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ABSTRACT

The spectral radius of a graph is the largest eigenvalue of its adjacency

matrix. Let F(λ) be the family of connected graphs of spectral radius ≤ λ.

We show that F(λ) can be defined by a finite set of forbidden subgraphs

if and only if λ < λ∗ :=
√

2 +
√
5 ≈ 2.058 and λ �∈ {α2, α3, . . . }, where

αm=β
1/2
m +β

−1/2
m and βm is the largest root of xm+1=1+ x+ · · ·+ xm−1.

The study of forbidden subgraphs characterization for F(λ) is motivated

by the problem of estimating the maximum cardinality of equiangular lines

in the n-dimensional Euclidean space Rn—a family of lines through the

origin such that the angle between any pair of them is the same. Denote

by Nα(n) the maximum number of equiangular lines in Rn with angle

arccosα. We establish the asymptotic formula Nα(n)=cαn+Oα(1) for

every α ≥ 1
1+2λ∗ . In particular,

N1/3(n) = 2n+ O(1) and N1/5(n), N1/(1+2
√

2)(n) =
3

2
n+ O(1).

Besides we show that

Nα(n) ≤ 1.49n+Oα(1) for every α �= 1
3
, 1
5
, 1
1+2

√
2
,

which improves a recent result of Balla, Dräxler, Keevash and Sudakov.

1. Introduction

The spectral radius of a graph G, denoted by λ1(G), is the largest eigen-

value of its adjacency matrix. Let F(λ) be the family of connected graphs of

spectral radius ≤ λ. It is well known that λ1 is monotone in the sense that

λ1(G1) ≤ λ1(G2) if G1 is a subgraph of G2, moreover λ1(G1) < λ1(G2) if G1 is

a proper subgraph of a connected graph G2. This implies that F(λ) is closed

under taking connected subgraphs. It is natural to ask if F(λ) can be defined

by a finite set of forbidden subgraphs. We determine the set of λ for which the

answer is yes.

Theorem 1: For m = 1, 2, . . . , let βm be the largest root of

xm+1 = 1 + x+ · · ·+ xm−1,

and let
αm := β1/2

m + β−1/2
m .

For every λ < λ∗ :=
√

2 +
√
5 such that λ �∈ {α2, α3, . . . }, there exist finitely

many graphs G1, G2, . . . , Gn such that F(λ) consists exactly of the connected

graphs which do not contain any of G1, G2, . . . , Gn as a subgraph. However,

the same conclusion does not hold for any λ ∈ {α2, α3, . . . } ∪ [λ∗,∞).
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The mysterious number λ∗ has appeared before in the study of F(λ). After

Smith [Smi70] precisely determined the graphs in F(2), Cvetković, Doob and

Gutman [CDG82] classified the graphs in F(λ∗), which were later completely

described by Brouwer and Neumaier [BN89]. On the face of it, for λ < λ∗,
Theorem 1 may appear to be an immediate consequence of Brouwer and Neu-

maier’s theorem. However, Theorem 1 is genuinely about the minimal graphs

outside F(λ).

Our motivation to understand the forbidden subgraphs characterization for

F(λ) comes from the problem of estimating the maximum cardinality N(n) of

equiangular lines in the n-dimensional Euclidean space Rn—a family of lines

through the origin such that the angle between any pair of them is the same.

It is considered to be one of the founding problems of algebraic graph theory

to determine N(n). The “absolute bound” N(n) ≤ (
n+1
2

)
was established by

Gerzon (see [LS73, Theorem 3.5]). For a long time, it was an open problem

to determine whether n2 is the correct order of magnitude until a remarkable

construction of de Caen [dC00] shows that N(n) ≥ 2
9 (n+ 1)2 for n of the form

n = 6 · 4k − 1 (see [GKMS16] for a generalization and [JW15] for an alterna-

tive construction). In these constructions, the common angle tends to π/2 as

dimension grows.

The question of determining the maximum number Nα(n) of equiangular lines

in Rn with common angle arccosα was first raised by Lemmens and Seidel [LS73]

in 1973, who showed that N1/3(n) = 2n − 2 for n ≥ 15 and also conjectured

that N1/5(n) equals 	3(n− 1)/2
 for n sufficiently large. This conjecture was

later confirmed by Neumaier [Neu89] (see also [GKMS16]).

In the absence of exact formulas for Nα(n) except when α = 1/3, 1/5, vari-

ous upper bounds were established. The “relative bound” Nα(n) ≤ 1−α2

1−nα2 · n
is valid in small dimensions n < 1/α2 (see [vLS66, Lemma 6.1] and [LS73,

Theorem 3.6]), and a general bound attributed to Neumann [LS73, Theo-

rem 3.4] states that Nα(n) ≤ 2n unless 1/α is an odd integer. For many

years, a linear upper bound for Nα(n) was not known when 1/α is an odd in-

teger bigger than 5. Important progress was recently made by Bukh [Buk16],

who proved that Nα(n) ≤ cαn for some cα = 2O(1/α2). Subsequently, Balla,

Dräxler, Keevash and Sudakov [BDKS18] drastically improved the upper bound

to Nα(n) ≤ 1.93n for sufficiently large n relative to α whenever α �= 1
3 . A uni-

versal upper bound Nα(n) ≤ (2/(3α2)+ 4/7)n+2 for all n ∈ N when 1/α is an

odd integer was later found by Glazyrin and Yu [GY18].
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In this paper, we combine Theorem 1 and the framework developed in

[BDKS18] to establish a result of the formNα(n) = cαn+O(1) for all α ≥ 1
1+2λ∗ .

To describe the coefficient cα, we introduce the following notion.

Definition 1: Given λ > 0, the spectral radius order k(λ) of λ is the smallest

order of a graph with spectral radius λ. In case λ is not the spectral radius of

any graph, we write k(λ) = ∞.

Theorem 2: Given α ∈ (0, 1) such that λ := 1−α
2α ≤ λ∗ :=

√
2 +

√
5, the

maximum number Nα(n) of equiangular lines in Rn with angle arccosα equals

k(λ)

k(λ) − 1
· n+O(1),

where k(λ) is the spectral radius order of λ; in case k(λ) = ∞,

Nα(n) = n+O(1).

Remark 1: Throughout, as all the big-O notations depend on α, we suppress

the subscript in Oα(·).
Applying the above theorem to the connected graphs with 2 or 3 vertices,

whose spectral radii are 1,
√
2 and 2 respectively, we obtain the known

results N1/3(n) = 2n + O(1), N1/5(n) = 3
2n + O(1) and surprisingly a new

result N1/(1+2
√
2)(n) =

3
2n+ O(1). This new result provides a counterexample

to a remark mentioned after Conjecture 6.1 in [BDKS18]. The conjecture itself,

which was also raised by Bukh [Buk16, Conjecture 8], says the following.

Conjecture A: The maximum number Nα(n) of equiangular lines in Rn with

angle arccosα equals 1+α
1−α · n+O(1) if 1/α is an odd natural number.

When 1/α is an odd natural number, or equivalently λ = 1−α
2α is a natural

number, the complete graph on λ+1 vertices is the smallest graph with spectral

radius λ, hence k(λ) = λ+ 1. In this case, the linear coefficient k(λ)
k(λ)−1 in The-

orem 2 matches the linear coefficient 1+α
1−α in Conjecture A. This phenomenon

motivates the following stronger conjecture.
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Conjecture B: The maximum number Nα(n) of equiangular lines in Rn with

angle arccosα equals k(λ)
k(λ)−1 · n+O(1), where k(λ) is the spectral radius order

of λ := 1−α
2α ; in case k(λ) = ∞, Nα(n) = n+O(1).

One of the unknown cases that are not addressed by Theorem 2 is α = 1/7.

