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ABSTRACT

In this article we study compact Riemann surfaces with a non-large group

of automorphisms of maximal order, namely, compact Riemann surfaces

of genus g with a group of automorphisms of order 4g − 4. Under the

assumption that g − 1 is prime, we provide a complete classification of

them and determine isogeny decompositions of the corresponding Jacobian

varieties.

1. Introduction and statement of the results

The classification of finite groups of automorphisms of compact Riemann sur-

faces is a classical and interesting problem which has attracted considerable

interest, going back to contributions of Wiman, Klein, Schwartz and Hurwitz,

among others.

It is classically known that the full automorphism group of a compact Rie-

mann surface of genus g � 2 is finite, and that its order is bounded by 84g−84.

This bound is sharp for infinitely many values of g, and a Riemann surface with

this maximal number of automorphisms is characterized as a branched regular

cover of the projective line with three branch values, marked with 2, 3 and 7.
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A result due to Wiman asserts that the largest cyclic group of automorphisms

of a Riemann surface of genus g � 2 has order at most 4g + 2. Moreover, the

curve

(1.1) y2 = x2g+1 − 1

shows that this upper bound is sharp for each genus; see [46] and [18].

Besides, Accola and Maclachlan independently proved that for fixed g � 2

the maximum among the orders of the full automorphism group of Riemann

surfaces of genus g is at least 8g + 8. Moreover, the curve

(1.2) y2 = x2g+2 − 1

shows that this lower bound is sharp for each genus; see [1] and [32].

An interesting problem is to understand the extent to which the order of

the full automorphism group determines the Riemann surface. In this regard,

Kulkarni proved that for g sufficiently large the curve (1.1) is the unique Rie-

mann surface with an automorphism of order 4g + 2, and for g �≡ −1 mod 4

sufficiently large the curve (1.2) is the unique Riemann surface with 8g + 8

automorphisms; see [25].

Let a, b ∈ Z. Following [26], the sequence ag + b for g = 2, 3, . . . is called

admissible if for infinitely many values of g there is a compact Riemann surface

of genus g with a group of automorphisms of order ag + b.

In addition to the mentioned admissible sequences 84g−84, 4g+2 and 8g+8,

very recently the cases 4g+4 and 4g have been studied; see [8], [15] and also [37].

Let a � 7. The admissible sequence ag− a has been considered by Belolipet-

sky and Jones in [3]. Concretely, they succeeded in proving that under the

assumption that g− 1 is a sufficiently large prime number, a compact Riemann

surface of genus g with a group of automorphisms of order ag − a lies in one of

six infinite well-described sequences of examples. The cases a = 5 and a = 6

have been recently classified by Izquierdo and the author in [22].

All the aforementioned cases are examples of compact Riemann surfaces pos-

sessing a so-called large group of automorphisms: namely, a group of automor-

phisms of order greater than 4g − 4, where g is the genus. In this case, it is

known that the Riemann surface is either quasiplatonic (it does not admit non-

trivial deformations in the moduli space with its automorphisms) or belongs

to a complex one-dimensional family in such a way that the signature of the
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action is

(0; 2, 2, 2, n) for n � 3 or (0; 2, 2, 3, n) for 3 � n � 5.

Riemann surfaces with large groups of automorphisms have been considered

from different points of view; see, for example, [13], [27], [30], [34], [44], [45]

and [46].

In this article we consider compact Riemann surfaces admitting a non-large

group of automorphisms of maximal order; concretely, we study and classify

those compact Riemann surfaces of genus g with a group of automorphisms of

order 4g − 4, under the assumption that g − 1 is a prime number.

Theorem 1: Let g � 8 such that g − 1 is prime, and let S be a compact

Riemann surface of genus g with a group of automorphisms of order 4g − 4.

If g≡0 mod 4 then S belongs to F̄2
g , where F̄2

g is the complex two-dimensional

equisymmetric family of compact Riemann surfaces of genus g with a group of

automorphisms G2 isomorphic to the dihedral group

〈r, s : r2(g−1) = s2 = (sr)2 = 1〉,
such that the signature of the action of G2 is (0; 2, 2, 2, 2, 2).

If g ≡ 2 mod 4 then S belongs to either F̄2
g or F̄1

g , where F̄1
g is the complex

one-dimensional equisymmetric family of compact Riemann surfaces of genus g

with a group of automorphisms G1 isomorphic to

〈a, b : ag−1 = b4 = 1, bab−1 = ar〉,
where r is a primitive 4-th root of the unity in the field of g − 1 elements, such

that the signature of the action of G1 is (0; 2, 2, 4, 4).

By virtue of Dirichlet’s prime number theorem, the congruences of Theorem 1

are satisfied for infinitely many values. The genera g = 3, 4 and 6 are exceptional

in the sense that, in addition to the families introduced earlier, there appear

finitely many quasiplatonic Riemann surfaces (see [2], [5], [7], [11], [14], [28]

and [33]).

As proved by Costa and Izquierdo in [15], the largest order of the full auto-

morphism group of a complex one-dimensional family of Riemann surfaces of

genus g, appearing in all genera, is 4g+4. On the other hand, 4g−4 is the maxi-

mal possible order of the full automorphism group of a complex two-dimensional

family of compact Riemann surfaces of genus g. It is worth mentioning that the
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existence of the family F̄2
g shows that this upper bound is attained in each

genus, with g − 1 not necessarily prime.

