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ABSTRACT

We propose a new approach for studying asymptotic behaviour of pth

means of the logarithmic potential and classes of analytic and subhar-

monic functions in the unit disc. In particular, we generalize a criterion

due to G. MacLane and L. Rubel of boundedness of the L2-norm of log |B|,
where B is a Blaschke product, in several directions. We describe growth

and decrease of pth means, p ∈ (1,∞), for nonpositive subharmonic func-

tions in the unit disc. As a consequence, we obtain a complete description

of the asymptotic behaviour of pth logarithmic means of bounded ana-

lytic functions in the unit disc in terms of its zeros and the boundary

measure. We also prove sharp upper estimates of pth means of analytic

and subharmonic functions of finite order in the unit disc.

1. Introduction and main results

In the present paper we investigate an interplay between the zero distribution

and the growth of analytic functions in the unit disc D = {z ∈ C : |z| < 1}.
Especially we are interested in the asymptotic behaviour of logarithmic means

of such functions. We consider them as a special case of subharmonic functions.

Our approach is based on a Martin-type represetation (cf. [3]) and the concept
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of the complete measure of a subharmonic function (see [6], [15], [16], [20])

which takes into account both the Riesz measure (divisor) and the boundary

measure of the function.

The paper is organized as follows. Existing results and the main results of

the paper are discussed further in Section 1. Section 2 contains some notation

and auxiliary statements mostly connected to the case of a function of finite

order of the growth. Proofs of the theorems are contained in Sections 3, while

examples showing sharpness of our results are presented in Section 4.

1.1. Some results on growth and angular distribution of zeros of

Blaschke products. Given a sequence (an) in D such that
∑

n(1−|an|) <∞,

we consider the Blaschke product

(1.1) B(z) =

∞∏
n=1

an(an − z)

|an|(1− zan)
.

It was A. Zygmund (see [33]) who asked to describe those sequences (an) in D

such that

I(r) =
1

2π

∫ π

−π

(log |B(reiθ)|)2 dθ

is bounded. In [33] G. Maclane and L. Rubel answered this question using a

Fourier series method.

Theorem A ([33, Theorem 1]): A necessary and sufficient condition that I(r)

be bounded is that J(r) be bounded, where

J(r) =

∞∑
k=1

1

k2

∣∣∣∣(rk − r−k)
∑

|an|≤r

ākn + rk
∑

|an|>r

(ākn − a−k
n )

∣∣∣∣
2

.

Since it was difficult to check the boundedness of J(r) they gave also the

following sufficient condition.

Let n(r, B) be the number of zeros in the closed disc D(0, r); here and in

what follows D(z, r) = {ζ ∈ C : |ζ − z| < r}.
Theorem B ([33]): If

(1.2) n(r, B) = O((1 − r)−
1
2 ), r ∈ (0, 1),

then I(r) is bounded.
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They also noted that (1.2) is equivalent to the condition

∑
|an|>r

(1 − |an|) = O(
√
1− r).

MacLane and Rubel also proved that (1.2) becomes necessary if all zeros lie on

finitely many rays emanating from the origin, but it is not the case in general.

After that C. N. Linden ([30, Corollary 1]) generalized this showing that it is

sufficient to require that the zero sequence is contained in a finite number of

Stolz angles with vertices on ∂D.

For a subharmonic function u in D and p ≥ 1 we define

mp(r, u) =

(
1

2π

∫ 2π

0

|u(reiθ)|p dθ
) 1

p

, 0 < r < 1,

ρp[u] = lim sup
r↑1

log+mp(r, u)

− log(1− r)
.

The growth of mp(r, log |f |) was studied in many papers, for instance [31],

[32], [34], [37], [17], [38], [5], [9].

The classes defined by the growth of mp(r, log |f |), where f is an anlytic

function in D, are closely related to the generalized Nevanlinna classes Ap,α,

1 ≤ p <∞, 0 < α <∞ defined by the condition

‖f‖p,α =
1

π

∫
D

| log |f(z)||p(1 − |z|2)α dA(z) <∞

where dA(z) is the planar Lebesgue measure. It is clear that the inequality

ρp[log |f |] < α+1
p implies f ∈ Ap,α, but not vice versa. Factorization and

zeros of these classes have been studied by E. Beller [1, 2], A. Heilper [24],

J. Bruna and J. Ortega-Cerdá [4], Ch. Horowitz [25] and others. In particular,

in [4], sequences (an) which are the zero sequences for some analytic functions f

from Ap,0 are described. We just mention here that in the case p = 1 the zeros

can be described in terms of the counting function n(r, f), or, in other words,

the angular distribution of zeros (the Riesz measure) is not important (see,

e.g., [9] and references therein). In the case p = ∞ the reader should consult

recent works of B. Khabibullin [26]–[28].

Nevertheless, to the best of our knowledge, only one paper, namely [34],

contains criteria of boundedness of pth meansmp(r, u) when u = log |B|. Proofs
of the results announced in [34] have been published recently in [40, Chap. 3].
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Note that Ya. V. Mykytyuk and Ya. V. Vasyl’kiv used methods of functional

analysis, and we propose another, more elementary, approach.

In [34] Ya. V. Mykytyuk and Ya. V. Vasyl’kiv introduced two auxiliary func-

tions defined on ∂D by (an):

ψr(ζ) =
∑

r≤|an|<1

(1− |an|)2
|ζ − an|2 , ζ ∈ ∂D, r ∈ [0, 1),

and ϕ(ζ), which satisfies the relation

ϕ(ζ) � Φ(ζ) := #{an : |1− anζ̄| < 2(1− |an|)},

i.e., the number of zeros in the Stolz angle with the vertex ζ. They established

that ψ0 and Φ belong to the same classes Lp(∂D), p ∈ [1,∞), and ψ0 log |ψ0|
and Φ log |Φ| belong to L1(∂D), simultaneously. Moreover, for a branch of logB

in D with radial cuts [ak,
ak

|ak|) the following statement holds.

Theorem C ([34]): Let B be a Blaschke product, and p ∈ (1,∞). Then:

(1) mp(r, logB) is bounded on [0, 1) if and only if ψ0 ∈ Lp(∂D).

(2) m1(r, logB) is bounded if and only if ψ0 log
+ ψ0 ∈ L1(∂D).

(3) mp(r, log |B|) is bounded on [0, 1) if and only if

sup
0<r<1

∫ 2π

0

(∫ 2π

0

1− r2

|reiθ − eiϕ|2ψr(e
iθ)dθ

)p

dϕ <∞.