Conjecture A asserts that N1/7(n) =
4
3n + O(1). For such cases, we derive an

asymptotic upper bound on Nα(n) (see Theorem 20), from which it follows that

N1/7(n) ≤
(4
3
+

1

36
+ o(1)

)
n, and Nα(n) ≤ 1.49n+O(1)

for α �= 1/3, 1/5, 1/(1+ 2
√
2).

The rest of the paper is organized as follows. In Section 2, we prove Theo-

rem 1. In Section 3.1, we adapt the framework developed by Balla et al. In

Section 3.2, we apply Theorem 1 to estimate Nα(n) when

λ =
1− α

2α
∈ (0, λ∗) \ {α2, α3, . . . }.

In Section 3.3 we complete the proof of Theorem 2. In Section 3.4, we extrap-

olate our method to obtain an upper bound on Nα(n) when λ > λ∗. In the

concluding section we discuss evidence supporting Conjecture B and a possible

extension of our method.

2. Forbidden subgraphs of F(λ)

Suppose that there is a finite forbidden subgraphs characterization, say

G1,G2, . . . , Gn, for F(λ). The monotonicity of the spectral radius implies that no

connected graph has spectral radius in the open interval (λ,min{λ1(Gi): i∈ [n]}).
Let Λ1 consist of the spectral radii of all connected graphs of all orders. The

contrapositive of the above observation says the following.

Proposition 3: Let lim+ Λ1 := {λ ∈ R : (λ, λ + ε) ∩ Λ1 �= ∅ for all ε > 0} be

the set of right-sided limit points of Λ1. The family F(λ) does not have a finite

forbidden subgraphs characterization for all λ ∈ lim+ Λ1.

Hoffman was interested in a related set R consisting of the largest eigenvalues

of all symmetric matrices of all orders with non-negative integer entries, and he

proved the following theorem on the limit points of R.
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Theorem 4 (Hoffman [Hof72]): Let αm be defined as in Theorem 1. Then

2 = α1 < α2 < · · · are all the limit points of R smaller than limm αm = λ∗.

In fact, Hoffman proved the above theorem by first showing [Hof72, Proposi-

tion 2.1] that Λ1 = R. He also computed the limit of spectral radii for several

families of graphs. We compile some of his computations and other relevant

results in the following lemma, the proof of which is presented in Appendix A.

We use the notation αn ↗ α if α1 < α2 < · · · and limn αn = α, and αn ↘ α if

α1 > α2 > · · · and limn αn = α.

Lemma 5: Let αm be defined as in Theorem 1. Denote by Cn the cycle with

n vertices, Pn the path with n vertices and Sn the star with n leaves. Define

An, Bm1,n,m2 , Dn, Em,n, Fn as below. The spectral radii of these graphs satisfy:

(a) λ1(An) ↗ 3/
√
2,1 (b1) λ1(B1,n,1) = 2, (b2) λ1(Bm1,n,m2) ↘ max(αm1 , αm2)

for fixed (m1,m2) �=(1, 1), (c) λ1(Cn)=2, (d) λ1(Dn) ↘ λ∗, (e) λ1(Em,n) ↗ αm

for fixed m, (f) λ1(Fn) ↗ λ∗, (p) λ1(Pn) = 2 cos( π
n+1 ) ↗ 2, (s) λ1(Sn) =

√
n.

An =

n

Bm1,n,m2 =

m1 n m2

Dn = n Em,n =

m n

Fn =

n

The work of finding all the limit points of Λ1 was completed by Shearer.

Theorem 6 (Shearer [She89]): For any λ ≥ λ∗, there exists a sequence of

distinct graphs G1, G2, . . . such that limλ1(Gi) = λ.

1 It was mistakenly asserted that λ1(An) ↗ 4/
√
3 in [Hof72]. However, it will not affect

the main result of [Hof72] as the correct limit 3/
√
2 is still > λ∗.
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Equipped with these facts from spectral graph theory, we are in the position

to prove Theorem 1.

Proof of Theorem 1. Note that Lemma 5(b2) and Theorem 6 imply that

{α2, α3, . . . } ∪ [λ∗,∞) ⊆ lim+Λ1.

Thus by Proposition 3, the second half of Theorem 1 is proved. For the first

half of Theorem 1, we break the proof into two cases.

Case 1: λ < 2. By Lemma 5, we have S4 /∈ F(λ) and Pn /∈ F(λ) for some n.

Clearly, a connected graph G that contains neither S4 nor Pn has maximum

degree ≤ 3 and diameter < n. Therefore

{S4, Pn} ∪ {connected graph G /∈ F(λ) with maximum degree ≤ 3

and diameter < n}
is a finite forbidden subgraphs characterization for F(λ).

Case 2: λ ∈ [2, λ∗) \ {α2, α3, . . . }. Choose the smallest m such that αm > λ.

Observe that λ ∈ [2, α2) when m = 2, and λ ∈ (αm−1, αm) when m ≥ 3.

Then choose, in view of Lemma 5, n > m such that An, Em,n, Fn /∈ F(λ) and

Bm1,n′,m2 ∈ F(λ) for all m1,m2 < m and n′ > n. In fact, when m = 2,

the requirement that Bm1,n′,m2 ∈ F(λ) for all m1,m2 < m and n′ > n is

redundant because of Lemma 5(b1). By Lemma 5, we also have S5 /∈ F(λ),

Bm,0,1, Bm,1,1, . . . , Bm,n,1 /∈ F(λ) and D2, D3, . . . , Dm+n /∈ F(λ).

We claim that if a connected graph G contains none of

G0 := {S5, An, Bm,0,1, Bm,1,1, . . . , Bm,n,1, D2, D3, . . . , Dm+n, Em,n, Fn},
then G is a path, or a cycle, or Em0,n0 for some m0 < m and some n0, or

Bm1,n′,m2 for somem1,m2 < m and some n′ > n, orG has maximum degree≤ 4

and radius < m + n. Recall that the eccentricity of a vertex v in G is the

maximum distance between v and any other vertex of G, and the radius of G

is the minimum eccentricity of any vertex in G.

Notice that, by Lemma 5, the spectral radii of paths and cycles are at most 2,

the spectral radius of Em0,n0 is < αm0 ≤ λ for all m0 < m and n0 by the choice

of m, and the spectral radius of Bm1,n′,m2 is ≤ λ for all m1,m2 < m and n′ > n

by the choice of n. The claim thus implies that

G0∪{connected graph G /∈F(λ) with maximum degree ≤4 and radius <m+n}
is a finite forbidden subgraphs characterization for F(λ).
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Finally, it suffices to prove the above claim. Because G does not contain

D2, . . . , Dm+n, Em,n andDm+n+1, Dm+n+2, . . . contain Em,n, the graphG does

not contain D2, D3, . . . , and so G must be a tree or a cycle. Suppose that G

is not a path or a cycle. As G does not contain S5, G is a tree of maximum

degree 3 or 4. If the degree of a vertex v is 4, then as G does not contain An, the

eccentricity of v is < n and so the radius of G is < n. If a vertex v of degree 3

is not adjacent to any leaf, then as G does not contain Fn, the eccentricity of v

is < n and so the radius of G is < n.

Hereafter, we may assume that the maximum degree of G is 3 and that every

vertex of degree 3 is adjacent to a leaf, in other words, G is a caterpillar2

of maximum degree 3. Let v1, . . . , v� be the central path of G. Because G

does not contain Bm,0,1, Bm,1,1, . . . , Bm,n,1, Em,n and Bm,n+1,1, Bm,n+2,1, . . .

contain Em,n, the graph G does not contain Bm,0,1, Bm,1,1, Bm,2,1, . . . , and so

for every pair of vertices vi, vj of degree 3 with i < j the distances between v1, vi

and between vj , v� are < m. We finish the proof of the claim by checking the

following three cases.

