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ABSTRACT

We study the number of s-element subsets J of a given abelian group

G, such that |J + J | ≤ K|J |. Proving a conjecture of Alon, Balogh,

Morris and Samotij, and improving a result of Green and Morris, who

proved the conjecture for K fixed, we provide an upper bound on the

number of such sets which is tight up to a factor of 2o(s), when G = Z

and K = o(s/(log n)3). We also provide a generalization of this result

to arbitrary abelian groups which is tight up to a factor of 2o(s) in many

cases. The main tool used in the proof is the asymmetric container lemma,

introduced recently by Morris, Samotij and Saxton.

1. Introduction

In additive combinatorics one of the main objectives of the field is, given an

abelian group G and a finite subset A ⊂ G, to understand the relation between

the sumset A+A and A. In this direction, a fundamental result of Freiman [6]

says that for G = Z, if |A + A| ≤ K|A| (we say that A has doubling con-

stant K), then there is a generalized arithmetic progression P such that A ⊂ P ,

the dimension of P is at most f(K), and |P | ≤ f(K)|A| for some function f .
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This was later generalized to the setting of arbitrary abelian groups by Green

and Ruzsa [9], but many fundamental questions remain open, for example,

whether f can be a polynomial.

Another famous problem in additive combinatorics is the Cameron–Erdős

conjecture about the number of sum-free subsets of [n], which was solved in-

dependently by Green [7] and Sapozhenko [14]. More recently Alon, Balogh,

Morris and Samotij [1] obtained a refinement of the Cameron–Erdős conjecture

using an early form of the method of hypergraph containers. In order to prove

this refinement of the Cameron–Erdős conjecture, they needed a bound on the

number of s-sets A ⊂ [n] with doubling constantK. They moreover conjectured

that the following stronger (and, if true, best possible) bound holds.

Conjecture 1.1 (Alon, Balogh, Morris and Samotij): For every δ > 0, there

exists C > 0 such that the following holds. If s ≥ C log n and if K ≤ s/C, then

there are at most

2δs
(1

2Ks

s

)

sets J ⊂ [n] with |J | = s and |J + J | ≤ K|J |.

The conjecture was later confirmed for K constant by Green and Morris [8];

in fact they proved a slightly more general result: for each fixed K and as

s → ∞, the number of sets J ⊂ [n] with |J | = s and |J + J | ≤ K|J | is at most

2o(s)
(1

2Ks

s

)
n�K+o(1)�.

The authors of [8] used this result to bound the size of the largest clique in a

random Cayley graph and recently the result was also applied by Balogh, Liu,

Sharifzadeh and Treglown [2] to determine the number of maximal sum-free sets

in [n].

Our main theorem confirms Conjecture 1.1 for all K = o(s/(log n)3).

Theorem 1.2: Let s, n be integers and 2 ≤ K ≤ o( s
(logn)3 ). The number of

sets J ⊂ [n] with |J | = s such that |J + J | ≤ K|J | is at most

2o(s)
(1

2Ks

s

)
.

We will in fact prove stronger bounds on the error term than those stated

above, see Theorem 4.1. Nevertheless, we are unable to prove the conjecture in

the range K = Ω(s/(logn)3), and actually the conjecture is false for a certain
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range of values of s and K � s/ logn. More precisely, for any integers n, s, and

any positive numbers K, ε with

min{s, n1/2−ε} ≥ K ≥ 4 log(24C)s

ε logn
,

there are at least ( n
2
K
4

)( Ks
8

s− K
4

)
≥

(
CKs

s

)

sets J ⊂ [n] with |J | = s and |J + J | ≤ Ks. The construction1 is very simple:

let P be an arithmetic progression of size Ks/8 and set J = J0 ∪ J1, where J0

is any subset of P of size s−K/4, and J1 is any subset of [n] \ P of size K/4.

For convenience we provide the details in the appendix of [5].

Our methods also allow us to characterize the typical structure of an s-set

with doubling constant K, and obtain the following result.

