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ABSTRACT

We prove the Lp Hardy inequality and Lp fractional Hardy inequality

for the Dunkl Laplacian on RN . Further, we prove the same kind of

inequalities for a half-space and cone.

1. Introduction

The Hardy inequality is of fundamental importance in many areas of mathe-

matical analysis and mathematical physics. A general Hardy inequality is of

the form ∫
RN

|∇u|pdx ≥
( |N − p|

p

)p
∫
RN

|u(x)|p
|x|p dx,

for u ∈ C∞
0 (RN ) or u ∈ C∞

0 (RN \ {0}) respectively with respect to 1 ≤ p < N

or p > N . It is known that the constant ( |N−p|
p )p is sharp and never attained in

the corresponding spaces Ẇ 1
p (R

N ) or Ẇ 1
p (R

N \ {0}) respectively. A lot of work

concerning the fractional Hardy inequality has been developed in the literature.

A remarkable work on the same was done by R. L. Frank and R. Seiringer in [3].
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They have proven the sharp Hardy inequality with sharp constants as follows:

for p ≥ 1, 0 < s < 1 and u ∈ C∞
0 (RN )∫

RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps

dxdy ≥ CN,s,p

∫
RN

|u(x)|p
|x|ps dx,

where the constant CN,s,p is sharp. Also they proved the fractional Hardy

inequality with remainder term. That is, for p ≥ 2 and u ∈ C∞
0 (RN )∫

RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps

dxdy − CN,s,p

∫
RN

|u(x)|p
|x|ps dx

≥cp

∫
RN

∫
RN

|v(x) − v(y)|p
|x− y|N+ps

dx

|x|(N−ps)/2

dy

|y|(N−ps)/2
,

where v := |x|(N−ps)/2u and cp is as in (3.18).

The same authors have proven the fractional Hardy inequality in half-spaces

RN
+ with and without remainder terms in [4], where

R
N
+ = {x = (x1, x2, . . . , xN ) ∈ R

N : xN > 0}.
They have proven that, for some sharp constant DN,p,s,∫

RN
+

∫
RN

+

|u(x)− u(y)|p
|x− y|N+ps

dxdy ≥ DN,p,s

∫
RN

+

|u(x)|p
xps
N

dx,

for all u ∈ Ẇ s
p (R

N ) with ps �= 1. Similar to the case of RN they obtained an

improved fractional Hardy inequality which states, for p ≥ 2, that∫
RN

+

∫
RN

+

|u(x)− u(y)|p
|x− y|N+ps

dxdy −DN,p,s

∫
RN

+

|u(x)|p
xps
N

dx

≥cp

∫
RN

∫
RN

|v(x) − v(y)|p
|x− y|N+ps

dx

x
(1−ps)/2
N

dy

y
(1−ps)/2
N

,

where v := x
(1−ps)/p
N u and cp is given in (3.18).

Our aim in this paper is to prove both the Hardy and fractional Hardy in-

equality in a Dunkl setting. We cite a few papers in which authors studied some

of the related inequalities in a Dunkl setting. Pitts inequalities for the frac-

tional Dunkl operator is studied by D. V. Gorbachev et al. in [5]. F. Soltani et

al. have proven certain inequalities, namely the Stein–Weiss inequality, Hardy–

Littlewood–Sobolev inequality, uncertainty principles and some Pitts inequal-

ities in the Dunkl setting in the papers [12, 13, 14]. In [1] Óscar Ciaurri et

al. studied the Hardy-type inequalities for the Dunkl Hermite operator. We
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mainly adapt the techniques used in [3] to prove the Hardy and fractional Hardy

inequalities.

The paper is organized as follows. In Section 3 we prove a generalized version

of the classical Lp Hardy inequality in the Dunkl setting. We use the ‘ground

state substitution’ technique to achieve it. For p ≥ 2 we obtain an improved

version of the Hardy inequality in (3.20). In Section 4 we obtain an optimal

fractional Hardy inequality for the Dunkl Laplacian. As in Section 3 we obtain

a fractional Hardy inequality with a remainder term for p ≥ 2. Section 5 and

Section 6 deal with a similar type of fractional Hardy inequalities on a half-space

and cone respectively.

2. The general Dunkl setting

In this section we give some basics on Dunkl theory which we will be using in

the coming sections. We suggest readers consult [2, 10, 15, 16] for details of

Fourier analysis related to the Dunkl operator. Let 〈· , ·〉 denote the standard

inner product on RN and | · | := √〈· , ·〉. For a non-zero element α in RN the

reflection in the hyperplane 〈α〉⊥ is defined as

σα(x) = x− 2
〈α, x〉
|α|2 α.

A finite subset R of RN is said to be a reduced root system if, for α ∈ R,

R∩Rα = {±α} and σα(R) = R. Each root system can be written as a disjoint

union of its subsets, say R+ and (−R+), which are separated by a hyperplane

passing through the origin. The subset R+ of R is called the positive roots of R.

The subgroup G of O(N) which is generated by the reflections {σα : α ∈ R} is

called the reflection group with root system R or the Coxeter group. For the con-

venience of the calculations we assume that R is normalized, that is 〈α, α〉 = 2

for all α ∈ R. A G-invariant function k defined on R, i.e., k(gα) = k(α) for all

g ∈ G, is called a multiplicity function. For j ∈ {1, 2, . . . , N} the differential-

difference operators Tj (the Dunkl operators) is defined by

Tjf(x) := ∂jf(x) + Ejf(x),

where Ej is the difference part of Tj and is given by

Ej =
∑

α∈R+

k(α)αj
f(x)− f(σαx)

〈α, x〉
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with α = (α1, α2, . . . , αN ). The Dunkl operators Tj are a generalization of

the partial differential operator in the classical analysis. As in the classical

case we can define the Dunkl gradient by ∇k = (T1, T2, . . . , TN ) and the Dunkl

Laplacian Δk by Δk =
∑N

j=1 T
2
j .

One of the important properties of the Dunkl operators is that they commute,

that is TiTj = TjTi. Also, for every f, g ∈ C1(RN ) and for every 1 ≤ j ≤ N ,

one can see that Tj(fg) = Tj(f)g + fTj(g) when at least one of the functions

is G-invariant.

Fix a reflection group G and a multiplicity function k. We can define the G-

invariant homogeneous weight function h2
k(x) of degree γk :=

∑
α∈R+

k(α) by

h2
k(x) =

∏
α∈R+

|〈x, α〉|2k(α).

Throughout the paper we assume that k(α) ≥ 0 and denote the weighted

measure h2
k(x)dx by dμk(x). Further, we use the notations dk := N + 2γk

and λk := dk−2
2 .

Let S(RN ) be the space of Schwartz class functions. If g ∈ S(RN ) and if f is

a bounded function with f ∈ C1(RN ), then∫
RN

Tjf(x)g(x)dμk(x) = −
∫
RN

f(x)Tjg(x)dμk(x).

It is known that there exists a unique real analytic solution f = Ek(., y) for

the system Tif = yif , 1 ≤ i ≤ N satisfying f(0) = 1 with y ∈ RN . The

kernel Ek(x, y) is called the Dunkl kernel and it is clearly a generalization of

the exponential functions e<x,y>.

The Dunkl Fourier transform is a generalization of the Fourier transform. For

u ∈ L1(RN , dμk(x)), its Dunkl Fourier transform is defined by

Fku(ξ) = c−1
k

∫
RN

u(x)Ek(−iξ, x)dμk(x),

where ck := (
∫
RN e−‖x‖2/2dμk(x))

−1. The Dunkl translation τky f of f ∈ S(R)
is defined by

Fk(τ
k
y f)(ξ) = Ek(iy, ξ)Fkf(ξ).

