |Φ|. We will denote this

element by ω0(W ), or simply by ω0 if the group W is clear from the context.

For the rest of this section we fix a root system Φ with base Σ and denote by

(W,S) the corresponding Coxeter system.

2.2. Subsystems, subgroups and stabilizers. In this subsection we follow

[Hum90, 1.10], where the reader can find most proofs. Given Ω ⊂ Σ we denote

by Φ(Ω) the root subsystem generated by Ω. We will call such subsystems

standard. If Ψ ⊂ Φ is an arbitrary subsystem, then we can choose a base Ω ⊂ Ψ
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which can be extended to a base Ω of Φ. By [Hum90, 1.4 Theorem] W acts

transitively on the set of all bases of Φ, so for some σ ∈ W we have σ(Ω) = Σ

and hence σ(Ψ) is standard.

Let θ ⊂ S and denote by Wθ the subgroup ofW generated by θ. Then (Wθ, θ)

is also a Coxeter system and it determines a standard root system Φθ ⊂ Φ with

simple roots Σθ = {αs | s ∈ θ}. We will refer to subgroups of the form Wθ as

standard parabolic subgroups. A parabolic subgroup is any subgroup of W

that is conjugate to a standard parabolic subgroup.

If σ ∈ Wθ, then we can compute its length as an element of W with respect

to the generating set S or as an element of Wθ with respect to the generating

set θ. Both lengths turn out to be equal and will be denoted by �(σ). Since Wθ

is also a Coxeter group it has a unique element of maximal length which we will

denote by ω0(θ). The set

W θ = {σ ∈ W | �(σs) > �(σ) for all s ∈ θ}

is a set of representatives of the classes in the quotient W/Wθ , and for each

σ ∈ W there exist unique elements σθ ∈ W θ and σθ ∈ Wθ such that σ = σθσθ

with �(σ) = �(σθ) + �(σθ). The element σθ is the element of minimal length in

the coclass σWθ. It follows that (ω0)θ = ω0(θ) and therefore ωθ
0 = ω0ω0(θ)

−1.

Given v ∈ V we denote by Φ0(v) the set of all roots in Φ such that α(v) = 0,

which is clearly a root subsystem of Φ. We also denote by Wv the stabilizer of

v in W . We will say that v is Σ-standard, or just standard when Σ is fixed

or clear from the context, if Φ0(v) is a Σ-standard subsystem of Φ. It is easy

to check that v is standard if and only if Wv is a standard parabolic subgroup,

and Wv = W (Φ0(v)). Since Wσ(v) = σWvσ
−1 and Φ0(σ(v)) = σ(Φ0(v)) for all

σ ∈ W , it follows that for every v ∈ V there exists σ ∈ W such that σ(v) is

standard and hence Wσ(v) is a standard parabolic subgroup. If v is standard,

then we denote by W v the set of minimal length representatives of the left

coclasses W/Wv.

2.3. Divided differences. From this point on V is a fixed finite-dimensional

complex vector space, Λ = S(V ), and L is the fraction field of Λ. Note that

following the convention of [PS09], we write S(V ) for Sym(V ∗). Also, we fix a

finite root system Φ with base Σ, and set W = W (Φ) to be the corresponding

reflection group with minimal generating set S. Thus W acts on Λ and L, and

we set Γ = ΛW and K = LW .
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Since W acts on L we can form the smash product L#W . Recall that the

product in this complex algebra is given over generators by fσ·gτ = fσ(g)στ for

all f, g ∈ L and all σ, τ ∈ W . Dedekind’s theorem on linear independence of field

homomorphisms implies that the algebra morphism L#W ↪→ EndC(L) defined

by mapping lσ ∈ L#W to the endomorphism f �→ lσ(f) is an embedding. We

identify L#W with its image, and so must be careful to distinguish the result

of applying the endomorphism lσ to f , whose result is lσ(f), and the product

of lσ and f in L#W , which is lσ · f = lσ(f)σ.

For s ∈ W we set

∇s =
1

αs
(1− s) ∈ L#W.

It is easy to show that for each f, g ∈ L,

∇s(fg) = ∇s(f)g + s(f)∇s(g)

so ∇s is a twisted derivation of L. Notice that ker∇s is exactly L〈s〉 and so ∇s

is L〈s〉-linear. Also it follows from the definition that ∇s(Λ) ⊂ Λ.

Example: Suppose V =C2 and let {x, y}⊂(C2)∗ be the dual basis to the canon-

ical basis. Let s be the reflection given by s(z1, z2) = (z2, z1), so αs = x− y.

Then for each f(x, y) ∈ C[x, y] we have

∇s(f)(x, y) =
f(x, y)− f(y, x)

x− y
.

Notice that this quotient is always a polynomial, since f(x, y) − f(y, x) is an

antisymmetric polynomial and hence divisible by x− y.

Given σ ∈ W we take a reduced decomposition σ = s1 · · · s� and set

∂σ = ∇s1 ◦ · · · ◦ ∇s� ;

this element is called the divided difference corresponding to σ and does not

depend on the chosen reduced decomposition [Hil82, Chapter IV (1.6)]. Notice

though that the definition of ∂σ does depend on the choice of a base Σ ⊂ Φ.

By definition, an L#W -module Z is an L-vector space endowed with a W -

module structure such that the action of L on Z is W -equivariant. A simple

induction on the length of σ shows that the divided difference ∂σ defines a K-

linear map over any L#W -module Z. In particular L is such a module, and

since ∇s(Λ) ⊂ Λ for any s ∈ S, it follows that Λ is closed under the action of

divided differences.
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2.4. Coinvariant spaces and Schubert polynomials. The algebra Λ

is Z≥0-graded with Λ1 = V ∗ and Γ is a graded subalgebra of Λ . We de-

note by IW the ideal of Λ generated by the elements of Γ of positive degree. By

the Chevalley–Shephard–Todd theorem Γ is isomorphic to a polynomial algebra

in dimV variables and Λ is a free Γ-module of rank |W |. Also, a set B ⊂ Λ

is a basis of the Γ-module Λ if and only if its image in the quotient Λ/IW is

a C-basis. Furthermore, Λ/IW is naturally a graded W -module isomorphic to

the regular representation of W with Hilbert series
∑

σ∈W t�(σ). For proofs we

refer the reader to [Hil82, Chapter II, Section 3].