Theorem 1.3: Let s, n be integers and 2 ≤ K ≤ o( s
(logn)3 ). For almost all sets

J⊂ [n] with |J |=s such that |J+J |≤K|J |, there is a set T ⊂J such that J \T
is contained in an arithmetic progression of size 1+o(1)

2 Ks and |T | = o(s).

In the case s = Ω(n) (and hence K = O(1)), this result was proved by Mazur

[11]. We will provide better bounds for the error terms in Theorem 5.1, below.

1.1. Abelian groups. Notice that the doubling constant is defined for finite

subsets of any abelian group. So, given a finite subset Y of an abelian group,

one might ask: how many subsets of Y of size s with doubling constant K are

there? We are also able to provide an answer to this more general question.

From now on, fix an arbitrary abelian group G throughout the paper. To state

our main result formally in the context of general abelian groups we define,

for each positive real number t, the quantity β(t) to be the size of the biggest

subgroup of G of size at most t, that is,

(1) β(t) = max{|H | : H � G, |H | ≤ t}.

Theorem 1.4: Let s, n be integers, 2≤K≤o( s
(logn)3 ), and Y ⊂G with |Y |=n.

The number of sets J ⊂ Y with |J | = s such that |J + J | ≤ K|J | is at most

2o(s)
(1

2 (Ks+ β)

s

)
,

where β := β((1 + o(1))Ks).

1 We would like to thank Rob Morris for pointing out this construction.
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Again we will actually prove somewhat stronger (although slightly more con-

voluted) bounds for Theorem 1.4; see Theorem 4.1. We remark that Theo-

rem 1.4 implies Theorem 1.2, since the only finite subgroup of Z is the trivial

one, so in this case β(t) = 1 for all t. Finally, let us remark that Theorem 1.4

is best possible in many cases. Indeed suppose for some integers l,m that the

largest subgroup H � G with |H | ≤ m ≤ |G| is of size

β =
m

2l − 1
;

then there are at least (m+β
2

s

)

sets J ⊂ G of size s such that |J + J | ≤ m. To see this, take an arithmetic

progression P ⊂ G/H of size l (there exists one because of the choice of H) and

consider B = P +H . Since |B +B| ≤ |P + P ||H | = m, for every set J ⊂ B of

size s we have

|J + J | ≤ |B +B| ≤ m.

Therefore, there are at least

( lm
2l−1

s

)
=

(m+β
2

s

)

sets J ⊂ B of size s with |J + J | ≤ m.

1.2. The method of hypergraph containers. Before diving into the proof

of the main results, let us briefly mention the main tool used in the proof of

Theorem 1.2. The method of hypergraph containers, introduced by Balogh,

Morris and Samotij [3] and independently by Saxton and Thomason [15], has

proven to be a very useful tool in counting problems that involve forbidden

structures; for a general overview of the method and its applications see [4].

More recently, Morris, Samotij and Saxton [12] introduced asymmetric con-

tainers, a generalization of hypergraph containers for forbidden structures with

some sort of asymmetry, and applied the method to give a structural character-

ization of almost all graphs with a given number of edges free of an induced C4.

A variant of the asymmetric container lemma, which follows essentially from a

minor modification of the proof in [12], will be our main tool in this article; we

give more details in the next section.
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2. The asymmetric container lemma

In this section we will state our main tool and give a brief explanation of how

we will apply it to our problem. Let Y ⊂ G, with |Y | = n, and observe that

when trying to count sets J ⊂ Y with |J | = s and |J + J | ≤ Ks, one may

instead count sets J ⊂ Y such that there is a set I ⊂ Y with J + J ⊂ I and

|I| ≤ Ks. Keeping this in mind, the following definition will be useful.

Definition 2.1: Given disjoint copies of Y +Y and Y , namely Y0, Y1 respectively,

and A ⊂ Y0 and B ⊂ Y1, we define H(A,B) to be the hypergraph with vertex

set

V (H(A,B)) := (Y0 \A) ∪B

and edge set

E(H(A,B)) := {({c}, {a, b}) : c ∈ Y0 \A, a, b ∈ B, a+ b = c}.