It also makes sense for all f ∈ L2(RN , dμk(x)) as Ek(iy, ξ) is a bounded function

and the Dunkl Fourier transform is a unitary operator on L2(Rn, dμk(x)). Dunkl

translation has the property τky f(x) = τk−xf(−y).
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3. Hardy inequality

In this section we prove the optimal Lp Hardy inequality for 1 ≤ p < ∞ and

an improved Hardy inequality for p ≥ 2 for a G-invariant real-valued smooth

function having compact support. Also, we will prove a generalized Lp Hardy

inequality with optimal constant for the same function space. However, we can

relax the condition on the G-invariant function for certain cases. We define the

p-Dunkl Laplacian Δk,p by

Δk,pf = divk(|∇kf |p−2∇kf),

where divk(f1, f2, . . . , fN ) =
∑N

j=1 Tjfj. We will compute Δk,pw for a radial

function w which is needed to prove the Hardy inequality. For a radial func-

tion w

divk(|∇kw|p−2∇kw)

=

N∑
j=1

Tj

(
|w′(r)|p−2w′(r)

xj

r

)

=
N∑
j=1

(∂j + Ej)
(
|w′(r)|p−2w′(r)

xj

r

)

=

N∑
j=1

(
(p− 1)|w′(r)|p−2w′′(r)

(xj

r

)2

+ |w′(r)|p−2w′(r)
(1
r
− 1

r2
x2
j

r

))

+
|w′(r)|p−2w′(r)

r

N∑
j=1

Ej(xj)

=(p− 1)|w′(r)|p−2w′′(r) +
(N − 1

r
+ 2γk

)
|w′(r)|p−2w′(r).

Hence for a radial function w we have

(3.1) Δk,pw = (p− 1)|w′(r)|p−2w′′(r) +
(dk − 1

r

)
|w′(r)|p−2w′(r).

Theorem 3.1: Let 1 ≤ p < ∞. Let u be a real-valued G-invariant function.

If u ∈ C∞
0 (RN ) if dk > p, and u ∈ C∞

0 (RN \ {0}) if dk < p, then the following

inequality holds:

(3.2)

∫
RN

|∇ku(x)|pdμk(x) ≥
∣∣∣dk − p

p

∣∣∣p
∫
RN

|u(x)|p
|x|p dμk(x).

The constant |dk−p
p |p given in the inequality is optimal.
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Proof. Let w be a positive radial function and let v be a G-invariant real-valued

function with u = vw. Use the inequality for real numbers a and b and for p ≥ 1,

|a+ b|p ≥ |a|p + p|a|p−2a.b, so we obtain

(3.3)

|∇ku|p =|∇k(vw)|p
=|v∇kw + w∇kv|p

≥|v|p|∇kw|p + p|v|p−2|∇kw|p−2vw∇kv.∇kw.

Since w is radial we write w(x) = w(r) with r = |x| and denote the derivatives

as w′(r) = dw
dr and w′′(r) = d2w

dr2 . First we will prove an inequality of the form

(3.4)

∫
RN

|∇ku|pdμk(x) ≥
∫
RN

V |u|pdμk(x)

for the given radial function w and a function V , where w is a weak solution of

the following equation:

(3.5) divk(|∇kw|p−2∇kw) + V wp−1 = 0.

After proving the inequality (3.4) for the functions which satisfy (3.5), we will

look for some explicit V and w which provide us the Hardy inequality.

In order to estimate the integral
∫
RN |∇k(u)|pdμk(x) we estimate the integral

of each term on the right-hand side of (3.3).

We start with

(3.6)

∫
RN

|v|p|∇kw|pdμk(x) =

∫
RN

|v|p|∇kw|p−2

( N∑
j=1

TjwTjw

)
dμk(x)

=
N∑
j=1

∫
RN

|v|p|∇kw|p−2TjwTjwdμk(x)

=−
N∑
j=1

∫
RN

wTj(|v|p|∇kw|p−2Tjw)dμk(x).

Let ∇0 be the Eucledian gradient. Calculating Tj(|v|p|∇kw|p−2Tjw) separately,

we obtain

(3.7)

Tj(|v|p|∇kw|p−2Tjw)

=(∂j + Ej)(|v|p|∇0w|p−2∂jw)

=(p|v|p−1∂jv)|∇ow|p−2∂jw + |v|p∂j(|∇0w|p−2∂jw)

+ Ej

(
|v|p|w′(r)|p−2w

′(r)
r

xj

)
.
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Since |w′(r)|p−2w′(r)
r is radial we can write

(3.8) Ej

( |w′(r)|p−2w′(r)
r

|v|pxj

)
=

|w′(r)|p−2w′(r)
r

Ej(|v|pxj).

Using the definition of Ej and reflection one can easily calculate

N∑
j=1

Ej(|v|pxj) =
∑

α∈R+

k(α)[|v(x)|p + |v(σα(x))|p].(3.9)

Substituting (3.7), (3.8) and (3.9) in (3.6) and denoting the Euclidean diver-

gence as div0,

(3.10)

∫
RN

|v|p|∇kw|pdμk(x)

=− p

∫
RN

w|v|p−1|∇0w|p−2∇0v.∇0wdμk(x)

−
∫
RN

w|v|p div0(|∇0w|p−2∇0w)dμk(x)

−
∑
α

k(α)

∫
RN

w(r)|w′(r)|p−2w′(r)
r

(|v(x)|p + |v(σαx)|p)dμk(x).

Since radial functions and the Dunkl measure are invariant under reflection, a

change of variable in the third integral on the right-hand side gives us

(3.11)

∫
RN

|v|p|∇kw|pdμk(x) =− p

∫
RN

w|v|p−2v|∇0w|p−2∇0v.∇0wdμk(x)

−
∫
RN

w|v|p div0(|∇0w|p−2∇0w)dμk(x)

− 2γk

∫
RN

|w′(r)|p−2w′(r)w(r)
r

|v(x)|pdμk(x).

Since w is radial we can write from (3.1)

divk(|∇kw|p−2∇kw) = div0(|∇0w|p−2∇0w) + 2γk
|w′(r)|p−2w′(r)

r
.

Now we can write the above equation (3.11) as∫
RN

|v|p|∇kw|pdμk(x) =− p

∫
RN

w|v|p−2v∇0v.∇0w|∇0w|p−2dμk(x)

−
∫
RN

w(x)|v(x)|p divk(|∇kw|p−2∇kw)dμk(x).
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Consider the second term on the right-hand side of (3.3) and integrate:

p

∫
RN

|v|p−2|∇kw|p−2vw∇kv.∇kwdμk(x)

=p

∫
RN

|v|p−2|∇kw|p−2vw∇0v.∇0wdμk(x)

+ p

∫
RN

|v|p−2|∇0w|p−2vw
w′(r)
r

( N∑
j=1

Ej(v)xj

)
dμk(x).

Using the definition of Ej we find that

N∑
j=1

Ej(v)xj =
∑

α∈R+

k(α)(v(x) − v(σαx)).

Since v is G-invariant we can write

(3.12)

p

∫
RN

|v|p−2|∇kw|p−2vw∇kv.∇kwdμk(x)

=p

∫
RN

|v|p−2|∇0w|p−2vw∇0v.∇kwdμk(x)

+ p

∫
RN

|v|p−2||∇0w|p−2vw
w′(r)
r

∑
α∈R+

(k(α)(v(x) − v(σαx))dμk(x)

=p

∫
RN

|v|p−2|∇kw|p−2vw∇0v.∇0wdμk(x).

Substituting all the above calculated estimations and integrals into inequal-

ity (3.3),∫
RN

|∇k(vw)|pdμk(x) ≥− p

∫
RN

w|v|p−2v∇0w.∇0v|∇0w|p−2dμk(x)

−
∫
RN

w(x)|v(x)|p divk(|∇kw|p−2∇kw)dμk(x)

+ p

∫
RN

|v|p−2|∇kw|p−2vw∇0v.∇0wdμk(x).

That is, we end up with

(3.13)

∫
RN

|∇k(vw)|pdμk(x) ≥ −
∫
RN

w(x)|v(x)|p divk(|∇kw|p−2∇kw)dμk(x).
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Now if w is a weak solution of the equation

divk(|∇kw|p−2∇kw) + V wp−1 = 0

for some function V , the above inequality (3.13) becomes∫
RN

|∇ku|pdμk(x) ≥
∫
RN

V |u|pdμk(x).

Now we choose a w and V explicitly to obtain the desired Hardy inequality.

Let us choose

w(x) = |x|−(dk−p)/p,

that is w(r) = r−(dk−p)/p. By a straightforward calculation we get

w′(r) = − (dk − p)

p
r−(dk−p)/p−1

and

w′′(r) =
( (dk − p)

p

)( (dk − p)

p
+ 1

)
r−((dk−p))/p)−2.

Using the Dunkl p-Laplacian for radial functions given in (3.1) we find that for

r �= 0

Δk,pw(r) = −
∣∣∣dk − p

p

∣∣∣pr−((
(dk−p)

p )(p−1)+p).