We now recall the construction of the basis of Schubert polynomials of Λ/IW .

This construction is due to Bernstein, Gelfand and Gelfand [BGG73] and De-

mazure [Dem74] in the case when W is a Weyl group, and to Hiller [Hil82,

Chapter IV] in the case of arbitrary Coxeter groups. Set

Δ(Φ) =
∏

α∈Φ+

α,

and for each σ ∈ W set

SΣ
σ =

1

|W |∂σ−1ω0
Δ(Φ).

We will often write Sσ instead of SΣ
σ when the base Σ is clear from the context.

Notice that by definition degSσ = �(σ). The polynomials {Sσ | σ ∈ W} are

known as Schubert polynomials, and they form a basis of Λ as a Γ-module,

so the projection of this set is a basis of Λ/IW as a complex vector space.

With a slight abuse of notation, we will denote the projections of the schubert

polynomials by the same letters. Since K = LW we know that L is a K-vector

space of dimension |W | and so {Sσ | σ ∈ W} is also a basis of L over K. Given

f ∈ L we will denote by f(σ) the coefficient of Sσ in the expansion of f relative

to this basis, so f =
∑

σ∈W f(σ)Sσ.

Since Schubert polynomials form a basis of Λ/IW , for all σ, τ, ρ ∈ W there

exists cρσ,τ ∈ C defined implicitly by the equation

SσSτ =
∑
ρ∈W

cρσ,τSρ

The coefficients cρσ,τ are the generalized Littlewood–Richardson coeffi-

cients relative to the base Σ. It follows from the definition that cρσ,τ = 0 unless

�(σ) + �(τ) = �(ρ). If θ ⊂ S, then the space of Wθ-invariants (Λ/IW )Wθ is

generated by the set {Sσ | σ ∈ W θ} [Hil82, Chapter IV (4.4)]. In particular, if

σ, τ ∈ W θ then cρσ,τ �= 0 implies that ρ ∈ W θ.
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2.5. Postnikov–Stanley operators. Throughout this paragraph we fix a

root system Φ with base Σ and Weyl group W . All references to Schubert

polynomials are with respect to these data.

We denote by Λ◦ the algebra of polynomial differential operators on Λ. If we

fix an orthonormal basis x1, . . . , xn of V ∗, then

Λ = C[x1, . . . , xn] and Λ◦ = C

[ ∂

∂x1
, . . . ,

∂

∂xn

]
.

There is a natural pairing (−,−) : Λ◦ × Λ −→ C given by (D, p) = D(p)(0),

which allows us to identify Λ◦ with the graded dual of Λ. Furthermore, with

this identification the coproduct of Λ◦ is the adjoint of the multiplication of Λ.

For every graded ideal I ⊂ Λ we write

HI = {D ∈ Λ◦ | (D, f) = 0 for all f ∈ I}.
Since the pairing (−,−) is non-degenerate, the space HI is naturally isomorphic

to the graded dual of Λ/I. We denote by Dσ the unique element in HIW such

that (Dσ,Sτ ) = δσ,τ . It follows that the set {Dσ | σ ∈ W} is a graded basis

of HIW , dual to the Demazure basis of Λ/IW . Also, for each θ ⊂ S the set

{Dσ | σ ∈ W θ} is a graded basis of the dual of (Λ/IW )Wθ .

In [PS09], Postnikov and Stanley introduce new operators indexed by pairs

of elements σ, τ ∈ W and given by

Dτ,σ =
∑
ρ∈W

cστ,ρDρ.

Notice that De,σ = Dσ, that Dσ,σ = 1, and that Dτ,σ = 0 unless τ ≤ σ in the

Bruhat order of W . These operators have the property that

Δ(Dσ) =
∑
τ

Dτ,σ ⊗Dτ =
∑
τ

Dτ ⊗Dτ,σ

which can be checked by evaluating Δ(Dσ) in the set {Sσ ⊗Sτ | σ, τ ∈ W}.
Given D ∈ Λ◦ we denote by D0 the map (D,−) : Λ −→ C. The formula

for the coproduct of the Demazure operators is equivalent to the fact that for

any f, g ∈ Λ

D0
σ(fg) =

∑
τ

D0
τ,σ(f)D

0
τ (g) =

∑
τ

D0
τ (f)D

0
τ,σ(g).

It follows from the definition that each operator D0
σ is ΛW -linear. By a slight

abuse of notation, we denote by D0
σ the extension of this operator to the alge-

bra L of rational functions regular at 0.
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Proposition 2.1: Let f ∈ L be regular at zero and let σ ∈ W . Then

Dσ(f)(0) = (∂σf)(0).

Furthermore, if g ∈ L is also regular at 0 then

D0
σ(fg) =

∑
ρ≤σ

D0
ρ,σ(f)D

0
ρ(g) =

∑
ρ≤σ

D0
ρ(f)D

0
ρ,σ(g).

Proof. Let us first prove that the result holds when f, g are polynomials.

Let Iσ−1 be the operator adjoint to ∂σ with respect to the pairing (−,−). As

shown in [PS09, Theorem 6.5] Dσ = Iσ−1(1), so (Dσ, f) = (1, ∂σf) = ∂σ(f)(0).

We have already discussed the product formula in the preamble to this Propo-

sition. Let A = I−1
W Γ. We have seen that the differential operators D0

σ and

the divided differences ∂σ are Γ-linear, and hence they are also A-linear. Since

L = AΓ the result follows.

3. Galois orders and Gelfand–Tsetlin modules

Throughout this section Γ is a noetherian integral domain, K is its field of

fractions, and L is a finite Galois extension of K with Galois group G. Hence

K = LG.

3.1. Galois orders. We first recall the notion of a Galois ring (order), that

was introduced in [FO10]. Let M be a monoid acting on L by ring automor-

phisms, such that for all t ∈ M and all σ ∈ G we have σ ◦ t ◦ σ−1 ∈ M. Then

the action of G extends naturally to an action on the smash product L#M.