(4) ψ0 ∈ Lp(∂D) ⇒ sup0<r<1mp(r, log |B|) <∞.

(5) n(r, f) = O((1 − r)−
1
p ) ⇒ sup0<r<1mp(r, log |B|) <∞.

Relations between conditions on the zeros of a Blaschke product B and the

belonging of argB(eiθ) to Lp spaces 0 < p ≤ ∞ were investigated by A. Rybkin

([35]).

The following tasks arise naturally:

(i) Describe the asymptotic behaviour of pth means of log |f | where f is a

bounded analytic function in D, 1 < p <∞.

(ii) Find ‘geometric’ conditions on the zero distribution providing a pre-

scribed growth of mp(r, log |f |).
(iii) Extend the description to functions of finite order of growth.

In this paper we accomplish these tasks.
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1.2. Complete measure and main results. Our method is based on a con-

cept of the so-called complete measure of a subharmonic function introduced

by A. Grishin in the case of the half-plane (see [20], [15]). For the unit disc

a similar approach was used by N. Govorov [18, §1, Theorem 1.8]. A similar

notion, called the related measure, was introduced by S. Gardiner (see [16]) for

the real half-space case. As mentioned there, this concept allows one to obtain

a very simple representation for a subharmonic function of finite order and de-

fines this function up to a harmonic summand in the closure of the domain.

These concepts are closely related to the notions of the Martin boundary and

Martin’s representations [3].

Let SH∞ be the class of subharmonic functions in D bounded from above. In

particular, log |f | ∈ SH∞ if f ∈ H∞, the space of bounded analytic functions

in D. In this case (cf. [22, Ch. 3.7]), i.e., for u ∈ SH∞(D),

(1.3) u(z) =

∫
D

log
|z − ζ|
|1− zζ̄|dμu(ζ) − 1

2π

∫
∂D

1− |z|2
|ζ − z|2 dψ(ζ) + C,

where ψ is a positive Borel measure, μu is the Riesz measure of u ([22]), and∫
D
(1 − |ζ|)dμu(ζ) < ∞. The complete measure λu of u in the sense of

Grishin is defined [20, 15] by the boundary measure and the Riesz measure

of u(z). But, since ([11])

lim
r↑1

∫ θ2

θ1

∫
D

log
|reiθ − ζ|
|1− reiθ ζ̄|dμu(ζ)dθ = 0, −π ≤ θ1 < θ2 ≤ π,

i.e., the boundary values of the first integral from (1.3) do not contribute to the

boundary measure, we can define λu of a Borel set M ⊂ D by ([6])

(1.4) λu(M) =

∫
D∩M

(1− |ζ|) dμu(ζ) + ψ(M ∩ ∂D).

The measure λ = λu has the following properties:

(1) λ is finite on D;

(2) λ is non-negative;

(3) λ is a zero measure outside D;

(4) dλ|∂D(ζ) = dψ(ζ);

(5) dλ|D(ζ) = (1 − |ζ|) dμu(ζ).

If B is a Blaschke product of form (1.1), then

λlog |B|(M) =
∑

an∈M

(1 − |an|).



936 I. E. CHYZHYKOV Isr. J. Math.

Let

C(ϕ, δ) = {ζ ∈ D : |ζ| ≥ 1− δ, | arg ζ − ϕ| ≤ πδ}
be the Carleson box based on the arc [ei(ϕ−πδ), ei(ϕ+πδ)].

The following theorem describes the growth of integral means for u ∈ SH∞.

Theorem 1.1: Let u ∈ SH∞, γ ∈ (0, 2), p ∈ (1,∞). Let λ be the complete

measure of u. A necessary and sufficient condition for

(1.5) mp(r, u) = O((1 − r)γ−1), r ↑ 1,

to hold is that

(1.6)

(∫ 2π

0

λp(C(ϕ, δ)) dϕ
) 1

p

= O(δγ), δ ↓ 0.

Theorem 1.2: Let f ∈ H∞, γ ∈ (0, 2), p ∈ (1,∞). Let λ be the complete

measure of log |f |. A necessary and sufficient condition for

(1.7) mp(r, log |f |) = O((1 − r)γ−1), r ↑ 1,

to hold is (1.6).

Remark 1.3: It was proved in [5] that if suppλ ⊂ ∂D, i.e., u is harmonic,

γ ∈ (0, 1), then (1.6) is equivalent to (1.5).

Remark 1.4: Though Theorems 1.1 and 1.2 look like Carleson-type results, we

cannot use standard tools (e.g., [14, Chap. 9]) here, because u and log |f | have
logarithmic singularities.

Remark 1.5: It follows from Example 4.1 that the assumption γ < 2 in Theorem

1.1 cannot be relaxed. For γ = 1, (1.6) is the boundedness condition ofmp(r, u).

If γ ∈ (1, 2), it defines the rate of decrease to 0.

Remark 1.6: One can prove ‘o’-analogs of Theorems 1.1 and 1.2 using the same

method (see [10]).

Lemma 3.1 plays the crucial role in the proof of the sufficiency. In order to

prove necessity of Theorems 1 and 2 we essentially use the fact that the kernels

in representation (1.3) preserve the sign. The method allows one to spread the

sufficient part of Theorems 1.1 and 1.2 to functions of finite order of growth

(see Theorems 1.10, 1.11 below).
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Under additional assumptions on the zero location of a Blaschke product (the

support of the Riesz measure of the Green potential) (1.6) could be simplified.

Theorem 1.7: Let

(1.8) u(z) =

∫
D

log
|z − ζ|
|1− zζ̄|dμu(ζ),

∫
D

(1− |ζ|)dμu(ζ) <∞,

α ∈ [0, 1), p ∈ (1,∞), α + 1
p < 1. Suppose that suppμu is contained in a

finite number of Stolz angles with vertices on ∂D. A necessary and sufficient

condition for

(1.9) mp(r, u) = O((1 − r)−α), r ↑ 1,

to hold is that

(1.10) n(r, u) := μu(D(0, r)) = O((1 − r)−α− 1
p ), r ↑ 1.

Similar to the case α = 0, the growth condition (1.10) appears to be sufficient

for (1.9) when u is of finite order (see Theorem 1.15 below).

Remark 1.8: Taking u = log |B|, we obtain a generalization of MacLane and

Rubel’s, and Linden’s results mentioned in Subsection 1.1.

Remark 1.9: If α + 1
p ≥ 1, bounds (1.9) and (1.10) become trivial, see the

remark after Theorem 1.11.

