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ABSTRACT

We consider compactness characterizations of large cardinals. Based on

results of Benda [Ben78], we study compactness for omitting types in

various logics. In Lκ,κ, this allows us to characterize any large cardinal

defined in terms of normal ultrafilters, and we also analyze second-order

and sort logic. In particular, we give a compactness for omitting types

characterization of huge cardinals, which have consistency strength beyond

Vopěnka’s Principle.

1. Introduction

Large cardinals typically have many equivalent formulations: elementary em-

beddings, ultrafilters or systems of ultrafilters, combinatorial properties, etc.

We investigate various characterizations in terms of logical compactness. These

formulations have a long history. Weakly and strongly compact cardinals were

first isolated with generalizations of the compactness theorem to infinitary lan-

guages.
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Fact 1.1 ([Tar62]):

(1) κ > ω is weakly compact iff every < κ-satisfiable theory of size κ in

Lκ,κ is satisfiable.

(2) κ > ω is strongly compact iff every < κ-satisfiable theory in Lκ,κ is

satisfiable.

Measurable cardinals also have such a characterization, this time in terms

of chain compactness of Lκ,κ. This result is interesting because it seems to

have been well-known in the past (evidenced by the fact that it appears as

an exercise in Chang and Keisler’s Model Theory [CK12, Exercise 4.2.6]), but

seems to have fallen out of common knowledge even among researchers working

in the intersection of set theory and model theory (at least among the younger

generation).1

Fact 1.2: κ is measurable iff every theory T ⊂ Lκ,κ that can be written as a

union of an increasing κ-sequence of satisfiable theories is itself satisfiable.

Magidor [Mag71, Theorem 4] showed that extendible cardinals are the com-

pactness cardinals of second-order logic, and Makowsky [Mak85] gives an over-

arching result that Vopěnka’s Principle is equivalent to the existence of a com-

pactness cardinal for every logic (see Fact 3.12 below). This seems to situate

Vopěnka’s Principle as an upper bound to the strength of cardinals that can be

reached by compactness characterizations.

However, this is not the case. Instead, a new style of compactness is needed,

which we call compactness for omitting types (Definition 3.4). Recall that

a type p(x) in a logic L is a collection of L-formulas in free variable x. A

model M realizes p if there is a ∈ M realizing every formula in p, and omits p

if it does not realize it. Explicitly, this means that for every a ∈ M , there is

φ(x) ∈ p such that M � ¬φ(a). Although realizing a type in L can be coded

in the same logic by adding a new constant, omitting a type is much more

difficult. Thus, while in first-order logic types can be realized using a simple

compactness argument, finding models omitting a type is much more difficult.

1 This is based on the author’s personal impressions. Although the statement seems for-

gotten, the proof is standard: if T = ∪α<κTα and Mα � Tα, then set Mκ :=
∏

Mα/U for

any κ-complete, nonprincipal ultrafilter U on κ. �Loś’ Theorem for Lκ,κ implies Mκ � T .
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This is the inspiration for Gerald Sacks’ remark2 [Sac10, p. 64] “A not well-

known model theorist once remarked: ‘Any fool can realize a type, but it takes

a model theorist to omit one.’ ”

Compactness for omitting types was first (and seemingly uniquely) used by

Benda to characterize supercompact cardinals in Lκ,κ. Tragically, Benda’s fan-

tastic result is even less well-known than the characterization of measurable

cardinals. In the almost 40 years since its publication, the publisher reports

zero citations of Benda’s paper.

Theorem 1.3 ([Ben78, Theorem 1]): Let κ ≤ λ; κ is λ-supercompact iff for

every Lκ,κ-theory T and type p(x, y) = {φi(x, y) | i < λ}, if there are club-many

s ∈ Pκλ such that there is a model of

T ∪
{
∃x

(∧
i∈s

∃yφi(x, y) ∧ ¬∃y
∧
i∈s

φi(x, y)

)}
,

then there is a model of

T ∪
{
∃x

( ∧
i<λ

∃yφi(x, y) ∧ ¬∃y
∧
i<λ

φi(x, y)

)}
.

The final model omits the type

q(y) = {φi(a, y) | i < λ},

where a is the witness to the existential. Phrased in these terms, this property

says that if every small part of a type can be omitted, then the whole type

can be omitted. One complicating factor is that monotonicity for type omission

works in the reverse direction as for theory satisfaction: larger types are easier

to omit since they contain more formulas. This makes Benda’s result somewhat

awkward to phrase as he fixes the theory.

Our phrasing of compactness for omitting types varies from Benda’s formula-

tion in two key ways. First, we also allow the theory to be broken into smaller

pieces, which makes the phrasing more natural (at least from the author’s per-

spective). Second, and more crucially, we look at other index sets (or templates)

than Pκλ. This allows us to capture many more large cardinals than just su-

percompacts.

2 Several colleagues have suggested that Sacks is quoting himself here, as he considers

himself a well-known recursion theorist and not a well-known model theorist.
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Other model-theoretic properties have also been used to characterize large

cardinals, mainly in the area of reflection properties and the existence of

Löwenheim–Skolem–Tarski numbers. Magidor [Mag71, Theorem 2] charac-

terizes supercompacts as the Löwenheim–Skolem–Tarski numbers for second-

order, and Magidor and Väänänen [MV11] explore the possibilities surrounding

the Löwenheim–Skolem–Tarski numbers of various fragments of second-order

logic. Bagaria and Väänänen [BV16] connect structural reflection properties

and Löwenheim–Skolem–Tarski numbers through Väänänen’s notion of symbio-

sis. Of course, Chang’s Conjecture has long been known to have large cardinal

strength (see [CK12, Section 7.3]).

Section 2 fixes our notation and gives some basic results. Section 3 establishes

the main definitions of compactness for type omission and applies it to the logics

Lκ,κ. The main result in this section is Theorem 3.5. Section 4 examines type-

omitting compactness for higher-order (Theorem 4.1) and sort (Theorem 4.9)

logics. This section also deals with compactness characterizations of some other

cardinals (e.g., strong) and discusses the notion of elementary substructure in

second-order logic. Section 5 discusses extenders and type omission around

the following question: we give characterizations of large cardinals with various

logics, from Lκ,κ to the all-powerful Ls,Σn . However, Lκ,κ is already able to work

its way up the large cardinal hierarchy, including n-hugeness (Corollary 3.7)

and rank-into-rank (Section 4.2). Are these more powerful logics necessary? In

other words, can we characterize all model-theoreticaly characaterizable large

cardinals (extendible, etc.) by some property of Lκ,κ, or is the use of stronger

logics necessary to pin down certain cardinals? We focus on strong cardinals,

and give a theory and collection of types such that the ability to find a model of

the theory omitting the types is equivalent to κ being λ strong. As close as this

seems to an Lκ,κ (or rather Lκ,ω(QWF )) characterization of strong cardinals,

we still lack a general compactness for type omission for this case.

Acknowledgments. Preliminary results along these lines were first presented

at the Workshop on Set-Theoretical Aspects of the Model Theory of Strong Log-

ics hosted by the Centre de Recerca Matemàtica in 2016, and I’d like to thank

many of the participants for helpful conversations, especially Jouko Väänänen

for discussions about sort logic. I’d also like to thank Gabriel Goldberg for help-

ful discussions regarding the strength of huge-for-L2
κ,κ cardinals, and Adrian

Mathias and Sebastien Vasey for comments on a preliminary draft. I would

also like to thank the anonymous referee for helping to improve the paper.
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2. Preliminaries

We begin with an informal introduction to the logics used. The large cardinals

notions are standard; consult Kanamori [Kan08] or the locally given citation

for detail. We introduce some new large cardinal notions, typically naming

them and defining them in the statement of a result: see Corollary 3.8, Propo-

sition 4.4, and Theorems 4.5 and 4.8.

Lω,ω is the standard, elementary first-order logic.

Lλ,κ augments Lω,ω by allowing

• conjunctions of < λ-many formulas that together contain < κ-many

free variables;

• < κ-ary functions and relations in the language; and

• universal and existential quantification over< κ-many variables at once.

We typically restrict to λ ≥ κ, both regular.

L2 = L2
ω,ω is second-order logic, which extends Lω,ω by allowing quantifica-

tion over subsets of finite cartesian powers of the universe and has an atomic

‘membership’ relation. The standard interpretation of the second-order quan-

tifiers is quantification over all subsets of (finite cartesian powers of) the uni-

verse, but an important concept is the nonstandard Henkin models (M,P,E),

where M is a τ -structure, E ⊂ M × P is an extensional relation, and P rep-

resents a collection of subsets that the second-order quantifiers can range over.

The class of Henkin models of a second-order theory reduces to the models of a

sorted Lω,ω-theory, but we will still find use for this definition in Definition 4.6

and the characterization of strong cardinals. There is a second-order sentence Ψ

that says a Henkin model is standard:

∀X ⊂M∃x ∈ P∀y ∈M(y ∈ X ↔ yEx).

We can also introduce higher-order variants Ln, but these are all codeable in L2,

e.g., a Henkin model for L3 is (M,P,Q,E), where P represents the subsets

of M and Q represents the subsets of P . Then second-order can express the

standardness of this model for third-order logic by using Ψ and a copy of Ψ

for P and Q. The Ln are coded similarly, although we must use L2
|α|+,ω for Lα

when α is infinite. Thus, it suffices to talk about second-order logic.

Additionally, when dealing with second-order logic, we allow the language to

include functions and relations whose domain and range include the second-

order part of the model. Given such a second-order language τ , we describe it
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as consisting of a strictly first-order part (the functions and relations only using

first-order inputs) and a second-order part (the functions and relations that use

first- and second-order inputs).

We want to distinguish a very helpful second-order sentence Φ that will allow

us to make a statement about the type of model we are in. The construction of

this statement is from Magidor [Mag71], appearing in the proofs of his Theo-

rems 2 and 4. However, it is useful to extract the construction so we can make

explicit reference to it.

Fact 2.1: There is a second-order sentence Φ in the language with a single binary

relation E such that (A,E) � Φ iff (A,E) ∼= (Vα,∈) for some limit ordinal α.

Moreover, Φ is a Π1
1 sentence.

Proof. There is a first-order sentence φ(x, y) that is true iff x is an ordinal and y

is a copy of Vx (as computed in the model). Then Φ is the conjunction of the

statements (note that we use ‘E’ for the relation in the language and ‘∈’ for the

logical notion of membership between a first- and second-order variable)

• E is well-founded: ∀X∃x∀y¬(yEx ∧ y ∈ x);

• E is extensional: ∀x, y(x = y ↔ ∀z(zEx↔ zEy));

• Every ordinal is in a Vα: ∀x(On(x) → ∃yφ(x, y)); and

• Every subset of an element is represented in the model:

∀x∀X(∀y(y ∈ X → yEx) → ∃z∀y(y ∈ X ↔ yEz)).

L(QWF ) is Lω,ω augmented by the quantifier QWF that takes in two free vari-

ables and soQWFxyφ(x, y, z) is true iff there is no infinite sequence {xn | n < ω}
such that φ(xn+1, xn, z) holds for all n < ω; that is, φ(x, y, z) defines a well-

founded relation. Note that, in models of some choice, QWF is both Lω1,ω1

and L2 expressible. However, it will be useful to have it, e.g., in Theorem 4.7.

Finally, sort logic Ls is a logic introduced by Väänänen [Vää79]. This aug-

ments second-order logic by adding sort quantifiers ∃∼, ∀∼ where ∃∼Xφ(X,x)

is true in a structure M iff there is a set X (any set, not just a subset of the

universe of M) such that φ(X,x) is true. Sort logic is very powerful because

it allows one to access a large range of information regardless of the language

of the initial structure. For instance, one can easily write down a formula Φ

whose truth in any structure implies the existence of an inaccessible cardinal.

Väänänen discusses its use as a foundation of mathematics in [Vää14]. Since

sort logic involves satisfaction of formulas in V , for definability of truth reasons,
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we must restrict to the logics Ls,Σn , where Ls,Σn consists only of the formulas of

sort logic that are of Σn complexity when looking at the quantifiers over sorts.

Finally, all of these logics can be combined in the expected way, e.g., L2
κ,κ.

We often take the union of two logics, e.g., L2∪Lκ,ω is the logic whose formulas

are in L2 or Lκ,ω; however, no second-order quantifier or variable can appear

in any formula with an infinite conjunction, which separates it from L2
κ,ω. We

typically use boldface L when discussing a particular logic and script L when

discussing an abstract logic.

For a logic L and a language τ , an L(τ)-theory T is a collection of sentences

(formulas with no free variables) of L(τ). An L(τ)-type p(x) in x is a collection

of formulas from L(τ) all of whose free variables are at most x.3 A type p(x)

is realized in a τ -structure M iff there is an element of the model that satisfies

every formula in it and a type is omitted precisely when it is not realized. Note

that the “monotonicity of type omission” works the opposite way as theories:

if p(x) ⊂ q(x) are both types, then it is easier to omit q than p. We will often

refer to filtrations of a theory T . This means there is some ambient partial

order (I,⊂) and a collection of theories {Ts | s ∈ I} such that T =
⋃

s∈ITs and

s ⊂ t implies Ts ⊂ Tt.