Choose

V (x) =
∣∣∣dk − p

p

∣∣∣p|x|−p;

then w is a weak solution of Δk,pw = −V wp−1. Substituting V and w in (3.4)

we obtain the desired Hardy inequality
∫
RN

|∇ku|pdμk(x) ≥
∣∣∣dk − p

p

∣∣∣p
∫
RN

|u|p
|x|p dμk(x).

To prove the optimality, consider the functions uε below and take the limit

as ε → 0:

uε(x) =

⎧⎨
⎩
1, if |x| ≤ 1,

|x|− |dk−p|
p −ε, if |x| > 1.

Remark 3.1: (1) We assumed that the function u in Theorem 3.1 is G-invariant.

Assume that u ∈ C∞
0 (RN \{0}) and u = vw with some v and a radial function w
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with w′(r) ≥ 0. Now by using the Hölder inequality we obtain

∫
RN

|v|p−2v(x)v(σαx)
w(r)w′(r)

r
|∇0w|p−2dμk(x)

=

∫
RN

|v|p−2v(x)w(r)
w′(r)|w′(r)|p−2

r
v(σαx)dμk(x)

=

∫
RN

( |w′(r)|p−2w′(r)w(r)
r

)p−1
p

v(x)|v|p−2
( |w′(r)|p−2w′(r)w(r)

r

)1
p

v(σαx)dμk(x)

≤
(∫

RN

|w′(r)|p−1

r
|v(x)|pdμk(x)

) p−1
p

×
(∫

RN

|w′(r)|p−1w(r)

r
|v(σαx)|pdμk(x)

) 1
p

.

Therefore we conclude that

(3.14)

∫
RN

|v|p−2v(x)v(σαx)
w(r)w′(r)

r
|∇0w|p−2dμk(x)

≤
∫
RN

|w′(r)|p−1w(r)

r
|v(x)|pdμk(x).

Using this we can rewrite equation (3.12) as

(3.15)

p

∫
RN

|v|p−2|∇kw|p−2vw∇kv∇kwdμk(x)

≥p

∫
RN

|v|p−2|∇kw|p−2vw∇0v.∇0wdμk(x)

+ pγk

∫
RN

|v|p−2v2(x)w(x)
w′(r)
r

|∇kw|p−2dμk(x)

− pγk

∫
RN

|v|p |w
′(r)|
r

w(x)|∇kw|p−2dμk(x)

=p

∫
RN

|v|p−2|∇kw|p−2vw∇0v.∇0wdμk(x).

Now by repeating exactly same steps of the proof for Theorem 3.1 we get the

generalized Hardy inequality

∫
RN

|∇ku|pdμk(x) ≥
∫
RN

V |u|pdμk(x)

with some function V and w satisfies (3.5).
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(2) Let w(x) = |x|− dk−p

p with dk < p. Then w′(r) ≥ 0 and, by using Remark

3.1(1) we get the Hardy inequality∫
RN

|∇k(u)|pdμk(x) ≥
∣∣∣dk − p

p

∣∣∣p
∫
RN

|u|pdμk(x).

The above inequality is optimal and it is true for all u ∈ C∞
0 (RN \ {0}).

(3) If w′(r) < 0 equation (3.15) will be of the form

(3.16)

p

∫
RN

|v|p−2|∇kw|p−2vw∇kv∇kwdμk(x)

≥p

∫
RN

|v|p−2|∇kw|p−2vw∇0v.∇0wdμk(x)r

+ pγk

∫
RN

|v|p−2v2(x)w(x)
w′(r)
r

|∇kw|p−2dμk(x)

− pγk

∫
RN

|v|p |w
′(r)|
r

w(x)|∇kw|p−2dμk(x)

=p

∫
RN

|v|p−2|∇kw|p−2vw∇0v.∇0wdμk(x)

+ 2pγk

∫
RN

|v|p(x)w(x)w
′(r)
r

|∇kw|p−2dμk(x).

Now using (3.11) and (3.16) we obtain∫
RN

|∇k(vw)|pdμk(x)

≥−
∫
RN

w|v|p div0(|∇0w|p−2∇0w)dμk(x)

+ 2γk(p− 1)

∫
RN

|v|p(x)w(x)w
′(r)
r

|∇kw|p−2dμk(x)

=−
∫
RN

w|v|p
(
div0(|∇0w|p−2∇0w)− 2γk(p− 1)

|w′(r)|p−2w′(r)
r

)
dμk(x).

If w is a weak solution of the equation Lpw + V wp−1 = 0 where

Lpw := div0(|∇0w|p−2∇0w) − 2γk(p− 1)
|w′(r)|p−2w′(r)

r

= divk(|∇0w|p−2∇0w)− 2γkp
|w′(r)|p−2w′(r)

r
,

we have the Hardy inequality∫
RN

|∇k(u)|pdμk(x) ≥
∫
RN

V |u|pdμk(x).
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(4) In C∞
0 (RN ), let w := |x|− dk−p

p with dk > p and v = |x| dk−p

p u. Now using

the calculation carried out in (3.1) we can write

div0(|∇0w|p−2∇0w) = (p− 1)|w′(r)|p−2w′′(r) +
(N − 1)

r
|w′(r)|p−2w′(r)

= −
(dk − p

p

)p−1(dk − p

p
− 2γk

)
r−((

(dk−p)

p )(p−1)+p).

Using this and the expression for Lp we have

Lp(w) = −
(dk − p

p

)p−1(dk − p

p
− 2γk(p− 1)

)
r−((

(dk−p)

p )(p−1)+p).

Now for

V (x) = −
(dk − p

p

)p−1(dk − p

p
− 2γk(p− 1)

)
|x|−p

we have the Hardy inequality

(3.17)

∫
RN

|∇k(u)|pdμk(x)

≥
(dk − p

p

)p−1(dk − p

p
− 2γk(p− 1)

)∫
RN

|u|p
|x|p dμk(x).

(5) We don’t know about the sharpness of the constant appearing in (3.17).

However, for p = 2 it has been shown in [17] that the optimal constant for

the Hardy inequality is (dk−2)2

4 without the restriction that the function is G-

invariant.

Recall the algebraic inequality given in [3, Equation 2.13]: for p ≥ 2

|a+ b|p ≥ |a|p + p|a|p−2a.b+ cp|b|p,
where a and b are real numbers, and constant cp is given by

(3.18) cp := min
0<τ<1/2

((1− τ)p − τp + pτp−1)

and is sharp for this inequality. Using this, inequality (3.3) can be written as

(3.19)
|∇ku|p =|∇k(vw)|p

≥|v|p|∇kw|p + p|v|p−2|∇kw|p−2vw∇kv.∇kw + cp|w|p|∇kv|p.
For radial function w and reflection invariant function v such that

u = vw ∈ C∞
0 (RN ),
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if we use inequality (3.19) instead of (3.3), then inequality (3.13) turns out to be∫
RN

|∇k(vw)|pdμk(x)

≥−
∫
RN

w(x)|v(x)|pdiv(|∇kw|p−2∇kw)dμk(x) + cp

∫
RN

|w|p|∇kv|pdμk(x).

This improves the following Hardy inequality with a remainder term for p ≥ 2.

Corollary 3.2: Let 2 ≤ p < ∞. Let u be a real-valued G-invariant function.

If u ∈ C∞
0 (RN ) if dk > p, and u ∈ C∞

0 (RN \ {0}) if dk < p, then the following

inequality holds:

(3.20)

∫
RN

|∇ku|pdμk(x)−
∣∣∣dk − p

p

∣∣∣p
∫
RN

|u|p
|x|p dμk(x) ≥ cp

∫
RN

|∇kv|p
|x|dk−p

dμk(x),

where cp is given by (3.18). When p = 2 the equality holds with c2 = 1.

Remark 3.2: By observing Remark 3.1 we can make another remark on Corol-

lary 3.2. If w(x) = |x|− dk−p

p with dk < p, we obtain the following improved

Hardy inequality for all u ∈ C∞
0 (RN \ {0}):∫

RN

|∇ku|pdμk(x) −
∣∣∣dk − p

p

∣∣∣p
∫
RN

|u|pdμk(x) ≥ cp

∫
RN

|∇kv|p
|x|dk−p

dμk(x).