Let t = 1, 2. The family F̄ t
g is a closed algebraic subvariety of the moduli space

of compact Riemann surfaces of genus g; we shall denote by F t
g its interior.

Based on classical results due to Singerman [43] and on Belolipetsky and Jones’

classification [3], we are able to describe both the interior F t
g and (up to possibly

finitely many exceptional cases in small genera) the set F̄ t
g \ F t

g.

More precisely:

Theorem 2: Let g � 8 such that g − 1 is prime.

For g ≡ 2 mod 4, the interior F1
g of the family F̄1

g consists of those Riemann

surfaces for which G1 is the full automorphism group. Moreover, there is a

positive integer ε1 such that if g � ε1 then

F̄1
g \ F1

g =

⎧⎨
⎩
{X1, X2} if g ≡ 2 mod 8,

∅ if g �≡ 2 mod 8,

where X1 and X2 are the two non-isomorphic compact Riemann surfaces of

genus g with full automorphism group of order 8g − 8.

The interior F2
g of the family F̄2

g consists of those Riemann surfaces for

which G2 is the full automorphism group. Moreover, there is a positive in-

teger ε2 such that if g � ε2 then

F̄2
g \ F2

g =

⎧⎨
⎩
{Y1, Y2} if g ≡ 2 mod 3,

∅ if g �≡ 2 mod 3,

where Y1 and Y2 are the two non-isomorphic compact Riemann surfaces of

genus g with full automorphism group of order 12g − 12.

We should mention that the existence, uniqueness and description of the

full automorphism groups of the compact Riemann surfaces X1, X2 and Y1, Y2

mentioned above have been determined in [3].

We recall that the Jacobian variety JS of a compact Riemann surface S of

genus g is an irreducible principally polarized abelian variety of dimension g.

The relevance of the Jacobian varieties lies in the well-known Torelli’s theorem,

which establishes that two compact Riemann surfaces are isomorphic if and only

if the corresponding Jacobian varieties are isomorphic as principally polarized

abelian varieties. See, for example, [4] and [16].
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If H is a group of automorphisms of S, then the associated regular covering

map π : S → SH given by the action of H on S induces a homomorphism

π∗ : JSH → JS

between the corresponding Jacobians; the set π∗(JSH) is an abelian subvariety

of JS which is isogenous to JSH . We keep the same notation as in Theorem 1.

Theorem 3: Let g � 8 such that g − 1 is prime.

If S ∈ F̄1
g then the Jacobian variety JS decomposes, up to isogeny, as the

product

JS ∼ JS〈a〉 × (JS〈b〉)4.

If S ∈ F̄2
g then the Jacobian variety JS decomposes, up to isogeny, as the

product

JS ∼ JS〈r〉 × JS〈s〉 × JS〈sr〉.

The article is organized as follows.

(1) In Section 2 we shall review the basic background: namely, Fuchsian

groups, actions on compact Riemann surfaces, the equisymmetric strati-

fication of the moduli space and the decomposition of Jacobian varieties.

(2) In Section 3 we shall prove the existence of the families F̄1
g and F̄2

g .

(3) Theorems 1, 2 and 3 will be proved in Sections 4, 5 and 6 respectively.

(4) Finally, and for the sake of completeness, in Section 7 two examples will

be constructed to show that Theorem 1 is false if g − 1 is not prime.

2. Preliminaries

2.1. Fuchsian groups and group actions on Riemann surfaces. By a

Fuchsian group we mean a discrete group of automorphisms of the upper-half

plane

H = {z ∈ C : Im(z) > 0}.
If Δ is a Fuchsian group and the orbit space HΔ given by the action of Δ on H

is compact, then the algebraic structure of Δ is determined by its signature:

(2.1) σ(Δ) = (h;m1, . . . ,ml),

where h is the genus of the quotient surface HΔ and m1, . . . ,ml are the branch

indices in the universal canonical projection H → HΔ. If l = 0 then Δ is called

a surface Fuchsian group.
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Let Δ be a Fuchsian group of signature (2.1). Then:

(1) Δ has a canonical presentation given by generators a1, . . . , ah, b1, . . . , bh,

x1, . . . , xl and relations

(2.2) xm1
1 = · · · = xml

l =

h∏
i=1

[ai, bi]

l∏
i=1

xi = 1,

where [u, v] stands for the commutator uvu−1v−1,

(2) the elements of Δ of finite order are conjugate to powers of x1, . . . , xl,

(3) the Teichmüller space of Δ is a complex analytic manifold homeomor-

phic to the complex ball of dimension 3h− 3 + l, and

(4) the hyperbolic area of each fundamental region of Δ is

μ(Δ) = 2π

[
2h− 2 +

l∑
i=1

(
1− 1

mi

)]
.

Let Γ be a group of automorphisms of H. If Δ is a subgroup of Γ of finite

index, then Γ is also Fuchsian and they are related by the Riemann–Hurwitz

formula

μ(Δ) = [Γ : Δ] · μ(Γ).
Let S be a compact Riemann surface and let Aut(S) denote its full auto-

morphism group. It is said that a finite group G acts on S if there is a group

monomorphism

ψ : G→ Aut(S).