In general, we are agnostic about how one codes these logics as sets, except

to insist that it is done in a reasonable way, e.g., τ is coded as a set of rank

|τ |+ω, Lκ,κ(τ) ⊂ Vκ+|τ |, etc. This gives us two nice facts about the interaction

between languages τ and elementary embeddings j : V → M (or Vα → Vβ ,

etc.) with critj = κ:

• if τ is made up of < κ-ary functions and relations, then j”τ and τ are

just renamings of each other; and

• if φ ∈ Ls,Σn
κ,κ (τ), then j(φ) ∈ Ls,Σn

κ,κ (j”τ).

This means that, when searching for a model of T , it will suffice to find a model

of j”T , which is a theory in the same logic and an isomorphic language.

Given an inner model4 M (or some Vα), we collect some facts about when M
is correct about various logics. That is, the statement “M is a τ -structure” is

3 Types in single variables suffice for the various characterizations in the paper, but they

also extend to types of arity < κ.
4 In an unfortunate collision of notation, M is commonly used for both inner models in

set theory and for τ -structures in model theory. Owing to my model-theoretic roots, this

paper uses standard M for τ -structures and script M for inner models.
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absolute from M to V and we want to know when the same holds of “φ is an

L(τ)-formula and M �L φ.”

• M is correct about the logic LONM,ω(QWF ).

• If <κM ⊂ M, then M is correct about the logic Lκ,κ.

• If P(A) ∈ M, then M is correct about L2 for structures with universeA.

• If M ≺Σn V , then M is correct about Ls,Σn .

As a warm-up, note that any compactness involving an extension of L(QWF )

will entail the existence of large cardinals. Fixing κ, if

T := EDLω,ω(Vκ+1,∈, x)x∈Vκ+1 ∪ {cα < c < cκ | α < κ} ∪ {QWFxy(x ∈ y)}
is satisfiable, then there is a non-surjective elementary embedding j : Vκ+1 → M
to a well-founded structure with critj ≤ κ. Standard results imply that critj

must be measurable. Moreover, T is ‘locally satisfiable’ in the sense that, if

T0 ⊂ T does not contain constants for elements with ranks unbounded in κ,

then Vκ+1 can be made a model of T0 by adding constants.

3. Type-omitting compactness in L∞,∞

We introduce some basic definitions that will be used in each of our characteri-

zations. The notion of containing a strong κ-club becomes very important, and

we discuss that concept after the definition.

Definition 3.1: Let κ ≤ λ and I ⊂ P(λ).

(1) I is κ-robust iff for every α < λ, [α]I := {s ∈ I | α ∈ s} �= ∅ and

I ⊂ {s : |s ∩ κ| < κ}.

(2) C ⊂ I contains a strong κ-club iff there is a function F : [λ]2 → Pκλ

such that

C(F ) := {s ∈ I | s is infinite and, for all x, y,∈ s, F (x, y) ⊂ s} ⊂ C.

Let U be an ultrafilter on I.

(3) U is μ-complete iff for all α < μ and {Xβ ∈ U | β < α}, we have⋂
β<α

Xβ ∈ U.

(4) U is fine iff for all α ∈ λ, [α]I ∈ U .

(5) U is normal iff for all F : I → λ such that {s ∈ I | F (s) ∈ s} ∈ U ,

there is α0 < λ such that {s ∈ I | F (s) = α0} ∈ U .
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The conditions of κ-robustness are intended to make sure that I includes

enough sets so that the notion of a “κ-complete, normal, fine ultrafilter on I”

makes sense and is possible. In particular, any such ultrafilter U will be char-

acterized by an elementary embedding jU with critjU = κ; this implies that

{s ∈ I : |s ∩ κ| < κ} ∈ U.

We define the notion of ‘contains a strong κ-club’ without defining the notion

of a strong κ-club. However, the first two items of Fact 3.2 show that this notion

correctly generalizes the notion of containing a club from κ and Pκλ. Moreover,

the third item shows that a generalization that replaces Pκλ with a different

set does not work.

Fact 3.2:

(1) If I = Pκλ, then containing a strong κ-club is equivalent to containing

a club.

(2) Fix a κ-robust I ⊂ P(λ). If U is a κ-complete, fine, normal ultrafilter on

I, then it extends the contains a strong κ-club filter, that is, C(F ) ∈ U

for all F : [λ]2 → Pκλ.

(3) If I = [λ]κ and U is a κ-complete, fine, normal ultrafilter on I, then

there is no s ∈ [λ]κ such that

[s]I := {t ∈ I | s ⊂ t} ∈ U.

Proof. (1) is a result of Menas; see [Kan08, Proposition 25.3].

For (2), fix F : [λ]2 → Pκλ and suppose that C(F ) �∈ U . For each s∈I−C(F ),

there are αs < βs ∈ s such that F (αs, βs) �⊂ s. By applying normality twice,

there is some Z ∈ U and α∗ < β∗ such that, for all s ∈ Z, αs = α∗ and βs = β∗.

By the κ-completeness and fineness of U , we have that [f(α∗, β∗)]I ∈ U . Thus,

there is t ∈ Z ∩ [F (α∗, β∗)]I ; however, this is a contradiction.

For (3), given such a U , build the elementary embedding

jU : V → M ∼=
∏

V/U.

Let s ∈ [λ]κ. Then, for X ⊂ [λ]κ, we have that X ∈ U iff j′′Uλ ∈ jU (X).

However, since |s| = κ = critjU , there is some α ∈ jU (s) − jU”λ. In particular,

this means that

j′′Uλ �∈ {t ⊂ j(I) | jU (s) ⊂ t} = jU ([s]I).
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We are interested in model-theoretic conditions that guarantee the existence

of a fine, normal, κ-complete ultrafilter on some κ-robust I. Recall that, from

Kunen’s proof of the inconsistency of Reinhardt cardinals, every countably com-

plete ultrafilter on P(λ) must concentrate on Pμλ for some μ ≤ λ. If μ is strictly

larger than the completeness of the ultrafilter, we will need the following tech-

nical condition. In practice, the set X will always be a theory.

Definition 3.3: Let I ⊂ P(λ) and X be a set that is filtrated as an increasing

union of {Xs | s ∈ I}. Then we say this filtration respects the index iff there

is a collection {Xα | α ∈ λ} such that, for each s ∈ I,

Xs =
⋃
α∈s

Xα.

This condition says that the filtration at s ∈ I is just determined by the

elements of s. Note this condition is trivially satisfied when I ⊂ Pκλ, but will

be important in certain cases, e.g., to characterize huge cardinals (see Corol-

lary 3.7.(3)). There, it will guarantee that if φ ∈ ⋃
s∈[λ]κ Ts, then there are a

large number of s ∈ I such that φ ∈ Ts.

The main concept of this section is the following:

Definition 3.4: Let L be a logic (in the sense of Barwise [Bar74] or taken without

formal definition), κ ≤ λ, and I ⊂ P(λ) be κ-robust. Then we say that L is

I-κ-compact for type omission iff the following holds:

Suppose that we have

• a language τ ;

• a L(τ)-theory T that can be written as an increasing union of {Ts : s∈I}
that respects the index; and

• a collection of types {pa(x) | a ∈ A} of size λ (for an arbitrary set A),

where each type comes with an enumeration pa(x) = {φaα(x) : α < λ}
and, for s ⊂ λ, we set pas(x) := {φaα(x) : α ∈ s}.

If

(CTO) {s ∈ I | Ts has a model omitting each type in {pas(x) | a ∈ A}}
contains a strong κ-club, then there is a model of T omitting each type in

{pa(x) | a ∈ A}.

This definition is technical, so we will try to unpack it. A compactness for

type omissions result should say that if we want to find a model of a theory T
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omitting a type p, it should suffice to find a model of all of the small fragments

of T omitting the small fragments of p. When there is no p, the monotonicity

of satisfying theories makes looser statements of this possible. However, the

monotonicity of satisfying theories and omitting types work in opposite direc-

tions (smaller theories are easier to satisfy, while smaller types are harder to

omit), so much more care has to be taken.

The s ∈ I index allows us to associate particular fragments of the theory with

particular fragments of the type. In this sense, whether or not the set (CTO)

contains a strong κ-club depends very strongly on the particular filtration of T

and enumerations of the pa that are chosen. Additionally, because the mono-

tonicities work in opposite directions, given s ⊂ t ∈ I, whether or not s and t

are in (CTO) is independent. As explained in Remark 3.6, we want the set

(CTO) to be in whatever fine, normal, κ-complete ultrafilter our assumptions

give us, and the results of Fact 3.2 suggest that ‘contains a strong κ-club’ is the

right stand in for this notion.

The following gives a framework result for linking compactness for type omis-

sion for Lκ,λ to various large cardinal notions.

Theorem 3.5: Let κ ≤ λ, and I ⊂ P(λ) be κ-robust. The following are

equivalent:

(1) Lκ,ω is I-κ-compact for type omission.

(2) Lκ,κ is I-κ-compact for type omission.

(3) There is a fine, normal, maximally κ-complete ultrafilter on P(λ) con-

centrating on I; ‘maximally κ-complete’ means κ-complete and not κ+-

complete.

(4) There is an elementary j : V → M with critj = κ and j”λ ∈ M∩ j(I).

Moreover, the first μ such that Lμ,ω is I-κ-compact for type omission is the

first μ with a fine, normal, μ-complete ultrafilter on I.

Proof. The equivalence of (3) and (4) is straightforward from standard methods,

and (2) implies (1) is obvious because Lκ,ω ⊂ Lκ,κ.

(4) → (2): Suppose we have a set-up for I-κ-compact type omission: a

theory T in Lκ,κ(τ) filtrated as Ts for s ∈ I and a collection {pa : a ∈ A} of

Lκ,κ(τ)-types as in Definition 3.4. Set T̄ and p̄a to be the functions that take

s ∈ I to Ts and pas , respectively. Similarly, set M̄ to be the partial function

that takes s to Ms that models Ts and omits each pas(x) (when defined).
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Since the set (CTO) contains a strong κ-club, there is a function F : [λ]2→Pκλ

that witnesses this. Then j(M̄) is a function with domain containing j(C(F )).

We know that j comes from an ultrafilter as in (3) and Fact 3.2.(2) implies that

C(F ) ∈ U . Thus, j”λ ∈ j(C(F )).

Then M thinks that j(M̄)(j”λ) is a j(τ)-structure that models j(T̄ )(j”λ)

that omits each j(p̄a)(j”λ); M is correct about this, so j(M̄)(j”λ) models

j(T̄ )(j”λ) and omits each j(p̄a)(j”λ) (in V ). As discussed in Section 2, τ

and j”τ are essentially the same, in the sense that there is a canonical bijection

between them—taking F ∈ τ to j(F ) ∈ τ—that respects arity; such a function

is called a renaming.

Claim 1: j”T ⊂ j(T̄ )(j”λ) and j”pa = j(p̄a)(j”λ) for each a ∈ A.

First, let j(φ) ∈ j”T and let {T β
0 : β ∈ λ} witness that the filtration respects

the index; this is the crucial use of this property. Then we have that φ ∈ Tα
0

for some α ∈ λ. Then

j(φ) ∈ j(T̄0)(α) ⊂ j(T̄ )(j”λ).

The proof that j”pa ⊂ j(p̄a)(j”λ) is similar. For the other direction, let

ψ ∈ j(p̄a)(j”λ). By elementarity, we have that

j(pa) = {ψa
α(x) : α < j(λ)}

and

j(p̄a)(s) = {ψa
α(x) : α ∈ s},

where ψa
j(β) = j(φaβ). This means that ψ is of the form j(φ) for φ ∈ pa, which

exactly says ψ ∈ j”pa. Here, we have exactly used the condition that j”λ is in

the model, and simply using a set that contained this would not work.

With the claim proved, we have produced a model j(M̄)(j”λ) of j”T that

omits each j”pa for a ∈ A. After applying the inverse of the canonical naming

above, we have the desired model of T that omits each pa.

(1) → (3): We want to write down a theory T and collection of types

{pF : F : I → λ} such that a model of T omitting these types will code the

desired ultrafilter. Set τ = {P,Q,E, cX , d}X⊂I with P and Q unary predicates,

E ⊂ P × Q a binary relation, and cX , d constants. We look at the standard

structure M = 〈I,P(I),∈, X〉X⊂I that has no interpretation for d. Classic

results tell us that finding an extension N of M that adds a new element n
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(which will be the interpretation of d) codes an ultrafilter U on I by

X ∈ U ⇐⇒ N � nEcX .

The completeness of this ultrafilter comes from how strong the elementarity

of the extension is, so we need to add conditions that make the fineness and

normality hold.