We assume that the monoid M is K-separating, that is, given m,m′ ∈ M, if

m|K = m′|K then m = m′.

Definition 3.1: Set K = L#M.

(i) A Galois ring over Γ is a finitely generated Γ-subring U ⊂ (L#M)G

such that UK = KU = K.

(ii) Set S = Γ \ {0}. A Galois ring U over Γ is a right (respectively,

left) Galois order, if for any finite-dimensional right (respectively left)

K-subspace W ⊂ U [S−1] (respectively, W ⊂ [S−1]U), the set W ∩U is

a finitely generated right (respectively, left) Γ-module. A Galois ring is

Galois order if it is both a right and a left Galois order.
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We will always assume that Galois rings are complex algebras. In this case

we say that a Galois ring is a Galois algebra over Γ.

3.2. Principal and co-principal Galois orders. Notice that L#M acts

on L, where for each X =
∑

m∈M lmm ∈ L#M we define its action on f ∈ L by

X(f) =
∑
m

lmm(f).

As an example of a Galois order, Hartwig introduced the standard Galois

Γ-order in K defined as

KΓ = {X ∈ K | X(Γ) ⊂ Γ};
see [Har, Theorem 2.21]. In this article the term “standard Galois order” has

a different meaning, and for sake of clarity will refer to the algebra above as

the left Hartwig order of K. A principal Galois order is any Galois order

U ⊂ KΓ. By restriction Γ is a left U -module for any principal Galois order, and

hence its complex dual Γ∗ is a right U -module.

Denote by M−1 the monoid formed by the inverses of the elements in M.

Following [Har], we define an anti-isomorphism −† : L#M −→ L#M−1 by

(lm)† = m−1 · l = m−1(l)m−1

for any l ∈ L,m ∈ M. The right Hartwig order is thus defined as

ΓK = {X ∈ K | X†(Γ) ⊂ Γ},
and a co-principal Galois order is any Galois order contained in ΓK. Thus Γ∗

is a left U -module for any co-principal Galois order, with action given by

X · χ = χ ◦X†

for any X ∈ U and χ ∈ Γ∗.

3.3. Gelfand–Tsetlin modules. Let U be a Galois order over Γ and let M

be any U -module. Given m ∈ SpecmΓ we set

M [m] = {x ∈ M | mkx = 0 for k 
 0}.
Since ideals in SpecmΓ are in one-to-one correspondence with characters

χ : Γ −→ C we also set

M [χ] = {x ∈ M | (γ − χ(γ))kx = 0 for all γ ∈ Γ and k 
 0}.
If χ is given by the natural projection Γ −→ Γ/m ∼= C, then M [m] = M [χ].



112 V. FUTORNY ET AL. Isr. J. Math.

Definition 3.2: AGelfand–Tsetlin module is a finitely generated U -moduleM

such that its restriction M |Γ to Γ can be decomposed as a direct sum

M |Γ =
⊕

m∈SpecmΓ

M [m].

A U -module M is a Gelfand–Tsetlin module if and only if for each x ∈ M the

cyclic Γ-module Γ · x is finite dimensional over C [DFO94, §1.4], which easily

implies the following result.

Lemma 3.3: A U -submodule N of a Gelfand–Tsetlin module M is again a

Gelfand–Tsetlin module. If v ∈ N , then its projection to N [m] lies in N for

each m ∈ SpecmΓ.

For every maximal ideal m of Γ we denote by ϕ(m) the number of non-

isomorphic simple Gelfand–Tsetlin modules M for which M [m] �= 0. Sufficient

conditions for the number ϕ(m) to be nonzero and finite were established in

[FO14].

Consider the integral closure Γ of Γ in L. It is a standard fact that if Γ is

finitely generated as a complex algebra, then any character of Γ has finitely

many extensions to characters of Γ. Let m be any lifting of m to Γ, and Mm

be the stabilizer of m in M. Note that the monoid Mm is defined uniquely up

to G-conjugation. Thus the cardinality of Mm does not depend on the choice

of the lifting. We denote this cardinality by |m|.
Theorem 3.4 ([FO14, Main Theorem and Theorem 4.12]): Let Γ be a com-

mutative domain which is finitely generated as a complex algebra and let

U ⊂ (L#M)G

be a right Galois order over Γ. Let also m ∈ SpecmΓ be such that |m| is finite.
Then the following hold:

(i) The number ϕ(m) is nonzero.

(ii) If U is a Galois order over Γ, then the number ϕ(m) is finite and uni-

formly bounded.

(iii) If U is a Galois order over Γ and Γ is a normal noetherian algebra,

then for every simple Gelfand–Tsetlin module M the set dimM [m] is

uniformly bounded.
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4. Rational Galois orders

Recall that V is a complex vector space with an inner product. We set

Λ = S(V ) and L = Frac(Λ).

Recall that an element g ∈ GL(V ) is called a pseudo-reflection if it has finite

order and fixes a hyperplane of codimension 1. By definition every reflection

is a pseudo-reflection, and the converse holds over R but not over C, which is

why finite groups generated by pseudo-reflections are called pseudo-reflection

groups or complex reflection groups. We fix G ⊂ GL(V ) a pseudo-reflection

group. As usual the action of G on V induces actions on Λ and L, and we denote

by Γ the algebra of G-invariant elements of Λ and set K = LG.

4.1. Let L ↪→ EndC(L) be the C-algebra morphism that sends any rational

function f ∈ L to the C-linear map mf : f ′ ∈ L �→ ff ′ ∈ L. Although

EndC(L) is not an L-algebra, it is an L-vector space with f ·ϕ = mf ◦ ϕ for all

ϕ ∈ EndC(L). Also, G acts on EndC(L) by conjugation and

σ ·mf = σ ◦mf ◦ σ−1 = mσ(f)

for each σ ∈ G, so the map f �→ mf is G-equivariant. For simplicity we will

write f for the operator mf .