Sometimes when A and B are clear from the context we will denote H(A,B)

simply byH. Notice thatH(A,B) is not uniform since there are edges ({c}, {a})
corresponding to a + a = c, but these will not be a problem. The usefulness

of Definition 2.1 is that now for every pair of sets (I, J) with J + J ⊂ I we

know that (Y0 \ I) ∪ J doesn’t contain any edges of H(A,B), so (Y0 \ I) ∪ J

would usually be called an independent set, but instead we will call the pair

(I, J) independent for convenience. Since we have a method for counting what

are usually called independent sets in hypergraphs, and each of those is in

correspondence to what we call an independent pair, we can obtain a theorem

for counting independent pairs.

To state the main tool in this article we will need to go into some more slightly

technical definitions. We first define a useful generalization of uniform hyper-

graphs, that includes the hypergraph presented in Definition 2.1. Given disjoint

finite sets V0, V1 we define an (r0, r1)-bounded hypergraph H on the vertex set

V = V0 ∪ V1 to be a set of edges E(H) ⊂
(

V0

≤r0

)
×

(
V1

≤r1

)
. Note that the hyper-

graph in Definition 2.1 is (1, 2)-bounded. Given a pair (W0,W1) ∈ 2V0 × 2V1 ,

we say (W0,W1) violates (e0, e1) ∈ E(H) if e0 ⊂ V0 \W0 and e1 ⊂ W1. If a set

(W0,W1) doesn’t violate any (e0, e1) ∈ E(H) then we call (W0,W1) indepen-

dent with respect to H. Let F≤m(H) ⊂ 2V (H) be the family of independent

pairs (W0,W1) such that |W0| ≤ m, and observe that for any pair of sets

(I, J), with |I| ≤ m and J + J ⊂ I, we have (I, J) ∈ F≤m(H(∅, Y )). We define
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the codegree d(L0,L1)(H) of L0 ⊂ V0, L1 ⊂ V1 to be the size of the set

{(e0, e1) ∈ E(H) : L0 ⊂ e0, L1 ⊂ e1}

and we define the maximum (�0, �1)-codegree of H to be

Δ(�0,�1) := max{d(L0,L1)(H) : L0 ⊂ V0, L1 ⊂ V1, |L0| = �0, |L1| = �1}.

With all of this in mind we introduce a variant of the asymmetric container

lemma of Morris, Samotij and Saxton [12] that we can, once we have a suitable

supersaturation theorem to check the codegree condition, apply iteratively and

prove Theorem 1.2.

Theorem 2.2: For all non-negative integers r0, r1, not both zero, and each

R > 0, the following holds. Suppose that H is a non-empty (r0, r1)-bounded hy-

pergraph with V (H)=V0∪V1, and b, m, and q are integers with b≤min{m, |V1|},
satisfying

(2) Δ(�0,�1)(H) ≤ R
b�0+�1−1

m�0 |V1|�1
e(H)

(m
q

)1[�0>0]

for every pair (�0, �1) ∈ {0, 1, . . . , r0} × {0, 1, . . . , r1} \ {(0, 0)}. Then there

exists a family S ⊂
(

V0

≤r0b

)
×

(
V1

≤r1b

)
and functions f : S → 2V0 × 2V1 and

g : F≤m(H) → S, such that, letting δ = 2−(r0+r1+1)(r0+r1)R−1:

(i) If f(g(I, J)) = (A,B) with A ⊂ V0 and B ⊂ V1, then A ⊂ I and J ⊂ B.

(ii) For every (A,B) ∈ f(S) either |A| ≥ δq or |B| ≤ (1− δ)|V1|.
(iii) If g(I, J) = (S0, S1) and f(g(I, J)) = (A,B), then S0 ⊂ V0 \ I and

S1 ⊂ J , and |S0| > 0 only if |A| ≥ δq.