Set T0 = ThLκ,ω(M) (although much less is necessary). Set

Tα := T0 ∪ {“d ∈ c[α]I ”} for α < λ; Ts :=
⋃
α∈s

Tα for s ∈ I; and T =
⋃
s∈I

Ts.

For each function F : I → λ, define

XF :={s ∈ I | F (s) ∈ s},
XF,α :={s ∈ I | F (s) = α},
pF (x) :={x = d ∧ xEcXF ∧ ¬(xEcXF,α ) | α < λ},

Γ :={pF | F : I → λ}.
These types are built so that omitting the type pF means that the ultrafilter

coming from d will be normal with respect to the function F : if F is regressive

on a large set, then “dEcXF ” will hold, so omitting pF requires that there is an

α < λ such that “dEcXF,α” holds, and α will then give the constant value of F

on a large set.

We will use compactness for type omission to find a model of T omitting Γ.

Claim 2: If there is a model of T omitting Γ, then there is a fine, normal,

κ-complete ultrafilter on I.

Let N be this model. Define U on I by

X ∈ U ⇐⇒ N � dEcX .

It is straightforward to check that U is a κ-complete ultrafilter on I. For

instance, given 〈Xα ∈ U | α < μ < κ〉, we know that the following sentence is

in T :

∀x
( ∧

α<μ

xEcXα → xEc∩α<μXα

)
.

Thus, N � dEc∩α<μXα .

Given α < λ, by κ-robustness, there is some s ∈ I such that α ∈ s. So T

entails that dEc[α]I . This means that U is fine.
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For normality, if F : I → λ is regressive on a U -large set, then N � dEcXF .

Since N omits pF , there is α < λ such that XF,α ∈ U , so U is normal.

Claim 3: For each s ∈ I, there is a model of Ts omitting {pF,s | F : I → λ}.

Expand M to Ms by interpreting dMs = s. This models Ts since s ∈ [α]I for

each α ∈ s by definition. Moreover, if there is x ∈Ms such that

Ms � “x = d ∧ xEXF ”

for some F : I → λ, then x = s and F (s) ∈ s, so there is α ∈ s such that

F (s) = α. Thus

Ms � xEXF,α.

So Ms omits each pF,s.

By the I-κ-compactness for type omission, we are done.

The proof of the “moreover” follows similarly.

Remark 3.6: We chose to show (4) → (2) above because it will more easily gen-

eralize to large cardinals characterized by the existence of extenders rather than

ultrafilters (this is done in Section 4). However, the direct proof of (3) → (2)

helps to emphasize the connection between normality of an ultrafilter and type

omission, so we outline it here. Suppose that U is an ultrafilter as in Theo-

rem 3.5.(3) and we have a language τ , theory T , and set of types {pa(x) | a ∈ A}
as in the hypothesis of Definition 3.4, and let X be the set in CTO. For s ∈ X ,

there is a witnessing model Ms and we can form the ultraproduct5
∏
Ms/U .

From 	Loś’ Theorem, the κ-completeness and fineness of U means that
∏
Ms/U

models T .

To prove type omission, suppose that [f ]U ∈ ∏
Ms/U and let a ∈ A. SinceMs

omits pas(x), there is some αs ∈ s such that

Ms � ¬φaαs
(f(s)).

The function s �→ αs is regressive on the U -large set dom f , so normality implies

that there is a single α∗ such that

Ms � ¬φaα∗(f(s))

5 Here we use a more liberal formalism for ultraproducts that allow certain structures to be

empty by allowing the choice functions f : I → ⋃
Ms to be partial with U -large domain.
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for a U -large set of s. Then, by 	Loś’ Theorem,∏
Ms/U � ¬φaα∗([f ]U )

so [f ]U doesn’t realize pa. Since [f ]U and a were arbitrary, the ultraproduct

omits the types {pa(x) | a ∈ A}.

As an example of the moreover, Lω,ω satisfies Benda’s supercompactness

theorem iff Pωλ carries a fine, normal measure that need not even be countably

complete. Note that Lω,ω can never be Pωλ-ω-compact for type omission: the

max function shows that no fine ultrafilter on Pωλ can be normal.

This general framework directly gives model theoretic characterizations of

large cardinals that are characterized by normal ultrafilters.

Corollary 3.7: For each numbered item below, all of its subitems are equiv-

alent:

(1) (a) κ is measurable.

(b) Lκ,κ is Pκκ-κ-compact for type omission.

(2) (a) κ is λ-supercompact.

(b) Lκ,κ is Pκλ-κ-compact for type omission.

(3) (a) κ is huge at λ; that is, κ is huge and there is j : V → M witnessing

this with j(κ) = λ.

(b) Lκ,κ is [λ]κ-κ-compact for type omission.

(4) (a) κ is n-huge at λ1, . . . , λn.

(b) Lκ,κ is {s ⊂ λ : ∀i < n, |s ∩ λi+1| = λi}-κ-compact for type

omission.

Proof. The proof follows the standard characterizations of these notions in

terms of normal ultrafilters (see [Kan08]) and from Theorem 3.5.

For instance, in (3), if κ is huge at λ, then there j : V → M with critj = κ

with j(κ)M ⊂ M and λ = j(κ). In particular, this means that j”λ ∈ M
and belongs to j([λ]κ) = ([j(λ)]j(κ))M. Using Theorem 3.5.(4)→(2), Lκ,κ is

[λ]κ-κ-compact for type omission.

In the other direction, assume that Lκ,κ is [λ]κ-κ-compact for type omission.

By Theorem 3.5.(2)→(3), there is a fine, normal κ-complete ultrafilter on I

concentrating on [λ]κ. By [Kan08, Theorem 24.8], κ is huge at λ.

Item (2) is Benda’s supercompactness theorem (Theorem 1.3). Item (1) can

be reformulated along the lines of Fact 1.2:
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If T =
⋃

α<κ Tα is an Lκ,κ(τ)-theory and p(x) = {φi(x) | i < κ} is a type

such that for every α < κ, there is a model of Tα omitting {φi(x) | i < α}, then

there is a model of T omitting p.

This helps highlight the impact that the normality of an ultrafilter has on the

resulting ultraproduct: if U is a normal ultrafilter on I ⊂ P(λ) and {Ms | s ∈ I}
are τ -structures, then

∏
Ms/U omits any type p = {φα(x) | α < λ} such that

{s ∈ I |Ms omits ps} ∈ U .

As mentioned above, any ultrafilter on P(λ) concentrates on some Pμλ. We

can characterize when an ultrafilter exists on some Pμλ with the following large

cardinal notion:

Corollary 3.8: Fix κ ≤ μ ≤ λ. The following are equivalent:

(1) κ is λ-supercompact with μ clearing: there is j : V → M with j”λ ∈ M
and j(μ) > λ.

(2) Lκ,κ is Pμλ-κ-compact for type omission.

Proof. This follows from Theorem 3.5: j(μ)>λ ensures that j”λ∈j(Pμλ).

This equivalence even holds for κ=ω, where both conditions fail for all μ≤λ.

One feature of the compactness schema is that the theories are not required

to have a specific size, but rather should be filtrated by a particular index

set. Note this is also true for strongly compact cardinals; that is, rather than

characterizing λ-strongly compact cardinals as compactness cardinals for λ-sized

theories in Lκ,κ, we can give the following.

Proposition 3.9: κ is λ-strongly compact iff any Lκ,κ-theory T that can be

filtrated as an increasing union of satisfiable theories indexed by Pκλ is itself

satisfiable.

This can even be extended to theories of proper class size. Each item of

Corollary 3.7 remains true if compactness for type omission is generalized to

allow for the T and the Ts in Definition 3.4 to be definable proper classes

and to allow for satisfaction by definable proper class structures. The proof of

Theorem 3.5 goes through with this generalization.

Remark 3.10: EDL(V,∈, x)x∈V is used below to denote the L-elementary dia-

gram of the structure with universe V , a single binary relation ∈, and a constant

for each x that is interpreted as x. Formally, from Tarski’s undefinability of
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truth, this is not a definable class when L extends Lω,ω. Similarly, the state-

ment that j : V → M is elementary is not definable.

However, e.g., [Kan08, Proposition 5.1.(c)] shows that, for embeddings be-

tween inner models, Σ1-elementarity implies Σn-elementarity for every n < ω.

Thus, mentions of elementary embeddings with domain V can be replaced by

Σ1-elementarity. Similarly, the full elementary diagram of V could be replaced

by its Σ1-counterpart. However, following set-theoretic convention, we continue

to refer to the full elementary diagram.

Armed with a class version of omitting types compactness, we can show equiv-

alences directly between the model-theoretic characterizations and the elemen-

tary embedding characterizations without working through an ultrafilter char-

acterization. At each stage, we find a model N of EDLκ,κ(V,∈, x)x∈V along

with the sentences {cα < c < cκ | α < κ}, where c is a new constant, and some

other sentences. Such a model is well-founded because it models the Lω1,ω1-

sentence that truthfully asserts well-foundedness, so we can take the Mostowski

collapse π : N ∼= M with M transitive. Then x �→ π(cx) is an Lκ,κ-elementary

embedding that necessarily sends α < κ to itself. Moreover, the interpretation

of c guarantees that the critical point is at most κ and the use of Lκ,ω guar-

antees the critical point is at least κ. This is enough to show κ is measurable

and extra sentences to be satisfied and types to be omitted can be added to

characterize the above large cardinal notions.

Theorem 3.11: For each numbered item below, all of its subitems are

equivalent:

(1) (a) κ is measurable.

(b) There is a definable class model of

EDLκ,κ(V,∈, x)x∈V ∪ {cα < c < cκ | α < κ}.
(2) (a) κ is λ-strongly compact.

(b) There is a model of

EDLκ,κ(V,∈, x)x∈V ∪ {cα < c < cκ | α < κ} ∪ {cα ∈ d ∧ |d| < cκ | α < λ}.
(3) (a) κ is λ-supercompact.

(b) There is a definable class model of

EDLκ,κ(V,∈, x)x∈V ∪ {cα < c < cκ | α < κ} ∪ {cα ∈ d ∧ |d| < cκ | α < λ}
that omits

p(x) = {xEd ∧ x �= cα | α < λ}.
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(4) (a) κ is n-huge at λ1, . . . , λn.

(b) There is a definable class model of

EDLκ,κ(V,∈, x)x∈V ∪{cα < c < cκ | α < κ}
∪{cα ∈ di+1 ∧ |di+1| = cλi | α < λi+1, i < n}

that omits, for i < n,

pi(x) = {xEdi+1 ∧ x �= cα | α < λi+1}.
Proof. We prove item (3); the rest of the proofs are similar.

First, suppose that κ is λ-supercompact. Then there is j : V → M with

critj = κ, j(κ) > λ, and j”λ ∈ κ. We claim that (the definable) M is our

model after expanding the vocabulary:

• cMx = j(x) for x ∈ V ;

• cM = κ; and

• dM = j”λ.

The elementarity of j and the closure under κ-sequences of M imply that

(V,∈, x)x∈V ≡Lκ,κ (
∏

V/U,E, [s �→ x]U )x∈V
∼= (M,∈ j(x))x∈V .

The other sentences of the theory are true because j(α) < κ < j(κ) for α < κ

precisely means critj = κ, and we know that j(α) ∈ j”λ for all α < λ, with

|j”λ| = λ < j(κ).

Second, suppose that we have such a definable class model (M, E, ax, a, b)x∈V .

Well-foundedness is Lω1,ω-expressible6:

∀〈xn : n < ω〉¬
∧
n<ω

xn+1Exn.

Thus, M is well-founded with respect to E. By taking the Mostowski collapse,

we can assume that M is transitive and E is ∈. Then define j : V → M by

j(x) = ax.

On the ordinals, j is increasing. Thus, the second group of sentences tells us

that κ ≤ a < j(κ), so critj ≤ κ. On the other hand, for each α < κ, V models

the Lκ,ω-sentence

∀x
(
xEcα →

∨
β<α

x = cβ

)
.

6 Note that the first-order Axiom of Foundation can hold in ill-founded classes.
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We can use this to show that cα = α for every α < κ using induction. Thus,

critj = κ.

Now we claim that b = j”λ. For each α ∈ λ, we ensure that j(α)Eb, so

j”λ ⊂ b. Given x ∈ b, since M omits p, we must have x = j(α) for some

α < λ.

Note that we didn’t directly use compactness for type omission in this proof.

However, in each case, the theory has a natural filtration by the appropriate

partial order that is easily seen to be locally consistent while omitting the

necessary type in ZFC. For instance, in the case of κ being λ-supercompact,

for s ∈ Pκλ, set αs := otp(s),

Ts :=EDLκ,κ(V,∈, x)x∈(V≥κ∪Vαs )
∪ {ci < c < cκ | i < α}
∪ {ciEd ∧ |d| < cκ | i ∈ s},

ps(x) :={xEd ∧ x �= ci | i ∈ s}.

Then V is a model of this theory by interpreting every constant in the language

by its index, c as αs, and d as s. This gives a way to go directly between model-

theoretic and elementary embedding characterizations. It also shows that it is

enough to omit a single7 type to obtain the I-κ-type omission for any number

of types.