1.3. Growth and zero distribution of functions of finite order. In

order to formulate results on the angular distribution of zeros for unbounded

analytic functions we need some growth characteristics. The standard charac-

teristics are the maximum modulus M(r, f) = max{|f(z)| : |z| = r}, and the

Nevanlinna characteristic ([21])

T (r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)| dθ, x+ = max{x, 0}.

Note that both of them are bounded for f = B. Note that the order defined by

T (r, f) coincides with ρ1[log |f |].
It follows from results of C. Linden [29] that M(r, f) does take into account

the angular distribution of the zeros when it grows sufficiently fast, namely,

when the order of growth

ρM [f ] = lim sup
r↑1

log+ log+M(r, f)

− log(1 − r)
≥ 1.
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To be more precise, consider the canonical product

P(z, (ak), s) :=

∞∏
k=1

E(A(z, ak), s),

where

E(w, s) = (1− w) exp{w + w2/2 + · · ·+ ws/s}, s ∈ Z+,

is the Weierstrass primary factor,

A(z, ζ) =
1− |ζ|2
1− zζ̄

, z ∈ D, ζ ∈ D.

Let

R(reiϕ, σ) =
{
ζ : r ≤ |ζ| ≤ 1 + r

2
, | arg ζ − ϕ| ≤ σ

}
,

Q(reiϕ) :=R
(
reiϕ,

1− r

2

)
.

Let ν(reiϕ) be the number of zeros of P in Q(reiϕ). We define

(1.11) ν1(ϕ) = lim sup
r↑1

log+ ν(reiϕ,P)

− log(1− r)
, ν[P ] = sup

ϕ
ν1(ϕ).

With the notation above we have ([29, Theorem V])

ρM [P ]

⎧⎨
⎩
= ν[P ], ρM [P ] ≥ 1,

≤ ν[P ] ≤ 1, ρM [P ] < 1.
(1.12)

We now consider subharmonic counterparts of a canonical product. Given a

Borel measure μ on D satisfying 0 �∈ suppμ and

(1.13)

∫
D

(1− |ζ|)s+1 dμf (ζ) <∞, s ∈ N ∪ {0},

define the canonical integral as

(1.14) U(z;μ, s) :=

∫
D

log |E(A(z, ζ), s)| dμ(ζ).

Let (q > −1)

Sq(z) = Γ(1 + q)
( 2

(1− z)q+1
− 1

)
, Pq(z) = ReSq(z), Sq(0) = Γ(q + 1).

Note that S0 and P0 are the Schwarz and Poisson kernels, respectively.

Let u be a subharmonic function in D of the form

u(z) = U(z;μ, s)−
∫
∂D

Ps(zζ̄)dψ(ζ) + C,(1.15)
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where ψ is a finite (signed) Borel measure on ∂D and μ is the Riesz measure

of u satisfying (1.13). Note that every subharmonic function u of finite order

in D, i.e., satisfying

logmax{u(z) : |z| = r} = O
(
log

1

1− r

)
(r ↑ 1),

can be represented in the form (1.15) for an appropriate s ∈ N ∪ {0} ([22], [12,

Chap. 9], [13]).

Let M be Borel’s subset of D. Let u be a subharmonic function in D of the

form (1.15). We set

(1.16) λu(M) =

∫
D∩M

(1− |ζ|)s+1 dμu(ζ) + ψ(M ∩ ∂D),

where μu is the Riesz measure of u. Note that in the case u = log |f | we have

μlog |f |(ζ) =
∑

n δ(ζ − an), where (an) is the zero sequence of f .

Let |λ| denote the total variation of λ.

Theorem 1.10: Let u be a subharmonic function in D of the form (1.15),

harmonic in some neighbourhood of the origin, γ ∈ (0, s + 1), and p ∈ (1,∞).

Let λ be defined by (1.16). If

(1.17)

(∫ 2π

0

|λ|p(C(ϕ, δ)) dϕ
) 1

p

= O(δγ), δ ↓ 0,

holds, then

(1.18) mp(r, u) = O((1 − r)γ−s−1), r ↑ 1.

Theorem 1.11: Let f be of the form

f(z) = Cqz
νP(z, (ak), q) exp

{∫
∂D

Sq(zζ̄)dψ(ζ)

}
,(1.19)

where ψ is a finite (signed) Borel measure on ∂D, (ak) is the zero sequence

of f such that
∑

k(1 − |ak|)q+1 < +∞, ν ∈ Z+, Cq ∈ C. Let γ ∈ (0, s + 1),

p ∈ (1,∞). Let λ be defined by (1.16) for u = log |f |. If

(1.20)

(∫ 2π

0

|λ|p(C(ϕ, δ)) dϕ
) 1

p

= O(δγ), δ ↓ 0,

holds, then

(1.21) mp(r, log |f |) = O((1 − r)γ−s−1), r ↑ 1.
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Remark 1.12: Theorem 1.11 follows from Theorem 1.10 applied for

u = log |f(z)| − ν log |z|.
We also note that an arbitrary analytic function in D of finite order of the

growth can be represented in the form (1.19).

The next proposition characterizes smoothness of an arbitrary periodic mea-

sure.

Proposition 1.13: Suppose that μ is a 2π-periodic measure on R finite on the

compact Borel sets, and p ≥ 1. Then
(∫ 2π

0

(μ((x− δ, x+ δ)))p dx

) 1
p

= O(δ
1
p ), δ ∈ (0, 2π).

Remark 1.14: It follows from representation (1.15) that ρ1[u] ≤ s. Then, by

Proposition 1.13, (1.18) implies

ρp[u] ≤ s+ 1− 1

p
.

It is known that this is a sharp inequality ([31, 32]), in general. However,

Theorems 1.10 and 1.11 characterize classes where ρp[u] takes a particular value.

Examples 4.2 and 4.3 in Section 4 show that the assertion of Theorem 1.11

is sharp.

The following theorem provides a sharp estimate for means of canonical in-

tegrals or products in terms of the growth of their Riesz measures.

Theorem 1.15: Suppose that u is of the form (1.14), s ∈ N ∪ {0}, p ∈ (1,∞),

and α > 0 are such that α+ 1
p < s+ 1. If (1.10) holds, then (1.9) is valid.