(1) If G has only one vertex of degree 3, then as G does not contain Em,n,

the graph G must be Em0,n0 for some m0 < m and some n0.

(2) If G has exactly two vertices of degree 3, then the graph G must be

Bm1,n′,m2 for some m1,m2 < m and some n′. In this case, either

n′ > n or the radius of G is ≤ 1
2 (2m+ n) < m+ n.

(3) If G has at least 3 vertices, say vi, vj , vk with i < j < k, of degree 3,

then the distances from vj to v1 and to v� are < m, hence the radius

of G is < m.

3. Equiangular lines

3.1. The framework to estimate Nα(n). We shall set the stage for the

proof of Theorem 2 by adapting the framework developed in Section 2.1 of

[BDKS18] to estimate Nα(n).

Definition 2: Let L be a subset of the interval [−1, 1). A finite set C of unit

vectors in Rn is called a spherical L-code if 〈v1, v2〉 ∈ L for any pair of

distinct vectors v1, v2 in C. The Gram matrix M is given by Mij = 〈vi, vj〉.
The underlying graph G is defined as follows: let C be its vertex set, and for

any distinct vi, vj ∈ C, we put the edge (vi, vj) if and only if 〈vi, vj〉 < 0.

2 A caterpillar is a tree in which all the vertices are within distance 1 of a central path.
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By choosing a unit vector in the direction of each line in a family of equiangu-

lar lines with angle arccosα in Rn, we obtain a spherical {±α}-code Cα in Rn.

The key insight of Lemma 2.8 of Balla et al. [BDKS18] is that one can obtain

a spherical L(α, t)-code C in Rn, where

L(α, t) :=
{
− 1

λ
·
(
1− 1

t+ α−1

)
+

1

t+ α−1
,

1

t+ α−1

}
,

λ :=
1− α

2α
and t = 	log logn
,

from a spherical {±α}-code Cα such that |Cα| ≤ |C|+ o(n), and moreover the

size of C is much easier to bound from above than Cα. However, to estimate

Nα(n) up to a constant error relative to α, we need instead |Cα| ≤ |C|+O(1),

which requires t be independent from n. Although Lemma 7 is stated differently

from Lemma 2.8 of Balla et al. [BDKS18], the same proof goes through without

alternation. For the convenience of the readers, we include here a streamlined

proof.

Lemma 7: Let α ∈ (0, 1) and t ∈ N be fixed such that t > (1−α
2α )2 + 1. For

any n ∈ N and any spherical {±α}-code Cα in Rn, there exists a spherical

L(α, t)-code C in Rn such that |Cα| ≤ |C|+Oα,t(1).

Proof. Denote by R(·, ·) the Ramsey number. Let G be the underlying graph

of Cα. The clique number of the underlying graph G is ≤ 1 + 	1/α
. In fact,

if K is a clique in G, then

0 ≤
∥∥∥∥∑

v∈K

v

∥∥∥∥
2

=
∑
v∈K

‖v‖2 +
∑

v1,v2∈K
v1 �=v2

〈v1, v2〉

=|K| − |K|(|K| − 1)α =⇒ |K| ≤ 1 + 1/α.

If |Cα| < R(2 + 	1/α
, t), then we are done by taking C = ∅. Otherwise,

by Ramsey’s theorem, G contains an independent set I of size t. For every

v ∈ Cα \ I, we may opt to switch v to −v to ensure that the degree of v to I

is at most t/2. We partition Cα \ I by how the vertices are connected to I. In

particular, each part in the partition is indexed by some I1 ⊂ I with |I1| ≤ t/2,

and is defined by

Cα(I1) := {v ∈ Cα \ I : ∀u ∈ I \ I1 u �∼ v and ∀u ∈ I1 u ∼ v}.
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For every I1 ⊂ I such that I1 �= ∅ and |I1| ≤ t/2, we bound the independent

number of the subgraph G[Cα(I1)] induced on Cα(I1) as follows. Suppose that

J ⊆ Cα(I1) is an independent set of G[Cα(I1)]. Let I0 := I \ I1 and set

u0 :=
∑
v∈I0

v, u1 :=
∑
v∈I1

v, u2 :=
∑
v∈J

v.

One can work out the Gram matrix of u0, u1, u2:⎛
⎜⎝|I0|+ |I0|(|I0| − 1)α |I0||I1|α |I0||J |α

|I0||I1|α |I1|+ |I1|(|I1| − 1)α −|I1||J |α
|I0||J |α −|I1||J |α |J |+ |J |(|J | − 1)α

⎞
⎟⎠ .

Because the Gram matrix is positive semidefinite, its determinant

|I0||I1||J |
(
(1− α)2(1− α+ α(|I0|+ |I1|))− 4α3

(
|I0||I1| −

(1− α

2α

)2)
|J |
)

is non-negative. Together with |I0|+ |I1| = |I| = t and |I0||I1| ≥ t−1 > (1−α
2α )2,

we obtain a bound on the size of the independent set J :

|J | ≤ (1− α)2(1 − α+ α(|I0|+ |I1|))
4α3(|I0||I1| − (1−α

2α )2)
= Oα,t(1).

Again, since the clique number of G[Cα(I1)] is ≤ 1 + 	1/α
, by Ramsey’s

theorem, |Cα(I1)| = Oα,t(1). We thus have the estimation

|Cα| = |I|+ |Cα(∅)|+
∑

∅�=I1⊂I
|I1|≤t/2

|Cα(I1)| = |Cα(∅)|+Oα,t(1).

Pick any v ∈ Cα(∅) and consider the projection p(v) of v onto the orthogonal

complement of span(I). The vector p(v) is given by v −∑u∈I cuu for some

c = {cu : u ∈ I} that minimizes m(c) := ‖v −∑u∈I cuu‖2. Since {v} ∪ I is

an independent set, the quadratic function m(c) is symmetric with respect to

{cu : u ∈ I}, and so it is minimized at c = c1 for some c ∈ R. Note that

m(c1) =

∥∥∥∥v − c
∑
u∈I

u

∥∥∥∥
2

= ‖v‖2 − 2c
∑
u∈I

〈v, u〉+ c2
∥∥∥∥∑

u∈I

u

∥∥∥∥
2

=1− 2ctα+ c2(t+ t(t− 1)α),

which is minimized at

(1) c :=
α

1 + (t− 1)α
.

Therefore p(v) = v − c
∑

u∈I u.
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Denote by p̂(v) := p(v)/‖p(v)‖ the normalized vector of p(v). Lastly we show

that

C := {p̂(v) : v ∈ Cα(∅)}

is a spherical L(α, t)-code. For any v1, v2 ∈ Cα(∅), we compute 〈p(v1), p(v2)〉 in
terms of 〈v1, v2〉:

(2)

〈p(v1), p(v2)〉 =
〈
v1 − c

∑
u∈I

u, v2 − c
∑
u∈I

u

〉

=〈v1, v2〉 − c
∑
u∈I

〈v1, u〉 − c
∑
u∈I

〈v2, u〉+ c2
∥∥∥∥∑

u∈I

u

∥∥∥∥
2

=〈v1, v2〉 − ctα− ctα+ c2(t+ t(t− 1)α)

(1)
= 〈v1, v2〉 − 2ctα+ ctα = 〈v1, v2〉 − ctα.

For any v1, v2 ∈ Cα(∅) such that v1 �= v2, we get

〈p̂(v1), p̂(v2)〉 = 〈p(v1), p(v2)〉
‖p(v1)‖‖p(v2)‖

(2)
=

〈v1, v2〉 − ctα√〈v1, v1〉 − ctα
√〈v2, v2〉 − ctα

=
〈v1, v2〉 − ctα

1− ctα
,

which takes its value in {±α−ctα
1−ctα } (1)

= L(α, t).