The ability to characterize cardinals at the level of huge and above shows

that the addition of type omission to attempts to characterize large cardinals

is a real necessity. Measurable and strongly compact cardinals have known

model-theoretic characaterizations without type omission, so one might wonder

if type omission is necessary to characterize huge cardinals. From the following

theorem of Makowsky, we can deduce that it is necessary.

Fact 3.12 ([Mak85, Theorem 2]): The following are equivalent:

(1) Every logic L has a strong compactness cardinal; that is, for every

logic L, there is a cardinal μL such that for any language τ and L(τ)-

theory T , if every T0 ∈ PμLT has a model then so does T .

(2) Vopěnka’s Principle.

7 In the case of n-huge, recall that the omission of finitely many types can be coded by the

omission of a single type.
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Thus, Vopěnka’s Principle “rallies at last to force a veritable

Götterdammerung” for compactness cardinals for logics8. Nonetheless, κ being

almost huge implies that Vκ satisfies Vopěnka’s Principle. Thus, if κ is the first

huge cardinal, then Vκ is a model of

Vopěnka’s Principle +“Every logic is compact, but there are no μ ≤ λ

such that Lμ,μ is [λ]μ-μ-compact for type omission”.

Indeed, other approaches to model-theoretic characterizations of large cardinals

focused solely on compactness or reflection principles have yet to characterize

huge cardinals.

4. Second-order logic and beyond

We now turn to characterizations based on logics beyond (or orthogonal to)

L∞,∞. In the spirit of Theorem 3.5, we can characterize compactness for omit-

ting types in second-order logic with a similar theorem.

Theorem 4.1: Let κ ≤ λ and I ⊂ P(λ) be κ-robust. The following are equiv-

alent:

(1) L2 ∪ Lκ,ω is I-κ-compact for type omission.

(2) L2
κ,κ is I-κ-compact for type omission.

(3) For every α > λ, there is some j : Vα → Vβ such that critj = κ,

j(κ) > λ, and j”λ ∈ j(I).

(4) For every α > λ, there is some j : V → M such that critj = κ,

j”λ ∈ j(I), and Vj(α) ⊂ M.

Moreover, the first μ such that L2 is I-κ-compact for type omission is the first μ

that satisfies (3) except with critj = μ.

Proof. (4) implies (3) and (2) implies (1) are immediate. We show that (1)

implies (3) implies (4) implies (2).

For (1) implies (3), fix α > λ and consider the L2 ∪ Lκ,ω-theory and type

T =EDLκ,ω (Vα,∈, x)x∈Vα ∪ {ci < c < cκ | i < κ} ∪ {Φ},
p(x) ={xEd ∧ x �= ci | i < λ},

8 With apologies to Kanamori [Kan08, p. 324].
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where d is a new constant symbol and Φ is Magidor’s sentence from Fact 2.1.

Then, we can filtrate this theory as

Ts =EDLκ,ω (Vα,∈, x)x∈Vsup s∪[κ,α)
∪ {ci < c < cκ | i < sup s} ∪ {Φ},

ps(x) ={xEd ∧ x �= ci | i ∈ s}.
For each s ∈ I, we have that the natural expansion (Vα,∈, x, s)x∈Vsup s∪[κ,α)

models Ts and omits ps. Thus, our compactness principle tells us there is a

model of T omitting p, which, after taking the transitive collapse, gives the

desired j : Vα → Vβ .

For (3) implies (4), fix α ≥ λ and let α′ be the next strong limit cardinal

above α. Then there is j : Vα′ → Vβ with critj = κ and j”λ ∈ j(I). Then

derive the extender E of length �j(α) to capture this embedding. Forming the

extender power of V and taking the transitive collapse, we get jE : V → ME

with the desired properties.

For (4) implies (2), let T̄ = {Ts | s ∈ I} be an increasing filtration of the

L2
κ,κ-theory T that respects the index and {pa(x) | a ∈ A} be a collection of

types indexed as pa(x) = {φai (x) | i < λ} such that there are a club of s ∈ I with

a model Ms that models Ts and omits each pas . Fix strong limit α ≥ λ to be

greater than the rank of these models, their power sets, and the function f that

takes each of these s to Ms; form j : V → M with critj = κ, j”λ ∈ j(I) ∩M,

and Vj(α) ⊂ M. Since the domain of f contains a club, it includes j”λ. Set

M∗ := j(f)(j”λ).

By the elementarity of j, inside of M we have that M∗ � j(T̄ )j”λ and, for each

a ∈ A, M∗ omits j(pa)j”λ = {j(φai ) | i < λ} = j”pa. Since Vj(α) ⊂ M and

rank M∗ < j(α), M is correct about this satisfaction. Finally, j”T ⊂ j(T̄ )j”λ

because the filtration respects the index. Thus, after a suitable renaming, we

have found a model of T omitting {pa(x) | a ∈ A}.

To aid in the discussion of the implication of this theorem, we introduce the

following ad hoc naming convention for large cardinal properties.

Definition 4.2: Suppose a large cardinal property P is characterized by being

an I-κ-compactness cardinal for Lκ,κ. Given a logic L, we say that κ is P -for-L
iff L is I-κ-compact for type omission.

For instance, Corollary 3.7.(3) characterizes huge as the existence of a λ > κ

such that Lκ,κ is [λ]κ-κ-compact for type omission, so saying that κ is huge-for-

L2
κ,κ means that there is a λ > κ so L2

κ,κ is [λ]κ-κ-compact for type omission.
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Comparing Theorems 3.5 and 4.1, a large difference is that the first-order

characterizations are witnessed by a single embedding, while the second-order

characterizations require class many embeddings. The reason for this is that a

single model M can be right about Lκ,κ everywhere, but cannot be right about

L2 everywhere; otherwise, it would compute the power set of every set correctly

and would be V . Similarly, the type omitting compactness does not hold for

definable class theories for second-order as it does for first. If it did, one could

easily derive a nontrivial embedding j : V → V .

The first consequence of Theorem 4.1 regards the identity crisis. In the lan-

guage of Definition 4.2, Magidor has shown that extendible cardinals are exactly

those that are strong compact-for-L2
κ,κ [Mag71, Theorem 4] and additionally

shown that the first strongly compact cardinal could be the first measurable

or the first supercompact[Mag76]. This second result means that various com-

pactness notions for Lκ,κ have an imprecise relation to one another: chain

compactnes could coincide with compactness, or there could be many chain

compact cardinals below the first compactness cardinal. Surprisingly, when

moving to L2, these notions coincide and the identity crisis disappears!

Theorem 4.3: The following are equivalent:

(1) κ is measurable-for-L2 ∪ Lκ,ω.

(2) κ is strongly compact-for-L2
κ,κ.

(3) κ is supercompact-for-L2
κ,κ.

In particular, all three of these statements characterize extendible cardinals.

Here we take ‘κ is measurable-for-L’ as in Fact 1.2. That is, we don’t incor-

porate any type omission; however, the type omission characterization holds as

a result of the above.

Proof. Clearly, (3) implies (2) implies (1) using (for the first implication) the

trivially omitted type {x �= x | i < λ}.

The condition Theorem 4.1.(3) is clearly stronger than extendibility, so any

compactness for L2
κ,κ (including chain compactness) gives extendibility. In par-

ticular, j”κ = κ ∈ j(Pκκ). So measurable-for-L2 ∪ Lκ,ω implies extendible.

Similarly, the definition of extendibility includes that j(κ) > α. In this case,

j”λ has size λ ≤ α, so j”λ ∈ j(Pκλ). Thus extendibility implies supercompact-

for-L2
κ, κ.
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The key to these equivalences is that the condition about j”λ in Theo-

rem 3.5.(4) often had more to do with the closure of the target model (i.e.,

is j”λ in M?), rather than the nature of the relationship between j(I) and j”λ.

When we have extendible-like embeddings, j”λ is always in the target model,

so many of the type omitting compactness principles (or even just compactness

principles) become trivial.

A possible explanation for the collapse of the identity crisis is that type omis-

sion in Ln
κ,κ is expressible9 in Ln+1

κ,κ , which is again codeable in Ln
κ,κ. Thus, one

might expect no difference between strong compact- and supercompact-for-L2
κ,κ.

However, this does not explain why measurability coincides with these notions,

and the proposition below shows that some notions of type-omitting compact-

ness for L2 are strictly stronger than extendibility (in consistency strength).

Proposition 4.4:

(1) κ is huge at λ-for-L2
κ,κ iff for every α ≥ λ, there is j : Vα → Vβ such

that critj = κ and j(κ) = λ.

(2) If κ is almost 2-huge at λ1, λ2, then there is a κ-complete, normal ul-

trafilter on κ containing

{α < κ | Vλ2 � “α is huge-for-L2
κ,κ”}.

(3) If κ is huge-for-L2
κ,κ, then there is a κ-complete, normal ultrafilter on κ

containing

{α < κ | α is huge}.
Proof. The first item is just a restatement of Theorem 4.1 with I = [λ]κ.

Suppose κ is 2-huge at λ1, λ2 and j : V → M witnesses this. Fixing

α ∈ [λ1, λ2), j � Vα is an embedding from Vα to Vβ with j(κ) = λ1 that is

in (Vj(λ2))
M. So

(Vj(λ2))
M � “∃j0 : Vα → Vβ such that critj0 = κ and j0(κ) = λ1”.

Recall that Vλ2 = (Vλ2 )M ≺ (Vj(λ2))
M. Thus,

Vλ2 � “∃j0 : Vα → Vβ such that critj0 = κ and j0(κ) = λ1”.

9 This is immediate for φ-type omission for fixed φ, and any type omission can be coded

as φ-type omission in an expansion.
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Since α was arbitrary,

Vλ2 �“∀α ≥ λ1, ∃j0 : Vα → Vβ such that critj0 = κ and j0(κ) = λ1”,

Vλ2 �“κ is huge at λ1-for-L2
κ,κ”.

Thus, {α < κ | Vλ2 � “α is huge-for-L2
κ,κ”} is in the normal ultrafilter on κ

derived from j.

Suppose κ is huge at λ-for-L2
κ,κ. Picking α large enough and getting the cor-

responding j : Vα → Vβ with j(κ) = λ, we can derive a normal, κ-complete, fine

ultrafilter U on [λ]κ. Then U ∈ Vβ , so Vβ � “κ is huge.” Thus, {α<κ |α is huge}
is in the normal, κ-complete ultrafilter on U generated from j.

Similar results show that n-huge-for-L2
κ,κ lies strictly between n-huge and

almost n + 1-huge. The preceding argument is due to Gabriel Goldberg, who

also reports that he can show that huge-for-L2
κ,κ can be characterized in terms

of hyperhugeness.

Recall that κ is λ-hyperhuge iff there is j : V → M with critj = κ and
j(λ)M ⊂ M and κ is hyperhuge iff it is λ-hyperhuge for every λ. Hyperhuge

cardinals have recently been shown to imply the existence of a minimal inner

model of V that can reach V by set-forcing extensions by Usuba [Usu17]. Gold-

berg proves that κ being hyperhuge is equivalent to the existence of a κ0 < κ

such that κ0 is huge at κ-for-L2
κ,κ. Additionally, κ being λ-hyperhuge is equiv-

alent to the existence of μ > λ and a normal, fine, κ-complete ultrafilter on

[μ]λ∗κ := {s ⊂ μ | |s| = λ, |s ∩ κ| ∈ κ, otp(s ∩ λ) < κ},
which is equivalent to Lκ,κ being [μ]λ∗κ-κ-compact for type omission by Theo-

rem 3.5.

Examining the proof of Theorem 4.1, we see that a level-by-level characteriza-

tion of, e.g., α-extendibility is harder due to the tricky nature of the Löwenheim–

Skolem number for second-order logics. In first-order, the Löwenheim–Skolem

number of Lλ,κ for theories of size μ is ((λ+μ)<κ)+, which is also its Löwenheim–

Skolem–Tarski number. For second-order logic, LS(L2) (for sentences) is the

supremum of all Π2-definable ordinals (Väänänen [Vää79, Corollary 4.7]) and

LST (L2) is the first supercompact, if one exists [Mag71, Theorem 2] . How-

ever, weak compactness restricts the size of the theory, so admits a more local

characterization. Denote the Löwenheim–Skolem number of sentences of L2
κ,κ

by �2κ.
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Theorem 4.5: The following are equivalent for κ:

(1) κ is weakly compact-for-L2 ∪ Lκ,ω.

(2) κ is weakly compact-for-L2
κ,κ.

(3) Given any κ + 1 ⊂ M ⊂ V�2κ of size κ, there is a partial elementary

embedding j : V�2κ → Vβ for some β with dom j = M and critj = κ.

Proof. Clearly, (2) implies (1). We show (1) implies (3) implies (2).