2. Kernels Ks(z, ζ) and representation of functions of finite order

We define (cf. [18, p.16])

K(z, ζ) =
G(z, ζ)

1− |ζ| =
1

1− |ζ| log |
1− zζ̄

z − ζ
|, z ∈ D, ζ ∈ D, z �= ζ,

where G(z, ζ) is the Green function for D. We have the following properties of

K(z, ζ), z = reiϕ, ζ = ρeiθ.
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Proposition 2.1: The following hold:

(a) K(z, 0) = − log |z|.
(b) 0 ≤ K(z, ζ) ≤ 1−|z|2

|z−ζ|2 .
(c) If D � D, then uniformly in z ∈ D

lim
ρ↑1

K(z, ρeiθ) =
1− |z|2

|ρeiθ − z|2 = P0(ze
−iθ).

(d) |K(z, ζ)| ≥ 1

12

1− |z|2
|z − ζ|2 , for 1− |ζ| ≤ 1

2
(1− |z|).

Proof of Proposition 2.1. (b) We have

0 ≤K(reiϕ, ρeiθ)

=
1

2(1− ρ)
log

1− 2rρ cos(ϕ− θ) + r2ρ2

r2 − 2rρ cos(ϕ− θ) + ρ2

=
1

2(1− ρ)
log

(
1 +

(1− r2)(1 − ρ2)

r2 − 2rρ cos(ϕ− θ) + ρ2

)

≤ 1

2(1− ρ)

(1 − r2)(1− ρ2)

r2 − 2rρ cos(ϕ− θ) + ρ2
≤ 1− r2

|reiϕ − ρeiθ|2 .

(c) The assertion easily follows from the equality

K(z, ζ) =
1

2(1− |ζ|) log
(
1 +

(1− |z|2)(1− |ζ|2)
|z − ζ|2

)
;

see (b).

(d) It is proved in [9].

Due to (d), we set

K(z, eiθ) := P0(ze
−iθ)

preserving continuity of K on ∂D with respect to the second variable.

Let s ∈ N. We write

Ks(z, ζ) = − log |E(A(z, ζ), s)|
(1 − |ζ|)s+1

, ζ ∈ D, z ∈ D, z �= ζ,

i.e.,

K0(z, ζ) = K(z, ζ) +
log 1

|ζ|
1− |ζ| ;

we set Ks(z, z) = +∞ and Ks(z, 0) = +∞, z ∈ D.

Let D∗(z, σ) = {ζ : | z−ζ
1−zζ̄

| < σ} be the pseudohyperbolic disc with center z

and radius σ ∈ (0, 1].
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Proposition 2.2: Let s ∈ N, r0 ∈ (0, 1). The following hold:

(i)

(2.1) |Ks(z, ζ)| ≤ C(s)

|1− zζ̄|s+1
, ζ �∈ D∗

(
z,

1

7

)
∪D(0, r0).

(ii)

(2.2) |Ks(z, ζ)| ≤ C

(1− |ζ|)s+1
log

∣∣∣1− zζ̄

z − ζ

∣∣∣, ζ ∈ D∗
(
z,

1

7

)
\D(0, r0).

(iii) If z ∈ D � D, then the following uniform limit exists:

Ks(z, ρe
iθ) ⇒ 2s+1

s+ 1
Re

1

(1 − ze−iθ)s+1
=

2sPs(ze
−iθ)

(s+ 1)!
+ C(s), ρ ↑ 1.

Proof of Proposition 2.2. The lower estimate for Ks(z, ζ),

(2.3) Ks(z, ζ) ≥ − 2s+2

(1− |ζ|)s+1
|A(z, ζ)|s+1 ≥ − 22s+3

|1− zζ̄|s+1
, z ∈ D, ζ ∈ D,

follows from the known upper estimate of the primary factor (e.g., [39, Chap.

V.10]). Also

(2.4) Ks(z, ζ) =
Re

∑∞
j=s+1

1
j (A(z, ζ))

j

(1 − |ζ|)s+1
,

provided that |A(z, ζ)| < 1
2 , so

|Ks(z, ζ)| ≤ 2|A(z, ζ)|s+1

(s+ 1)(1− |ζ|)s+1
≤ 2s+2

s+ 1

1

|1− zζ̄|s+1
.

Hence, it remains to consider the case when |A(z, ζ)| ≥ 1
2 .

Since for all z ∈ D, ζ ∈ D, |A(z, ζ)| ≤ 2, we have for ζ �∈ D∗(z, 17 ) ∪D(0, r0)

Ks(z, ζ)(1− |ζ|)s+1 = log
∣∣∣ 1− zζ̄

(z − ζ)ζ̄

∣∣∣− Re

s∑
j=1

A(z, ζ)

j

≤ log
7

r0
+

s∑
j=1

2j

j

=C(s, r0) ≤ C(s, r0)2
s+1|A(z, ζ)|s+1.

Hence,

(2.5) Ks(z, ζ) ≤ C(s, r0)

|1− zζ̄|s+1
, ζ �∈ D∗(z,

1

7
) ∪D(0, r0),

and (i) follows.
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Similar arguments give (ii).

Let us prove (iii). If z ∈ D � D, then it follows from the representation (2.4)

that

Ks(z, ρe
iθ) ⇒ 2s+1

s+1
Re

1

(1−ze−iθ)s+1
=

2sPs(ze
−iθ)

(s+1)!
+ C(s), ρ ↑ 1.

Due to properties of Ks(z, ζ) the representation (1.15) could be rewritten in

the form (cf. [20], [19, Part II])

(2.6) u(z) = −
∫
D

Ks(z, ζ)dλ(ζ) + C,

where
2s

(s+ 1)!
dλ(eiθ) =

1

2π
dψ∗(θ),

and λ = λu is defined by (1.16).

Similarly, for any u ∈ SH∞ we have the following representation (cf. (1.3)):

(2.7) u(z) = −
∫
D̄

K(z, ζ) dλu(ζ) + C.

Remark 2.3: The idea of such representation goes back to results of Martin [3,

Chap. XIV].

3. Proofs

Proof of the sufficiency of Theorem 1.1. We write

u1(z) = −
∫
D∗(z, 17 )

K(z, ζ) dλ(ζ), u2(z) = −
∫
D̄\D∗(z, 17 )

K(z, ζ) dλ(ζ).

Let us estimate I1 =
∫ π

−π
|u1(reiϕ)|p dϕ.

By the Hölder inequality

|u1(reiϕ)| =
∫

D∗(reiϕ, 17 )

log
∣∣∣1− reiϕζ̄

reiϕ − ζ

∣∣∣dμ(ζ)

≤
( ∫
D∗(reiϕ, 17 )

(
log

∣∣∣1− reiϕζ̄

reiϕ − ζ

∣∣∣)p

dμ(ζ)

) 1
p(
μ
(
D∗

(
reiϕ,

1

7

))) p−1
p

,
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hence

I1 ≤
∫ π

−π

( ∫
D∗(reiϕ, 17 )

∣∣∣ log ∣∣∣1− reiϕζ̄

reiϕ − ζ

∣∣∣∣∣∣p dμ(ζ)μp−1
(
D∗

(
reiϕ,

1

7

)))
dϕ.