The following lemma, which will be applied in conjunction with Lemma 7,

imposes structural restriction on the underlying graph of a spherical L(α, t)-

code.

Lemma 8: Given α ∈ (0, 1) and a finite family G of graphs with spectral ra-

dius > λ := 1−α
2α , there exists t ∈ N such that the underlying graph of any

spherical L(α, t)-code does not contain any graph in G as a subgraph.

We recall a necessary condition on eigenvalues of the sum of two matrices.

Theorem 9 (Weyl’s inequality [Wey12]): Given two n×n Hermitian matrices A

and B, denote the eigenvalues of A as λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A), and

similarly denote the eigenvalues of B and A+B. Whenever 0 ≤ i, j, i+ j < n,

λi+j+1(A+B) ≤ λi+1(A) + λj+1(B).
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We shall denote by In the identity matrix of order n and Jn the all-ones matrix

of order n, and we suppress the subscripts when the order of the matrices could

be inferred from the context.

Proof of Lemma 8. We first choose t ∈ N depending only on α and G. Because
λ1(G0) > λ for every G0 ∈ G, we thus choose t ∈ N large enough so that

(3) 1− λ1(G0)

λ
+

v(G0)

t+ α−1 − 1
< 0 for all G0 ∈ G,

where v(G0) is the order of G0.

We claim that the underlying graph G of any spherical L(α, t)-code does not

contain any graph in G as a subgraph. Suppose on the contrary that G contains

some graph G0 ∈ G. Let G′
0 be the minimal induced subgraph of G that con-

tains G0 as a subgraph, and C′
0 the vertex set of G′

0. Note that v(G
′
0) = v(G0).

By the monotonicity of λ1 and the choice of t in (3), we obtain

(4) 1− λ1(G
′
0)

λ
+

v(G′
0)

t+ α−1 − 1
< 0.

Let M ′
0 be the Gram matrix of C ′

0 and let A′
0 be the adjacency matrix of G′

0.

Since C′
0 is still a spherical L(α, t)-code, the two matrices M ′

0 and A′
0 are related

by the equation(
1 +

1

t+ α−1 − 1

)
M ′

0 = I − A′
0

λ
+

J

t+ α−1 − 1
.

Using the fact that λ1(J) = v(G′
0) and (4), we know from Weyl’s inequality

that the least eigenvalue of M ′
0 is negative. This contradicts the fact that a

Gram matrix is positive semidefinite.

3.2. Application of Theorem 1. Our application of Theorem 1 addresses

the upper bound on Nα(n) in Theorem 2 when F(λ) has a finite forbidden

subgraphs characterization.

Corollary 10: Define λ∗, α2, α3, . . . as in Theorem 1. Given α ∈ (0, 1) such

that λ := 1−α
2α < λ∗ and λ �∈ {α2, α3, . . . }, the maximum number Nα(n)

of equiangular lines in Rn with angle arccosα is at most k(λ)
k(λ)−1 · n + O(1),

where k(λ) is the spectral radius order of λ; in case k(λ) = ∞, Nα(n) ≤ n+O(1).

We recall a classical fact about the spectral radius of a connected graph and

prove an immediate consequence.
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Theorem 11 (Corollary of the Perron–Frobenius theorem [Fro12, Per07]): For

every connected graph G, the largest eigenvalue λ1(G) has multiplicity 1, with

an eigenvector whose components are all positive.

Corollary 12: For every λ > 0 and every connected graph G with spectral

radius ≤ λ,

v(G) ≤ k(λ)

k(λ)− 1
· rank

(
I − A

λ

)
,

where v(G) is the order of G, k(λ) is the spectral radius order of λ, and A is

the adjacency matrix of G; in case k(λ) = ∞,

v(G) ≤ rank(I −A/λ).

Proof. If λ1(G) = λ, the definition of k(λ) implies that v(G) ≥ k(λ), and so

the Perron–Frobenius theorem implies that

rank(I −A/λ) = v(G) − 1 ≥ (1− 1/k(λ))v(G);

otherwise λ1(G) �= λ, or equivalently λ1(G) < λ, and so rank(I −A/λ) = v(G).

Therefore when k(λ) < ∞ we always have rank(I −A/λ) ≥ (1 − 1/k(λ))v(G);

in case k(λ) = ∞, the definition of k(λ) implies that λ1(G) �= λ, and so

rank(I −A/λ) ≥ v(G).

The last preparation for the proof of Corollary 10 links rank(I −A/λ) with

the dimension n.

Proposition 13: Given α ∈ (0, 1), t ∈ N, for any spherical L(α, t)-code C

in Rn, the adjacency matrix A of the underlying graph of C satisfies

rank(I −A/λ) ≤ n+ 1,

where λ := 1−α
2α .

Proof. Let M be the Gram matrix of C. Since C is a spherical L(α, t)-code,

the matrices M and A are related by(
1 +

1

t+ α−1 − 1

)
M = I − A

λ
+

J

t+ α−1 − 1
.

Therefore rank(I −A/λ) ≤ rank(M) + rank(J) ≤ n+ 1.

Proof of Corollary 10. Since λ = 1−α
2α ∈ (0, λ∗) \ {α2, α3, . . . }, by Theorem 1,

there exists a finite family G of graphs such that F(λ) consists exactly of the

connected graphs which do not contain any graph in G as a subgraph.
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Suppose Cα is a spherical {±α}-code in Rn. By Lemma 7 and Lemma 8,

we can choose t ∈ N depending only on α such that there exists a spherical

L(α, t)-code C in Rn with |Cα| ≤ |C| + O(1) whose underlying graph G does

not contain any graph in G.
Let G1, . . . , Gm be the connected components of G. By the claim that G does

not contain any graph in G, neither does Gi for every i ∈ [m]. Because G is a

forbidden subgraphs characterization for F(λ), the connected graph Gi ∈ F(λ),

or in other words, λ1(Gi) ≤ λ. Let v(Gi) be the order ofGi andAi the adjacency

matrix of Gi. By Corollary 12 and Proposition 13, we have

|C| =
m∑
i=1

v(Gi) ≤ k(λ)

k(λ)− 1

m∑
i=1

rank
(
I − Ai

λ

)

=
k(λ)

k(λ)− 1
· rank

(
I − A

λ

)
≤ k(λ)

k(λ)− 1
· (n+ 1).

In case k(λ) = ∞, by Corollary 12 and Proposition 13, we have

|C| =
m∑
i=1

v(Gi) ≤
m∑
i=1

rank
(
I − Ai

λ

)
= rank

(
I − A

λ

)
≤ n+ 1.

3.3. Proof of Theorem 2. The following lemma connects a spherical {±α}-
code with a spherical {−1/λ, 0}-code, and it provides the lower bound on Nα(n)

in Theorem 2.

Lemma 14: Given α ∈ (0, 1), let λ := 1−α
2α . For any spherical {−1/λ, 0}-

code C0 in Rk, there exists a spherical {±α}-code in Rn of size 	n−1
k 
|C0|. In

particular, the maximum number Nα(n) of equiangular lines in Rn with angle

arccosα is at least ⌊ n− 1

k(λ) − 1

⌋
k(λ),

where k(λ) is the spectral radius order of λ; in case k(λ) = ∞, we have

Nα(n) ≥ n.

Proof. Given a spherical {−1/λ, 0}-code C0 in Rk. Let m := 	n−1
k 
 and M0 be

the Gram matrix of C0. Consider the matrix

M := (1− α)M0 ⊗ Im + αJ

of order m|C0|. Both M0 and J are positive semidefinite, so is M . The rank

of M is at most m · rank(M0)+1 ≤ mk+1 ≤ n. Moreover, the diagonal entries

of M are ones and its off-diagonal entries are either −α or α. Therefore M can

be realized as the Gram matrix of a spherical {±α}-code of size m|C0| in Rn.
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It suffices to construct a spherical {−1/λ, 0}-code C0 in Rk(λ)−1 of size k(λ).