The proof of this variant of the asymmetric container lemma is virtually

identical to that in [12], but, for the sake of completeness, it is provided in the

appendix of [5]. Let us remark that the main difference between this statement

of the asymmetric container lemma and the one in [12] is that we partition

the vertex set in two parts and treat them differently, which is essential in our

application. More specifically, we will apply the container lemma iteratively

in such a way that V1 will shrink much more than V0, and to account for this

imbalance we must differentiate between the two sets of the partition. Another

small difference is that the hypergraph H doesn’t need to be uniform. Finally

we observe that if S0 is non-empty, where g(I, J) = (S0, S1), then we must have

|A| ≥ δq, where f(g(I, J)) = (A,B).
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3. The Supersaturation results

We would like to remind the reader that G will always be a fixed abelian group

throughout the paper. To apply Theorem 2.2 to our setting we will need, for

sets A,B ⊂ G, bounds on the number of pairs (b1, b2) ∈ B × B such that

b1 + b2 �∈ A. In the case G = Z, one such result is Pollard’s theorem [13], which

tells us that if |B| ≥ (1/2 + ε)|A| and ε < 1/2 then at least an ε2 proportion of

all pairs (b1, b2) ∈ B×B are such that b1 + b2 �∈ A. To prove similar results for

arbitrary abelian groups one has to have some control on the structure of the

group. With this in mind, we define the following quantity.

Definition 3.1: Given finite sets U, V ⊂ G, we define

α(U, V ) = max{|V ′| : V ′ ⊂ G, |V ′| ≤ |V |, |〈V ′〉| ≤ |U |+ |V | − |V ′|}.

Given U, V ⊂ G and x ∈ G we will use the notation 1U ∗ 1V (x) to denote the

number of pairs (u, v) ∈ U × V such that u+ v = x. The following theorem is

the generalization we want of Pollard’s theorem for arbitrary abelian groups. It

is a simple variant of a result of Hamidoune and Serra [10], but for completeness

we provide a proof in the appendix of [5].

Theorem 3.2: Let t be a positive integer and U, V ⊂G with t ≤ |V | ≤ |U | < ∞.

Then

(3)
∑
x∈G

min(1U ∗ 1V (x), t) ≥ t(|U |+ |V | − t− α),

where α := α(U, V ).

This implies the following corollary.

Corollary 3.3: Let A,B ⊂ G be finite and non-empty sets, let 0 < ε < 1
2 and

set β := β((1 + 4ε)|A|). If |B| ≥ ( 12 + ε)(|A| + β) then there are at least ε2|B|2
pairs (b1, b2) ∈ B2 such that b1 + b2 �∈ A.

Proof. Note first that if |B| ≥ (1+ ε)|A| then the result is trivial, since for each

element a ∈ A there are at most |B| pairs (b1, b2) ∈ B2 with b1 + b2 = a, and

therefore there are at least |B|2 − |A||B| ≥ ε2|B|2 pairs in B whose sum is not

in A. When |B| ≤ (1 + ε)|A| we will apply Theorem 3.2 with U = V = B

and t = ε|B|. We first observe that

α(B,B) ≤ max(β, 2|B| − (1 + 4ε)|A|).
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Indeed, suppose that B′ ⊂ G satisfies |〈B′〉| ≤ 2|B|−|B′|. If |〈B′〉| > (1+4ε)|A|
then |B′| ≤ 2|B|− |〈B′〉| ≤ 2|B|− (1+4ε)|A|. Otherwise, if |〈B′〉| ≤ (1+4ε)|A|,
then by the definition (1) of β, we have |B′| ≤ |〈B′〉| ≤ β.

Now by Theorem 3.2, we have∑
x∈G

min(1B ∗ 1B(x), ε|B|) ≥ ε|B|((2 − ε)|B| −max(β, 2|B| − (1 + 4ε)|A|)).

By subtracting from both sides the sum over x ∈ A, we obtain∑
x∈G\A

min(1B ∗1B(x), ε|B|) ≥ ε|B|((2−ε)|B|−max(β, 2|B|−(1+4ε)|A|)−|A|).

Now, if 2|B| − (1 + 4ε)|A| ≥ β, then, using that |B| ≤ 2|A|,∑
x∈G\A

1B ∗ 1B(x) ≥ ε|B|(4ε|A| − ε|B|) ≥ ε2|B|2

as required. Otherwise, if β ≥ 2|B| − (1 + 4ε)|A|, then∑
x∈G\A

1B ∗ 1B(x) ≥ ε|B|((2 − ε)|B| − β − |A|) ≥ ε2|B|2,

since |B| ≥ (12 + ε)(|A| + β) and 0 < ε < 1
2 , so (2− ε)− 2

1+2ε ≥ ε.