Suppose κ is weakly compact-for-L2 ∪ Lκ,ω and let κ+ 1 ⊂ M ⊂ V�2κ . Let T

be the L2 theory consisting of

(1) the Lκ,ω-elementary diagram of M in V�2κ ;

(2) ci < c < cκ for i < κ; and

(3) Magidor’s Φ from Fact 2.1.

Then every < κ-sized subset of T is satisfiable as witnessed by an expansion

of V�2κ . By weak compactness, we get a model of T , which must be some Vβ .

This induces a partial function j : V�2κ → Vβ with dom j = M. Moreover, the

elements of T make this a partial elementary embedding with critj = κ.

Suppose that κ satisfies the embedding property. Let T = {φi | i < κ} be a

L2
κ,κ(τ)-theory that is < κ-satisfiable with |τ | ≤ κ. Then, there is a function f

with domain κ such that

f(α) � {φi | i < α}
for every α < κ; moreover, by the definition of �2κ, we can assume that f(α)∈V�2κ .

Let M ⊂ V�2κ contain all of this information and be of size κ. Then, there is

partial elementary j : V�2κ → Vβ with dom j = M and critj = κ. In particular,

we have that

(1) j(κ) > κ;

(2) Vβ � “j(f)(κ) � j”T ” and Vβ is correct about this; and

(3) j”T and T are just renamings of the same theory.

Thus, the suitably renamed j(f)(κ) witnesses that T is satisfiable.

A key piece in translating weak compactness for second-order into an em-

bedding characterization is the ability to axiomatize well-foundedness. If we

look at a fragment of L2
κ,κ that includes an expression of well-foundedness, then

weak compactness for this fragment is characterizable in a similar way, replac-

ing �2κ with the Löwenheim–Skolem number of that fragment. However, if the

fragment cannot express well-foundedness, then this characterization is harder.
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Similar results can be proved by restricting the size of the theories under

consideration. In the general scheme, the theory T is allowed to be as large as

one wants, as are the pieces Ts of the filtration. If one restricts these pieces

to be of size ≤ μ and wants to characterize L2
κ,κ being I-κ-compact for type

omission, then it suffices to look at an embedding as in Theorem 4.1.(2) for α

equal to the Löwenheim–Skolem number of L2
κ,κ for μ-sized theories.

For the characterizations of strong and its variants, we need the concept of a

Henkin second-order structure that is full up to some rank. Recall the notion

of a Henkin model described in Section 2.

Definition 4.6: LetM∗ = (M,P,E) be a Henkin structure and A a transitive set.

(1) M∗ is full to A iff every X ∈ P(M)∩A is represented in P ; this means

that there is cX ∈ P such that, for all y ∈M ,

y ∈ X ⇐⇒ M∗ � yEcX .

(2) M∗ is full up to rank α iff it is full to Vα.

While a Henkin structure has a nonstandard interpretation of second-order

quantifiers, other additions to the logic must be interpreted standardly. In

particular, the next theorem discusses Henkin models of L2(QWF )-theories;

while any second-order assertions of well-foundedness, i.e.,

“∀X∃y∀z(y ∈ X ∧ z ∈ X → yRz)”,

can be satisfied nonstandardly, any QWF assertions of well-foundedness—i.e.,

QWFxy(xRY )—must be correctly interpreted (and so R is well-founded).

Theorem 4.7: The following are equivalent for κ ≤ λ:

(1) κ is λ-strong.

(2) If T ⊂ L2
κ,ω(QWF )(τ) is a theory that can be written as an increasing

union T =
⋃

α<κ Tα such that every Tα has a (full) model, then T has

a Henkin model whose universe is an ordinal and is full up to rank λ.

(3) Same as (2), but there is also a type p = {φi(x) | i < κ} such that Tα

has a (full) model omitting pα, and the resulting model omits p.

Note that we add the condition on the universe of the model in (2) to remove

the possibility that the “full up to rank λ” condition is vacuous; if the universe

of M just consists of elements of rank bigger than λ, then M is trivially full up

to rank λ.
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Proof. First, suppose that κ is λ-strong and let T be a theory and p a type as

in (3). We produce a model of T in the standard way: let f be a function with

domain κ such that f(α) is a model of Tα. Without loss of generality, f(s) is a

full Henkin structure. Then, in M, j(f)(κ) is a model of (a theory containing)

j”T and M � “j(f)(κ) is a full Henkin structure that omits j(p)κ = j”p”. M is

incorrect about second-order satisfaction above rank λ; however, since Vλ ⊂ M,

it is correct about second-order satisfaction up to rank λ.

Second, suppose we have compactness. Then we wish to build an embedding

witnessing strength. By the normal arguments, e.g., [Kan08, Section 26] or see

Proposition 5.2, it is enough to derive a (κ,�λ)-extender from an embedding

j : Vκ+2 → M with critj = κ, Vλ ⊂ M, and M well-founded. We can find such

a model by considering the theory

EDLκ,ω(Vκ+2,∈, x)x∈Vκ+2 ∪ {ci < c < cκ | i < κ} ∪ {Φ} ∪ {QWFxy(xEy)}.
This can be written as an increasing κ-length union of satisfiable theories in

the standard way and any model leads to, after taking transitive collapse, the

necessary j : Vκ+2 → M.

We could ask for a variation of (2) that allows for arbitrary κ-satisfiable the-

ories or, equivalently, theories indexed by some Pκμ. This would be equivalent

to a jointly λ-strong and μ-strongly compact cardinal: there is a j : V → M
such that critj = κ, Vλ ⊂ M, and there is Y ∈ j(Pκμ) such that j”μ ⊂ Y .

If we drop the QWF , then we can characterize a weakening of λ-strong. In the

following theorem and proof, we break the convention that M always denotes

some transitive model of a fragment of ZFC. In particular, we allow it to be

ill-founded. For such models, wfp(M) denotes the well-founded part of M.

Theorem 4.8: The following are equivalent for κ ≤ λ:

(1) κ is nonstandardly λ-strong: there is an elementary embedding

j : V → M, with M not necessarily transitive, such that critj = κ

and Vλ ⊂ wfp(M).

(2) If τ is a language and T ⊂ L2
κ,ω is a theory that can be written as an

increasing, continuous union T =
⋃

α<κ Tα such that every Tα has a

(full) model, then T has a Henkin model whose universe is an ordinal

and is full up to rank λ.

Proof. The proof is the same as Theorem4.7,with the changes exactly that we no

longer insist on being correct regarding statements about well-foundedness.
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An argument of Goldberg shows that the level-by-level notions of nonstan-

dardly λ-strong and λ-strong are not equivalent, but full nonstandard strong is

equivalent to strong.

4.1. C(n)
and sort logic. Moving to sort logic, we can prove a metatheo-

rem along the lines of Theorems 3.5 and 4.1 by introducing the notion of a

C(n)-cardinal. The C(n) variants of large cardinals were introduced by Bagaria

[Bag12]. Briefly, set C(n) = {α ∈ ON | Vα ≺Σn V }, where ≺Σn is elementarity

for Σn formulas in the Lévy hierarcy (in the language of set theory). For a

large cardinal notion P witnessed by a certain type of elementary embedding, κ

is C(n)-P iff there is an elementary embedding j witnessing that κ is P and

so j(κ) ∈ C(n). Recently, Tsaprounis [Tsa18, Corollary 3.5] and Gitman and

Hamkins [GH19, Theorem 15] have independently shown that C(n)-extendibility

is equivalent to the a priori stronger notion of C(n)+-extendibility: κ is C(n)+-

extendible iff for all α > κ in C(n), there is j : Vα → Vβ with critj = κ and

j(κ), β ∈ C(n). It is the notion of C(n)+-extendibility that we will use.

For some large cardinal notions, there is no increase of strength from mov-

ing to the C(n)-versions (measurable, strong [Bag12, Propositions 1.1 and 1.2],

strongly compact [Tsa14, Theorem 3.6]), but several other notions give an in-

creasing hierarchy of strength. Recall the notions of sort logic described in

Section 2

Theorem 4.9: Let κ ≤ λ, n < ω, and I ⊂ P(λ) be κ-robust. The following

are equivalent:

(1) Ls,Σn ∪ Lκ,ω is I-κ-compact for type omission.

(2) Ls,Σn
κ,κ is I-κ-compact for type omission.

(3) For every α ≥ λ in C(n), there is some j : Vα → Vβ such that critj = κ,

j”λ ∈ j(I), and β ∈ C(n).

(4) For every α ≥ λ in C(n), there is some j : V → M such that critj = κ,

j”λ ∈ j(I) ∩M,Vj(α) ⊂ M, and j(α) ∈ C(n).

The proof of Theorem 4.9 follows the structure of Theorems 3.5 and 4.1.

To make the necessary changes, we introduce the following notion and lemma.

Given a Σn formula φ(x) (in the Lévy hierarchy), let φ∼(x) ∈ Ls,Σn be the

same formula where unbounded quantifiers are replaced with the corresponding

sort quantifiers. This allows us to characterize C(n) as follows.
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Lemma 4.10: Let α be an ordinal. Then α ∈ C(n) iff Vα models

{∀x(φ(x) ↔ φ∼(x)) | φ is Σn}.
Proof. For a ∈ Vα, we always have φ(a) holds in V iff Vα � φ∼(a). The above

theory makes this equivalent to Vα � φ(a).

Proof of Theorem 4.9. We sketch the proof and highlight the changes from the

proof of Theorem 4.1.

Given the compactness, we prove (3) by considering the theory and type

T =EDLκ,ω (Vα,∈, x)x∈Vα ∪ {ci < c < cκ | i < κ} ∪ {Φ}
∪ {∀x(φ(x) ↔ φ∼(x)) | φ is Σn},

p(x) ={xEd ∧ x �= ci | i < λ}.
We filtrate this according to I in the standard way and use expansion of Vα

to provide witness models; here it is crucial that we started with α ∈ C(n).

The model of T omitting p gives the desired j. We can adjust this proof to

get a proof of (4) by finding strong limit α′ > α, also in C(n), and relativizing

the appropriate parts of the theory to ensure that j(α) ∈ C(n). Then, derive

the extender E from this model, and jE : V → ME that retains the desired

properties.

Given (3) or (4), we prove the compactness by starting with a filtration

T̄ = {Ts | s ∈ I}
of an Ls,Σn

κ,κ -theory and types

{pa(x) = {φai (x) | i < λ} | a ∈ A},
find strong limit α ∈ C(n) above the rank of these objects and the function f that

takes s to the model of Ts omitting each pas . Now Vα reflects these properties

since α ∈ C(n), so by elementarity the target model thinks that j(f)(j”λ)

models j”T and omits {j”pa(x) | a ∈ A}. Since Vβ or Vj(α) are Σn-elementary

in V , the target model is correct.

Similar to second-order logic, the identity crisis disappears in sort logic and

C(n)-extendible cardinals witness a wide range of type omitting compactness.

We use the following lemma which will also be useful when examining

Löwenheim–Skolem–Tarski numbers. This is similar to Magidor’s characteri-

zation of supercompacts.
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Lemma 4.11: Let κ be C(n)-extendible. Then for all α > κ in C(n) and R ⊂ Vα,

there are cofinally many γ < κ such that there are ᾱ < κ in C(n) and S ⊂ Vᾱ

with elementary j : (Vᾱ,∈, S) → (Vα,∈, R), critj = γ, and j(γ) = κ.

Proof. Fix α ∈ C(n) above κ, R ⊂ Vα, and β < κ. Find α′ > α in C(n). By

assumption, there is j : Vα′ → Vβ′ with critj = κ, j(κ) > α′, and β′ ∈ C(n).

Given a transitive model M of a fragment of ZFC, write C(n),M for M’s version

of C(n). Since α, α′∈C(n), α∈C(n),Vα′ . By elementarity, j(α)∈C(n),Vβ′ . Thus,

Vβ′ � “∃ᾱ < j(κ) and S ⊂ Vᾱ, j0 : (Vᾱ,∈, S) → (Vj(α),∈, j(R))

such that j0(critj0) = j(κ), critj0 > j(β), and ᾱ ∈ C(n)”.

This is witnessed by j � Vα. By elementarity,

Vα′ � “∃ᾱ < κ and S ⊂ Vᾱ, j0 : (Vᾱ,∈, S) → (Vα,∈, R)

such that j0(critj0) = κ, critj0 > β, and ᾱ ∈ C(n)”.

This is the desired result; note that it implies ᾱ∈C(n) because α′∈C(n).

Proposition 4.12: The following are equivalent for every n < ω:

(1) κ is C(n)-extendible.

(2) κ is measurable-for-Ls,Σn ∪ Lκ,ω.

(3) κ is strong compact-for-Ls,Σn
κ,κ .

(4) κ is supercompact-for-Ls,Σn
κ,κ .

Proof. This follows a similar argument as Theorem 4.3, just requiring that

the α’s be in C(n).

However, the notion of a huge-for-Ls,Σn
κ,κ cardinal would be similarly stronger

in consistency strength than the notion in Proposition 4.12.