Also, if u ∈ C∞
0 (RN ) and if w := |x|− dk−p

p with dk > p and v = |x| dk−p

p u, then

again by Remark 3.1 we obtain the following improved Hardy inequality:∫
RN

|∇k(u)|pdμk(x)−
(dk − p

p

)p−1(dk − p

p
− 2γk(p−1)

) ∫
RN

|u|p
|x|p dμk(x)

≥cp

∫
RN

|∇kv|p
|x|dk−p

dμk(x).

Now we prove a generalized Hardy inequality which generalizes Theorem 3.1.

Fix 1 ≤ l ≤ N ; we write x ∈ RN as x = (y, z) with y ∈ Rl and z ∈ RN−l. Let

R1 be a root system on Rl, and k1 be a multiplicity function on R1. The Dunkl

weight function associated with R1 and k1 is given by

h2
k1
(x) =

∏
α∈R1,+

|〈x, α〉|2k1(α).

Since k1 is G-invariant, we have k1(α) = k1(−α) and thus the choice of any

arbitrary positive subsystem R1,+ does not make any impact on the weight

function. Now similarly for a root system R2 and a multiplicity function k2
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on RN−l, we have the weight function h2
k2
(x) =

∏
α∈R2,+

|〈x, α〉|2k2(α). Define

a root system on RN as

R := (R1 × (0)N−l) ∪ ((0)l ×R2).

Also define the multiplicity function k on R as k(y, 0)=k1(y) and k(0, z)=k2(z),

where y and z belong to R1 and R2 respectively. It is straightforward to check

that R is a root system on RN and k is a multiplicity function from R to

positive reals. Corresponding to this R and k, one can see that the Dunkl

weighted measure on R
N , denoted by dμk(x), is nothing but the product of the

Dunkl weighted measures on Rl and RN−l. That is,

dμk(x) = dμk1(y)dμk2(z) = h2
k(x)dx = h2

k1
(y)h2

k2
(z)dydz.

With this preparation we state the following theorem.

Theorem 3.3: Let 1 ≤ p < ∞ and let 1 ≤ l ≤ l ≤ N . Let u be a real-valued G-

invariant function. Assume that u ∈ C∞
0 (RN ) if dk1 > p and u ∈ C∞

0 (RN \{0})
if dk1 < p. Then the following inequality holds:

(3.21)

∫
RN

|∇ku(x)|pdμk(x) ≥
∣∣∣dk1 − p

p

∣∣∣p
∫
RN

|u(x)|p
|y|p dμk(x).

The constant |dk1
−p

p |p given in the inequality is optimal.

Proof. The root system R with which we started allows us to write

(3.22)

∫
RN

|u(x)|p
|y|p dμk(x) =

∫
RN−l

dμk1 (z)

∫
Rl

|u(x)|p
|y|p dμk2(y).

Let ∇k1,y and ∇k2,z be the Dunkl gradient on R
l and R

N−l respectively. It is

easy to see that

|∇k1,yu(y, z)| ≤ |∇ku(x)|.

By applying Theorem 3.1 to (3.22) we obtain the inequality (3.21). Now by

using Lemma 3.1 and following the arguments from [11] we can prove that

|dk1
−p

p |p is optimal.

Remark 3.3: Remark 3.1 can be extended to Theorem 3.3 similarly.
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4. Fractional Hardy inequality for Lp(RN , dμk(x))

For the classical Laplacian Δ = −∑N
j=1 ∂

2
j the L2 Hardy inequality can be

written as

〈Δu, u〉 ≥
(N − 2

2

)2
∫
RN

|u(x)|2
|x|2 dx.

For 0 < s < 1 the fractional power of a Laplacian is defined as

Δsu(x) :=
1

Γ(−s)

∫ ∞

0

(e−tΔu(x)− u(x))
dt

ts+1
,

where e−tΔu = u ∗ qt with qt denoting the Euclidean heat kernel. A straight-

forward calculation using the definition of e−tΔu yields that

Δsu(x) = C P.V.

∫
RN

(u(x)− u(y))

|x− y|N+2s
dy,

for some constant C. Using the symmetry of the kernel |x − y|−(N+2s) with a

constant C̃,

(4.1) ‖(−Δs/2)u‖22 = 〈Δsu, u〉 = C̃

∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s

dxdy,

and thus the fractional L2 Hardy inequality takes the form∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s

dxdy ≥ C(N, s)

∫
RN

|u(x)|2
|x|2s dx,

where the constant depends on N and s. One of the references to see the explicit

calculation of this L2 fractional Hardy inequality is [9, Appendix A]. However,

when p �= 2 one cannot have the equivalence of

‖(−Δs/2)u‖pp and

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps

dxdy

which we stated for p = 2 in (4.1). There are many studies in the literature

regarding the fractional Hardy inequality of the form

‖(−Δs/2)u‖pp ≥ C(N, s, p)

∫
RN

|u(x)|p
|x|ps dx;

for instance, Herbst in [8] calculated the sharp constant in the above inequality.

But in this paper we are interested in the fractional Hardy inequalities of the

form

(4.2)

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps

dxdy ≥ C′(N, s, p)

∫
RN

|u(x)|p
|x|ps dx

in the Dunkl setting.
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The basic study of fractional power of the Dunkl Laplacian can be conducted

in a similar fashion to the Euclidean case. The kernel |x − y|−(N+ps) in (4.2)

is actually the translation of the function |x|−(N+ps). We are motivated to

consider the kernel which is the Dunkl translation of |x|−(dk+ps). Motivated by

[6, Lemma 2.3] we define the kernel Φ(x, y) as

(4.3) Φ(x, y) :=
1

Γ((dk + ps)/2)

∫ ∞

0

s
dk+ps

2 −1τky (e
−s|.|2)(x)ds.

Theorem 4.1: Let dk ≥ 1 and 0 < s < 1. If u ∈ Ẇ s
p (R

N ) when 2 ≤ p < dk/s

or u ∈ Ẇ s
p (R

N \ {0}) when p > dk/s, the following inequality holds:

(4.4)

∫
RN

∫
RN

|u(x)−u(y)|pΦ(x, y)dμk(x)dμk(y) ≥ Cdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x),

where Φ(x, y) is given in (4.3) and

(4.5) Cdk,s,p := 2

∫ 1

0

rps−1|1− r(dk−ps)/p|pΦN,s,p(r)dr,

with

(4.6)
ΦN,s,p(r) :=

Γ(dk

2 )√
πΓ(dk−1

2 )

∫ π

0

sindk−2 θ

(1 − 2r cos θ + r2)
dk+ps

2

dθ, N ≥ 2,

Φ1,s,p(r) :=(τkr (|.|dk+ps) + τk−r(|.|dk+ps))(1), N = 1.

The constant Cdk,s,p is sharp. If p = 1, equality holds iff u is proportional

to a symmetric decreasing function. If p > 1, the inequality is strict for any

function 0 �≡ u ∈ Ẇ s
p (R

N ) or Ẇ s
p (R

N \ {0}), respectively. Further, for p ≥ 2

the following inequality holds:

(4.7)

∫
RN

∫
RN

|u(x)− u(y)|pΦ(x, y)dμk(x)dμk(y)

≥Cdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x)

+ cp

∫
RN

∫
RN

|v(x)− v(y)|pΦ(x, y) dμk(x)

|x|(dk−ps)/2

dμk(y)

|y|(dk−ps)/2
,

where v := |x|(dk−ps)/pu, Φ is as in equation (4.3), Cdk,s,p is given by (4.5)

and cp is given in (3.18). If c2 = 1 the equality holds in p = 2 case.



Vol. 236, 2020 HARDY INEQUALITIES FOR DUNKL LAPLACIAN 263

Remark 4.1: The case when we choose the multiplicity function k ≡ 0, the

Dunkl case will reduce to the classical case. So in that case we get the main

results in [3] as a corollary of the above theorems. That is [3, Theorem 1.1] and

[3, Theorem 1.2] are obtained as corollaries to Theorem 4.1.

Here is an auxiliary lemma which is proven in [3].

Lemma 4.2 (R. Frank, R. Seiringer): Let p ≥ 1. Then for all 0 ≤ t ≤ 1 and

a ∈ C one has

(4.8) |a− t|p ≥ (1− t)p−1(|a|p − 1).