Given v ∈ V we define a map av : V −→ V given by

av(v
′) = v′ + v.

This in turn induces an endomorphism of Λ, which we denote by tv, given by

tv(f) = f ◦ av;

we sometimes write f(x + v) for tv(f). Each map tv can be extended to a C-

linear operator on L and tv ◦ tv′ = tv+v′ , so V acts on L by automorphisms and

we can form the smash product L#V . Once again there is an algebra morphism

L#V → EndC(L), and the definitions imply that this map is G-equivariant.

Lemma 4.1: Let G, V , and L be as above, and let Z ⊂ V be an arbitrary

subset. Then the set {tz | z ∈ Z} ⊂ EndC(L) is linearly independent over L,

and the map L#V −→ EndC(L) is injective.
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Proof. Put

T =
N∑
i=1

fitzi

where fi ∈ L× and each zi ∈ Z, and assume T = 0. Given p ∈ Λ it follows from

T (p) = 0 that

p
∑
i

fi =
∑
i

[p(x+ zi)− p(x)]fi.

Let v ∈ V be arbitrary and choose a polynomial p of positive degree such that

p(v) = p(v + zj) for all j �= i but p(v) + 1 = p(v + zi). Then 0 = p(v + zi)fi(v)

so fi(v) = 0. Since v is arbitrary this implies that fi = 0 so the set {tz | z ∈ Z}
is L-linearly independent. Since the morphism L#V −→ EndC(L) is L-linear

and sends an L-basis of L#V to a linearly independent subset, it must be

injective.

4.2. Co-rational Galois orders. Given a character χ : G −→ C
× the space

of relative invariants

ΛG
χ = {f ∈ Λ | σ · p = χ(σ)p for all σ ∈ G} ⊂ Λ

is a ΛG-submodule of Λ. By a theorem of Stanley [Hil82, 4.4 Proposition] ΛG
χ

is a free ΛG-module of rank 1. Furthermore,

dχ =
∏

H∈A(G)

(αH)aH

is a generator of ΛG
χ , where A(G) is the set of hyperplanes that are fixed point-

wise by some element of G, each αH is a linear form such that kerαH = H ,

and aH ∈ Z≥0 is minimal with the property det[s∗H ]aH = χ(sH) for an arbitrary

generator sH of the stabilizer of H in G. Note that aH is independent of the

choice of sH , and that if G is a Coxeter group then aH is either 1 or 0.

Definition 4.2 ([Har, Definition 4.3]): A rational Galois order, resp. co-

rational Galois order, is a subalgebra U ⊂ EndC(L) generated by Γ and

a finite set of operators X ⊂ (L#V )G such that for each X ∈ X there exists

χ ∈ Ĝ with dχX ∈ Λ#V , resp. Xdχ ∈ Λ#V

As shown in [Har] every rational Galois order is isomorphic to a co-rational

Galois order, and for technical reasons we will restrict to the latter. Examples

of co-rational Galois orders include the enveloping, quantized enveloping and

W -algebras of gl(n,C) for all n ≥ 1.
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4.3. Given X ∈ L#V we define its support as the set of all v ∈ V such that tv

appears with nonzero coefficient in X . Note that the support is well-defined

since the set {tv | v ∈ V } is free over L. We denote the support of X by

suppX . Given a co-rational Galois order U ⊂ (L#V )G we denote by Z(U) the

additive submonoid of V generated by the supports of all its elements. By [Har,

Theorem 4.2] U is a co-principal Galois order in (L#Z(U))G.

Let v ∈ V , let evv : Γ −→ C be the character given by evaluation at v, and

let m = ker evv. Then the cyclic U -module U · evv ⊂ Γ∗ is a Gelfand–Tsetlin

module [Har, Theorem 3.3], and since evv ∈ U · evv[m] we have a new proof

that ϕ(m) �= 0 for rational Galois orders. In the following sections we show that

this module is spanned by BGG operators, and give an explicit presentation in

special cases including all of Hartwig’s examples.

5. Structure of Γ-modules associated to BGG operators

Throughout this section we fix a complex vector space V and a root system Φ.

We also fix a root subsystem Ψ ⊂ Φ with base Ω ⊂ Ψ. We denote by G the Weyl

group associated to Φ and byW the one associated to Ψ. Like before, Λ = S(V ),

L = Frac(Λ), Γ = ΛG, and K = LG. Since W ⊂ G, the group W also acts

on the vector spaces Λ, Γ, etc. All Schubert polynomials, Postnikov–Stanley

operators, standard elements, etc. are defined with respect to the subsystem Ψ

and the base Ω unless otherwise stated.

5.1. For every v ∈ V and any σ ∈ W we denote by Dv
σ the differential operator

sending a rational function f to Dσ(f)(v), whenever the latter is defined. We

denote by Dv
σ the restriction of this differential operator to Γ. If v is Ω-standard

then we set

D(Ω, v) = 〈Dv
σ | σ ∈ W 〉C ⊂ Γ∗.

We call D(Ω, v) the Γ-space of BGG differential operators associated to Ω

and v.

Lemma 5.1: Let v ∈ V and let πW : Λ −→ Λ/IW be the natural projection.

(a) πW (tv(Γ)) = (Λ/IW )Wv .

(b) If v is Ω-standard then the set {Dv
σ | σ ∈ W v} is a basis of D(Ω, v).



116 V. FUTORNY ET AL. Isr. J. Math.

Proof. Recall that K is the fixed field of G in L, and hence the fraction field

of Γ. Since the extension LW ⊂ L is a Galois extension with Galois group W ,

the field LW tv(K) ⊂ L must be the fixed field of a subgroup W̃ ⊂ W . For

σ ∈ W we have that

σ ◦ tv|K = tσ(v) ◦ σ|K = tσ(v)|K .

Since σ ∈ W̃ if and only if σ ◦ tv = tv, it follows that W̃ = Wv. Thus

LW tv(K) = LWv

which implies that ΛW tv(Γ) = ΛWv .