Since D∗(z, h
2+h ) ⊂ D(z, (1− |z|)h) ([7]), with h = 1

3 we get

D∗
(
z,

1

7

)
⊂ D

(
z, (1− |z|)1

3

)
⊂ �

(
z,

1

3
(1− |z|)

)
,

where

�(reiϕ, σ) = {ρeiθ : |ρ− r| ≤ σ, |θ − ϕ| ≤ σ}.
Therefore, using Fubini’s theorem, we deduce

I1 ≤
∫ π

−π

(∫
�(z, 13 (1−r))

(
log

∣∣∣1− reiϕζ̄

reiϕ − ζ

∣∣∣)p
)
μp−1

(
�
(
z,

1

3
(1− r)

))
dμ(ζ)dϕ

≤
∫ π

−π

(∫
�(z, 13 (1−r))

(
log

∣∣∣1−reiϕζ̄
reiϕ−ζ

∣∣∣)p
)
μp−1

(
�v

(
reiarg ζ ,

2

3
(1−r)

))
dμ(ζ)dϕ

≤
∫∫

−π− 1−r
3 ≤θ≤π+ 1−r

3

|ρ−r|≤ 1−r
3

|θ−ϕ|≤ 1−r
3

(
log

∣∣∣1− rρei(ϕ−θ)

reiϕ − ρeiθ

∣∣∣)p

μp−1
(
�
(
reiθ ,

2

3
(1−r)

))
dμ(ρeiθ)dϕ

≤2

∫
||ζ|−r|≤1

3 (1−r)

μp−1
(
�
(
reiarg ζ ,

2

3
(1−r)

))∫ π

−π

(
log

∣∣∣1− reiϕζ̄

reiϕ−ζ
∣∣∣)p

dϕdμ(ζ).

We know ([8]) that for any a, b ∈ C and p > 1∫ π

−π

∣∣∣ log ∣∣∣a− eiθ

b− eiθ

∣∣∣∣∣∣p dθ ≤ C(p)|a− b|

holds. Using this inequality we obtain (r ∈ (12 , 1))

(3.1) I1 ≤ 4C(p)(1− r)

∫
||ζ|−r|≤ 1

3 (1−r)

μp−1
(
�
(
reiarg ζ ,

2

3
(1 − r)

))
dμ(ζ).

In order to proceed we need the following lemma. A multidimensional analog

of this lemma can be found in [10].

Lemma 3.1: Let ν be a 2π periodic positive Borel measure on R, p ≥ 1,

δ ∈ (0, π). Then

(3.2)

∫
[−π,π)

νp−1((θ − δ, θ + δ))dν(θ) ≤ 2p+1

δ

∫
[−π,π)

νp((θ − δ, θ + δ))dθ.
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Proof of Lemma 3.1. First, we prove (3.2) for p = 1.1

We have

(3.3)

∫
[−π,π)

dν(θ) =

∫
[−π,π)

1

δ

∫ θ+ δ
2

θ− δ
2

dxdν(θ)

≤
∫
[−π− δ

2 ,π+
δ
2 )

dx

∫
[x− δ

2 ,x+
δ
2 )

1

δ
dν(θ)

=

∫
[−π− δ

2 ,π+
δ
2 )

ν([x − δ
2 , x+ δ

2 ))

δ
dx

≤2

∫
[−π,π)

ν([x − δ
2 , x+ δ

2 ))

δ
dx

≤2

∫
[−π,π)

ν((x − δ, x+ δ))

δ
dx.

We now consider p > 1. Applying (3.3) with dν1(θ) = νp−1((θ−δ, θ+δ))dν(θ),
we get∫

[−π,π)

νp−1((θ − δ, θ + δ))dν(θ)

=

∫
[−π,π)

dν1(θ) ≤ 2

∫
[−π,π)

ν1([x − δ
2 , x+

δ
2 ))

δ
dx

=2

∫
[−π,π)

∫
[x− δ

2 ,x+
δ
2 )

νp−1((θ − δ, θ + δ))dν(θ)dx

≤2

∫
[−π,π)

νp−1((x − 3δ
2 , x+ 3δ

2 ))ν([x − δ
2 , x+ δ

2 ))

δ
dx

≤2

∫
[−π,π)

νp((x − 3δ
2 , x+ 3δ

2 ))

δ
dx

≤2

∫
[−π,π)

νp((x − 3δ
2 , x) ∪ [x, x+ 3δ

2 ))

δ
dx

≤2p
∫
[−π,π)

νp((x− 3δ
2 , x))

δ
dx+ 2p

∫
[−π,π)

νp([x, x + 3δ
2 ))

δ
dx

≤2p+1

∫
[−π,π)

νp((x− δ, x+ δ))

δ
dx.

The lemma is proved.

1 The author thanks Prof. Sergii Favorov for the idea of the proof of this lemma.
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Let us continue the proof of the sufficiency. Define the nondecreasing function

Nr(θ) = λ
({
ρeiα : |r − ρ| ≤ 2

3
(1 − r),−π ≤ α ≤ θ

})
, θ ∈ [−π, π).

We extend it on the real axis preserving monotonicity by

Nr(x+ 2π)−Nr(x) = Nr(2π)−Nr(0), x ∈ R.

Let νr be the corresponding Stieltjes measure on R. Since |ζ − r| ≤ 1
3 (1 − r)

implies 1− |ζ| � 1− r, estimate (3.1) can be written in the form

I1 ≤ C

(1− r)p−1

∫
||ζ|−r|≤1

3 (1−r)

λp−1
(
�
(
rei arg ζ ,

2

3
(1− r)

))
dλ(ζ)

=
C

(1− r)p−1

∫ π

−π

νp−1
r

([
θ − 2

3
(1− r), θ +

2

3
(1− r)

])
dνr(θ)

≤2p+1 3C

2(1− r)p

∫ π

−π

νpr

([
θ − 2

3
(1− r), θ +

2

3
(1− r)

])
dθ

≤ C(p)

(1− r)p

∫ π

−π

λp
(
�
(
reiθ,

2

3
(1 − r)

))
dθ

≤ C

(1− r)p
(1 − r)pγ .