Because λ is the spectral radius of a graph G on k(λ) vertices, I−A/λ is positive

semidefinite, whereA is the adjacency matrix ofG, and rank(I−A/λ)≤k(λ)−1.

Clearly, I −A/λ can be realized as the Gram matrix of a spherical {−1/λ, 0}-
code of size k(λ) in Rk(λ)−1.

In case k(λ) = ∞, (1 − α)In + αJn can be realized as the Gram matrix of a

spherical {±α}-code of size n in Rn.

In view of Corollary 10 and Lemma 14, we are left to prove Theorem 2 for

the exceptional λ ∈ {α2, α3, . . . } ∪ {λ∗}. Clearly, if λ is an eigenvalue of the

adjacency matrix of a graph, then

(1) λ is an algebraic integer—it is a root of some monic polynomial with

coefficients in Z,

(2) λ is totally real—its conjugate elements are in R.

On the converse, it follows from Estes [Est92, Theorem 1] that any totally real

algebraic integer occurs as an eigenvalue of the adjacency matrix of a graph.

When λ is not a totally real algebraic integer, the spectral radius order

k(λ) = ∞, and Conjecture B predicts that Nα(n) = n+ O(1), which we prove

in the affirmative.

Proposition 15: Given α ∈ (0, 1), let λ := 1−α
2α . If λ is not a totally real

algebraic integer, then

n ≤ Nα(n) ≤ n+ 1.

Proof. Let C be a spherical {±α}-code in Rn. Let M be its Gram matrix,

and A the adjacency matrix of the underlying graph G. We know that

M = (1−α)(I−A/λ)+αJ . Since λ is not an eigenvalue ofA, rank(I−A/λ)= |C|
and so

n ≥ rank(M) ≥ rank(I −A/λ)− rank(J) = |C| − 1.

Together with Lemma 14, we have n ≤ Nα(n) ≤ n+ 1.

Observe that one of the conjugate elements
√
2−√

5 of λ∗ =
√
2 +

√
5 is not

real. Proposition 15 readily gives the proof of Theorem 2 for λ = λ∗. The rest

of the cases λ ∈ {α2, α3, . . . } in Theorem 2 follow similarly from the following

proposition, the proof of which is due in Appendix B.

Proposition 16: The algebraic integers α2, α3, . . . , defined as in Theorem 1,

are not totally real.
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3.4. An improved upper bound on Nα(n). In this section, we prove

Nα(n) ≤ 1.49n+O(1)

for every α �= 1/3, 1/5, 1/(1+2
√
2). We recall the following spectral tool bound-

ing the rank of a symmetric matrix in terms of its trace and the trace of its

square.

Lemma 17: The rank of a symmetric matrix A is greater than or equal to

(tr(A))2/tr(A2).

This lemma appeared as Inequality 14 of Bellman [Bel97, page 137] in the

form of an exercise. We refer the readers to [BDKS18, Lemma 2.9] for a short

proof of Lemma 17. Additionally, we develop a spectral result, which can be

seen as an averaged version of the following lemma.

Lemma 18 (Lemma 2.13 of Balla et al. [BDKS18]): Let G be a graph with

minimum degree δ ≥ 2. Let v0 be a vertex of G and let H be the subgraph

consisting of all vertices within distance k of v0. Then

λ1(H) ≥ 2k

k + 1

√
δ − 1.

Lemma 19: Let G be a graph with average degree d≥2. There exists a vertex

v0 of G such that

λ1(H) ≥ 2 cos
(

π
k+2

)√
d− 1,

where H is the subgraph consisting of all vertices within distance k of v0.

By Lemma 5(p), the coefficient 2 cos( π
k+2 ) in Lemma 19 equals λ1(Pk+1),

where Pk+1 is the path with k edges. Notice that λ1(Pk+1) is greater than

the average degree 2k
k+1 of Pk+1, which is the coefficient in Lemma 18. This

comparison between Lemma 18 and Lemma 19 is reminiscent of that between

Nilli’s [Nil91] and Friedman’s [Fri93, Corollary 3.7] (see also [Nil04]) proofs of

the Alon–Boppana bound on the second largest eigenvalue of a regular graph.

In fact, Lemma 19 was recently applied [Jia19, Theorem 8] to improve Hoory’s

bound [Hoo05, Theorem 3] on the second largest eigenvalue for a class of graphs

that are not necessarily regular.

Proof. Since removing leaf vertices from a graph of average degree d ≥ 2 cannot

decrease its average degree, without loss of generality, we may assume that the

minimum degree of G is ≥ 2. A walk (v−1, v0, v1, . . . ) on G is non-backtracking
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if vi �= vi+2 for all i. For all i ≥ 0, define Wi to be the set of all non-backtracking

walks (v−1, v0, v1, . . . , vi) on G of length i + 1. Define the forest T as follows:

the vertex set is
⋃k

i=0 Wi and two vertices are adjacent if and only if one is a

simple extension of the other. For every e = (v−1, v0) ∈ W0, denote by Te the

connected component of T containing e. We also denote by Gv0 the subgraph

of G consisting of all vertices within distance k of v0.

We claim that λ1(Te) ≤ λ1(Gv0 ) for every e = (v−1, v0) ∈ W0. Let si and ti

be the number of closed walks of length i starting respectively at e in Te and

v0 in Gv0 . It is well known that

λ1(Te) = lim sup i
√
si and λ1(Gv0 ) = lim sup i

√
ti.

We naturally map a closed walk e = e0, e1, . . . , ei = e in Te to a closed

walk v0, v1, . . . , vi = v0 in Gv0 , where vj is the terminal vertex of the non-

backtracking walk ej for j = 0, 1, . . . , i. One can show that this map is injective,

and so si ≤ ti for all i, from which the claim follows.

Because λ1(T ) = max{λ1(Te) : e ∈ W0}, it suffices to prove

λ1(T ) ≥ λ
√
d− 1,

where

λ := λ1(Pk+1) = 2 cos
( π

k + 2

)
.

Consider the non-backtracking random walk on T , where the start vertex

w0 = (v−1, v0) is chosen uniformly at random from W0 and, for i ∈ [k], at the

ith step the next vertex wi = (v−1, v0, . . . , vi) is chosen uniformly at random

among the available choices in Wi. The transition matrix of this walk is

P(v−1,v0,...,vi),(v−1,v0,...,vi+1) =
1

d(vi)− 1
,

where d(v) denotes the degree of v in G. Clearly |W0| = d|V (G)|. Since Wi is a

finite set and wi = (v−1, v0, . . . , vi) is a random element of Wi with distribution

p(wi) :=
1

d|V (G)|
i−1∏
j=0

1

d(vj)− 1
,

for any c : Wi → R, the basic identity of importance sampling allows us to

represent
∑

w∈Wi
c(w) as follows:

(5)
∑

w∈Wi

c(w) =
∑

w∈Wi

p(w)
c(w)

p(w)
= E[c(wi)/p(wi)].
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Let (x0, x1, . . . , xk) ∈ Rk+1 be an eigenvector of Pk+1 corresponding to the

spectral radius λ such that x0, x1, . . . xk > 0. Define the vector f : V (T ) → R by

f(w) = xi

√
p(w) for w ∈ Wi,

and define the matrix A to be the adjacency matrix of the forest T . For

w = (u−1, u0, . . . , ui), denote by w− = (u−1, u0, . . . , ui−1). By the importance

sampling identity (5), we observe that

〈f, f〉 =
k∑

i=0

∑
w∈Wi

f(w)2 =

k∑
i=0

E[x2
i ] =

k∑
i=0

x2
i ,

1

2
〈f,Af〉 =

k∑
i=1

∑
w∈Wi

f(w−)f(w) =
k∑

i=1

E[xi−1xi

√
p(w−)/p(w)]

=
k∑

i=1

xi−1xi E[
√
d(vi−1)− 1].