Since all non-constant polynomials in ΛW are in the kernel of πW we see that

πW (ΛW tv(Γ)) = πW (tv(Γ)),

so this last space equals πW (ΛWv ) = (Λ/IW )Wv . This proves the first part of

the lemma. It follows that for each σ ∈ W v there exists γσ ∈ Γ such that

πW (tv(γσ)) = Sσ,

so Dv
τ (γσ) = δσ,τ , and hence the set in the statement of part (b) is linearly

independent.

As we saw before, the set {D0
σ | σ ∈ W v} is a basis for the dual of the algebra

A = (Λ/IW )Wv . Now A∗ has the structure of an A-module, and hence Γ acts

on A∗ through the map πW ◦ tv : Γ −→ A. The element D0
σ · γ is by definition

the map a �→ D0
σ(tv(γ)a), so using Proposition 2.1 we have

D0
σ(tv(γ)a) =

∑
τ≤σ

D0
τ,σ(tv(γ))D

0
τ (a) = γ(v)D0

σ(a) +
∑
τ<σ

Dv
τ,σ(γ)D

0
τ (a),

where we have used that D0
σ ◦ tv = Dv

σ. Since a = tv(γ
′) for some γ′ ∈ Γ, we

can rewrite this as

(γ ·Dv
σ)(γ

′) = γ(v)Dv
σ(γ

′) +
∑
τ<σ

Dv
τ,σ(γ)D

v
τ (γ

′).

This shows that D(Ω, v) is a Γ-submodule of Γ∗, isomorphic to the pullback

of A∗ as A-module through the map πW ◦ tv. The above discussion implies

Theorem A, and more precisely, the following theorem.

Theorem 5.2: Let v∈V. ThenD(Ω, v) is a Γ-submodule of Γ∗and for each γ∈Γ

γ · Dv
σ = γ(v)Dv

σ +
∑
τ<σ

Dv
τ,σ(γ)Dv

τ .
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5.2. The structure of D(Ω, v) as Γ-module. The modules D(Ω, v) will

appear as Γ-eigenspaces of certain Gelfand–Tsetlin modules, so it is important

that we record some facts regarding their Γ-module structure. We thank the

reviewer for the observation that this structure is given by the action of a Frobe-

nius algebra on its dual, which allowed for a more streamlined presentation.

Recall that by definition a finite-dimensional algebra A is Frobenius if its

dual is isomorphic to A as a right or left A-module. By [Lam99, (16.55)], a

commutative Frobenius algebra has a non-degenerate symmetric bilinear form.

Also recall that a finite-dimensional graded algebra

A = A0 ⊕A1 ⊕ · · · ⊕Ad

is said to satisfy the hard Lefschetz condition if there exists an element l ∈ A1

such that for each i ≤ d/2, multiplication by ld−2i induces an isomorphism

between Ai and Ad−i.

Recall that W v is the set of minimal length representatives of the left Wv-

cosets.

Lemma 5.3: Let v ∈ V be Ω-standard, let A = (Λ/IW )Wv , and let ωv
0 be the

longest element in W v. Then A is a Frobenius algebra with the hard Lefschetz

property. Furthermore, the non-degenerate bilinear form of A is given by

(a, b) ∈ A×A �→ D0
ωv

0
(ab) ∈ Cx.

Proof. The hard Lefschetz property is a classical result in the case when W is a

Weyl group, and for all finite Coxeter groups is established in [MNW11, McD11].

The following argument was suggested by D. Speyer in [Spe17]. By the

Chevalley–Shephard–Todd theorem ΛW and ΛWv are polynomial algebras, gen-

erated by algebraically independent sets p1, . . . , pr and q1, . . . , qs respectively.

Clearly pi ∈ ΛWv and

A = C[q1, . . . , qs]/J,

where J is the ideal generated by the pi’s. This implies that A is a finite-

dimensional complete intersection, hence a graded artinian self-injective ring,

and hence a commutative Frobenius algebra. Since its top degree component

is spanned over C by Sωv
0
, this bilinear form is given by sending (a, b) to the

coefficient of Sωv
0
in the product ab, which is equal to D0

ωv
0
(ab).
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Proposition 5.4: Suppose that v ∈ V is Ω-standard and let

x =
∑

σ∈Wv

aσDv
σ.

(a) The element x is a cyclic generator of D(Ω, v) if and only if aωv
0
�= 0.

(b) The element x is an eigenvector of Γ if and only if aσ = 0 for all σ �= e.

(c) For each γ ∈ Γ the element γ − γ(v) acts as a nilpotent operator on

D(Ω, v). Its nilpotency order is at most

r = �(ωv
0) + 1,

and generically equals r.

(d) Let v′ ∈ V . The space D(Ω, v) ∩ D(Ω, v′) is nonzero if and only if v′ is
in the G-orbit of v. Furthermore, if v′ is in the W -orbit of v then

D(Ω, v) = D(Ω, v′).

Proof. Set

A = (Λ/IW )Wv .

By construction D(Ω, v) is isomorphic as Γ-module to the pullback of A∗ as

A-module through the map πW ◦ tv. It follows from Lemma 5.3 that A is

isomorphic to A∗, and the isomorphism maps a to a ·D0
ωv

0
. Since A is cyclically

generated by any element whose projection to A0 is nonzero, A∗ is cyclically

generated by any element whose projection to the top component is a nonzero

multiple of D0
e. Part (a) is a restatement of the latter in terms of the action

of Γ on D(Ω, v). Also, since the only eigenvector of A acting on itself is Sωv
0
,

the only eigenvector of the action of A on A∗ is D0
e, and this is equivalent to

part (b).

Since A ∼= A∗, an element of A acts by zero on A∗ if and only if it is zero.

Clearly for any a ∈ A≥1 we have ar = 0. Now the elements such that ar−1 = 0

form a Zarisky closed subset of A, and again by Lemma 5.3 there is an element

l ∈ A1 such that lr−1 �= 0. It follows that the elements a ∈ A≥1 such that

ar �= 0 are a dense open Zarisky set of A. Since

πW (tv(γ − γ(v))) ∈ A≥1,

it follows that (γ−γ(v))r acts by zero on D(Ω, v), and generically (γ−γ(v))r−1

acts by a nonzero linear transformation. This proves part (c).
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Each element in D(Ω, v) is a generalized eigenvector of γ with eigenvalue γ(v).