The space of orbits SG of the action of G on S is endowed with a Riemann

surface structure such that the projection

S → SG

is holomorphic.

Compact Riemann surfaces and group actions can be understood in terms of

Fuchsian groups as follows. By the uniformization theorem (see, for example,

[17, p. 203]), there is a (uniquely determined, up to conjugation) surface Fuch-

sian group Γ such that S and HΓ are isomorphic. Moreover, G acts on S ∼= HΓ

if and only if there is a Fuchsian group Δ containing Γ together with a group

epimorphism

θ : Δ → G such that ker(θ) = Γ.
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In this case, it is said that G acts on S with signature σ(Δ) and that this

action is represented by the epimorphism θ. If G is a subgroup of G′, then
the action of G on S is said to extend to an action of G′ on S if:

(1) there is a Fuchsian group Δ′ containing Δ,

(2) the Teichmüller spaces of Δ and Δ′ have the same dimension, and

(3) there exists an epimorphism

Θ : Δ′ → G′ in such a way that Θ|Δ = θ.

An action is termed maximal if it cannot be extended. A complete list of

signatures of Fuchsian groups Δ and Δ′ for which it might be possible to have

an extension as before was determined by Singerman in [43].

2.2. Actions and equisymmetric stratification. Let Hom+(S) denote

the group of orientation preserving self-homeomorphisms of S. Two actions

ψi : G→ Aut(S) are topologically equivalent if there exist ω ∈ Aut(G) and

f ∈ Hom+(S) such that

(2.3) ψ2(g) = fψ1(ω(g))f
−1 for all g ∈ G.

Each homeomorphism f satisfying (2.3) yields an automorphism f∗ of Δ

where HΔ
∼= SG. If B is the subgroup of Aut(Δ) consisting of them, then

Aut(G) × B acts on the set of epimorphisms defining actions of G on S with

signature σ(Δ) by

((ω, f∗), θ) 
→ ω ◦ θ ◦ (f∗)−1.

Two epimorphisms θ1, θ2 : Δ → G define topologically equivalent actions

if and only if they belong to the same (Aut(G) × B)-orbit (see [7]; also [19]

and [31]). We remark that if the genus h = gSG of SG is zero and

Δ = 〈x1, . . . , xl : xm1
1 = · · · = xml

l = x1 · · ·xl = 1〉,
then B is generated by the braid transformations Φi ∈ Aut(Δ) defined by

xi 
→ xi+1, xi+1 
→ x−1
i+1xixi+1 and xj 
→ xj when j �= i, i+ 1

for each i ∈ {1, . . . , l − 1}. See, for example, [24, p. 31].

Let Mg denote the moduli space of compact Riemann surfaces of genus g � 2.

It is well-known that Mg is endowed with a structure of complex analytic space

of dimension 3g − 3, and that for g � 4 its singular locus Sing(Mg) agrees

with the set of points representing compact Riemann surfaces with non-trivial

automorphisms.
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Following [6], the singular locus Sing(Mg) admits an equisymmetric strat-

ification {MG,θ
g }, where each equisymmetric stratum MG,θ

g , if nonempty,

corresponds to one topological class of maximal actions. More precisely:

(1) the closure M̄G,θ
g of MG,θ

g consists of those Riemann surfaces of genus g

admitting an action of the group G with fixed topological class given

by θ,

(2) M̄G,θ
g is a closed irreducible algebraic subvariety of Mg,

(3) if the stratum MG,θ
g is nonempty, then it is a smooth, connected, locally

closed algebraic subvariety of Mg which is Zariski dense in M̄G,θ
g ,

(4) there are finitely many distinct strata, and

Sing(Mg) =
⋃

G �=1,θ

M̄G,θ
g .

Let F̄ be a (closed) family of compact Riemann surfaces of genus g such that

each of its members has a group of automorphisms isomorphic to G. The fam-

ily F̄ is termed equisymmetric if its interior F consists of only one stratum.

2.3. Decomposition of Jacobians. If a finite group G acts on a compact

Riemann surface S, then it is known that this action induces an isogeny decom-

position

(2.4) JS ∼ A1 × · · · ×Ar

which is G-equivariant; see [10] and [29]. The factors Aj in (2.4) are in bijec-

tive correspondence with the rational irreducible representations of G. If the

factor A1 is associated with the trivial representation of G, then

A1 ∼ JSG.

The decomposition of Jacobians with group actions has been extensively stud-

ied, going back to Wirtinger, Schottky and Jung (see, for example, [41] and [47]).

For decompositions of Jacobians with respect to special groups, we refer to the

articles [9], [20], [21], [35], [36] and [39].

Assume that G acts on a compact Riemann surface S with signature (2.1),

and that this action is determined by the epimorphism θ : Δ → G, where Δ is

written with its canonical presentation (2.2). We define Jθ as the set of complex

irreducible representations V of G characterized as follows:
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(1) the trivial representation belongs to Jθ if and only if h �= 0, and

(2) a non-trivial representation V belongs to Jθ if and only if

dV (h− 1) +
1

2

l∑
i=1

(dV − d
〈θ(xi)〉
V ) �= 0,

where dV is the degree of V and d
〈θ(xi)〉
V is the dimension of the subspace

of V fixed under the action of the subgroup of G generated by θ(xi).