To prove a stability theorem for almost all sets with a given size and doubling

constant we will also need the following result of Mazur [11].

Theorem 3.4: Let l and t be positive integers, with t ≤ l/40, and let B ⊂ Z

be a set of size l. Suppose that∑
x∈Z

min(1B ∗ 1B(x), t) ≤ (2 + δ)lt,

for some 0 < δ ≤ 1/8. Then there is an arithmetic progression P of length at

most (1 + 2δ)l + 6t containing all but at most 3t points of B.

From Theorem 3.4 we can easily deduce the following corollary:

Corollary 3.5: Let s be an integer, K > 0, and 0 < ε < 2−10. If A,B ⊂ Z,

with (1 − ε)Ks
2 ≤ |B| ≤ (1 + 2ε)Ks

2 and |A| ≤ Ks, then one of the following

holds:

(a) There are at least 4ε2K2s2 pairs (b1, b2) ∈ B2 such that b1 + b2 �∈ A.

(b) There is an arithmetic progression P of size at most Ks
2 + 32εKs con-

taining all but at most 8εKs points of B.
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Proof. Suppose first that

(4)
∑
x∈Z

min(1B ∗ 1B(x), t) ≤ (2 + 8ε)2ε|B|Ks.

In this case we apply Theorem 3.4 with l := |B|, δ := 8ε, and t = 2εKs ≤ l/40,

and deduce that (b) holds. Therefore suppose (4) doesn’t hold; in this case∑
x∈Z\A

min(1B ∗ 1B(x), t) ≥ (2 + 8ε)(1− ε)εK2s2 − t|A|,

since |B| ≥ (1− ε)12Ks. Noting that t|A| ≤ 2εK2s2 it follows that
∑

x∈Z\A
1B ∗ 1B(x) ≥ ((2 + 8ε)(1− ε)− 2)εK2s2 ≥ 4ε2K2s2,

since ε < 2−10, so (a) holds as required.

4. The number of sets with a given doubling

In this section we prove the following statement which implies Theorems 1.2

and 1.4.

Theorem 4.1: Let s, n be integers, let 2 ≤ K < 2−36 s
(log n)3 , and let Y ⊂ G

with |Y | = n. The number of sets J ⊂ Y with |J | = s such that |J + J | ≤ K|J |
is at most

exp(29λK1/6s5/6
√
logn)

(1
2 (Ks+ β)

s

)
,

where

β := β(Ks+ 26K7/6s5/6
√
logn) and λ := min

{ K

K − 2
, log s

}
.

Theorem 4.1 will follow easily from the following container theorem combined

with Corollary 3.3. We will also use it together with Corollary 3.5 to prove

Theorem 5.1.

Theorem 4.2: Letm,n be integers with m ≥ (logn)2, let Y ⊂ G with |Y | = n,

and let 0 < ε < 1
4 . There is a family A ⊂ 2Y+Y × 2Y of pairs of sets (A,B), of

size

(5) |A| ≤ exp
(
216

1

ε2
√
m(log n)3/2

)
,

such that:
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(i) For every pair of sets J ⊂ Y , I ⊂ Y + Y , with J + J ⊂ I and |I| ≤ m

there is (A,B) ∈ A such that A ⊂ I and J ⊂ B.

(ii) For every (A,B) ∈ A, |A| ≤ m and either |B| ≤ m
logn or there are at

most ε2|B|2 pairs (b1, b2) ∈ B ×B such that b1 + b2 �∈ A.

Proof that Theorem 4.2 implies Theorem 4.1. Let A be a family given by The-

orem 4.2 applied with m := Ks and ε > 0 to be chosen later. Then by condi-

tion (i), for every s-set J with doubling constant K there is a pair (A,B) ∈ A
such that J ⊂ B and A ⊂ J + J . Define B to be the family of all sets B that

are in some container pair, that is

B = {B ⊂ Y : ∃A such that (A,B) ∈ A}.