Thus if D(Ω, v) ∩ D(Ω, v′) �= 0 we must have γ(v) = γ(v′) for all γ ∈ Γ which

implies that v′ ∈ G · v. Now if v′ = τ(v) for some τ ∈ W then

Dτ(v)
σ = D0

σ ◦ tτ(v) |Γ= D0
σ ◦ τ ◦ tv ◦ τ−1 |Γ= D0

σ ◦ τ ◦ tv |Γ .

Since D0
σ ◦ τ lies in HW , for each ρ ∈ W there exist cρ ∈ C such that

D0
σ ◦ τ =

∑
ρ

cρD
0
ρ.

Hence, Dτ(v)
σ =

∑
ρ cρDv

ρ , which proves part (d).

Part (c) of the last proposition implies Corollary B in the Introduction.

6. Action of a co-rational Galois order

In this section G is a reflection group acting on V , and hence on Λ = S(V ) and

on its field of rational functions L = Frac(Λ). We fix a co-rational Galois order

U ⊂ (L#V )G and denote by Z ⊂ V the additive monoid generated by suppU .

The algebra L#V has an anti-automorphism, given by (ftv)
† = tvf for each

f ∈ L and v ∈ V . The action of U on Γ∗ is given by

X · ϕ = ϕ ◦X†

for each X ∈ U and each ϕ ∈ Γ∗. Thus U acts by composition with elements

X† ∈ L#V such that dχX
† ∈ Λ#V for some χ ∈ Ĝ.

We assume again that Φ ⊂ V is a root system with base Σ and G = W (Φ).

We denote by Ψ a standard subsystem with base Ω ⊂ Σ and set W = W (Ψ).

All Schubert polynomials, BGG and Postnikov–Stanley operators appearing in

this section are defined with respect to Ω unless otherwise stated.

6.1. Recall that for each σ ∈ G we introduced a divided difference operator as

an element of the smash product L#G. Since EndC(L) is an (L#G)-module,

givenX ∈ EndC(L) and σ ∈ G, we obtain a new operator on L by taking ∂σ(X).

For example, if s ∈ S then

∂s(X) =
1

αs
(X − s ◦X ◦ s−1)

Notice that, in general, this operator is different from the composition of ∂σ

(regarded as an element of EndC(L)) and X . In the following lemma we collect

some properties of these operators.
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Lemma 6.1: Let X ∈ EndC(L).

(a) For each σ ∈ G we have ∂σ(X)|K = ∂σ ◦X |K .

(b) Let v ∈ V be Ω-standard. If σ ∈ W v and τ ∈ Wv then

Dv
σ ◦ ∂τ =

⎧⎨
⎩
Dv

στ if �(στ) = �(σ) + �(τ);

0 otherwise.

(c) Let Ψ̃ ⊂ Ψ be a standard subsystem, Wθ ⊂ W be the corresponding

parabolic subgroup, ωθ
0 be the longest word in W θ, and

Δ(Ψ)θ := Δ(Ψ)/Δ(Ψ̃).

If X ∈ EndC(L)
Wθ , then

∑
σ∈W

σ ·X = |Wθ|∂ωθ
0
(XΔ(Ψ)θ).

Proof. Item (a) is clear for σ = s from the formula for ∂s(X) given above. The

result follows by a simple induction in �(σ).

We now prove part (b). The fact that τ ∈ Wv implies that tv ◦ ∂τ = ∂τ ◦ tv.
Now recall from Proposition 2.1 that D0

σ = ev0 ◦∂σ, so

Dv
σ ◦ ∂τ =D0

σ ◦ ∂τ ◦ tv

= ev0 ◦∂σ ◦ ∂τ ◦ tv =

⎧⎨
⎩
ev0 ◦∂στ ◦ tv = Dv

στ if �(στ) = �(σ) + �(τ);

0 otherwise.

Finally we prove part (c). The statement of [Hil82, Chapter IV (1.6)] implies

that

∂ω0 =
1

Δ(Φ)

∑
σ∈G

(−1)�(σ)σ

as operators on L, and since the map L#G −→ EndC(L) is injective, the identity

holds in L#G. Using that and the fact that σ ·Δ(Φ) = (−1)�(σ)Δ(Φ) we deduce

that ∑
σ∈G

σ ·X = ∂ω0(XΔ(Φ))

for any X ∈ EndC(L). Certainly, the analogous identity holds if we replace G

by any subgroup and Φ by the corresponding root subsystem.
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Let ω0 and ω1 be the longest elements of W and Wθ, respectively. Then

ω0ω
−1
1 ∈ ω0Wθ and its length equals �(ω0)− �(ω1), the smallest possible length

of an element in the coset ω0Gθ. Thus ω
θ
0 = ω0ω

−1
1 and∑

σ∈W

σ ·X = ∂ω0(XΔ(Ψ)) = ∂ωθ
0
∂ω1(XΔ(Ψ̃)Δ(Ψ)θ).

Now both Δ(Ψ)θ and X are Wθ-invariant, so the last expression equals

∂ωθ
0
(XΔ(Ψ)θ∂ω1(Δ(Ψ̃))) = |Wθ|∂ωθ

0
(XΔ(Ψ)θ),

which completes the proof.

The following lemma shows that the span of the BGG operators is stable

under the action of certain elements of L#V .

Lemma 6.2: Let v ∈ V be Ω-standard, let σ ∈ V v, τ ∈ Wv and let Fz ∈ L be

regular at v. Then

Dv
σ · ∂τ (Fztz) =

⎧⎨
⎩
∑

ν≤στ D
v
ν,στ (Fz)Dv+z

ν if �(στ) = �(σ) + �(τ);

0 otherwise.