Let H1, . . . , Ht be groups of automorphisms of S such that G contains Hi for

each i. Following [38] (and using [40, Theorem 5.12]), the collection {H1, . . . , Ht}
is termed G-admissible if

dH1

V + · · ·+ dHt

V � dV for each V ∈ Jθ,

and is called admissible if it is G-admissible for some group G. If {H1, . . . , Ht}
is admissible then, by [38], JS decomposes, up to isogeny, as

JS ∼
t∏

i=1

JSHi × P

for some abelian subvariety P of JS. See also [23].

Notation. Let n � 2 be an integer. Throughout this article we shall denote

by Cn the cyclic group of order n and by Dn the dihedral group of order 2n.

3. Existence of the families F̄1
g and F̄2

g

Proposition 1: Let g � 6 such that g−1 is a prime number and g ≡ 2 mod 4.

There exists a complex one-dimensional equisymmetric family F̄1
g of compact

Riemann surfaces of genus g with a group of automorphisms isomorphic to

〈a, b : ag−1 = b4 = 1, bab−1 = ar〉 = Cg−1 �4 C4,

where r is a primitive 4-th root of the unity in the field of g − 1 elements, such

that the signature of the action is (0; 2, 2, 4, 4).

Proof. Set q = g−1, and let Δ be a Fuchsian group of signature σ = (0; 2, 2, 4, 4)

with canonical presentation

Δ = 〈x1, x2, x3, x4 : x21 = x22 = x43 = x44 = x1x2x3x4 = 1〉.
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The epimorphism Θ : Δ → Cq �4 C4 defined by

Θ(x1) = b2, Θ(x2) = ab2, Θ(x3) = ab, Θ(x4) = b3

guarantees the existence of a complex one-dimensional family F̄1
g of compact

Riemann surfaces S of genus g with a group of automorphisms G isomorphic

to Cq �4 C4 acting on S with signature σ.

To prove that F̄1
g consists of only one stratum, we first notice that the invo-

lutions of Cq �4 C4 are alb2 and the elements of order 4 are alb and alb3 for

1 � l � q. Then, up to a permutation, an epimorphism θ : Δ → Cq �4 C4

representing an action of G on S is defined by

θ(x1) = al1b2, θ(x2) = al2b2, θ(x3) = al3b, θ(x4) = al4b3,

for some 1 � l1, . . . , l4 � q. After applying an inner automorphism of G, we

can assume that l4 ≡ 0 mod q and therefore l2 ≡ l1 + l3 mod q. Note that

if l1 ≡ l3 ≡ 0 mod q then θ is not surjective; thus, without loss of generality,

we can assume l3 �≡ 0 mod q. Now, consider the automorphism of G given by

a 
→ at3 , b → b, where l3t3 ≡ 1 mod q, to obtain that θ is equivalent to the

epimorphism θn defined by

θn(x1) = anb2, θn(x2) = an+1b2, θn(x3) = ab, θn(x4) = b3

for some 1 � n � q. Finally, as Φ1 · θn = θn+1, each θn is equivalent to

θ0 = Θ.

Proposition 2: There exists a complex two-dimensional family F̄2
g of compact

Riemann surfaces of genus g � 2 with a group of automorphisms isomorphic

to the dihedral group of order 4g − 4 such that the signature of the action is

(0; 2, 2, 2, 2, 2). If, in addition, g − 1 is prime then the family is equisymmetric.

Proof. Set q=g−1, and let Δ be a Fuchsian group of signature σ=(0; 2, 2, 2, 2, 2)

with canonical presentation

Δ = 〈x1, x2, x3, x4, x5 : x21 = x22 = x23 = x24 = x25 = x1x2x3x4x5 = 1〉.
The epimorphism Θ : Δ → D2q = 〈r, s : r2q = s2 = (sr)2 = 1〉 defined by

Θ(x1) = s, Θ(x2) = s, Θ(x3) = srq+1, Θ(x4) = sr, Θ(x5) = rq

guarantees the existence of a complex two-dimensional family F̄2
g of compact

Riemann surfaces S of genus g with a group of automorphisms G isomorphic

to D2q acting on S with signature σ.
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We now assume q to be prime and proceed to prove that F̄2
g is equisymmet-

ric. Let θ : Δ → D2q be an epimorphism representing an action of G on S.

Note that the involutions of G are rq and srt for 1 � t � 2q, and if some θ(xi)

equals rq then, after considering suitable braid automorphisms, it can be sup-

posed that i = 5.

We claim that one and only one among the elements θ(xi) equals r
q. Indeed,

if l denotes the number of elements θ(xi) which are equal to rq , then clearly l is

different from 4 and 5 because otherwise θ is not surjective. If l = 3 then it can

be supposed θ(x1x2) = rq . If we write θ(xi) = srti then t2 − t1 ≡ q mod 2q,

showing that t2 − t1 is odd and therefore, after considering the automorphism

of G given by r 
→ r, s 
→ sr, we can assume that t1 is even and that t2

is odd. Now, we apply an appropriate inner automorphism of G to suppose

that t1 ≡ 0 mod 2q and t2 ≡ q mod 2q. The contradiction is obtained by

noticing that 〈s, rq〉 ∼= C2
2 . Similarly, if l = 2 then we can suppose θ(x1x2x3) = 1.