Observe that, by Corollary 3.3 and condition (ii) on A, for every B ∈ B we

have |B| ≤ (12 + ε)(m+ β), where β := β((1 + 4ε)m), since the number of pairs

(b1, b2) ∈ B2 such that b1+ b2 �∈ A is at most ε2|B|2 and m
logn ≤ (12 + ε)(m+β).

Therefore the number of sets of size s with doubling constant K is at most

(6) |B|max
B∈B

(
|B|
s

)
≤ exp

(
216

1

ε2

√
Ks(log n)3/2

)(
(1+2ε

2 )(Ks+ β)

s

)
.

Let λ := min{ K
K−2 , log s}; suppose first that K

K−2 ≤ log s. By applying the

inequality
(
cn
k

)
≤ ( cn−k

n−k )k
(
n
k

)
with k = s, c = 1 + 2ε and n = Ks+β

2 , it follows

that in this case (6) is at most

exp

(
216

1

ε2

√
Ks(log n)3/2 + 2ελs

)(Ks+β
2

s

)
.

Now choosing ε := 24(Ks )
1/6√

logn, by our restrictions on K we see that

ε < 24
( 1

236(logn)3

)1/6√
logn =

1

4
.

It follows that there are at most exp (29λK1/6s5/6
√
logn)

( 1
2 (Ks+β)

s

)
sets of size s

with doubling constant K, when K
K−2 ≤ log s. If log s ≤ K

K−2 we use the

binomial estimate(
(1+2ε

2 )(Ks+ β)

s

)
≤ exp

(
4εs log

1

ε

)(Ks+β
2

s

)

and the result follows by a similar calculation. Since

β(m+ 4εm) = β(Ks+ 26K7/6s5/6
√
logn),

this proves the theorem.
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Before we proceed with the proof of Theorem 4.2, let us give a brief overview

of how we will deduce it from Theorem 2.2. We fix from now on a finite subset

Y ⊂ G with |Y | = n, and recall that the (1, 2)-bounded hypergraph H(A,B) in

Definition 2.1 was defined to have as edges pairs ({c}, {a, b}) where a + b = c,

with a, b ∈ B and c �∈ A. Note that condition (ii) in Theorem 4.2 implies that

H(A,B) has at most ε2

2 |B|2 edges, as long as |B| > m
logn . We remind the reader

that a pair of sets I ⊂ Y + Y and J ⊂ Y with J + J ⊂ I correspond to an

independent set in H(A,B) for any A ⊂ Y + Y and B ⊂ Y , since there are

no c �∈ I and a, b ∈ J such that a + b = c. If we additionally assume that

(I, J) ∈ F≤m(H), then we know that every J that is in such an independent

pair satisfies |J + J | ≤ m.

Our strategy will be to iteratively apply the container lemma until either

there are few edges in the hypergraph H(A,B), or |A| > m, in which case the

container doesn’t contain any elements of F≤m(H). More precisely we will build

a rooted tree T with root H(∅, Y ) whose vertices correspond to hypergraphs

H(A,B) and whose leaves correspond to a family A satisfying the conclusion

of Theorem 4.2. Given a vertex H(A,B) of the tree, such that

|A| ≤ m, |B| > m

logn

and

(7) e(H(A,B)) >
ε2

2
|B|2,

we will generate its children by applying the following procedure:

(a) Apply the asymmetric container lemma (Theorem 2.2) toH := H(A,B)

setting

R :=
2

ε2
, q :=

m

logn
, b :=

√
m

logn
.

Notice that the co-degrees of H satisfy

max{Δ(1,0)(H),Δ(0,1)(H)} ≤ |B| = 2

ε2
ε2|B|2
2|B| ≤ R

e(H)

|B|
and

Δ(0,2)(H) =Δ(1,1)(H) = Δ(1,2)(H) = 1

=
2

ε2
b2

q|B|2
ε2

2
|B|2

≤R
b2

q|B|2 e(H),
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since (7) holds. Since b < q < |B|, it follows that

Δ(0,2)(H) ≤R
b2

q|B|2 e(H) ≤ R
b

|B|2 e(H),

Δ(1,1)(H) ≤R
b2

q|B|2 e(H) ≤ R
b

q|B|e(H)

and

Δ(1,0)(H) ≤R
e(H)

|B| ≤ R
e(H)

q
,

as required.