While the Löwenheim–Skolem–Tarski number for second order was deter-

mined by Magidor in [Mag71] and Magidor and Väänänen have explored the

Löwenheim–Skolem–Tarski numbers of various fragments of L2 in [MV11], the

Löwenheim–Skolem–Tarski number of sort logic seems unknown. We give a

characterization of these cardinals in terms of a C(n)+-version of Magidor’s

characterization of supercompacts. We work with Löwenheim–Skolem–Tarski

numbers for strictly first-order languages to avoid the technicalities around try-

ing to develop a notion of elementary substructure for sort logic. See Section

4.3 for a definition of elementary substructure in second-order logic.
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Theorem 4.13: The following are equivalent for κ:

(1) The conclusion of Lemma 4.11.

(2) For all α < κ, if N is a structure in a strictly first-order language τ of

size < κ, then there is M ≺Lα,α N of size < κ such that M and N have

the same Ls,Σn
α,α -theory.

Proof. (1) implies (2): Let N be a τ -structure with |τ | < κ. Find γ < κ

that is above α and |τ | and find α′ > κ such that N ∈ Vα′ . Code the struc-

ture N into a relation R ⊂ Vα′ By assumption, there is ᾱ ∈ (γ, κ) in C(n) and

j : (Vᾱ,∈, S) → (Vα,∈, R) with critj > γ. Then S codes a structure M in Vᾱ

that, by elementarity, models Th
L
s,Σn
α,α

(N). Moreover, j �M is Lα,α-elementary,

so the range of j �M is the desired model.

(2) implies (1): Fix α > κ in C(n), R ⊂ Vα, and β < κ. Apply the assumption

to the structure (Vα,∈, R, δ)δ<β to get M ≺Lβ,β N with the same Ls,Σn -theory.

This includes Magidor’s Φ, so after taking the transitive collapse, we get ≺Lβ,β
-

elementary

j : (Vᾱ,∈, S, δ)δ<β → (Vα,∈, R, δ)δ<β .

The constants for the elements of β force the critical point of j above β.

4.2. Rank-into-rank. We now turn to the strongest large cardinal principles,

the rank-into-rank embeddings. For an excellent survey of these, see Dimonte

[Dim18] or the expanded Dimonte [Dim]. Following [Dim18], this section uses

Σ1
n(Lκ,ω) to denote the fragment of infinitary second-order logic L2

κ,ω consisting

of the formulas that are Σn in their second-order quantifiers.

We can cast I1, I2, and I3 in a uniform way by saying, for n < ω, I2n(κ, δ)

is the assertion

There is j : Vδ → Vδ, κ = critj, δ is the supremum of the critical sequence,

and j is Σ1
2n(Lκ,ω)-elementary.

Laver [Lav97, Theorem 2.3] proved10 that Σ1
2n+1-elementarity of such a j implies

its Σ1
2n+2-elementarity, so it suffices to consider the even levels. Then I3 is I20,

I2 is I21,11 and I1 is I2<ω.

10 Laver’s paper attributes this result to Martin without citation, but other sources attribute

it to Laver.
11 Which is in turn equivalent to being elementary about statements of well-foundedness

[Dim, Lemma 6.13].
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Note that second-order elementary embeddings should be understood in the

context of Section 4.3. Given j : Vδ → Vδ, we can naturally extend this to

j+ : P(Vδ) → P(Vδ) by

j+(R) =
⋃
α<δ

j(R ∩ Vα).

Then set

AVδ = j+(A).

Note that j+ is the only possible extension of j to Vδ+1 that could be elementary,

and its Σ1
0-elementarity follows from its first-order elementarity.

These principles have natural characterizations in terms of extendibility cri-

teria. Recall that κ is weakly compact iff every κ-sized structure has a proper

Lκ,κ-elementary extension [Kan08, Theorem 4.5] and κ is measurable iff every

≥ κ-sized structure has a proper Lκ,κ-elementary extension.

Proposition 4.14: For each n ≤ ω and δ = �δ, the following are equivalent:

(1) There is κ < δ such that I2n(κ, δ).

(2) Every δ-sized structure has a non-identity Σ1
2n(Lω,ω)-elementary

embedding into itself.

Proof. Suppose (1) holds, and let j : Vδ → δ with critj = κ witness. If M is

of size δ, then we can code it as a structure with universe δ. Then j � δ is the

desired embedding and it inherits the Σ1
2n(Lω,ω)-elementarity of j.

Suppose (2) holds. Then apply it to the structure (Vδ,∈), which has

size �δ = δ; this gives Σ1
2n(Lω,ω)-elementary j : Vδ → Vδ. Now j must have a

critical point below δ, call it κ. As in Section 2, this strengthens the elemen-

tarity of j to Σ1
2n(Lκ,ω). Since j : Vδ → Vδ, we must have δ ≥ supn j

n(κ). By

Kunen’s inconsistency, we must have δ ≤ supn j
n(κ). Since δ is limit, this tells

us that δ = supn j
n(κ), and I2n(κ, δ) holds.

I3 and I2 also have standard characterizations in terms of coherent ω-se-

quences of normal ultrafilters. This allows us to prove the following type omit-

ting compactness from them. Unfortunately, this does not give an equivalence,

but does allow us to sandwich these properties between two compactness for

omitting types statements. Recall that any type can be trivially extended to

an equivalent, larger one by adding instances of “x �= x.”
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Theorem 4.15:

(1) If I20(κ, δ), then for any theory T =
⋃

s∈Pκκ
Ts ⊂ Lκ,ω(τ) and set of

types {pβ = {φβi (x) | i < κnβ+1} | β < μ}, if there are club many

s ∈ Pκκ such that Ts has a model Ms with the property

for β < μ,

{t ∈ [κnβ+1]κnβ |Mt∩κ omits pβt = {φβi (x) | i ∈ t}} contains a club,

then T has a model omitting {pβ | β < μ}.

(2) I21(κ, δ) implies the same for the logic Lκ,ω(QWF ).

We will use the ultrafilter characterizations of these cardinals, in part be-

cause I3 doesn’t have a characterization in terms of j : V → M and we don’t

want to restrict to models of size ≤ δ.

Proof. We prove the second item. The first follows by the same argument, just

removing the mentions of well-foundedness.

I21(κ, δ) is equivalent to the existence of κ-complete, normal ultrafilters Un

on [κn+1]κn (where {κn | n < ω} is the critical sequence of the witnessing

embedding) such that

(1) coherence: For any X ⊂ [κn+1]κn and m > n,

X ∈ Un ⇐⇒ {s ∈ [κm+1]κm | s ∩ κn+1 ∈ X} ∈ Um;

(2) well-founded: For any {ni < ω | i < ω} and {Xi ∈ Uni | i < ω}, there

is s ⊂ δ such that, for all i < ω, s ∩ κni+1 ∈ Xi.

Let Ms be the desired models. Since they exist for club many s and U0 contains

this club, we can form the direct limit of the ultrapowers as standard:

M∗
n =

∏
s∈[κn+1]κn

Ms∩κ/U

and there is a coherent system of Lκ,κ-embeddings fn,m : M∗
n →M∗

m that takes

[f ]Un to [s �→ f(s ∩ κn+1)]Un+1 . Then M∗ is the direct limit of these models.

Standard arguments (see Proposition 5.3 for a more general case) show that

	Loś’ Theorem holds for formulas of Lκ,ω(QWF ). This guarantees that M∗ � T .

To show the type omission, let β < μ and [n, f ]Ū ∈M∗. Setting n′ = maxn, nβ,

this implies

X := {t ∈ [κn′+1]κn′ |Mt∩κ omits pβt∩κnβ+1
} ∈ Un′ .
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Define a function h on X by setting, for t ∈ X , h(t) ∈ t such that

Mt∩κ � ¬φβh(t)(f(t ∩ κn+1));

this is possible exactly because of the type omission. Then, h is regressive on a

Un′ -large set, so there is α0 < κn′+1 such that

Y := {t ∈ [κn′+1]κn′ |Mt∩κ � ¬φβα0
(f(t ∩ κn+1))} ∈ Un′ .

Then, by 	Loś’ Theorem, [n, f ]Ū = [n′, f(s ∩ κn+1)]Ū omits pβ in M∗ as

M∗ � ¬φβα0
([n, f ]Ū ).

Since [n, f ]Ū and β were arbitrary, were are done.

We can also isolate a type omitting compactness stronger than these rank-

into-rank axioms. Note that, unlike previous theorems, the types in the follow-

ing don’t shrink in the hypothesis.

Theorem 4.16: Fix a cardinal δ = �δ.

(1) Suppose we have the following for some κ:

For any Lω,ω(τ)-theory T with a filtration {Tα | α < κ} and |τ | = δ

and any Lω,ω(τ)-type p(x), if every Tα has a model omitting p,

then T has a model omitting p.

Then there is κ0 ≤ κ such that I20(κ0, δ).

(2) The above implies I2n(κ, δ) after replacing the logic with Σ1
2n(Lω,ω).

Proof. Fix a bijection f : δ → Vδ. Consider the theory and types

T =EDLω,ω (Vδ,∈, x)x∈Vδ
∪ {ci < c < cκ | i < κ}
∪ {diEdj | i, j < δ, f(i) ∈ f(j)}
∪ {¬(diEdj) | i, j < δ, f(i) �∈ f(j)},

p(x) ={x �= di | i < δ}.
We claim that a model of T omitting p will give a bijection as required for

I20(κ0, δ): the first two parts of T will give an elementary j : Vδ → M, where

we don’t yet know that M is transitive. The third and fourth parts of T ensures

that M has a (different) copy of Vδ in it given by x ∈ Vδ �→ dMf−1(x) ∈ M.

Omitting p means everything in M is in this second copy of Vδ, so M ∼= Vδ.

Thus, we have elementary j : Vδ → Vδ that is not the surjective because its
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range does not contain cM. If κ0 := critj, then this witnesses that I20(κ0, δ)

holds; note the second part of T ensures that critj ≤ κ.

To find such a model, we apply our compactness principle. If α < κ, let Tα

be T cutting out the constants cx for elements with rank in the interval [α, κ)

as in the discussion following Theorem 3.11, that is,

Tα = EDLω,ω(Vδ,∈, x)x∈Vα∪V≥κ
∪ {ci < c < cκ | i < α}
∪ {diEdj | i, j < δ, f(i) ∈ f(j)}
∪ {¬(diEdj) | i, j < δ, f(i) �∈ f(j)}.

We can find a model of Tα omitting p by taking the identity from Vδ to itself

and interpreting c as α.

4.3. Elementary substructure for L2
. In contrast with first-order log-

ics,12 the notion of elementary substructure in second-order logic has not been

well-studied. As evidence to this, in Väänänen’s paper on second-order logic

and set theory [Vää01], the word ‘structure’ appears 210 times, but ‘substruc-

ture,’ ‘sub-structure,’ or even ‘sub structure’ never appear. Similarly, Shapiro’s

book [Sha91] never discusses the matter.13 A guess at the cause for this is that

second-order logic is often employed to find categorical theories, whereas first-

order logic attempts only to axiomatize classes of structures. In such contexts,

there is no reason to talk about one model’s relation with others.

A first-attempt at second-order elementary substructure would be to work

in analogy with first-order and say M is a L2-elementary substructure of N iff

every formula holds of parameters from M in M iff it holds in N . However,

this notion doesn’t allow for any proper elementary extensions as there are

definable sets that must grow. Concretely, the formula φ(X) := “∀x(x ∈ X)”

must be satisfied by the entire universe, so no extension of M can think φ(M)

holds. A more modest generalization is used by Magidor and Väänänen in

[MV11, Between Definitions 3 and 4]. They say that M is an L2-elementary

substructure of N iff the above property holds restricted to formulas with only

first-order free variables. This works (in the sense that proper extensions can

12 Here meant as ‘sublogics of L∞,∞.’
13 The notion of “elementary substructure” does appear here, but always in reference to its

first-order version.
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exist), and they observe that Magidor’s theorem on the Löwenheim–Skolem–

Tarski number of second-order extends to this notion of elementarity. However,

it seems lacking as there’s no discussion of free variables in second-order.

We give a definition of elementary substructure in second-order logic in Defi-

nition 4.18 below. An important point is that this definition includes a stronger

notion of substructure in the second-order context (see Definition 4.17.(3)).

Before giving the formal definitions, we give a motivation. Any second-order

structure M can be viewed as a Henkin structure

M+ = (M,P [M ], E).

Then every second-order statement about M can be transferred to a first-order

statement about M+, and the fact that M+ is a full structure (isomorphic to

(M,P(M),∈)) can be captured by a single second statement Ψ asserting every

subset of M is represented by a member of E.

Now that we have moved to a more familiar first-order setting, we can ask

what relation between the original structures M and N characterizes when

M+ is an elementary substructure of N+. The key is that, given s ⊂ M and

ms ∈ P [M ] representing it, N+ thinks the same facts about ms as M does

when the parameters come from M , but N also thinks new things about ms.