We have used Lemma 3.1 and the assumption of the theorem on the complete

measure.

Thus, we have

(3.4)

(∫ π

−π

|u1(reiϕ)|p dϕ
) 1

p

≤ C(p)(1 − r)γ−1.

Let us estimate

u2(z) = −
∫
D̄

K(z, ζ)dλ̃(ζ),

where

dλ̃(ζ) = χ
D̄\D∗(z, 17 )

(ζ)dλ(ζ).

Since supp λ̃ ∩ D∗(z, 17 ) = ∅, for ζ �∈ D∗(z, 17 ) we have by Proposition 2.1

that

(3.5) K(z, ζ) ≤ 49(1− |z|2)
|1− zζ̄|2 .

Let En = En(re
iϕ) = C(ϕ, 2n(1 − r)), n ∈ N, E0 = ∅. Since

2 arcsin(2n−1(1− r)) ≤ π2n−1(1 − r),
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we have D(eiϕ, 2n−1(1 − r)) ⊂ C(ϕ, 2n(1 − r)) provided that 2n(1 − r) ≤ π.

Then for ζ = ρeit ∈ D \En(z), n ≥ 1, we obtain

(3.6) |1−ρrei(ϕ−t)| ≥ |1−ρei(ϕ−t)|−ρ(1−r) ≥ 2n(1−r)−(1−r) ≥ 2n−1(1−r),
and |1− ρrei(ϕ−t)| ≥ 1− rρ ≥ 1− r for ζ ∈ E1(z). Therefore

|u2(reiϕ)| ≤
([log2

1
1−r ]∑

n=1

∫
En+1\En

+

∫
E1

)
49(1− r2)

|1− reiϕζ̄|2 dλ̃(ζ)

≤49

[log2
1

1−r ]∑
n=1

∫
En+1\En

2(1− r)

(2n−1(1− r))2
dλ̃(ζ) +

∫
E1

2

1− r
dλ̃(ζ)

≤ 100

1− r

([log2
1

1−r ]∑
n=1

λ̃(En+1(z))

22n−2
+ λ̃(E1(z))

)

≤ 400

1− r

[log2
1

1−r ]+1∑
n=1

λ̃(En(z))

22n
.

Fix any α ∈ (γ, 2). By Hölder’s inequality ( 1p + 1
p′ = 1)

(3.7)

|u2(reiϕ)|p ≤
( 400

1− r

)p
[log2

1
1−r ]+1∑

n=1

λ̃p(En(z))

2αnp

( ∞∑
n=1

1

2(2−α)np′

) p

p′

≤ C(p, γ)

(1− r)p

∞∑
n=1

λ̃p(En(z))

2αnp
.

It follows from the latter inequalities and the assumption of the theorem that

(r ∈ [ 12 , 1))∫ 2π

0

|u2(reiϕ)|p dϕ ≤ C(p, γ)

(1− r)p

∞∑
n=1

∫ 2π

0

λ̃p(En(re
iϕ))

2αnp
dϕ

≤ C(p, γ)

(1− r)p

∞∑
n=1

(2n(1− r))pγ

2αnp

=
C(p, γ)

(1− r)p(1−γ)

∞∑
n=1

2np(γ−α) =
C′(p, γ)

(1 − r)p(1−γ)
.

Hence (∫ 2π

0

|u2(reiϕ)|p dϕ
) 1

p

≤ C′′(γ, p)
(1− r)1−γ

, r ∈ [0, 1).

The sufficiency of Theorem 1.1 is proved.
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Necessity. Using property (d) of Proposition 2.1, we obtain

|u(reiθ)| ≥
∫
C(ϕ, 1−r

2 )

K(reiϕ, ζ) dλ(ζ) ≥ 1

12

∫
C(ϕ, 1−r

2 )

1− r2

|reiϕ − ζ|2 dλ(ζ).

Elementary geometric arguments show that

|reiϕ − ρeiθ| ≤ |reiϕ − eiθ|

for 1 > ρ ≥ r ≥ 0. Since |reiϕ − eiθ|2 = (1 − r)2 + 4r sin2 ϕ−θ
2 , it then follows

that

|u(reiθ)| ≥ 1

12

∫
C(ϕ, 1−r

2 )

1− r2

|reiϕ − eiθ|2 dλ(ρe
iθ)

≥ 1

12(π
2

4 + 1)

1− r2

(1− r)2

∫
C(ϕ, 1−r

2 )

dλ(ρeiθ)

≥ λ(C(ϕ, 1−r
2 ))

12(π
2

4 + 1)(1− r)
.

By the assumption of the theorem we deduce that

C

(1− r)(1−γ)p
≥

∫ 2π

0

|u(reiϕ)|p dϕ ≥ C

∫ 2π

0 λp(C(ϕ, 1−r
2 )) dϕ

(1− r)p
.

Hence ∫ 2π

0

λp
(
C
(
ϕ,

1− r

2

))
dϕ = O((1 − r)γp)

as r ↑ 1. This completes the proof of necessity.

Proof of Theorem 1.10. Due to (2.6) we write

u(z) =−
∫
D̄

Ks(z, ζ) dλ(ζ)

=−
∫
D∗(z, 17 )

Ks(z, ζ) dλ(ζ) −
∫
D̄\D∗(z, 17 )

Ks(z, ζ) dλ(ζ) ≡ u1 + u2.

According to (2.2)

|u1(z)| ≤ C(s)

∫
D∗(z, 17 )

log
∣∣∣1− zζ̄

z − ζ

∣∣∣dμ(ζ).
Its estimate repeats that for the case s = 0.



Vol. 236, 2020 pTH MEANS OF ANALYTIC FUNCTIONS 949

Let us estimate pth means of u2(z). Using Proposition 2.2 and (3.6) we

deduce (cf. proof of Theorem 1.1)

|u2(reiϕ)|p ≤
(([log2

1
1−r ]∑

n=1

∫
En+1\En

+

∫
E1

)
C(s)

|1− reiϕζ̄|s+1
|dλ̃(ζ)|

)p

≤ C

(1− r)(s+1)p

([log2
1

1−r ]+1∑
n=1

|λ̃(En(z))|
2n(s+1)

)p

≤ C

(1− r)(s+1)p

[log2
1

1−r ]+1∑
n=1

|λ̃|p(En(z))

2(s+1− η
2 )np

( ∞∑
n=1

1

2
nηp′

2

) p

p′

≤ C

(1− r)(s+1)p

∞∑
n=1

|λ̃|p(En(z))

2(s+1− η
2 )np

,

where η = s+ 1− γ. It follows from the latter inequalities and the assumption

of the theorem that∫ 2π

0

|u2(reiϕ)|p dϕ ≤ C(p)

(1− r)(s+1)p

∞∑
n=1

∫ 2π

0

|λ̃|(En(re
iϕ))

2(s+1−η
2 )np

dϕ

≤ C(p)

(1− r)(s+1)p

∞∑
n=1

(2n(1− r))pγ

2(s+1− η
2 )np

=
C(p, γ)

(1− r)p(s+1−γ)
, r ∈

[1
2
, 1
)
.