(b) By Theorem 2.2, there exists a family C ⊂ 2(Y+Y )\A × 2B of at most

(8)

(
n2

b

)(
|B|
2b

)
≤ n4b ≤ e4

√
m logn

pairs of sets (C,D) that satisfies the conditions of the container lemma.

That is for each independent pair (I, J) ∈ F≤m(H), with I ⊂ Y + Y

and J ⊂ Y , there is (C,D) ∈ C such that C ⊂ I and J ⊂ D, and either

|C| ≥ δ m
logn or D ≤ (1 − δ)|B|.

(c) For each (C,D) ∈ C, let H(A∪C,D) be a child ofH(A,B) in the tree T .

Now to count the number of leaves of T we will first bound its depth.

Lemma 4.3: The tree T has depth at most d = 214ε−2 log n.

Proof. We will prove that after d iterations either |A| > m or

|B| ≤ m

logn
e(H(A,B)) ≤ ε2

2
|B|2.

Notice that the δ provided by Theorem 2.2 in this application is 2−13ε2 and in

each iteration either we increase the size of A by δq or we decrease the size of B

by δ|B|. After d iterations, either we would have increased the size of A more

than d
2 times, in which case

|A| > d

2
δq =

213 logn

ε2
2−13ε2

m

logn
= m,

or we would have reduced the size of B at least d
2 times, in which case

|B| ≤ (1− δ)
d
2n < e−

δd
2 n ≤ e− lognn = 1.

In either case, we would have stopped already by this point because we only

generate children of H(A,B) if |A| ≤ m, |B| > m
logn and (7) holds.
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Proof of Theorem 4.2. Let L be the set of leaves of the tree T constructed

above, and define

A := {(A,B) : A ⊂ Y + Y, B ⊂ Y, H(A,B) ∈ L, |A| ≤ m}.

Notice that for every (A,B) ∈ A, we have either the bound e(H(A,B)) ≤ ε2

2 |B|2
or |B| ≤ m

logn , since they come from the leaves of T and |A| ≤ m. Since the

edges of H(A,B) correspond exactly to pairs a, b ∈ B such that a + b �∈ A, it

follows that A has property (ii).

To bound the size of A, notice that the number of leaves of the tree T is at

most Zd where Z denotes the maximum number of children of a vertex of the

tree and d denotes its depth. Thus, by (8) and Lemma 4.3,

|A| ≤ |L| ≤ Zd ≤ exp
(
216

1

ε2
√
m(log n)3/2

)
,

so A satisfies (5), as required.

Finally, observe that for every pair of sets J ⊂ Y, I ⊂ Y + Y with J + J ⊂ I

and |I| ≤ m, there is (A,B) ∈ A such that A ⊂ I and J ⊂ B. Indeed

(I, J) ∈ F≤m(H(∅, Y )) and therefore, by property (b) of our containers, there

exists a path from the root to a leaf of T such that A ⊂ I and J ⊂ B for every

vertex H(A,B) of the path, so (i) holds.

5. A typical structure result

In this section we use Theorem 4.2 to determine the typical structure of a set

J ⊂ [n] of a given size with doubling constant K.

Theorem 5.1: Let s, n be integers, let 2 ≤ K ≤ s
2120(log n)3 , and let J ⊂ [n]

be a uniformly chosen random set with |J | = s and |J + J | ≤ K|J |. With

probability at least 1 − exp(−K1/6s5/6
√
logn) the following holds: there is a

set T ⊂ J , of size

|T | ≤ 215K1/6s5/6
√
logn,

such that J \ T is contained in an arithmetic progression of size

Ks

2
+ 217K7/6s5/6

√
logn.