Crucially, there might be elements of N −M that N thinks are in ms. Then,

setting sN := {n ∈ N | N � nEms}, N thinks all the same facts about sN

that M does about s. This notion of extending subsets is key to defining

second-order elementary substructure. This leads to the following definitions:14

Definition 4.17:

(1) Set Pω(X) =
⋃

n<ω P(Xn).

(2) For X ⊂ Y , an extension function is a function f : Pω(X) → Pω(Y )

such that, for all s ⊂ Xn, f(s) ∩ Xn = s and f(s) ⊂ Y n and f fixes

every finite set.

(3) Given τ -structures M and N , we say M is a second-order substruc-

ture of N , written M ⊂2 N iff |M | ⊂ |N | and there is an extension

function s �→ sN such that for every atomic φ(x1, . . . , xn;X1, . . . , Xn′),

mi ∈M , and si ⊂Mni , we have

M � φ(m1, . . . ,mn; s1, . . . , sn′) ⇐⇒ N � φ(m1, . . . ,mn; sN1 , . . . , s
N
n′).

14 We focus on ≺
L2 for ease, but these definitions could easily be changed to accommodate

≺
L2
α,α

for α < κ.
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We turn substructure into elementary substructure by letting φ range over

all formulas.

Definition 4.18: Given τ -structures M and N , we say M is an L2-elementary

substructure of N , written M≺L2N iff M⊂2N and there is an extension func-

tion s �→ sN witnessing this such that for every φ(x1, . . . , xn;X1, . . . , Xm) ∈ L2,

mi ∈M , and si ⊂Mni , we have

M � φ(m1, . . . ,mn; s1, . . . , sn′) ⇐⇒ N � φ(m1, . . . ,mn; sN1 , . . . , s
N
n′).

Thus, M ≺L2 N comes with a choice of extensions for each s ⊂ M . This

avoids the issue with the “first-attempt” notion of elementary substructure

above. Indeed, for any definable subset A of M , AN must be the collection

of elements satisfying that definition in N if M ≺L2 N .

Note that if τ is a strictly first-order language (as is often the case), then

M ⊂ N is equivalent to M ⊂2 N for any collection of extensions. This means

that comments about substructures in first-order languages in the context of

second-order can be given the normal interpretation. Also, for such a language,

≺L2 will imply elementarity in the sense of Magidor and Väänänen.

For a general notion of ≤, a ≤-embedding is f : M → N such that f is a

τ -isomorphism onto its range and f(M) ≤ N (a set theorist might prefer to

call this model f”M). Specializing to ≺L2, f is a map on elements of M and,

given s ⊂ M , f”s ⊂ f(M). Then f(M) ≺L2 N implies there is an extension

(f”s)N ⊂ N that satisfies the definition of ≺L2 . To avoid this unfortunate

notation, we say that f : M → N is L2-elementary means that f is a map from

M ∪Pω(M) to N ∪Pω(N) such that, for all φ(x,X), a ∈M , and s ∈ Pω(M),

M � φ(a, s) ⇐⇒ N � φ(f(a), f(s)).

One should be skeptical that this is the “right” notion of ≺L2 as it adds a

strange new condition about global choices of extensions of subsets. In addition

to the heuristic with Henkin models above, we offer two “sanity” checks that

this is the right notion.

The first check is that Magidor’s Theorem on the LST number of second-order

logic holds with this notion.

Corollary 4.19: Let κ be supercompact. For any τ of size < κ and α < κ

and τ -structure N , there is M ≺L2
α,α

N of size < κ.

This follows from the argument given in our heuristic: take a model N , turn

it into a full Henkin structure N+ with Skolem functions, and apply Magidor’s
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version along with the sentence ∀X∃x(X ‘ = ’x). This quotational equality is

an abbreviation of the statement that X and x have the same elements.

The second check is that the natural notion of an elementary diagram char-

acterizes L2-elementary embedability. Given a τ -structure M , we define its L2

elementary diagram by first adding a first-order constant ca for each a ∈M and

a second-order constant ds for each s ∈ Pω(M) and setting

EDL2(M) = {φ(ca1 , . . . , can , ds1 , . . . , dsk) |M � φ(a1, . . . , an, s1, . . . , sk)}.
Proposition 4.20: Let M,N be τ -structures. The following are equivalent:

(1) N has an expansion that models EDL2(M).

(2) There is a L2-elementary f : M → N .

Proof. The proof follows as the first-order one. Given L2-elementary f :M → N ,

expand N by cNa = f(a) and dNs = f(s). Similarly, if N∗ � EDL2(M), define

f : M → N by the same formula.

Some of the basic results of first-order elementary substructure transfer, while

others do not. For instance, the Tarski–Vaught test goes through with the same

proof, although a slightly modified statement.

Proposition 4.21 (Tarski–Vaught Test for ≺L2): Given M ⊂2 N (with a

specified extension map s �→ sN ), we have that M ≺L2 N iff both of the

following hold:

(1) ∀mi ∈ M, sj ⊂ |M |nj and φ(x,x,X), if N � ∃xφ(x,m, sN ), then there

is m ∈M such that N � φ(m,m, sN ); and

(2) ∀mi ∈ M, sj ⊂ |M |nj and ψ(X,x,X), if N � ∃Xφ(X,m, sN), then

there is s ⊂Mn such that N � φ(sN ,m, sN).

Unfortunately, ≺L2 does not have properties such as coherence and smooth-

ness under unions of chains fail. These are properties coming from the study

of Abstract Elementary Classes, a general framework for nonelementary model

theory (see Baldwin [Bal09] for a survey):

• Coherence: A binary relation ≺ on τ -structures is coherent iff when-

ever M0 ≺M2 and M1 ≺M2 and M0 ⊂M1, then M0 ≺M1.

• Smoothness: A binary relation ≺ on τ -structures is smooth under

unions of chains iff whenever {Mi | i < α} is a ≺-increasing chain

with α limit, then
⋃

i<αMi is the ≺-least upper bound of the chain.
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We can show ≺L2 fails these properties by using Silver’s example, the bane

of many a nonelementary model theorist’s hope. Recall Silver’s example:15 the

language consists of two sorts P and Q and the sentence φSilver is

∃E ⊂ P ×Q(∀x, y ∈ Q(x = y ⇐⇒ ∀z ∈ P (zEx ⇐⇒ zEy))).

In other words, a model M of φSilver consists of two sets PM and QM such

that there is an extensional relation on PM and QM . The existence of such a

relation is equivalent to there being an injection from PM to P(QM ), which is

equivalent to |QM | ≤ 2|P
M |.

If F is any fragment of L2 containing φSilver , then M ≺F N requires that any

extensional relation on PM ×QM can be extended to an extensional relation on

PN ×QN . This is easy unless |QM | = 2|P
M | and |QN | > 2|P

N−PM |, but it fails

in this case. Thus, we can find counter-examples to coherence and smoothness

under unions of chains. Note that, since the language is first-order, M ⊂2 N is

equivalent to normal substructure.

• Coherence: SetM0,M1,M2 by PM0 =PM1=ω; PM2=ω1; QM0=P(ω);

and QM1 = QM2 = P(ω + 1). Then M0 ⊂ M1 and M0,M1 ≺L2 M2,

but M0 �≺L2 M1.

• Smoothness: For α < 2ω, set Mα by PMα = ω and QMα = ω + α.

Then this is a ≺L2-increasing, continuous chain with union M = (ω, 2ω).

Set N by PN = ω and QN = 2ω +ω. Then Mα ≺L2 N for each α < 2ω,

but M �≺L2 N .

We can also define a Skolem function for second-order in the same way as first-

order. To do so, we must add strictly second-order functions to the language,

so that even if τ started out strictly first-order, its Skolemization τsk won’t be.

In the context of first-order, the notions of elementary substructure and that

of club sets are very closely intertwined. For instance, given a structure M and

cardinal κ < ‖M‖,

{s ∈ Pκλ : s is the universe of an elementary substructure of M}
is club, and, conversely, given a club C ⊂ Pκλ, we can find a structure M with

universe λ such that the above set is contained in C. This connection is mediated

by the fact that both notions can be characterized by being the closure sets of

certain functions (Skolem functions, in the case of elementary substructure).

15 Although typically given as a PC-class (see [Kei71, Example on p. 92]), we give it here

as the class of models of a second-order sentence.
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With a definition for second-order elementary substructure in hand, we can

define a notion of club, which we call superclubs. Recall our focus on L2.

Definition 4.22:

(1) Fix μ < κ and let Fi : [λ]<ω × [Pω(λ)]<ω → Pω(λ) for i < μ. Then

C(F̄ ) := {s ∈ Pκλ |∃ extension f : Pω(s) → Pω(λ)

such that ∀a ∈ s,x ⊂ sn, i < μ,

we have Fi(a, f(x)) = f(y) for some y ∈ Pω(s)}.
(2) We call the collection F of all sets containing some C(F̄ ) the superclub

filter on λ.

We have called F a filter without proving it is one. This name is justified in

Proposition 4.25, although it might be non-proper.

Although we defined it with a combinatorial characterization in the spirit

of Definition 3.1, our interest in superclubs comes from the following model

theoretic characterization. Given a structure M and s ⊂ |M |, set M � s to be

the τ -substructure of M with universe generated by s (so is the closure of s

under the functions of M).

Lemma 4.23: The superclub filter is generated by sets of the form

D(M) := {s ∈ Pκλ |M � s ≺L2 M}
for M a τ -structure with universe λ and |τ | < κ.

Proof. First, suppose we are given {Fα | α < μ}. Set

τ = {Fn;m1,...,mk
α | α < μ; k, n,mi < ω}

to be a functional language so the domain of Fn;m1,...,mk
α is

Mn × P(Mm1) × · · · × P(Mmk).

Expand λ to a τ -structure by interpreting Fn;m1,...,mk
α as Fα restricted to the

appropriate arity. Then D(M) ⊂ C(F̄ ).

Second, suppose we are given M with universe λ. Without loss of generality,

we can assume that τ has (second-order) Skolem functions. Let

F̄ = {FM | F ∈ τ}
be the functions of M (interpreted as projection on other arities). Then, since

we have Skolem functions, C(F̄ ) ⊂ D(M).
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This model-theoretic characterization tends to be more useful to show the

things that we want.

Corollary 4.24: The superclub filter extends the club filter.

Proof. The club filter can be characterized in the same way using first-order

elementary substructure.

The next proposition shows that calling this a filter is justified.

Proposition 4.25: The superclub filter is a κ-complete, possibly non-proper

filter.

Proof. The superclub filter is upwards closed by definition, so we only need to

show it is closed under the intersection of < κ-many members. Suppose that

Xα ∈ F for α < μ < κ. By Lemma 4.23, there are τα-structures Mα with

universe λ and |τα| < κ such that D(Mα) ⊂ Xα. Set τ∗ to be the disjoint union

of the τα’s and M∗ to be the τ∗-structure that is simultaneously an expansion

of each Mα. Then D(M∗) ⊂ D(Mα), so this witnesses that⋂
α<μ

Xα ∈ F .

It is a filter by definition. Given D(Mα) with Mα a τα structure, set M∗ to

be the
⋃
τα-structure that is simultaneously an expansion of each Mα.

Proposition 4.25 leaves open the possibility that the superclub filter is non-

proper, i.e., contains the empty set. In fact, the properness of the superclub

filter characterizes supercompact cardinals.

Theorem 4.26: Let κ ≤ λ.

(1) If κ is not λ-supercompact, then there is an empty superclub. Moreover,

there is a uniform definition of the empty superclub.

(2) If κ is λ-supercompact, then every normal, fine, κ-complete ultrafilter

on Pκλ extends the superclub filter.

Proof. If κ is not λ-supercompact, then by Corollary 4.19, there is a structureM

of size λ in a language τ of size < κ such that M has no ≺L2-substructures;

looking at Magidor’s proof, we can take M to be some (Vβ ,∈, α)α∈μ for some

β < λ and μ < β. Without loss of generality |M | is λ by expanding the universe

by a trivial sort. Then D(M) = ∅ is in the superclub filter.
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If κ is λ-supercompact, then let U be a normal, κ-complete ultrafilter on Pκλ

and derive jU : V → MU . Let M be a τ -structure with universe λ and, without

loss of generality, it has Skolem functions. By Magidor’s result and its exten-

sions, jU”M ⊂L2 jU (M). Since M has Skolem functions, jU”M ≺L2 jU (M).

Thus,

j”λ ∈ (D(jU (M)))MU = j(D(M)).

So D(M) ∈ U .

In particular, we get the following:

Corollary 4.27: Given κ ≤ λ, κ is λ-supercompact iff the superclub filter

on Pκλ is proper.

While superclubs give a characterization of supercompact cardinals, they lack

a nice characterization in the spirit of “closed unbounded sets” that clubs have.

Such a characterization would shed light on properties of the ≺L2 relations and

permit the exploration of superstationary sets.