If we write θ(xi) = srti then srt1−t2+t3 = 1, which is not possible.

It follows that, up to equivalence, the epimorphism θ : Δ → D2q is given by

θ(x1) = srt1 , θ(x2) = srt2 , θ(x3) = srt3 , θ(x4) = srt4 , θ(x5) = rq

for some 1 � t1, . . . , t4 � 2q which satisfy t2 − t1 + t4 − t3 ≡ q mod 2q. Now,

after considering, if necessary, braid automorphisms and the automorphism of G

given by r 
→ r, s 
→ sr, we can suppose t1, t2, t3 to be even and t4 to be odd.

Furthermore, after applying a suitable inner automorphism of G, we can assume

that t1 = 0.

If t4 �=q, then we apply the automorphism of G given by r 
→rl4 , s 
→s, where

t4l4 ≡ 1 mod 2q, to see that θ is equivalent to the epimorphism θn given by

θn(x1) = s, θn(x2) = srn, θn(x3) = srn+q+1, θn(x4) = sr, θn(x5) = rq

for some 1 � n � 2q even. The equality Φ2
2 · θn = θn+2 shows that θn is

equivalent to θ0 = Θ. Similarly, if now t4 = q then t2 ≡ t3 mod 2q; we write

t = t2 = t3. We apply the inner automorphism of G induced by srt/2 and then

the braid automorphism Φ2◦Φ1 to see that θ is equivalent to the epimorphism θt

defined by

θt(x1) = s, θt(x2) = s, θt(x3) = srt, θt(x4) = srt+q , θt(x5) = rq

where t �≡ 0 mod 2q. Finally, consider the automorphism of G given by r 
→ rl,

s 
→ s, where (q + t)l ≡ 1 mod 2q, to see that θt is equivalent to Θ.
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4. Proof of Theorem 1

Set q = g − 1 and let S be a compact Riemann surface of genus g � 8 with

a group of automorphisms G of order 4q where q is prime. By the Riemann–

Hurwitz formula the possible signatures of the action of G on S are

(1; 2), (0; 2, 2, 4, 4) and (0; 2, 2, 2, 2, 2).

By the classical Sylow’s theorems, if q ≡ 3 mod 4 then G is isomorphic to

either

C4q, Cq × C2
2 , D2q or 〈a, b : aq = b4 = 1, bab−1 = a−1〉 = Cq �2 C4,

and if q ≡ 1 mod 4 then, in addition to these groups, G can be isomorphic to

〈a, b : aq = b4 = 1, bab−1 = ar〉 = Cq �4 C4

where r is a primitive 4-th root of the unity in the field of q elements.

The proof of Theorem 1 is a consequence of the following three claims.

Claim 1: The following statements are equivalent.

(1) S is a compact Riemann surface of genus g with a group of automor-

phisms of order 4q acting on S with signature σ = (0; 2, 2, 4, 4).

(2) g ≡ 2 mod 4 and S ∈ F̄1
g .

Let us assume that S is a compact Riemann surface of genus g with a group of

automorphisms G of order 4q acting on S with signature σ. Let Δ be a Fuchsian

group of signature σ with canonical presentation

Δ = 〈x1, x2, x3, x4 : x21 = x22 = x43 = x44 = x1x2x3x4 = 1〉,
and assume the action ofG on S to be represented by the epimorphism θ :Δ→G.

First of all, note that G cannot be isomorphic to Cq × C2
2 or D2q because

they do not have elements of order 4, and cannot be isomorphic to C4q because

otherwise C4q would be generated by elements of order 2 and 4. We claim that G

cannot be isomorphic to Cq �2 C4 either. Indeed, as b2 is the unique involution

of Cq �2 C4 and as its elements of order 4 are atb and atb3 for 1 � t � q,

after considering the automorphism of Cq �2 C4 given by a 
→ a, b 
→ b3, the

epimorphism θ could only be defined either by

(1) θ(x1) = b2, θ(x2) = b2, θ(x3) = at1b, θ(x4) = at2b, or

(2) θ(x1) = b2, θ(x2) = b2, θ(x3) = at1b, θ(x4) = at2b3,
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for some 1 � t1, t2 � q. The former case cannot yield an action because the

image of x1x2x3x4 is different from 1 for each possible choice of t1 and t2.

Similarly, the latter case could give rise to an action only if t1 ≡ t2 mod q;

however, in this case θ would not be surjective.

All of the above shows that g ≡ 2 mod 4 and thatG is isomorphic to Cq�4C4;

consequently S ∈ F̄1
g . The converse is direct, and the proof of the claim is

completed.

Claim 2: There is no compact Riemann surface S of genus g with a group of

automorphisms of order 4q acting on it with signature (1; 2).

Let G be a group of order 4q and let Δ be a Fuchsian group of signature

(1; 2). For every torsion-free kernel epimorphism

Δ = 〈a1, b1, x1 : [a1, b1]x1 = x21 = 1〉 → G,

the image of x1 must belong to the commutator subgroup of G. Thus, to con-

clude it suffices to note that the commutator subgroup of each group of order 4q

does not contain involutions.

Claim 3: The following statements are equivalent.