Proof. As mentioned above, the fact that τ ∈ Wv implies that tv ◦ ∂τ = ∂τ ◦ tv.
Thus using parts (a) and (b) of Lemma 6.1 we get

Dv
σ ◦ ∂τ (Fztz) |Γ=D0

σ ◦ ∂τ ◦ (tv(Fz)tv+z) |Γ

=

⎧⎨
⎩
D0

στ ◦ (tv(Fz)tv+z) |Γ if �(στ) = �(σ) + �(τ);

0 otherwise.

The result now follows by evaluation at γ ∈ Γ using Proposition 2.1.

6.2. U-submodule of Γ∗
associated to v. Recall that to each v ∈ V we

associate the character evv : Γ −→ C given by evaluation at v. Since Γ consists

of G-symmetric polynomials, evv = evσ(v) for any σ ∈ G, so we can assume that

v is Ω-standard. Furthermore, note that evv = Dv
e in D(Ω, v) ⊂ Γ∗.

Definition 6.3: Let v ∈ V be standard. We denote by V (Ω, T (v)) the complex

vector subspace of Γ spanned by the set {Dv+z
σ | z ∈ Z(U), σ ∈ W}. We call

V (Ω, T (v)) the U-module of BGG differential operators associated to Ω

and v (see Theorem 6.4).
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Recall from part (d) of Proposition 5.4 that Dv+z
σ is a linear combination of

operators Dτ(v+z)
ν with τ(v + z) the unique Ω-standard element in the W -orbit

of v + z. Since two Ω-standard elements can be G-conjugates, the generating

set given above is not necessarily a basis.

Recall that Φ0(v) is the set of all roots in Φ such that α(v) = 0. The

following theorem shows that under certain conditions the space V (Ω, T (v)) is

a U -module. This theorem generalizes [EMV18, Theorem 10] and [RZ18, 5.6

Theorem] to rational Galois orders.

Theorem 6.4: Let v ∈ V be standard and assume that Φ0(v+z) ⊂ Ψ for each

z ∈ Z. Then V (Ω, T (v)) ⊂ Γ∗ is a Gelfand–Tsetlin U -module.

To prove this theorem, we will first show that the generators of U can be

expressed as operators of the form presented in Lemma 6.2 in a suitable way.

Recall that for each z ∈ V there exists some Ω-standard element in the orbit

W · z. Thus, given Z ⊂ V that is stable by the action of W , we can choose a

set of Ω-standard representatives of Z/W .

Proposition 6.5: Let X ∈ (L#V )G and assume that there exists χ ∈ Ĝ such

that Xdχ ∈ Λ#V .

(a) For each z ∈ suppX there exists fz ∈ ΛGz such that

X =
∑

z∈suppX

fz
dzχ

tz,

where dzχ is the product of all α ∈ Φ+ dividing dχ such that α(z) �= 0.

(b) Let Y be a set of Ω-standard representatives of suppX/W , and for

each y ∈ Y denote by ωy
0 the longest element in W y, and by Δ(Ψ)y the

product of all roots in Ψ+ with α(y) �= 0. Then

X =
∑
y∈Y

1

|Wy |∂ω
y
0

(fyΔ(Ψ)y

dyχ
ty

)
.

Proof. Fix z ∈ suppX and let h be the coefficient of tz in X , which is well

defined by Lemma 4.1. Since X is G-invariant we know that σ ·X = X for any

σ ∈ Gz , so σ(h) = h. Writing h = g
dχ

we have

g

dχ
= σ · g

dχ
=

σ · g
χ(g)dχ

.

Therefore, σ · g = χ(σ)g for all σ ∈ Gz.



Vol. 239, 2020 GELFAND–TSETLIN THEORY 123

Denote by χ′ the restriction of χ to Gz . Observe that Gz is the reflection

group generated by the reflections fixing z and it acts on Λ by restriction. Thus,

by Stanley’s theorem, the space of relative invariants ΛGz

χ′ is generated over ΛGz

by dχ′ , and this polynomial is the product of all roots α ∈ Φ+ dividing dχ such

that α(z) = 0. Therefore, g = fzdχ for some fz ∈ ΛGz , which implies that

g

dχ
=

fz
dχ/dχ′

=
fz
dzχ

.

This proves part (a).

Since X is G-invariant, it is clear that

X =
1

|W |
∑
σ∈W

σ ·X =
∑
y∈Y

1

|W |
∑
σ∈W

σ ·
( fy
dyχ

ty

)
.

As we mentioned before, the coefficient of ty is Gy-invariant, and hence it is

Wy-invariant. After applying Lemma 6.1(c) to W , we obtain

∑
σ∈W

σ ·
( fy
dyχ

ty

)
= |W y|∂ωy

0

(fyΔ(Ψ)y

dyχ
ty

)

and the result follows.

Proof of Theorem 6.4. By Theorem 5.2, the action of Γ on V (Ω, T (v)) is locally

finite, so we only need to show that it is a U -submodule of Γ∗. Since

V (Ω, T (v + z)) = V (Ω, T (v))

for each z ∈ Z(U), it is enough to show that Dv
σ ·X† lies in V (Ω, T (v)) for any

generator X of U .

Set W̃ = Wv, and denote by Ψ̃ the corresponding parabolic subgroup, by Ω̃ its

base and by ω̃0 the longest word in W̃ . According to part (b) of Proposition 6.5,

X† can be rewritten as a sum of operators of the form ∂ω̃y
0
(Fyty), where

Fy = fyΔ(Ψ̃)y/dyχ

and y is Ω̃-standard. Thus it is enough to show that

Dv
σ · ∂ω̃y

0
(Fyty) ∈ D(Ω, v)

for y a Ω̃-standard element. By Lemma 6.2 it is enough to show that Fy is

regular at v.
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Recall that dyχ is the product of all roots αs such that χ(s) = −1 and

αs(y) �= 0. If one of this factors is such that αs(v) = 0, then αs ∈ Φ0(v).

Since Φ0(v) ⊂ Ψ by hypothesis, it follows that Φ0(v) ⊂ Ψ, and hence αs is

also a factor of Δ(Ψ̃)y. Thus the term Δ(Ψ̃)y in the numerator cancels out

all the linear terms in the denominator which are zero at v and hence Fy is

regular at v.