For p > 1 this inequality is strict, unless a = 1 or t = 0. Moreover, if p ≥ 2

then, for all 0 ≤ t ≤ 1 and all a ∈ C, one has

(4.9) |a− t|p ≥ (1− t)p−1(|a|p − t) + cpt
p/2|a− 1|p,

with 0 < cp ≤ 1 and cp given in (3.18). For p = 2, (4.9) is an equality with

c2 = 1. For p > 2, (4.9) is a strict equality unless a = 1 or t = 0.

For N, p ≥ 1, let Φε(x, y) be symmetric positive real-valued functions defined

on RN ×RN such that Φε → Φ as ε → 0 with Φε ≤ Φ. Let us define the energy

functional E[u] as

E[u] :=

∫∫
RN×RN

|u(x)− u(y)|pΦ(x, y)dμk(x)dμk(y),

where Φ(x, y) is the kernel given in (4.3). Let us define the functions Vε and V

as

(4.10) Vε(x) := 2w(x)−p+1

∫
RN

(w(x) − w(y))|w(x) − w(y)|p−2Φε(x, y)dμk(y)

and ∫
RN

V fdμk(x) := lim
ε→0

∫
RN

Vεfdμk(x)

for every f ∈ C∞
0 (RN ). Following a similar argument as in the proof of [3,

Proposition 2.2, Proposition 2.3] gives us the following two lemmas.

Lemma 4.3: Let u ∈ C∞
0 (RN ). If E[u] and

∫
V |u|p are finite we have

(4.11) E[u] ≥
∫
RN

V (x)|u(x)|pdμk(x).
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Lemma 4.4: Let p ≥ 2 and u ∈ C∞
0 (RN ). If E[u],

∫
V |u|p are finite and

(4.12)

∫
RN

|v(x) − v(y)|pw(x) p
2w(y)

p
2 Φ(x, y)dμk(x)dμk(y) < ∞,

then we have

(4.13)

E[u]−
∫
RN

V (x)|u(x)|pdμk(x)

≥cp

∫
RN

|v(x)− v(y)|pw(x) p
2 w(y)

p
2Φ(x, y)dμk(x)dμk(y),

where cp is as in (3.18). If p = 2, (4.11) becomes an equality with c2 = 1.

We will prove the following lemma which states that w(x) = |x|− dk−ps

p solves

the Euler–Lagrange equation related to equation (4.4). For convenience in cal-

culations we write α := (dk − ps)/p. Let Φε := Φχ||x|−|y||>ε; then the Φε’s are

positive symmetric real-valued functions which converge to Φ, with 0 < Φε ≤ Φ.

Lemma 4.5: Let w(x) = |x|− dk−ps

p . The following limit converges uniformly

for any compact subsets of RN :

(4.14)

2 lim
ε→0

∫
||x|−|y||>ε

(w(x) − w(y))|w(x) − w(y)|p−2Φε(x, y)dμk(y)

=
Cdk,s,p

|x|ps w(x)p−1.

Proof. Let |x| = r and |y| = ρ and write x = rx′ and y = ρy′. Using polar

coordinates we obtain

(4.15)

∫
||x|−|y||>ε

(w(x) − w(y))|w(x) − w(y)|p−2Φ(x, y)dμk(y)

=

∫
|ρ−r|>ε

∫
SN−1

(r−α−ρ−α)|r−α−ρ−α|p−2Φ(rx′, ρy′)ρ2λk+1dρdσk(y
′),

where

dσk(y
′) = h2

k(y
′)dσ(y′)

with dσ(y′) the (Euclidean) surface measure on the sphere S
N−1. If ρ < r we

use the fact from [6, Lemma 2.3] that Φ(rx′, ρy′) = r−dk−psΦ(x′, ρ
ry

′) to get

(4.16)

∫
||x|−|y||>ε

(w(x) − w(y))|w(x) − w(y)|p−2Φ(x, y)dμk(y)

=

∫
|ρ−r|>ε

∫
SN−1

sgn(ρα−rα)|ρ−α−r−α|p−1

rdk+ps
Φ
(
x′,

ρ

r
y′
)
ρ2λk+1dσk(y

′)dρ.
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Similarly, if r < ρ, from [6, Lemma 2.3] it follows that

(4.17)

∫
||x|−|y||>ε

(w(x) − w(y))|w(x) − w(y)|p−2Φ(x, y)dμk(y)

=

∫
|ρ−r|>ε

∫
SN−1

sgn(ρα − rα)|ρ−α − r−α|p−1

ρ1+ps
Φ(

r

ρ
x′, y′)dσk(y

′)dρ.

It follows from [6, Lemma 2.3] that

(4.18)

∫
SN−1

Φ(rx′, ρy′)dσk(y
′)=

Γ(dk

2 )√
πΓ(dk−1

2 )

∫ π

0

sindk−2θ

(r2−2rρ cos θ+ρ2)
dk+ps

2

dθ.

Using (4.16), (4.17) and (4.18) we can write (4.15) as

(4.19)

∫
||x|−|y||>ε

(w(x) − w(y))|w(x) − w(y)|p−2Φ(x, y)dμk(y)

=
1

rdk−1

∫
|ρ−r|>ε

sgn(ρα − rα)

|ρ− r|2−p(1−s)
ϕ(ρ, r)dρ,

where ϕ(ρ, r) is given by

(4.20) ϕ(ρ, r) =
∣∣∣ρ−α − r−α

r − ρ

∣∣∣p−1

.

⎧⎨
⎩
ρdk−1(1− ρ

r )
1+psΦN,s,p(

ρ
r ), if ρ < r,

rdk−1(1− r
ρ)

1+psΦN,s,p(
r
ρ), if ρ > r,

with ΦN,s,p given in (4.6).

We need to show the convergence of the integral

(4.21)

∫
|ρ−r|>ε

sgn(ρα − rα)

|ρ− r|2−p(1−s)
ϕ(ρ, r)dρ.

It is enough to show that the function φ(ρ, r) is Lipschitz continuous as a

function of ρ at ρ = r. Writing t = ρ/r it is sufficient to show the function

(1− t)1+psΦN,s,p(t) and its t-derivative are bounded at t → 1−. As N = 1 it is

trivial; we do it for N ≥ 2. The identity in [7, 3.665] states that

(4.22)

∫
RN

sin2μ−1 xdx

(1 + 2a cosx+ a2)ν
= B

(
μ,

1

2

)
F
(
ν, ν − μ+

1

2
, μ+

1

2
; a2

)
,

where F is a hypergeometric function with Re μ > 0 and |a| < 1. Using (4.22)

we can write

(4.23) ΦN,s,p(t) =
Γ(dk

2 )√
πΓ(dk−1

2 )
B
(dk − 1

2
,
1

2

)
F
(dk + ps

2
,
ps+ 2

2
;
dk
2
; t2

)
.
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Using the property that both (1 − z)a+b−cF (a, b, c; z) and its derivative has a

limit at z → 1− if a+ b− c > 1, we conclude that (1 − t)1+psΦN,s,p(t) and its

t-derivative are bounded at t → 1−.

Continuing the same argument from [3] we get (4.14) with

Cdk,s,p = 2 lim
ε→0

∫
|ρ−1|>ε

sgn(ρα − 1)

|ρ− 1|2−p(1−s)
ϕ(ρ, 1)dρ.

Now we will prove that this constant coincides with the constant given in (4.5).

2 lim
ε→0

∫
|ρ−1|>ε

sgn(ρα − 1)

|ρ− 1|2−p(1−s)
ϕ(ρ, 1)dρ

=2 lim
ε→0

[∫ 1−ε

0

sgn(ρα − 1)

|ρ− 1|2−p(1−s)
ϕ(ρ, 1)dρ+

∫ ∞

1+ε

sgn(ρα − 1)

|ρ− 1|2−p(1−s)
ϕ(ρ, 1)dρ

]

=2

[ ∫ 1

0

sgn(ρα − 1)

(1− ρ)2−p(1−s)
ϕ(ρ, 1)dρ+

∫ 1

0

sgn(1− ρα)ρ−p(1−s)

(1 − ρ)2−p(1−s)
ϕ(ρ−1, 1)dρ

]

=2 sgn(α)

∫ 1

0

(ρ−p(1−s)ϕ(ρ−1, 1)− ϕ(ρ, 1))

(1− ρ)2−p(1−s)
dρ.