(1) S is a compact Riemann surface of genus g with a group of automor-

phisms of order 4q acting on S with signature σ = (0; 2, 2, 2, 2, 2).

(2) S ∈ F̄2
g .

Let us assume that S is a compact Riemann surface of genus g with a group of

automorphisms G of order 4q acting on S with signature σ. Let Δ be a Fuchsian

group of signature σ with canonical presentation

Δ = 〈x1, x2, x3, x4, x5 : x21 = x22 = x23 = x24 = x25 = x1x2x3x4x5 = 1〉,

and assume the action ofG on S to be represented by the epimorphism θ :Δ→G.

The group G cannot be isomorphic to Cq �2 C4 because it has a unique

involution and therefore every homomorphism Δ → Cq �2 C4 is not surjective.

Similarly, the group G cannot be isomorphic to Cq�4C4 because it has exactly q

involutions and all of them are contained in the proper subgroup 〈a, b2〉 ∼= Dq.

Finally, if G were abelian then G would be isomorphic to a subgroup of C4
2 ; but

this is not possible.
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All the above ensures that G is isomorphic to the dihedral group of order 4q

and therefore S ∈ F̄2
g . The converse is direct, and the proof of the claim is

completed.

5. Proof of Theorem 2

Let g � 8 such that q = g − 1 is prime. Assume g ≡ 2 mod 4 and let S be a

compact Riemann surface lying in the family F̄1
g . We recall that S has a group

of automorphisms G1 isomorphic to

〈a, b : aq = b4 = 1, bab−1 = ar〉 = Cq �4 C4,

where r is a primitive 4-th root of the unity in the field of q elements, and that

the action is represented by the epimorphism Θ : Δ → Cq �4 C4 defined by

Θ(x1) = b2, Θ(x2) = ab2, Θ(x3) = ab, Θ(x4) = b3

where

Δ = 〈x1, x2, x3, x4 : x21 = x22 = x43 = x44 = x1x2x3x4 = 1〉.
By classical results due to Singerman [43], the action of G1 on a (generic)

member S of F̄1
g can be possibly extended to only an action of a group of

order 8q with signature σ̂ = (0; 2, 2, 2, 4). However, as proved in [3] for g � 18

and in [12] for g = 14, there is no compact Riemann surfaces of genus g with a

group of automorphisms of order 8q acting with signature σ̂. It follows that:

(1) the interior F1
g of the family F̄1

g consists of those Riemann surfaces for

which G1 agrees with the full automorphism group, and

(2) the set

F̄1
g \ F1

g = {X ∈ F̄1
g : G1 � Aut(X)}

consists of finitely many points.

Note that for each X ∈ F̄1
g \ F1

g its full automorphism group has order μq

where 4 divides μ. Then, following [3], there exists a positive integer ε1 such

that if g � ε1 then either

(1) Aut(X) ∼= Cq �8 C8 acting with signature (0; 2, 8, 8), for g ≡ 2 mod 8;

or

(2) Aut(X) ∼= (Cq �6 C6) × C2 acting with signature (0; 2, 6, 6), for g ≡ 2

mod 3.
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The latter case is not possible because (Cq�6C6)×C2 does not have elements

of order 4, showing that if g �≡ 2 mod 8 then F̄1
g \ F1

g is empty. Let us now

assume that g ≡ 2 mod 8, and let

Δ′ = 〈y1, y2, y3 : y21 = y82 = y83 = y1y2y3 = 1〉
be a Fuchsian group of signature (0; 2, 8, 8). Again, following [3], there are ex-

actly two non-isomorphic Riemann surfaces X1 and X2 of genus g � 18 such

that

Aut(Xi) ∼= 〈α, β : αq = β8 = 1, βαβ−1 = αu〉 = Cq �8 C8,

where u is a primitive 8-th root of the unity in the field of q elements, and the

action of Aut(Xi) onXi is determined by the epimorphisms Θi : Δ
′ → Cq�8C8,

Θ1(y1) = β4, Θ1(y2) = α−uβ, Θ1(y3) = αβ3,

Θ2(y1) = β4, Θ2(y2) = αuβ, Θ2(y3) = αβ7.

The subgroup of Δ′ generated by the elements

x̂1 = y1, x̂2 = y1, x̂3 = y23 , x̂4 = y63

is isomorphic to Δ, and

Θi(x̂1) = β4, Θi(x̂2) = β4,

Θi(x̂3) = α1+(−1)i+1u3

β6, Θi(x̂4) = αu3+(−1)iu2

β7.

Thus, for i = 1, 2, the restriction of Θi to Δ ∼= 〈x̂1, . . . , x̂4〉,
Δ → 〈β4, α1±u3

β6〉 = 〈α, β2〉 = Cq �4 C4,

defines an action Cq �4 C4 on Xi with signature (0; 2, 2, 4, 4), showing that

F̄1
g \ F1

g agrees with {X1, X2}.
Now, let S be a compact Riemann surface lying in the family F̄2

g . We recall

that S has a group of automorphisms G2 isomorphic to

〈r, s : r2q = s2 = (sr)2 = 1〉 = D2q,

and that the action of G2 on S is represented by the epimorphism Θ : Δ → D2q,

Θ(x1) = s, Θ(x2) = s, Θ(x3) = srq+1, Θ(x4) = sr, Θ(x5) = rq

where Δ = 〈x1, x2, x3, x4 : x21 = x22 = x23 = x24 = x25 = x1x2x3x4x5 = 1〉.
By [43] the action of G2 on a generic member S of F̄2

g cannot be extended.