Finally, (∫ 2π

0

|u2(reiϕ)|p dϕ
) 1

p

≤ C(γ, p)

(1− r)s+1−γ
, r ∈

[1
2
, 1
)
.

Proof of Theorem 1.7. Without loss of generality we assume that

suppμu ⊂ {z ∈ D : |1− z| < 2(1− |z|)} =: �.
Necessity. Note that R(1 − δ, πδ) ⊂ C(ϕ, 2δ) for ϕ ∈ [−δ, δ]. Applying

Theorem 1.1 we obtain

(∫ δ

−δ

λp(R(1 − δ, πδ)) dϕ

) 1
p

= O(δ1−α), 0 < δ < 1,

or

μu(R(1 − δ, πδ)) = O(δ−α− 1
p ), 0 < δ < 1.
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Since

(3.8) � ⊂ D
(
0,

1

2

)
∪

∞⋃
n=1

R(1 − 2−n, π2−n)

we deduce

n(1− 2−k, u) ≤ C

k∑
n=1

2n(α+
1
p ) + C = O(2k(α+

1
p )), k ∈ N,

and the assertion follows.

Sufficiency. It follows from the assumptions that

λ(R((1 − δ)eiϕ, 4δ)) = O(δ1−α− 1
p ), δ ↓ 0.

Then

λ(C(ϕ, δ)) ≤λ
( ∞⋃

n=0

R
(
1− δ

2n
eiϕ,

4δ

2n

))

≤C
∞∑

n=0

( δ

2n

)1−α− 1
p

= O(δ1−α− 1
p ), δ ↓ 0.

Since suppμu ⊂ �, we have

∫ π

−π

λp(C(ϕ, δ)) dϕ =

∫ 2πδ

−2πδ

λp(C(ϕ, δ)) dϕ

=O(δδp(1−α− 1
p )) = O(δp(1−α)), δ ↓ 0.

It remains to apply Theorem 1.1. The sufficiency is proved.

In the case of a general Stolz angle of opening β < π, one should choose an

appropriate factor depending on β in the second argument of R in (3.8) instead

of π in the proof of the necessity, and make similar changes in the integral

bounds in the proof of the sufficiency.

Proof of Theorem 1.15. We confine ourselves to the case s = 0. We keep the

notation from the proof of Theorem 1.1. It follows from estimate (3.1) that

(3.9)

∫ π

−π

|u1(reiϕ)|p dϕ ≤(1− r)np−1
(
r +

2

3
(1 − r), u

)
n
(
r +

1

2
(1− r), u

)

=O((1 − r)−αp).
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Let us estimate the pth mean of u2. We use estimate (3.5), the integral of

Minkowski’s inequality ([36, §A1]), and integration by parts to obtain

(∫ π

−π

|u2(reiϕ)|p dϕ
) 1

p

≤C
(∫ π

−π

(∫
D

1− r2

|1− reiϕζ̄|2 dλ(ζ)
)p

dϕ

) 1
p

≤C
∫
D

(∫ π

−π

( 1− r2

|1− reiϕζ̄|2
)p

dϕ

) 1
p

dλ(ζ)

≤C
∫
D

1− r

(1 − r|ζ|)2− 1
p

dλ(ζ)

=C(1 − r)

∫ 1

0

(1− t)dn(t, u)

(1− rt)2−
1
p

≤C(1 − r)

(∫ r

0

dn(t, u)

(1 − t)1−
1
p

+

∫ 1

r

(1− t)dn(t, u)

(1 − r)2−
1
p

)

≤ C

(1− r)1−
1
p

∫ 1

r

n(t, u)dt

=O((1 − r)−α), r ↑ 1.

Here we have used the well-known estimate

∫ π

−π

dϕ

|1− reiϕζ̄|2p ≤ C(p)

(1 − r|ζ|)2p−1

(see, e.g., ([23]). Taking into account (3.9), we obtain the desired estimate.

Proof of Proposition 1.13. Assume that μ([0, 2π)) = C. Then by Fubini’s the-

orem

∫ 2π

0

(μ((x − δ, x+ δ)))p dx ≤(2C)p−1

∫ 2π

0

μ((x− δ, x+ δ)) dx

=(2C)p−1

∫ 2π

0

∫
(x−δ,x+δ)

dμ(y) dx

≤(2C)p−1

∫ 2π+δ

−δ

dμ(y)

∫
(y−δ,y+δ)

dx

≤(2C)p−12δμ((−δ, 2π + δ))

≤3(2C)pδ.
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4. Examples

We finish the paper with several examples. The subharmonic function con-

structed in Example 4.1 shows that the assumption γ < 2 in Theorem 1.1

cannot be relaxed. In its turn, Examples 4.2 and 4.3 show sharpness of the es-

timates given by Theorem 1.11 for infinitely many values of parameters. While

in Example 4.2 a canonical product is constructed, in Example 4.3 we have

an analytic function without zeros, so the complete measure coincides with the

Stieltjes measure.

Example 4.1: Let

dμ(z) =
dA(z)

1− |z| ,

where A is the planar Lebesgue measure, and u(z) = U(z;μ, 0) be the Green

potential. Then the complete measure λ coincides with A, thus λ(C(ϕ, δ)) � δ2,

and consequently, (∫ 2π

0

λp(C(ϕ, δ)) dϕ
) 1

p

� δ2.

On the other hand, using the equality

1

2π

∫ 2π

0

log |eiϕ − a|dϕ = log+ |a|,

we deduce that

u(reiθ) =

∫ 1

0

∫ 2π

0

log
|reiθ − ρeiϕ|

|1− reiθρe−iϕ|dϕ
ρdρ

1− ρ

=2π

∫ 1

0

(
log r + log+

ρ

r
− log+(rρ)

) dρ

1− ρ

=2π

∫ r

0

log r
ρdρ

1− ρ
+ 2π

∫ 1

r

log ρ
ρdρ

1− ρ

=2π log r
(
log

1

1− r
− r

)
+O(1 − r)

=− (2π + o(1))(1 − r) log
1

1− r
, r ↑ 1.