A straightforward calculation gives

(ρ−p(1−s)ϕ(ρ−1, 1)− ϕ(ρ, 1)) = |1− ρα|p−1(1− ρα)ΦN,s,p(ρ)(1 − ρ)2−p(1−s)

and it follows that

Cdk,s,p = 2

∫ 1

0

ρps−1|1 − ρα|pΦN,s,p(ρ)dρ.

4.1. Proof of Theorem 4.1. Now the Hardy inequalities (4.4) and (4.7)

follow by repeating the arguments of [3]. In case of the strictness p ≥ 2 due to

the positive remainder term in (4.7), it is immediate that the inequality in (4.4)

is strict. With similar arguments used to obtain [3, (2.18)], in our case we obtain

(4.24) E[u] =

∫
RN

∫
RN

φu(x, y)Φ(x, y)dμk(x)dμk(y) +

∫
RN

V |u|pdμk(x),

for all u ∈ C∞
0 (RN \ {0}) with

φu(x, y) =|w(x)v(x) − w(y)v(y)|p

− (w(x)|v(x)|p − w(y)|v(y)|p)(w(x) − w(y))|w(x) − w(y)|p−2.

It can be proven easily that φu ≥ 0 (see [3]). This can be extended to

Ẇ s
p (R

N \ {0}) when dk < ps and to Ẇ s
p (R

N ) when dk > ps by approxima-

tion.
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Suppose E[u] =
∫
RN V |u|pdμk(x) for some u ∈ Ẇ s

p (R
N \ {0}). Then it is

true for |u|. Observing that Φ|u| ≥ 0 and Φ(x, y) is positive in (4.24) we can

see that Φ|u| ≡ 0. From Lemma 4.2 we obtain that v is a constant function

and since v = w−1u we conclude that u ≡ 0. This gives that for any non-zero

u ∈ Ẇ s
p (R

N \ {0}) in case dk < ps or u ∈ Ẇ s
p (R

N ) in case dk > ps, inequality

(4.11) is strict.

Now for p = 1, we shall prove that the equality of (4.4) holds if and only if u

is proportional to a symmetric decreasing function. Let χt be the characteristic

function of a ball centered at the origin with radius R(t). Define u =
∫∞
0

χtdt.

Then for p = 1, we can write the right-hand side of the inequality (4.4) as∫
RN

|u(x)|
|x|s =

‖SN−1‖k
dk − s

∫ ∞

0

R(t)dk−sdt,

where ‖SN−1‖k is the surface measure of SN−1 with Dunkl weighted measure;

one can calculate ‖SN−1‖k = c−1
k /(2(

dk
2 −1)Γ(dk/2)). Now the left-hand side of

the same inequality (4.4) can be written as∫
RN

∫
RN

|u(x)− u(y)|pΦ(x, y)dμk(x)dμk(y)

=2

∫∫
{|x|<|y|}

∣∣∣∣
∫
(χt(x) − χt(y))dt

∣∣∣∣Φ(x, y)dμk(x)dμk(y)

=2

∫∫∫
{|x|<R(t)<|y|}

Φ(x, y)dμk(x)dμk(y)dt

=2

∫∫
{|x|<1<|y|}

Φ(x, y)dμk(x)dμk(y)

∫ ∞

0

R(t)dk−sdt.

It gives the equality of (4.4) for the function u and p = 1.

The sharpness of the constant Cdk,s,p can be proved by the same arguments

in [3]. But for the completion we give the proof here. To prove this, we will use

the trial functions un and show that, as n → ∞,∫
RN

∫
RN |un(x)− un(y)|pk(x, y)dμk(x)dμk(y)∫

RN |un(x)|p|x|−psdμk(x)
≤ Cdk,s,p(1 +O(1)).

Let us first define the functions un for dk > ps. Let

I := {x ∈ R
N : 0 ≤ |x| < 1},

Mn := {x ∈ R
N : 1 ≤ |x| ≤ n},

On := {x ∈ R
N : |x| ≥ n}.
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Define

(4.25) un(x) :=

⎧⎪⎪⎨
⎪⎪⎩
1− n−α, if x ∈ I,

|x|−α − n−α, if x ∈ Mn,

0, if x ∈ On,

where α = (dk−ps)
p . Multiply the integrand of (4.14) by un(x) and integrate

with respect to x. Using the symmetry of Φ(x, y) we obtain, as ε → 0,

(4.26)

∫
RN

∫
RN

(un(x)−un(y))(w(x)−w(y))|w(x)−w(y)|p−2Φ(x, y)dμk(x)dμk(y)

=Cdk,s,p

∫
RN

un(x)w(x)
p−1

|x|ps dμk(x).

Write∫
RN

∫
RN

(un(x) − un(y))(w(x) − w(y))|w(x) − w(y)|p−2Φ(x, y)dμk(x)dμk(y)

=

∫
RN

∫
RN

|un(x)− un(y)|pΦ(x, y)dμk(x)dμk(y) + 2R0,

where

R0 :=

∫
x∈I

∫
y∈Mn

(1− w(y))((w(x) − w(y)p−1)− (1− w(y))p−1)

× Φ(x, y)dμk(x)dμk(y)

+

∫
x∈Mn

∫
y∈On

(w(x) − n−α)((w(x) − w(y))p−1 − (w(x) − n−α)p−1)

× Φ(x, y)dμk(x)dμk(y)

+

∫
x∈I

∫
y∈On

(1 − n−α)((w(x) − w(y))p−1 − (1−N−α)p−1)

× Φ(x, y)dμk(x)dμk(y).

Since all the terms within all the three integrals are non-negative, we have

R ≥ 0. Divide the right-hand side of (4.26) by Cdk,s,p and add and subtract
up
n

|x|ps to the integrand: we obtain

(4.27)

∫
RN

up
n

|x|ps dμk(x) +R1 +R2,
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where

R1 :=

∫
I

(1− n−α)(w(x)p−1 − (1− n−α)p−1 dμk(x)

|x|ps ,

R2 :=

∫
Mn

(w(x) − n−α)(w(x)p−1 − (w(x) − n−α)p−1)
dμk(x)

|x|ps .

Observe that the integrands on both of the integrals are non-negative and we

will show that R1 +R2 = O(1) as n → ∞:

(4.28)

∫
RN

∫
RN |un(x) − un(y)|pΦ(x, y)dμk(x)dμk(y)∫

RN |un(x)|p|x|−psdμk(x)

= Cdk,s,p

(
1+

R1R2∫
RN |un(x)|p|x|−psdμk(x)

)
− 2R0∫

RN |un(x)|p|x|−psdμk(x)

≤ Cdk,s,p(1 + o(1)).

Now we need to prove that R1+R2 = O(1) as n → ∞. Note that the integrand

of R1 is bounded by |x|α−dk and it allows us to write

R1 ≤
∫
|x|<1

|x|α−dkdμk(x) < ∞.

Observe that 1− (1 − t)p−1 ≤ t for 1 ≤ p ≤ 2 and 1− (1− t)p−1 ≤ (p− 1)t for

p > 2, where 0 ≤ t ≤ 1. Using this we can write

(4.29) (w(x) − n−α)(w(x)p−1 − (w(x) − n−α)p−1) ≤ Cpn
−αw(x)p−1,

where Cp = 1 for 1 ≤ p ≤ 2 and Cp = p− 1 for p > 2. Now it is not hard to see

that

R2 ≤ Cp

∫
|x|<1

|x|α−dkdμk(x) < ∞.

The case dk < ps can be treated similarly using the sequence of trial functions

described in [3] taking α = (dk − ps)/p.

5. Fractional Hardy inequality for the half-space

Let R1 be a root system on R
N−1 and k1 be a multiplicity function on R1.

Extend R1 to a root system R of RN as R = R1 × {0} = {(x, 0) : x ∈ R1}.
Clearly it is a root system on RN and the multiplicity function k1 can be ex-

tended to k which acts on R by k(x1, x2, . . . , xN−1, xN ) = k1(x1, x2, . . . , xN−1).

Let R1,+ be a positive subsystem of R1 with R1 = R1,+ ∪ (−R1,+). Then we



270 V. P. ANOOP AND S. PARUI Isr. J. Math.

can write R = R+ ∪ (−R+), where the positive subsystem R+ of R is given by

R+ = {(x, 0) : x ∈ R1,+}; γk remains the same as

γk =
∑
ν∈R+

k(ν) =
∑

ν∈R1,+

k1(ν) = γk1 .