It can be verified by induction that (vi−1, vi) is uniformly distributed on W0

for all i = 0, 1, . . . , k. Thus Pr(vi−1 = v) = d(v)
d|V (G)| =: π(v) for all v ∈ V (G) and

i = 1, 2, . . . , k. Since each vi−1 has distribution π and the function x �→ x
√
x− 1

is convex on [2,∞], Jensen’s inequality gives

1

2
〈f,Af〉 =

k∑
i=1

xi−1xi

∑
v∈V (G)

d(v)

d|V (G)|
√

d(v)− 1 ≥ √
d− 1

k∑
i=1

xi−1xi.

Finally we invoke the Rayleigh principle

2

k∑
i=1

xi−1xi = λ

k∑
i=0

x2
i and λ1(T ) ≥ 〈f,Af〉/〈f, f〉.

Remark 2: Lemma 19 is asymptotically tight when d is a prime plus one due

to the existence of regular graphs of high girth. The Ramanujan graphs con-

structed independently by Margulis [Mar82] and Lubotzky, Phillips and Sar-

nak [LPS88] are d-regular graphs on n vertices of girth Ωd(logn). In these

Ramanujan graphs, every subgraph induced on the vertices within a bounded

distance of a given vertex looks like a d-regular tree, whose spectral radius is

bounded from above by the spectral radius 2
√
d− 1 of the infinite d-regular

tree.
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Remark 3: See the expository note by Levin and Peres [LP17] for other appli-

cations of Markov chains and importance sampling.

Theorem 20: Given α ∈ (0, 1), let λ := 1−α
2α . If λ ≥ 2, then the maximum

number Nα(n) of equiangular lines in Rn is at most (1 + 1
4 + 1

λ2 + oα(1))n. In

particular, N1/7(n) ≤ (43 + 1
36 + o(1))n.

Proof. For a fixed ε > 0, we shall prove that the size of a spherical {±α}-code
Cα in Rn is at most (1 + 1

4 + 1
λ2 + ε)n+O(1). Choose k ∈ N so that

(6) λ′ := 2 cos
( π

k + 2

)
>

2√
1 + 4ε

.

We first find a finite family G0 of graphs of spectral radius > λ that approxi-

mates a forbidden subgraphs characterization of F(λ) in the following sense: if

a graph G does not contain any graph in G0, then the average degree of G is at

most

(7) d :=
( λ

λ′

)2
+ 1.

Choose D ∈ N such that the star SD /∈ F(λ) in view of Lemma 5(s). Suppose

a connected graph G does not contain SD and it has average degree d(G) > d.

Because λ ≥ 2 hence d(G) > d ≥ (2/λ′)2 +1 > 2, Lemma 19 implies that there

exists a vertex v0 of G such that

λ1(H) ≥ λ′√d(G) − 1 > λ′√d− 1 = λ,

where H is the subgraph consisting of all vertices within distance k of v0. This

means that G contains a subgraph H /∈ F(λ) with radius ≤ k. Therefore we

can approximate a forbidden subgraphs characterization by

G0 := {SD} ∪ {connected graph H /∈ F(λ) with maximum degree < D

and radius ≤ k}.
By Lemma 7 and Lemma 8, we can choose t ∈ N depending only on α such

that there exists a spherical L(α, t)-code C in Rn with |Cα| ≤ |C|+O(1) whose

underlying graph G does not contain any graph in G0. By our choice of G0, we

know that the average degree d(G) of G is ≤ d. We can apply Lemma 17 to the

matrix I −A/λ, where A is the adjacency matrix of G, and get

rank
(
I − A

λ

)
≥ (tr(I −A/λ))2

tr((I −A/λ)2)
=

|C|2
|C|+ |C|d(G)/λ2

≥ |C|
1 + d/λ2

.
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Thus, combining with Proposition 13, we obtain the estimation

|C| ≤
(
1 +

d

λ2

)
rank

(
I − A

λ

)
(7)
=
(
1 +

1

λ′2 +
1

λ2

)
rank

(
I − A

λ

)
(6)

≤
(
1 +

1

4
+

1

λ2
+ ε
)
rank

(
I − A

λ

)
≤
(
1 +

1

4
+

1

λ2
+ ε
)
(n+ 1).

Recalling that |Cα| ≤ |C|+O(1), we get |Cα| ≤ (1 + 1
4 +

1
λ2 + ε)n+O(1).

Corollary 21: Given α ∈ (0, 1)\{1/3, 1/5, 1/(1+2
√
2)}, the maximum num-

ber Nα(n) of equiangular lines in Rn with angle arccosα is at most 1.49n+O(1).

Proof. Recall that λ∗ =
√
2 +

√
5 ≈ 2.058. On the one hand, Theorem 2 implies

that Nα(n) ≤ 4
3n+O(1) for λ := 1−α

2α ∈ (0, λ∗] \ {1,√2, 2}. On the other hand,

because ε := 0.24− 1/(λ∗)2 > 0, Theorem 20 implies that for λ > λ∗,

Nα(n) ≤
(
1 +

1

4
+

1

λ2
+ ε
)
n+O(1) ≤ 1.49n+O(1).

4. Concluding remarks

Besides Theorem 2, Lemma 14 and Proposition 15, we discuss two other evi-

dences supporting Conjecture B. Notice that the spectral radius order of λ is

at least the algebraic degree deg(λ) of λ. Conjecture B predicts that

Nα(n) ≤ deg(λ)

deg(λ)− 1
· n+O(1).

This is indeed a cheap upper bound on Nα(n).

Proposition 22: Given α ∈ (0, 1), if λ := 1−α
2α is a totally real algebraic

integer, then Nα(n) ≤ deg(λ)
deg(λ)−1 · (n + 1), where deg(λ) is the algebraic degree

of λ.

Proof. Let C be a spherical {±α}-code in Rn. Let M be its Gram matrix,

and A the adjacency matrix of the underlying graph G. We know that

M = (1 − α)(I − A/λ) + αJ . If λ is a totally real algebraic number, then

the multiplicity of λ as an eigenvalue of A is ≤ 1
deg(λ) |C|. Thus

rank
(
I − A

λ

)
≥
(
1− 1

deg(λ)

)
|C|

and so n ≥ rank(M) ≥ rank(I −A/λ)− rank(J) ≥ (1− 1
deg(λ) )|C| − 1.
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Lemma 14 and Proposition 22 would imply Conjecture B in the equality

case k(λ) = deg(λ). Note that k(λ) = deg(λ) if and only if λ is the spectral

radius of a graph with irreducible characteristic polynomial. A result of Mow-

showitz [Mow71] (see [GM81, Theorem 3.8] for a generalization) states that

a graph with irreducible characteristic polynomial has trivial automorphism

group. Such graphs are known as asymmetric graphs. Erdős and Rényi [ER63]

showed that asymmetric graphs have at least 6 vertices and there are 8 asymmet-

ric graphs on 6 vertices. Interestingly, all these 8 graphs indeed have irreducible

characteristic polynomial, and their spectral radii are > λ∗.
Clearly, if λ is the spectral radius of a graph, then λ is a totally real algebraic

integer, and λ is the largest among its conjugate elements. It would be inter-

esting to study a complete set of necessary conditions for the spectral radius of

a graph.

When λ is a totally real algebraic integer but not the largest among its con-

jugate elements, the spectral radius order k(λ) = ∞, and Conjecture B asserts

that Nα(n) = n+O(1). This is indeed the case.

Proposition 23: Given α ∈ (0, 1), if λ := 1−α
2α is a totally real algebraic

integer, but λ is not the largest among its conjugate elements, then

n ≤ Nα(n) ≤ n+ 2.