The proof of Theorem 5.1 is similar to that of Theorem 4.1, but we use

Corollary 3.5 as well as Corollary 3.3.
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Proof of Theorem 5.1. Let G := Z and apply Theorem 4.2 to the set Y := [n]

with m := Ks and ε > 0 to be chosen later. We say B ⊂ [n] is (ε,Ks)-close

to an arithmetic progression if there is an arithmetic progression P with

|P | ≤ Ks
2 + 25εKs, and a set T ⊂ B with |T | ≤ 25ε|B| such that B \ T ⊂ P .

We claim that if A is the family provided by Theorem 4.2, then for every pair

(A,B) ∈ A either

(I) |B| ≤ (1− ε)Ks
2 or

(II) B is (ε,Ks)-close to an arithmetic progression.

To see this, note first that, by condition (ii) in Theorem 4.2, for every pair

(A,B) ∈ A either there are at most ε2|B|2 pairs b1, b2 ∈ B with b1 + b2 �∈ A

or |B| ≤ m
logn , and so, by Corollary 3.3, |B| ≤ (1 + 2ε)Ks

2 . Now, if (I) doesn’t

hold, that is |B| ≥ (1− ε)Ks
2 , then, by Corollary 3.5, (II) holds, since there are

at most ε2|B|2 < 4ε2K2s2 pairs b1, b2 ∈ B such that b1 + b2 �∈ A.

Now we will count the number of sets J of size s and doubling constant K

such that J is not (24ε,Ks)-close to an arithmetic progression. Recall from

Theorem 4.2 (i) that, for any such set, there exists (A,B) ∈ A such that J ⊂ B.

Now, observe that there are at most |A|
(
(1−ε)Ks

2
s

)
sets J of size s that are

contained in a set B such that (A,B) ∈ A and |B| ≤ (1− ε)Ks
2 . Choosing

ε := 26
(K
s

)1/6√
logn < 2−10

and using the bound (5) on the size of A, we obtain

(9)

|A|
(
(1− ε)Ks

2

s

)
≤ exp(216ε−2

√
Ks(logn)3/2 − εs)

(Ks
2

s

)

≤ exp(−25K1/6s5/6(logn)1/2)

(Ks
2

s

)
.

Finally, we count the number of sets J of size s that are not (24ε,Ks)-close

to an arithmetic progression and are contained in a set B such that (A,B) ∈ A
and B is (ε,Ks)-close to an arithmetic progression. For each such B, let P be

an arithmetic progression with |P | ≤ Ks
2 + 25εKs, and T ⊂ B be a set with

|T | ≤ 25ε|B| ≤ 25εKs, such that B \ T ⊂ P . Observe that there at most

(10)
∑

s′≥29εs

(
(1 + 2ε)Ks

2

s− s′

)(
25εKs

s′

)

s-sets J ⊂ B that are not (24ε,Ks)-close to an arithmetic progression, since

they must have s−s′ elements in B \T and s′ elements in T for some s′ ≥ 29εs.
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Indeed, otherwise J \ T ⊂ P , with |P | ≤ Ks+ 29εKs and |J ∩ T | < 29ε|J |. To
bound this we will use (

a

c− d

)(
b

d

)
≤

(
a

c

)(
4bc

ad

)d

,

valid for d ≤ c ≤ a/4. Note that, by our choice of ε, we have |A| ≤ eεs (cf. (9)).

Hence summing (10) over (A,B) ∈ A we obtain2

(11)

|A| · s max
s′≥29εs

(1 + 4ε)s
( Ks

2

s− s′

)(
25εKs

s′

)

≤|A| · s max
s′≥29εs

(1 + 4ε)s
(Ks

2

s

)(
28εs

s′

)s′

≤
(
28εs

29εs

)29εs

26εs
(Ks

2

s

)

≤ exp(−211K1/6s5/6
√
logn)

(Ks
2

s

)
.

Finally observe that the bound (9) and (11) imply the probability we claimed in

the statement since, by taking all subsets of size s of an arithmetic progression of

length Ks
2 , there are at least

(Ks
2
s

)
sets of size s and doubling constant K.
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