The Dunkl measure corresponding to the root system R and the multiplicity

function k will be

dμk(x) =dμk(x) =
∏

ν∈R+

|〈x, ν〉|2k(ν)dx

=
∏

ν∈R1,+

|〈x′, ν〉|2k1(ν)dx′.dxN = dμk1 (x
′)dxN ,

where x = (x′, xN ) ∈ RN .

Theorem 5.1: Let N ≥ 1, 1 ≤ p < ∞, and 0 < s < 1 with ps �= 1. Then for

all u ∈ Ẇ p
s (R

N
+ )

(5.1)

∫
RN

+

∫
RN

+

|u(x)−u(y)|pΦ(x, y)dμk(x)dμk(y)≥DN,γk,p,s

∫
RN

+

|u(x)|p
xps
N

dμk(x),

where

(5.2) DN,γk,p,s := c−1
k1

2−λk1
Γ((1 + ps)/2)

Γ((dk + ps)/2)

∫ 1

0

|1− r(ps−1)/p|p dr

(1− r)1+ps

and the constant DN,γk,p,s is optimal. If p = 1 and N = 1, equality holds iff u

is proportional to a non-increasing function. If p = 1 or if p = 1 and N ≥ 2, the

inequality is strict for any non-zero function in Ẇ s
p (R

N
+ ). Further, for p ≥ 2 we

also have

(5.3)

∫
RN

+

∫
RN

+

|u(x)− u(y)|pΦ(x, y)dμk(x)dμk(y)

≥DN,γk,p,s

∫
RN

+

|u(x)|p
xps
N

dμk(x)

+ cp

∫
RN

+

∫
RN

+

|v(x) − v(y)|pΦ(x, y) dμk(x)

|xN |(1−ps)/2

dμk(y)

|yN |(1−ps)/2
,

where v := x
(1−ps)/p
N u, Φ is as in (4.3), DN,γk,p,s is given in (5.2) and cp is given

in (3.18); c2 = 1 and the equality holds in the p = 2 case.
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Proof. Let x = (x′, xN ) and y = (y′, yN ) be elements of RN . Choose

w(x) = |xN |(1−ps)/p and V (x) = DN,γk.p,s|xN |−ps. Since for the fixed root

system R

τky (e
−s|.|2)(x) = e−s|xN−yN |2τk1

y′ (e
−s|.|2)(x′),

the definition of Φ(x, y) in (4.3) takes the form

Φ(x, y) :=
1

Γ((dk + ps)/2)

∫ ∞

0

s
dk+ps

2 −1τky (e
−s|.|2)(x)ds

=
1

Γ((dk + ps)/2)

∫ ∞

0

s
dk+ps

2 −1e−s|xN−yN |2τk1

y′ (e
−s|.|2)(x′)ds.

We start with the Euler–Lagrange equation corresponding to (5.1) and let us

verify that w(x) = |xN |− 1−ps
p solves it:

(5.4)

∫
y∈R

N
+

|xN−yN |>ε

(w(x) − w(y))|w(x) − w(y)|p−2Φ(x, y)dμk(y)

=
1

Γ((dk + ps)/2)

∫
y∈R

N
+

|xN−yN |>ε

(w(x) − w(y))|w(x) − w(y)|p−2

×
∫ ∞

0

s
dk+ps

2 −1τy(e
−s|.|2)(x)dsdμk(y)

=
1

Γ((dk+ps)/2)

∫
RN−1

∫
|xN−yN |>ε

(w(x)−w(y))|w(x)−w(y)|p−2

×
∫ ∞

0

s
dk+ps

2 −1e−s|xN−yN |2τk1

y′ (e
−s|.|2)(x′)dsdyNdμk1(y

′).

The property of translation of a radial function [15, Theorem 3.8] gives that

(5.5)

∫
RN−1

τk1

y′ (e
−s|.|2)(x′)dμk1(y

′) =
∫
RN−1

e−s|y′|2dμk1(y
′).

From the definition of the Gamma function we get

(5.6)

1

Γ((dk + ps)/2)

∫ ∞

0

s
dk+ps

2 −1e−s(|xN−yN |2+|y′|2)ds

=
1

(|xN − yN |2 + |y′|2) dk+ps

2

.
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Applying (5.5) and (5.6) to (5.4) we find that

∫
y∈R

N
+ ,

|xN−yN |>ε

(w(x) − w(y))|w(x) − w(y)|p−2Φ(x, y)dμk(y)

=

∫
y∈R

N
+ ,

|xN−yN |>ε

(w(x) − w(y))|w(x) − w(y)|p−2

(|xN − yN |2 + |y′|2) dk+ps

2

dμk(y).

Let us calculate the following integral separately for convenience and set

m = |xN − yN |2, and keep in mind that dk1 = dk − 1:

∫
RN−1

1

(m2 + |y′|2) dk+ps

2

dμk(y
′) =‖SN−2‖k1

∫ ∞

0

1

(m2 + r2)
dk+ps

2

rdk−2dr

=‖SN−2‖k1

1

m1+ps

∫ ∞

0

tdk−2

(1 + t2)
dk+ps

2

dt

=‖SN−2‖k1

1

2m1+ps

Γ((dk−1)/2)Γ((1+ps)/2)

Γ((dk + ps)/2)
.

We now return to the equation and use [3, Theorem 1.1] for N = 1 to conclude.

Also substitute the value of ‖SN−2‖k1 = (c−1
k1

2−λk1 )/Γ(dk1/2). We use the same

notation w for the function w(xN ) = |xN |−(1−ps)/p:

(5.7)

∫
y∈RN

+ ,|xN−yN |>ε

(w(x) − w(y))|w(x) − w(y)|p−2

(|xN − yN |2 + |y′|2)α/2 dμk(y)

=
c−1
k1

2−λk1Γ((1+ps)/2)

Γ((dk+ps)/2)

∫
|xN−yN |>ε

(w(xN )−w(yN ))|w(xN )−w(yN )|p−2

|xN−yN |1+ps
dyN .

From [3, Lemma 3.1], considering xN , yN ∈ R, we can write

(5.8)

C1,p,s

|xN |psw(xN )p−1

=2 lim
ε→0

∫
R,

||xN |−|yN ||>ε

(w(xN )− w(yN )||w(xN )− w(yN )|p−2)

|xN − yN |1+ps
dyN

=2

∫ ∞

0

(w(xN )− w(yN ))|w(xN )− w(yN )|p−2

×
( 1

|xN − yN |1+ps + |xN + yN |1+ps

)
dyN .
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This gives the constant in [3, Theorem 1.1] as

(5.9) C1,p,s = 2

∫ 1

0

|1− r(1−ps)/p|p
( 1

(1− r)1+ps
+

1

(1 + r)1+ps

)
dr.

But in our case we are only interested in the case yN > 0, so (5.8) and (5.9)

imply that

(5.10)

2 lim
ε→0

∫ ∞

0,
|xN−yN |>ε

(w(xN )− w(yN ))
|w(xN )− w(yN )|p−2

|xN − yN |1+ps
dyN

=
C̃1,p,s

|xN |psw(x)
p−1,

where

(5.11) C̃1,p,s := 2

∫ 1

0

|1− r(1−ps)/p|p
(1 − r)1+ps

dr.

Now by using (5.10) and (5.7) we can conclude that

(5.12)

2 lim
ε→0

∫
y∈RN

+ ,|xN−yN |>ε

(w(x) − w(y))|w(x) − w(y)|p−2

(|xN − yN |2 + |y′|2)α/2 dμk(y)

=
c−1
k1

2−λk1
−1Γ((1 + ps)/2)

Γ((dk + ps)/2)

C̃1,p,s

|xN |psw(x)
p−1.

We can see that the constant appearing in (5.2) and

c−1
k1

2−λk1
−1Γ((1 + ps)/2)

Γ((dk + ps)/2)
C̃1,p,s

are same.

The Hardy inequalities (5.1) and (5.3), the strictness for p > 1 and the equal-

ity in the case of p = 1 follow from the proof of [4, Theorem 1.1]. Optimality

comes from the optimality of Theorem 4.1.

6. Fractional Hardy inequality for the cone

For 0 ≤ l ≤ N , a cone R
N
l+

is defined as a subset of RN which is precisely the

set

{x = (x1, . . . , xN ) ∈ R
N : xN−l+1 > 0, . . . , xN > 0}.