7. Explicit bases and formulas for BGG modules

As mentioned earlier, our original aim was to produce modules over co-rational

Galois orders containing an arbitrary character evv. In the previous section

we showed that the module U · evv is contained in the span of certain BGG

operators and the action of the generators of U can be described in terms of

Postnikov–Stanley operators. We now show how in some cases we can give

a basis for these spaces and produce explicit formulas for the action of the

generators of U . In particular, the next two propositions give bases and explicit

formulas for all modules V (Ω, T (v)) over the co-rational orders presented in

[Har, Sections 4, 5].

We fix a co-rational Galois algebra U and denote by Z = Z(U) the monoid

generated by its support. As in the previous paragraph, we fix a subset of

simple roots Ω ⊂ Σ and denote by Ψ the corresponding standard parabolic root

system and by W the corresponding standard parabolic subgroup of G.

7.1. We begin by finding a basis for some modules of the form V (Ω, T (v)).

Since Z is stable by the action of G and acts on V by translations, the smashed

product G#Z acts on V and we say that v ∈ V is a seed for Z if it is Σ-standard

and its stabilizer in G#Z is equal to Gv. We denote by D(Gv,Z) the set of all

elements z ∈ Z such that α(z) ≥ 0 for all roots in the root system associated

to Gv, that is, z lies in the positive chamber of Gv.

Proposition 7.1: Suppose W ⊂ G contains all elements σ ∈ G acting non-

trivially on Z, and let v be a seed with respect to Z. Then we have a direct sum

decomposition

V (Ω, T (v)) =
⊕

z∈D(Gv,Z)

D(Ω, v + z).

In particular, the set {Dv+z
σ | z ∈ D(Gv,Z), σ ∈ W z

v } is a basis of V (Ω, T (v)).
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Proof. Given z′ ∈ Z there exists a unique element z ∈ Gv · z′ lying in the

positive chamber of Gv; furthermore, z ∈ Wvz
′ since W contains all elements

acting nontrivially on Z. Thus by part (d) of Proposition 5.4, for each σ ∈ W

the BGG operator Dv+z′
σ lies in the space D(Ω, v + z).

Given z, w ∈ D(Gv,L) and σ ∈ G such that v+z = σ(v+w), the fact that v is

a seed implies that σ ∈ Gv. Since there is a unique element in Gv ·z∩D(Gv,L),
it follows that z = w. Again by Proposition 5.4, if z �= w the corresponding

BGG operator spaces are eigenspaces of Γ with different eigenvalues, and hence

the sum in the statement is direct.

This proposition raises the question of how common the seeds for a given Z

are. We leave as an exercise to the reader the following statement: if W is

a crystallographic group and the projection of Z to V/V G covers the weight

lattice of W , then for every v ∈ V there is a seed in (G#Z)v. Thus in this case

every module V (Ω, T (v)) is covered by the proposition.

7.2. Let us say that e ∈ V is minuscule if α(e) ∈ {1, 0,−1} for every root α.

This is analogous to the minuscule weights in Lie theory. Given f ∈ Λ and

minuscule e ∈ V , we set

X(f, e) = symW

(
te

f

Δ(Ψ)e

)
.

All the examples of co-rational Galois orders from [Har, Sections 4, 5] are gen-

erated by elements of this form. In particular, Z is generated by minuscule

elements and hence α(Z) ⊂ Z for any root α. In this case we have explicit

formulas for the action of X(f, e) on a module of the form V (Ω, T (v)) in the

basis given by Proposition 7.1.

Proposition 7.2: Suppose W ⊂ G contains all elements σ ∈ G acting non-

trivially on Z, and let v be a seed with respect to Z. Suppose furthermore that

α(Z) ⊂ Z for all α ∈ Ψ.

Let f ∈ Λ and let e ∈ V be a minuscule element. Then for all z ∈ D(Gv, Z)

and all σ ∈ W z
v we have

X(f, e) · Dv+z
σ =

∑
y∈Y

∑
τ≤σωy

0

Dv+z
τ,σωy

0

(fΔ(Ψ̃)y

Δ(Ψ)y

)
Dv+z+y

τ



126 V. FUTORNY ET AL. Isr. J. Math.

where Ψ̃ is the root system corresponding to Wv+z and ω0 is its longest element,

and Y is the set elements in W · e lying in the positive chamber of Wv+z and

such that

�(σωy
0 ) = �(σ) + �(ωy

0).

The BGG operators on the right-hand side are in the basis presented in Propo-

sition 7.1.

Proof. The set Y in the statement is a choice of representatives of suppX

modulo the base Ω̃ ⊂ Ω of the standard parabolic root system Ψ̃, so the proof

follows the same reasoning as the one of Theorem 6.4.

To see that v + z + y lies in the positive chamber of W , notice that if α ∈ Ψ

is such that α(v + z) > 0, then the fact that e is minuscule implies that

α(v + z + y) ≥ 0 for all y ∈ Y . On the other hand, if α(v + z) = 0, then

by the choice of y we have

α(v + z + y) = α(y) ≥ 0.

7.3. We conclude this article with a simplicity criterion for modules over a

special class of Galois orders. Again, this covers the examples given above.

This criterion was originally formulated for OGZ algebras by Early, Mazorchuk

and Vishnyakova in [EMV18, Theorem 4.5]. With the aid of Propositions 5.4,

7.1 and 7.2, the proof reduces to the same combinatorial argument given in the

reference so we omit it.

Corollary 7.3: Suppose that

V = C
n1 ⊕ · · · ⊕ C

nr

and that

G = Sn1 × · · · × Snr

with ni ∈ N. Let ek,i be the i-th element in the canonical basis of Cni and let

U be the co-rational Galois order generated by elements

Xi = X(fi, ek,1); Yi = Y (gi, ek,nk
) (1 ≤ i ≤ k ≤ r).

If v is a seed and fi, gi are never zero in v + Z, then V (Ω, T (v)) is a simple

module.

For a refined version of this corollary for U = U(gl(n,C)) see [FGRZ20,

Section 4].
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[Dem74] M. Demazure, Désingularisation des variétés de Schubert généralisées, Annales
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