Proof. We denote by λ−i(·) and λi(·) respectively the ith smallest eigenvalue

and the ith largest eigenvalue of a matrix. Let λ′ > λ be a conjugate ele-

ment of λ. Let C be a spherical {±α}-code in Rn. Let M be its Gram ma-

trix, and A the adjacency matrix of the underlying graph G. We know that

M = (1− α)(I −A/λ) + αJ .

Assume for the sake of contradiction that rank(I −A/λ) ≤ |C|− 2, that is, λ

is an eigenvalue of A with multiplicity ≥ 2, then 1−λ′/λ < 0 is an eigenvalue of

I −A/λ with multiplicity ≥ 2, hence λ−2(I −A/λ) < 0. By Weyl’s inequality,

λ−1(M) ≤ (1 − α)λ−2(I −A/λ) + αλ2(J) < 0.

This contradicts the fact that M is positive semidefinite.

Therefore rank(I −A/λ) ≥ |C| − 1 and so

n ≥ rank(M) ≥ rank(I −A/λ)− rank(J) ≥ |C| − 2.

Together with Lemma 14, we have n ≤ Nα(n) ≤ n+ 2.
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Lastly, we remark on a possible extension of our method. Our proof strategy

would resolve Conjecture B provided the following connection between forbidden

subgraphs characterization and multiplicity of the second largest eigenvalue.

Conjecture C: For every λ > 0, there exist graphs G1, G2, . . . , Gn of spectral

radius > λ such that for every connected graph G that does not contain any

of G1, G2, . . . , Gn as a subgraph, if λ is the second largest eigenvalue of G then

the multiplicity of λ is ≤ v(G)/k(λ), where v(G) is the order of G and k(λ) is

the spectral radius order of λ.

In this direction, Woo and Neumaier [WN07] investigated the structure of

graphs whose spectral radius is in (2, 3/
√
2]. In particular, such a graph is

either an open quipu,3 a closed quipu4 or a dagger,5 for which we assert that

the multiplicity of any eigenvalue larger than 2 is at most 2.

Appendix A. Proof of Lemma 5

Given a connected graph G, let A be its adjacency matrix. The Perron–

Frobenius theorem asserts that the eigenvector f: V (G)→R corresponding to

the unique largest eigenvalue of A can be chosen so that all of its components are

positive. As an eigenvector f ′ corresponding to any other eigenvalue is orthog-

onal to f , f ′ must have at least one negative component. Therefore to compute

λ1(G) it suffices to demonstrate an eigenvector whose components are positive.

Proof of Lemma 5(b1). The eigenvector that maps the leaves to 1 and the rest

of the vertices to 2 gives λ1(B1,n,1) = 2.

Proof of Lemma 5(c). The constant eigenvector that maps every vertex to 1

gives λ1(Cn) = 2.

Proof of Lemma 5(p). Let v1, . . . , vn be the path Pn. The eigenvector that

maps vi to sin( πi
n+1 ) gives λ1(Pn) = 2 cos( π

n+1 ).

Proof of Lemma 5(s). The eigenvector that maps the leaves to 1 and the vertex

of degree n to
√
n gives λ1(Sn) =

√
n.

3 An open quipu is a tree of maximum degree 3 such that all vertices of degree 3 lie on

a path.
4 A closed quipu is a connected graph of maximum degree 3 such that all vertices of

degree 3 lie on a unique cycle.
5 A dagger is An defined in Lemma 5.
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For the proof of other facts in Lemma 5, we shall use the following lemmas

due to Hoffman.

Lemma 24 (Lemma 3.4 of Hoffman [Hof72]): Let A−1 be a principal submatrix

of order n − 1 of a symmetric matrix A0 of order n with non-negative entries.

Define Ai+1 recursively by

Ai+1 =

(
Ai eTi
ei 0

)
, where ei = (0 0 . . . 0 1).

Assume further that limi→∞ λ1(Ai) > 2. Then limi→∞ λ1(Ai) is the largest

positive root of

(8)
(x+

√
x2 − 4

2

)
p0(x) = p−1(x),

where pi is the characteristic polynomial of Ai for i = −1, 0.

Definition 3: Let G be a connected graph, and let v be a vertex of G. Denote

(G, v, n) the graph obtained from G by appending a path of n vertices to G

at v. Let G1, G2 be disjoint connected graphs, and let v1, v2 be vertices ofG1, G2

respectively. Define (G1, v1, n, v2, G2) to be the graph obtained from G1 and G2

by joining them by a path of n vertices connecting v1 and v2.

vG

n

(G, v, n) =

v1G1 v2 G2

n

(G1, v1, n, v2, G2) =

Remark 4: When we apply Lemma 24 to the adjacency matrix of a graph, we

get the following interpretation. Let G be a connected graph, and let v be a

vertex of G. Assume further that λ1(G, v, n) ≥ 2 for some n. Then limλ1(An) is

the largest positive root of (8), where p−1, p0 are the characteristic polynomials

of G \ {v} and G respectively.

Lemma 25 (Proposition 4.2 of Hoffman [Hof72]): Let G1, G2 be disjoint con-

nected graphs, v1, v2 vertices of degree ≥ 2 of G1, G2 respectively. Then

lim
n→∞λ1(G1, v1, n, v2, G2) = max{ lim

n→∞λ1(G1, v1, n), lim
n→∞ λ1(G2, v2, n)}.
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Definition 4: Let e be an edge of a graph G. If there exists a path in G,

x1, x2, . . . , xk where xk−1 and xk are the end vertices of e, and the degrees of

x1, x2, . . . , xk−1 are respectively 1, 2, 2, . . . , 2, then e is said to be on an end

path of G.

Lemma 26 (Proposition 4.1 of Hoffman [Hof72]): Let G be a connected graph

with λ1(G) > 2, e = (x, y) an edge of G not on an end path of G. Let G+
e be

the graph obtained from G by deleting edge e, and adding a vertex z adjacent

to x and y only. Then

λ1(G
+
e ) < λ1(G).

The monotonicity of the spectral radii of each family of graphs in

Lemma 5(a,e,f) follows immediately from the monotonicity of the spectral radii.

The monotonicity in Lemma 5(b2,d) follows from Lemma 26 and the facts that

λ1(Bm1,0,m2) > λ1(B1,0,1) = 2

for (m1,m2) �= (1, 1) and λ1(D2) > 2.

We are left to compute the limits.

Proof of Lemma 5(a). Note that An = (S3, v, n), where v is the vertex of de-

gree 3 in S3. Note that λ1(A1) = 2. By Remark 4, limλ1(An) is the largest

positive root of (x+
√
x2 − 4

2

)
x2(x2 − 3) = x3,

which turns out to be 3/
√
2.

Proof of Lemma 5(f). Note that Fn = (P5, v, n), where v is the third vertex

of P5. Observe that λ1(F2) = 2. By Remark 4, limλ1(Fn) is the largest

positive root of

(x+
√
x2 − 4

2

)
(x5 − 4x3 + 3x) = (x2 − 1)2,

which turns out to be λ∗.

We need the characteristic polynomials of paths and cycles for Lemma 5(d, e).

The readers are invited to derive them by reduction and induction.
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Lemma 27: Denote pn and qn the characteristic polynomials of Pn and Cn

respectively. Then

p0(x) = 1, p1(x) = x, pn = xpn−1(x)− pn−2(x),

qn+1(x) = pn+1(x) − pn−1(x)− 2, for all n ≥ 2.

Moreover, the recursions give

(9) pn(x) =
θn

1− θ−2
+

θ−n

1− θ2
, qn(x) = θn + θ−n − 2,

where θ = θ(x) := x+
√
x2−4
2 .