In the case of a half-space we extended a root system of RN−1 to a root system

of RN and found a corresponding multiplicity function and Dunkl weighted mea-

sure on R
N
+ . In the case of a cone we write R

N = R
N−l × R

l and
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extend a root system of RN−l to RN . For an element x ∈ RN we write

x = (x′, xN−l+1, xN−l+2, . . . , xN ) where x′ ∈ RN−l. Let R1 be a root sys-

tem on RN−l and k1, dμk1 := h2
k(x

′) be the corresponding multiplicity function

and Dunkl weighted measure. Define R := {(x, 0) ∈ RN : x ∈ R1}. It is easy

to verify that R is a root system on RN . Now as in the case of the upper

half-space, extend the multiplicity function to k of RN as k(x′, 0) = k1(x) and

the corresponding Dunkl weighted measure dμk(x) = dμk1(x
′)dxN−l+1 · · · dxN .

For the convenience of the calculations we write x ∈ RN as x = (x′, x′′) with

x′ ∈ RN−l and x′′ ∈ Rl.

Theorem 6.1: Let N ∈ N, 1 ≤ p < ∞. Further, 0 < s < 1 with a condition

ps �= 1. Then for all u ∈ Ẇ p
s (R

N
l+
) the following inequality holds:

(6.1)

∫
RN

l+

∫
RN

l+

|u(x)− u(y)|pΦ(x, y)dμk(x)dμk(y)

≥DNl,γk,p,s

∫
RN

l+

|u(x)|2
x2
N−l+1 + · · ·+ x2

N

dμk(x),

where

(6.2) DNl,γk,p,s =
c−1
k1

2−λkΓ((l + ps)/2)

Γ((dk + ps)/2)

∫ 1

0

rps−1|1− r(l−ps)/p|pΦ̃l+,s,p(r)dr,

with

Φ̃l+,s,p(r) =

∫
S
l−1
l+

1

|x̃− rỹ|l+ps
dσ(ỹ),

where x̃ ∈ S
l−1
l+

and S
l−1
l+

= Sl−1 ∩ Rl
l+
. The constant DNl,γk,p,s is optimal.

If p = 1 and N = l, equality holds iff u is proportional to a non-increasing

function. Also, for p ≥ 2 the following inequality holds:

(6.3)

∫
RN

l+

∫
RN

l+

|u(x)− u(y)|pΦ(x, y)dμk(x)dμk(y)

≥DNl,γk,p,s

∫
RN

l+

|u(x)|p
|x′′|ps dμk(x)

+ cp

∫
RN

l+

∫
RN

l+

|v(x) − v(y)|pΦ(x, y) dμk(x)

|x′′|(1−ps)/2

dμk(y)

|y′′|(1−ps)/2

where v := |x′′|(l−ps)/pu, Φ is as in (4.3), DN,γk,p,s is given in (6.2) and cp is

given in (3.18). Moreover, c2 = 1 and the equality holds in the p = 2 case.
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Proof. The proof is very similar to that of Hardy inequality of the half-space.

Similar steps will lead to the desired conclusion very easily. In order to find a

positive solution of the Euler–Lagrange equation corresponding to (6.1), we set

w(x) = |x′′|−(l−ps)/2 and V (x) = DNl,γk,p,s|x′′|−ps. The Φ(x, y) given in (4.3)

will take the form

Φ(x, y) :=
1

Γ((dk + ps)/2)

∫ ∞

0

s
dk+ps

2 −1τky (e
−s|.|2)(x)ds

=
1

Γ((dk + ps)/2)

∫ ∞

0

s
dk+ps

2 −1e−s
∑N

j=N−l+1 |xj−yj |2τy′(e−s|.|2)(x′)ds,

since

τky (e
−s|.|2)(x) = e−s

∑N
j=N−l+1 |xj−yj |2τy′(e−s|.|2)(x′)

with our root system R on R
N .

Repeating the same arguments as in the proof of Theorem 5.1 we obtain∫
y∈R

N
l+

,

||x′′|−|y′′||>ε

(w(x) − w(y))|w(x) − w(y)|p−2Φ(x, y)dμk(y)

=

∫
y∈R

N
l+

,

||x′′|−|y′′||>ε

(w(x) − w(y))|w(x) − w(y)|p−2

(|x′′ − y′′|2 + |y′|2) dk+ps

2

dμk(y).

We evaluate
∫
RN−l

1
(m2+|y′|2)α/2dμk(y

′) as in the previous proof withm= |x′′−y′′|
and find that∫

RN−l

1

(|x′′ − y′′|2 + |y′|2) dk+ps

2

dμk(y
′) = π

dk1
2

Γ((l + ps)/2)

Γ((dk + ps)/2)

1

|x′′ − y′′|l+ps
,

where dk1 = N − l + 2γk1 . Now the Euler–Lagrange equation corresponding

to (6.1) is of the form

(6.4)

2 lim
ε→0

∫
y∈R

N
l+

,

||x′′|−|y′′||>ε

(w(x) − w(y))|w(x) − w(y)|p−2Φ(x, y)dμk(y)

=
c−1
k1

2−λk1Γ((l + ps)/2)

Γ((dk + ps)/2)

× lim
ε→0

∫
y∈R

l
l+

,

||x′′|−|y′′||>ε

(w(x′′)−w(y′′))|w(x′′)−w(y′′)|p−2

(|x′′−y′′|)l+ps
dy′′,

with w(x′′) = |x′′|−(l−ps)/p.
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If Sl−1
l+

= Sl−1 ∩Rl
l+
, the polar decomposition of the right-hand-side integral

of (6.4) can be written as

lim
ε→0

∫
y∈R

l
l+

,

||x′′|−|y′′||>ε

(w(x′′)− w(y′′))|w(x′′)− w(y′′)|p−2

(|x′′ − y′′|)l+ps
dy′′

=

∫
|ρ−r|>ε

∫
S
l−1
l+

(r−α − ρ−α)|r−α − ρ−α|p−2

|rx̃− ρỹ|l+ps
dσ(ỹ)dρ,

where x′′ = rx̃, y′′ = ρỹ and α = (l− ps)/p. Using similar steps in the proof of

[3, Lemma 3.1] we can prove that

(6.5) 2 lim
ε→0

∫
Rl

l+

(w(x′′)− w(y′′))|w(x′′)− w(y′′)|p−2

|x′′ − y′′|l+ps
dy′′ =

C̃l+,s,p

|x′′|ps w(x
′′)p−1,

where for l ≥ 2

C̃l+,s,p = 2

∫ 1

0

rps−1|1 − r(l−ps)/p|pΦ̃l+,s,p(r)dr

with

Φ̃l+,s,p(r) =

∫
S
l−1
l+

1

|x̃− rỹ|l+ps
dσ(ỹ),

and when l = 1 then C̃1+,s,p = C̃1,p,s given in equation (5.11). The constant

C̃l+,s,p is different from the constant Cl,s,p given in [3, Theorem 1.1], since

instead of integrating over the whole sphere Sl−1 we are only integrating over

the points on the sphere which intersect with the cone, that is only on S
l−1
l+

.

Define

DNl,γk,p,s :=
c−1
k1

2−λk1Γ((l + ps)/2)

Γ((dk + ps)/2)
C̃l+,s,p.

From (6.4) and (6.5), we get w as the positive solution of the Euler–Lagrange

equation corresponding to (6.1)

2 lim
ε→0

∫
y∈R

N
l+

,

||x′′|−|y′′||>ε

(w(x) − w(y))|w(x) − w(y)|p−2Φ(x, y)dμk(y)

=
DNl,γk,p,s

|x′′|ps w(x)p−1.

Proof of the Hardy inequalities (6.1) and (6.3) and the proof of optimality of

the constantDNl,γk,p,s(it follows from the optimality of C̃1+,s,p) can be obtained

by the same techniques used in the proof of [3, Theorem 1.1, Theorem 1.2].
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Remark 6.1: Since we could not calculate the integral
∫
S
l−1
l+

1
|x̃−rỹ|l+ps dσ(ỹ) ex-

plicitly, the expression of the constant DNl,γk,p,s in Theorem 6.1 is not explicit

compared to the constants given in Theorem 4.1 and Theorem 5.1 .
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