Thus:
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(1) the interior F2
g of the family F̄2

g consists of those Riemann surfaces for

which G2 agrees with the full automorphism group, and

(2) the set

F̄2
g \ F2

g = {Y ∈ F̄2
g : G � Aut(Y )}

consists of finitely many points and finitely many one-dimensional fam-

ilies.

By [3], there exists ε2 such that if g � ε2 and Y ∈ F̄2
g \ F2

g then either

(1) Aut(Y ) ∼= Cq �8 C8 acting with signature (0; 2, 8, 8), for g ≡ 2 mod 8,

or

(2) Aut(Y ) ∼= (Cq �6 C6) × C2 acting with signature (0; 2, 6, 6), for g ≡ 2

mod 3.

The former case is not possible because Cq �8 C8 does not have elements of

order 2q; thus, if g �≡ 2 mod 3 then F̄2
g \ F2

g is empty. Let us now assume

that g ≡ 2 mod 3, and let Δ′ be a Fuchsian group of signature (0; 2, 6, 6) with

canonical presentation

Δ′ = 〈y1, y2, y3 : y21 = y62 = y63 = y1y2y3 = 1〉.
Again, following [3], for g � ε2 there are exactly two non-isomorphic Riemann

surfaces Y1 and Y2 of genus g with full automorphism group isomorphic to

〈α, β, γ : αq = β6 = γ2 = [γ, α] = [γ, β] = 1, βαβ−1 = αu〉 = (Cq �6 C6)× C2,

where u is a primitive 6-th root of the unity in the field of q elements, and the ac-

tion of Aut(Yi) on Yi is determined by the epimorphisms Θi:Δ
′→(Cq�6C6)×C2,

Θ1(y1) = β3, Θ1(y2) = α−uβγ, Θ1(y3) = αβ2γ,

Θ2(y1) = β3γ, Θ2(y2) = α−u2

β2γ, Θ2(y3) = αβ.

The subgroup of Δ′ generated by

x̃1 = y33 , x̃2 = y1, x̃3 = y2y1y
−1
2 , x̃4 = y22y1y

−2
2 , x̃5 = y32

is isomorphic to Δ, and

Θ1(x̃1) = γ, Θ1(x̃2) = β3, Θ1(x̃3) = α−2uβ3,

Θ1(x̃4) = α2−4uβ3, Θ1(x̃5) = α2−2uβ3γ,

Θ2(x̃1) = α2uβ3, Θ2(x̃2) = β3γ, Θ2(x̃3) = α−2u2

β3γ,

Θ2(x̃4) = α2β3γ, Θ2(x̃5) = γ.
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Thus, for i = 1, 2, the restriction of Θi to Δ ∼= 〈x̃1, . . . , x̃4〉,
Δ → 〈αγ, β3〉 = D2q,

defines an action D2q on Yi with signature (0; 2, 2, 2, 2, 2), showing that F̄2
g \F2

g

agrees with {Y1, Y2}.
The proof is complete.

6. Proof of Theorem 3

Let g � 8 such that q = g − 1 is prime.

We recall the well-known fact that the dihedral group

〈r, s : r2q = s2 = (sr)2 = 1〉 = D2q

has, up to equivalence, 4 complex irreducible representations of degree one,

namely,

U±
1 : r 
→ 1, s 
→ ±1, U±

2 : r 
→ −1, s 
→ ±1,

and q − 1 complex irreducible representations of degree two; namely,

Vj : r 
→ diag(ωj
2q, ω̄

j
2q), s 
→ ( 0 1

1 0 )

for 1 � j � q − 1 and ωt = exp(2πit ). See, for example, [42, p. 36].

Following the notation introduced in Subsection 2.3, the trivial representa-

tion U+
1 does not belong to Jθ, where θ represents the action of D2q on each

member S of the family F̄2
g . The following table summarizes the dimension

of the vector subspaces of the non-trivial complex irreducible representations

of D2q fixed under the action of the subgroups 〈r〉, 〈s〉 and 〈sr〉:
U−
1 U+

2 U−
2 Vj

〈s〉 0 1 0 1

〈r〉 1 0 0 0

〈sr〉 0 0 1 1

It follows that the collection {〈r〉, 〈s〉, 〈sr〉} is admissible and therefore, by [38],

if S ∈ F̄2
g then there exists an abelian subvariety P of JS such that

JS ∼ JS〈s〉 × JS〈r〉 × JS〈sr〉 × P.

The covering maps given by the action of 〈s〉, 〈r〉 and 〈sr〉 ramify over six,

two and two values respectively; then, the Riemann–Hurwitz formula implies

that

gS〈s〉 =
q − 1

2
, gS〈r〉 = 1 and gS〈sr〉 =

q + 1

2
.
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It follows that P = 0 and the desired decomposition is obtained.

Remark 1:

(a) Note that if S ∈ F̄2
g then JS contains an elliptic curve.