Proof of Lemma 5(e). For the m = 1 case, λ1(E1,n) is at least the average

degree 2 − 2/(n + 3) and so limλ1(E1,n) ≥ 2. On the other hand, assume for

the sake of contradiction that limλ1(E1,n) > 2. By Remark 4, limλ1(E1,n) is

the largest positive root of(x+
√
x2 − 4

2

)
x(x2 − 2) = x2,

which turns out to be 2, contradicting the assumption limλ1(E1,n) > 2.

For the m ≥ 2 case, because

λ1(Em,8) ≥ λ1(E2,8) = 2 and Em,n = (Pm+2, v, n),

where v is the second vertex of Pm+2, Remark 4 gives that limn→∞ Em,n is the

largest positive root of

θpm+2(x) = xpm(x),

where θ and pi are defined as in Lemma 27. From this and (9), using x = θ+1/θ

and z = θ2, we seek the largest root zm of

zm+1 = 1 + z + · · ·+ zm−1.

By the definitions of βm and αm in Theorem 1, this proves that zm = βm and

limn λ1(Em,n) = αm.

Proof of Lemma 5(b2). Let v1 and v2 be the second vertices in Pm1+2 and

Pm2+2 respectively. By Lemma 25,

lim
n→∞λ1(Bm1,n,m2) =max{ lim

n→∞λ1(Pm1+2, v1, n), lim
n→∞λ1(Pm2+2, v2, n)}

=max{ lim
n→∞λ1(Em1,n), lim

n→∞λ1(Em2,n)}
=max(αm1 , αm2).



418 Z. JIANG AND A. POLYANSKII Isr. J. Math.

Proof of Lemma 5(d). Let Mn be the adjacency matrix of Dn and let rn be its

characteristic polynomial. By expanding the determinant of xI −Mn along the

row indexed by the leaf of Dn, one can obtain that λ1(Dn) is the largest root

of

rn(x) = xqn+1(x) − pn(x),

where pn and qn+1 are defined as in Lemma 27. From this and (9), using

x = θ + 1/θ and z = θ2, we seek the largest root zn of

(z2 − z − 1)(1− z−(n+1)) = 2z−n/2(z1/2 + z−1/2).

As zn > 1, we get z2n − zn − 1 > 0, hence zn > φ, where φ = 1+
√
5

2 is the golden

ratio. As n → ∞, the largest root zn tends to φ, and so

limλ1(Dn) = φ1/2 + φ−1/2 = λ∗.

Appendix B. Proof of Proposition 16

Fixm ≥ 2 and let β be the largest root of the equation xm+1 = 1+x+· · ·+xm−1.

We shall prove that α := β1/2 + β−1/2 is an algebraic integer but not totally

real. We need the following lemma to characterize the conjugate elements of α.

Lemma 28: Suppose that the polynomial p(x) ∈ Q[x] of degree n has n complex

roots, say γ1, γ2, . . . , γn, counted with multiplicity. If these roots are not the

poles of a rational function r(x) ∈ Q(x), then q(x) :=
∏n

i=1(x − r(γi)) is a

polynomial in Q[x].

Proof. For every d ∈ [n], let ed ∈ Z[x1, x2, . . . , xn] be the elementary symmetric

polynomial of degree d in n variables. Note that

fd(x1, x2, . . . , xn) := ed(r(x1), r(x2), . . . , r(xn))

is a symmetric rational function with rational coefficients. Thus by the funda-

mental theorem of symmetric functions, fd can be written as a rational function

of the elementary symmetric functions e1, e2, . . . , en with rational coefficients.

Note that the coefficient of xd in the polynomial q(x) is precisely

(−1)n−dfn−d(γ1, γ2, . . . , γn).

Since p(x) ∈ Q[x], Vieta’s formulas tell us ed(γ1, γ2, . . . , γn) is a rational for all

d ∈ [n], hence the coefficients of q(x) are rational.
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Proof of Proposition 16. We first prove the existence and the uniqueness of the

positive root of

p(x) := xm+1 − (1 + x+ · · ·+ xm−1).

Since p(1) = 1−m < 0 and p(∞) = ∞, by the intermediate value

theorem, p has a positive root. Suppose for a moment that β is just a pos-

itive root of p. Then βm+1 = 1 + β + · · ·+ βm−1 > 1, and so β > 1, hence

βm+1 = 1 + β + · · ·+ βm−1 > m. Notice that

(10) βm+1 = 1 + β + · · ·+ βm−1 =
βm − 1

β − 1
=⇒ β − 1 =

1

β
− 1

βm+1
.

This means that β is a zero of the function f(x) := x − 1 − 1
x + 1

xm+1 in

(m1/(m+1),∞). Note that f ′(x) = 1 + 1
x2 − m+1

xm+2 , and when x > m1/(m+1), the

derivative

f ′(x) ≥ 2

x
− m+ 1

xm+2
=

2xm+1 − (m+ 1)

xm+2
≥ 2m− (m+ 1)

xm+2
> 0,

which shows the uniqueness of the positive root of p.

Next we show that α is an algebraic integer. Let β = β0, β1, . . . , βm be the

m + 1 complex roots of p counted with multiplicity. Let γi :=
√
βi be the

principal square root of βi for i ∈ {0, 1, . . . ,m}. Clearly, ±γ0,±γ1, . . . ,±γm are

the roots of the monic polynomial p(x2) ∈ Z[x], and ±1/γ0,±1/γ1, . . . ,±1/γm

are the roots of the monic polynomial −x2(m+1)p(1/x2) ∈ Z[x]. Therefore

both γ0 and 1/γ0 are algebraic integers, and so is α = γ0 + 1/γ0.

Suppose α′ is a conjugate element of α. Applying Lemma 28 to ±γ0, . . . ,±γm

and the rational function x �→ x + 1/x, we know that α′ must be of the form

±(γi + 1/γi), for some i ∈ {0, 1, . . . ,m}. Assume for the sake of contradiction

that α′ = ±(γi+1/γi) is real for some i �= 0. Without loss of generality, we may

assume that i = 1. We can solve the quadratic equation γ2
1 ∓ α′γ1 + 1 = 0 and

get γ1 = ±α′±√
α′2−4

2 , where the plus-minus signs are independent. As β = β0

is the only positive root of p, γ1 =
√
β1 is not real. Since α′ ∈ R but γ1 �∈ R, it

must be the case that −2 < α′ < 2 and γ1 = ±α′±i
√
4−α′2

2 . Therefore we have

|β1| = |γ1|2 =
(α′

2

)2
+
(√4− α′2

2

)2
= 1.

Let θ be the argument of β1, that is β1 = cos θ+ i sin θ. Since β1 is a root of p,

(10) holds for β1, that is, β1 − 1 = β−1
1 − β

−(m+1)
1 , or

β
−(m+1)
1 = 1− (β1 − β−1

1 ) = 1− 2i sin θ
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after rearrangement. Using |β1| = 1, we get sin θ = 0, hence β1 = ±1. As

p(1) < 0, β1 = −1 is the only possibility, in which case α′ = ±(
√
β1+1/

√
β1) = 0

and it cannot be a conjugate element of α.

The contradiction shows that any real conjugate element of α is of the form

±(γ0 + 1/γ0), that is, ±α. If α were a totally algebraic integer, its degree

would be either 1 or 2. In the former case, α would be an integer, which

contradicts 2 < α < λ∗ < 3. In the latter case, α2 would be an integer, which

contradicts 2 < α < λ∗ <
√
5.
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[CDG82] D. Cvetković, M. Doob and I. Gutman, On graphs whose spectral radius does not

exceed (2 +
√
5)1/2, Ars Combinatorica 14 (1982), 225–239.

[dC00] D. de Caen, Large equiangular sets of lines in Euclidean space, Electronic Journal

of Combinatorics 7 (2000), Article no. 55.
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