Therefore,

mp(r, u) = (1 + o(1))2π(1 − r) log
1

1− r
, r ↑ 1.

Hence, the assertion of Theorem 1.1 does not hold for γ = 2.
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Example 4.2: Following Linden [32, Lemma 1], given α ≥ 1, β ∈ [0, 1], we

consider the sequence of complex numbers

(4.1) ak,m = (1− 2−k)eim2−k

, 1 ≤ m ≤ [2kβ ],

where each of the numbers (4.1) is counted [2αk] times. Then for

P(z) = P(z, (ak,m), s),

where s = min{q ∈ N : q > α+ β − 1}, we have (see [32])

n(r,P) �
( 1

1− r

)α+β

, ν(r,P) �
( 1

1− r

)α

, r ↑ 1.

Therefore, by Theorem A [29], ρM [P ] = α. In [32] it is proved that

ρp[log |P|] = α+
β − 1

p
.

We are going to prove that

(4.2)

(∫ 2π

0

λp(C(ϕ, δ)) dϕ
) 1

p

≥ C(δs+1−α− β−1
p ), δ ↓ 0.

It would imply that restriction (1.17) could not be weakened.

We first assume that β ∈ (0, 1). Given δ ∈ (0, δ0) we define ϕδ = δ1−β − πδ,

where δ0 is chosen such that ϕδ > 0. Note that ϕδ ∼ δ1−β , δ ↓ 0. According to

the definition of C(ϕ, δ), ak,m ∈ C(ϕ, δ) if and only if

(4.3) 1− |ak,m| = 2−k ≤ δ, ϕ− πδ ≤ m2−k ≤ ϕ+ πδ.

Let G(ϕ, δ) denote the set of (k,m) such that (4.3) is valid. It is easy to check

that for ϕ ∈ (0, ϕδ) the set G(ϕ, δ) is not empty. Let

k1(ϕ) = min{k : 2−k[2βk] ≤ ϕ+ πδ},
where ϕ ∈ (0, ϕδ). Since k1(ϕ) tends to infinity uniformly with respect to

ϕ ∈ (0, ϕδ) as δ ↓ 0, one can choose δ1 so small that for all δ ∈ (0, δ1), ϕ ∈ (0, ϕδ)

and k ≥ k1(ϕ) the inequality
2−βk

(1−β)(1−2βk) log 2
≤ 1 holds. Under this assumption

we deduce subsequently from the definition of k1 = k1(ϕ) that

(4.4)

|2k1(ϕ+ πδ)− 2βk1 | < 1,

1− 2−βk1

ϕ+ πδ
< 2k1(1−β) <

1 + 2−βk1

ϕ+ πδ
,

|k1 − 1

1− β
log2

1

ϕ+ πδ
| < 1.
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It follows from the definition of ϕδ and (4.4) that

(4.5) 2k1 >
(1− 2−k1β)

1
1−β

δ
>

2

πδ
, 0 < ϕ < ϕδ.

Then, according to (4.3), (4.5) for δ ∈ (0,min{δ0, δ1}) and ϕ ∈ (12ϕδ, ϕδ), δ ↓ 0,

(4.6)

λ(C(ϕ, δ)) =
∑

(k,m)∈G(ϕ,δ)

[2αk]2−k(s+1)

≥
[2k1 (ϕ+πδ)]∑

m=[2k1(ϕ−πδ)]+1

[2αk1 ]2−k1(s+1)

≥[2αk1 ]2−k1(s+1)(2k12πδ − 2) ≥ [2αk1 ]2−k1sπδ

≥πδ
2
2(α−s)k1 ∼ πδ

2

( 1

ϕ

)α−s
1−β

.

It follows from the last estimate that

(∫ 2π

0

(λ(C(ϕ, δ)))pdϕ
) 1

p

≥πδ
2

(∫ ϕδ

ϕδ/2

(ϕ
s−α
1−β )pdϕ

) 1
p

=
π

2( s−α
1−β p+ 1)

δϕ
s−α
1−β + 1

p

∣∣∣ϕδ

ϕδ/2

∼C(s, α, p)δ1+s−α− β−1
p , δ ↓ 0.

In the case β = 1 the arguments could be simplified. By the choice of s,

s > α. For 0 < ϕ ≤ 1
2 , according to (4.3) we deduce

λ(C(ϕ, δ)) =
∞∑

k=[log2
1
δ ]+1

[2k(ϕ+πδ)]∑
m=[2k(ϕ−πδ)]+1

[2αk]2−k(s+1)

≥
∞∑

k=[log2
1
δ ]+1

[2αk]2−k(s+1)(2k2πδ − 2)

≥
∞∑

k=[log2
1
δ ]+1

[2αk]2−ksπδ

≥πδ
2

∞∑
k=[log2

1
δ ]+1

2(α−s)k � δ1+s−α.
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Hence (∫ 2π

0

(λ(C(ϕ, δ)))pdϕ

) 1
p

≥ C(s, α, p)δ1+s−α, δ ↓ 0.

If β = 0, then all zeros ak = 1 − 2−k are located on [0, 1), and s > α − 1. For

ϕ ∈ (−πδ, πδ), we then have according to (4.3)

λ(C(ϕ, δ)) =

∞∑
k=[log2

1
δ ]+1

[2αk]2−k(s+1) ≥ C

∞∑
k=[log2

1
δ ]+1

2(α−s−1)k � δ1+s−α.

Then (∫ 2π

0

(λ(C(ϕ, δ)))pdϕ

) 1
p

≥Cδ1+s−α

(∫ πδ

−πδ

dϕ

) 1
p

=C(s, α, p)δ1+s−α+ 1
p , δ ↓ 0

as required.

Example 4.3: Let f(z) = exp
{(

1
1−z

)q+1}
, q > −1, f(0) = e. In this case

f(z) is of the form (1.19) with (ak) = ∅, ψ∗(θ) = H(θ)m0, m0 > 0, where H(θ)

is the Heaviside function, i.e., λ(ζ) = m0δ(ζ − 1), where δ(·) denotes the Dirac

function. It is easy to check that

(∫ 2π

0

(λ(C(ϕ, δ)))pdϕ

) 1
p

= m0(2πδ)
1
p ,

and mp(r, log |f |) � (1− r)
1
p−q−1.
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Funkcional′ny̆ı Analiz i ih Priloženija 8 (1968), 59–84.
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