(b) For the sake of completeness, we mention that in [22, Theorem 2] it was

proved that the Jacobian variety of the Riemann surfaces Y1 and Y2 of

Theorem 2 also admit an isogeny decomposition in terms of an abelian

surface and of an abelian variety of dimension q−1
6 with multiplicity 6.

We now assume g ≡ 2 mod 4. Let r be a primitive 4-th root of the unity in

the field of q elements, write m = q−1
4 and choose 1 � k1, . . . , km � q − 1 such

that

{1, . . . , q − 1} = �m
j=1{±kj,±rkj},

where the symbol � stands for disjoint union. Then

〈a, b : aq = b4 = 1, bab−1 = ar〉 = Cq �4 C4

has, up to equivalence, m complex irreducible representations of degree 4,

given by

Vj : a 
→ diag(ωkj
q , ω

kjr
q , ω−kj

q , ω−kjr
q ), b 
→

(
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
where ωt = exp

(2πi
t

)
,

and four complex irreducible representations of degree 1, given by

Ul : a 
→ 1, b 
→ ωl
4, for 0 � l � 3

(see, for example, [42, p. 62]). Choose four pairwise different integers

t1, t2, t3, t4 ∈ {1, . . . , q − 1},

and consider the following subgroups of Cq �4 C4:

〈a〉 = Cq and 〈atib〉 = C4 for 1 � i � 4.

The trivial representation U0 does not belong to Jθ, where θ represents the

action of Cq�4C4 on each member S of the family F̄1
g . The dimension of the vec-

tor subspaces of the non-trivial complex irreducible representations of Cq �4 C4

fixed under the action of the subgroups 〈a〉 and 〈atib〉 is

U
〈a〉
l = V

〈atib〉
j = 1 and U

〈atib〉
l = V

〈a〉
j = 0.
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Thus {〈a〉, 〈at1b〉, . . . , 〈at4b〉} is admissible and therefore, by [38], if S ∈ F̄1
q

then

JS ∼ JS〈a〉 ×
4∏

i=1

JS〈ati b〉 ×Q ∼= JS〈a〉 × (JS〈b〉)4 ×Q,

for some abelian subvariety Q of JS, where the isomorphism follows after notic-

ing that each 〈atib〉 and 〈b〉 are conjugate. The covering map S → S〈a〉 is

unbranched, and the covering map S → S〈b〉 ramifies over four values, two

marked with 2 and two marked with 4. Then, the Riemann–Hurwitz formula

implies that

gS〈a〉 = 2 and gS〈b〉 = m.

Thereby, Q = 0 and the decomposition of JS stated in Theorem 3 is complete.

7. The case g − 1 not prime

Example 1: Let n � 3 be an integer, and consider the group

〈x, y, z : x4 = zn = 1, x2 = y2, yxy−1 = x3, [x, z] = [y, z] = 1〉 = Q8 × Cn

where Q8 denotes the quaternion group, and let Δ be a Fuchsian group of

signature (1; 2) with canonical presentation

Δ = 〈a1, b1, x1 : [a1, b1]x1 = x21 = 1〉.
For each n odd, the epimorphism Δ → Q8 × Cn given by

a1 
→ x, b1 
→ yz, x1 
→ y2

guarantees the existence of a complex one-dimensional family of compact Rie-

mann surfaces of genus g = 1 + 2n with a group of automorphisms of order

8n = 4g − 4 isomorphic to Q8 × Cn acting with signature (1; 2).

Example 2: Let n � 3. Choose m ∈ {±1, 2n−1 ± 1}, consider the group

〈r, s, t : r2n = s2 = (sr)2 = t2 = 1, trt = rm, tst = s〉 = D2n � C2,

and let Δ be a Fuchsian group of signature σ = (0; 2, 2, 2, 2, 2) with presentation

Δ = 〈x1, x2, x3, x4, x5 : x21 = x22 = x23 = x24 = x25 = x1x2x3x4x5 = 1〉.
The epimorphism Δ → D2n � C2 given by

x1 
→ sr, x2 
→ sr, x3 
→ s, x4 
→ t, x5 
→ st
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guarantees the existence of a complex two-dimensional family of compact Rie-

mann surfaces of genus g = 2n + 1, with a group of automorphisms of order

2n+2 = 4g − 4 isomorphic to D2n � C2 acting with signature σ. Two different

choices of m yield non-isomorphic groups, showing that if g−1 = 2n then there

exist at least four pairwise non-isomorphic groups of order 4g − 4 acting on

compact Riemann surfaces of genus g with the same signature σ.

Acknowledgment. The author is grateful to his colleague Angel Carocca who
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Mathématique de France, Paris; EDP Sciences, Les Ulis, 1999.

[17] H. Farkas and I. Kra, Riemann Surfaces, Graduate Texts in Mathsematics, Vol. 71,

Springer, New York–Berlin, 1980.

[18] J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quarterly

Journal of Mathematics 17 (1966), 86–97.

[19] J. Harvey, On branch loci in Teichmüller space, Transactions of the American Mathe-

matical Society 153 (1971), 387–399.
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vestigacion, Vol. 13, Sociedad Matemática Mexicana, México, 1998, pp. 117–140.

[37] S. Reyes-Carocca, On the one-dimensional family of Riemann surfaces of genus q with

4q automorphisms, Journal of Pure and Applied Algebra 223 (2019), 2123–2144.
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