5. Extenders and omitting types

A key distinction between Theorem 3.5 and Theorems 4.1 and 4.9 is the lack

of an analogue of Theorem 3.5.(3) in the results of Section 4. The large car-

dinals of Section 4 are typically characterized by the existence of certain kinds

of extenders, but the modifier “certain” is typically characterized in a way that

nakedly concerns embeddings between models of set theory—e.g., [Kan08, Ex-

ercise 26.7] characterizes κ being λ-strong by the existence of an extender E

such that jE : V → ME witnesses λ-strength—rather than any combinatorial

feature of the extender.

We begin with a combinatorial characterization, although it still references

the Vα’s and may be of limited interest. However, we use this as a starting point

to investigate a larger question: to what extent is second-order logic necessary

to characterize the large cardinals in Section 4?

We should say a few words about our definition of extenders. We say that a

(κ, λ)-extender is E = {Ea | a ∈ [λ]<ω}, where each Ea is a κ-complete ultrafil-

ter on aκ satisfying coherence, normality, and well-foundedness (see

[Kan08, Section 26] for a statement of these conditions in a slightly different

formalism). Note that this is a compromise between the original definition of
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Martin–Steel [MS89]—which took a ∈ [Vλ]<ω and required Ea to be on aVκ–and

more modern presentations like [Kan08]—which takes a ∈ [λ]<ω but requires Ea

to be on [κ]|a|. Crucially, we also depart from both of these and don’t require

that

{s ∈ aκ | ∀a1, a2 ∈ a(a1 < a2 ↔ s(a1) < s(a2))} ∈ Ea.

Now we are ready to give a combinatorial characterization.

Definition 5.1: We say a bijection h : �α → Vα is rank-layering iff for every

β < α,

h”�β = Vβ .

Note this condition is equivalent to x ∈ y ∈ Vα implies h−1(x) ∈ h−1(y).

Proposition 5.2: The following are equivalent:

(1) κ is λ-strong.

(2) For some rank-layering bijection h : �λ → Vλ, there is a (κ,�λ)-

extender E such that for all α, β < λ, we have

h(α) ∈ h(β) ⇐⇒ {s ∈ {α,β}κ | h(s(α)) ∈ h(s(β))} ∈ E{α,β}.

(3) For every rank-layering bijection h : �λ → Vλ, there is a (κ,�λ)-

extender E such that for all α, β < λ, we have

h(α) ∈ h(β) ⇐⇒ {s ∈ {α,β}κ | h(s(α)) ∈ h(s(β))} ∈ E{α,β}.

In each of the cases, we have that x ∈ Vλ is the image of

[{h−1(x)}, s �→ h(s(h−1(x)))]E

after the transitive collapse.

Proof of Proposition 5.2. (3) implies (2) is clear.

(2) → (1): Given such an extender, set jE : V → M to come from the

extender power of V by E followed by the transitive collapse; then critj = κ

and j(κ) > λ by standard arguments (see [Kan08, Lemmas 26.1 and 26.2]). So

we are left with showing that Vλ ⊂ M. Let π :
∏
V/E → M be the Mostowski

collapse. Following the above, we will show that, for each x ∈ Vλ,

x = π([{h−1(x)}, s �→ h(s(h−1(x)))]E).



176 W. BONEY Isr. J. Math.

We work by induction on the rank of x. For each y ∈ x, the condition on our

extender precisely gives that

{s ∈ {h−1(y),h−1(x)}κ | h(s(h−1(y))) ∈ h(s(h−1(x)))} ∈ E{h−1(y),h−1(x)}

π([{h−1(y)}, s �→ h(s(h−1(y)))]E) ∈ π([{h−1(x)}, s �→ h(s(h−1(x)))]E)

Now suppose that z ∈ π([{h−1(x)}, s �→ h ◦ s ◦ h−1(x)]E). We wish to show

that π−1(z) is one of our terms for some y ∈ x. We know that π−1(z) is [a, f ]E

for some a ∈ [�λ]<ω and f with domain aκ. Without loss of generality we may

assume that h−1(x) ∈ a, and coherence implies that

[{h−1(x)}, s �→ h(s(h−1(x)))]E = [a, s �→ h(s(h−1(x)))]E .

Thus, we have that

{s ∈ aκ | f(s) ∈ h(s(h−1(x)))} ∈ Ea.

If we set α = h−1(x), then the rank-layering property tells us that

{s ∈ aκ | h−1(f(s)) ∈ s(α)} ∈ Ea.

By normality, this means that there is b ⊃ a and β ∈ b such that

{s ∈ bκ | h−1(f(s � a)) = s(β)} ∈ Eb.

If we set y = h(β) and g(s) = f(s � a), we can rewrite this as

{s ∈ bκ | g(s) = h(s(h−1(y)))} ∈ Eb.

Putting all of this together, we have that

π−1(z) = [a, f ]E = [b, g]E = [{h−1(y)}, s �→ h(s(h−1(y)))]E .

So z must be an element of this form with y ∈ x, as desired.

(1) → (3): Fix h : �λ → Vλ to be a rank-layering bijection and j : V → M
to witness that κ is λ-strong, so critj = κ, j(κ) > λ, and Vλ ⊂ M. [Kan08,

Chapter 26] describes the general method of deriving an extender E∗ from an

elementary embedding by setting

X ∈ E∗
a ⇐⇒ ida ∈ j(X).

The choice of the identity to ‘seed’ the ultrafilters is not necessary; we can (and

will) change this function without changing the fact that the derived ultrafilters
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form an extender. In particular, define E by specifying, for each a ∈ [�λ]<ω

and X ⊂ aκ,

X ∈ Ea ⇐⇒ j(h)−1 ◦ h ◦ j−1 � j(a) ∈ j(X).

Then E is a (κ,�λ)-extender and we only need to show the additional property.

We verify this with the following chain of equivalences, making crucial use of

our choice of seed: for α, β < λ, set a = {α, β}
{s ∈ aκ |h(s(α)) ∈ h(s(β))} ∈ Ea

⇐⇒ j(h)−1 ◦ h ◦ j−1 � j(a) ∈ j({s ∈ aκ | h(s(α)) ∈ h(s(β))})

⇐⇒ j(h)−1 ◦ h ◦ j−1 � j(a) ∈ {s ∈ j(a)j(κ) | j(h)(s(j(α))) ∈ j(h)(s(j(β)))}
⇐⇒ j(h)(j(h)−1(h(j−1(j(α))))) = j(h)(j(h)−1(h(j−1(j(β)))))

⇐⇒ h(α) ∈ h(β)

as desired.

Now we turn to the issue of how necessary logics beyond L∞,∞ are to charac-

terize large cardinals and focus on strong cardinals. Theorem 4.7 characterizes

strong cardinals in terms of the logic L2; is there a characterization of strong

cardinals solely in terms of L∞,∞?

For κ ≤ λ, consider the following (definable-class) Lκ,ω(QWF )-theory and

types for y ∈ Vλ:

τ ={E, ca, c, da′}a∈V,a′∈Vλ
,

T =EDLκ,ω(QWF )(V,∈, x)x∈V ∪ {di = ci < c < cκ | i < κ}
∪ {db ∈ da | b ∈ a ∈ Vλ},

py(x) ={xEdy ∧ ¬(x = dz) | z ∈ y}.
It follows from the methods of the previous sections that T has a model omitting

each py iff κ is λ-strong. However, what we lack from Proposition 3.11 is an

appropriate type omitting-compactness scheme and a decomposition of T along

that scheme that is satisfiable. The difficulty in constructing this becomes more

clear if we look at the extender product construction.

Given a (κ, λ)-extender E, for each a ∈ [λ]<ω, we form the ultraproduct∏
V/Ea. The coherence axiom and 	Loś’ Theorem insures that the restriction

function induces a coherent system of Lκ,κ-elementary embeddings from
∏
V/Ea

to
∏
V/Eb when a ⊂ b. Since [λ]<ω is directed, we can get a colimit

∏
V/E
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and Lκ,ω-elementary embeddings. Since E is well-founded, so is
∏
V/E, so we

can form its transitive collapse ME .

We can generalize this to a more general model-theoretic context. Fix

some a ∈ [λ]<ω and suppose that we have a collection of τ -structures

{Ms | s ∈ aκ} and form the ultraproducts
∏

s∈bκMs�a/Ea for b ⊃ a. Again,

the coherence gives a coherent system of embeddings, so we can form the exten-

der product
∏
Ms/E as the colimit of this system. This structure has universe

{[b, f ]E | a ⊂ b ∈ [λ]<ω , f ∈ bκ} where

[b, f ]E = [c, g]E iff {s ∈ bcκ | f(s � b) = g(s � c)} ∈ Ebc.

Then we have following result for 	Loś’ Theorem.

Proposition 5.3: Let E = {Ea | a ∈ [λ]<ω} be a system of κ-complete

ultrafilters satisfying coherence. The following are equivalent:

(1) E is well-founded.

(2) �Loś’ Theorem holds for Lκ,ω(QWF ) formulas. That is, given τ -structures

{Ms | s ∈ aκ}, φ(x1, . . . , xn) ∈ Lκ,ω(QWF )(τ), and

[b1, f1]E , . . . , [bn, fn]E ∈
∏

Ms/E,

we have

∏
Ms/E � φ([b1, f1]E , . . . , [bn, fn]E)

iff

{s ∈ ∪biκ |Ms�a � φ(f1(s � b1), . . . , fn(s � bn))} ∈ E∪bi

Proof. For one direction, it is known that E is well-founded iff
∏
V/E is well-

founded, which follows from 	Loś’ Theorem applied to QWFxy(x ∈ y).

For the other direction, fix b ∈ [λ]<ω and τ -structures {Ms | s ∈ bκ}. We

show 	Loś’ Theorem for Lκ,ω(QWF ) by induction. Standard arguments take

care of everything but the QWF quantifier. So suppose 	Loś’ Theorem holds for

φ(x, y, z) and [a, f ]E ∈ME :=
∏
Ms/E.

First, suppose that {s ∈ aκ |Ms�b � QWFxyφ(x, y, f(s))} �∈ Ea. Set X to be

the complement of this set. For s ∈ X , there is csr ∈ Ms�b for r < ω such that

Ms�b � φ(csr+1, c
2
r, f(s)). Then cr := [a, csr]E ∈ME witnesses the illfoundedness

of φ.
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Second, suppose that X0 = {s ∈ aκ | Ms�b � QWFxyφ(x, y, f(s))} ∈ Ea and

ME � ¬QWFxyφ(x, y, [a, f ]E). Then there is [ar, fr]E ∈ME such that

ME � φ([ar+1, fr+1]E , [ar , fr]E , [a, f ]E)

for all r < ω and, without loss of generality, a ⊂ ar ⊂ ar+1. Then

Xr+1 := {s ∈ ar+1κ |Ms�b � φ(fr+1(s), fr(s � ar), f(s � a))} ∈ Ear+1 .

The well-foundedness of E gives h :
⋃
a → κ such that h � ar+1 ∈ Xr+1 and

h � a ∈ X0. Then, for r < ω,

Mh�b � φ(fr+1(h � ar+1), fr(h � ar), f(h � a)).

Thus, 〈fr(h�ar)∈Mh�b | r < ω〉 witnesses the illfoundedness of φ(x, y, f(h � a))

in Mh�b, contradicting h � a ∈ X0.

So, to decompose T above, one could try to construe
∏
V/E as an extender

product
∏
Ms/E in the appropriate language and for the appropriate a, and

then see what fragment of T Ms satisfies. However, the problem is that the

factors that make up
∏
V/E don’t have expansions to τ -structures. Rather,

the analysis of
∏
V/E crucially uses that it can be seen as the extender power∏

s∈aκ V/E for any choice of a. Thus, there is no way to analyze which parts

of the types each factor omits.

However, there is a nice criterion for when an extender product (or just a

coherent ultraproduct by a κ-complete, well-founded coherent ultrafilter) omits

a Lκ,ω(QWF )-type based on the behavior of the original models Ms provided

that the domain of the type is a subset that appears as an element of ME .

Proposition 5.4: Let E be a (κ,�λ)-extender witnessing that κ is λ-strong.

Suppose that a ∈ [�λ]<ω, {Ms | s ∈ aκ} is a collection of τ -structures,

A� ⊂
∏
Ms/E of rank ≤ λ for � = 0, 1, and φ(x, y) ∈ Lκ,ω(QWF ). Set

p(x) = {φ(x, a) | a ∈ A0} ∪ {¬φ(x, a) | a ∈ A1}
and

ps(x) = {φ(x, a) | a ∈ f0(s)} ∪ {¬φ(x, a) | a ∈ f1(s)},
where [b, f�]E represents A� in ME. Then, the following are equivalent:

(1)
∏
Ms/E omits p.

(2) {s ∈ bκ |Ms�a omits ps} ∈ Eb.
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Note that we have restricted both to the case of φ-types and to the case

where E is an extender witnessing strength for simplicity and because those

cases suffice for our assumption. We could remove these assumptions, instead

requiring that A� is an element of the subset sort of
∏

(Ms,P(Ms),∈)/E.

Proof. The structure
∏
Ms/E is (isomorphic to) jE(g)(a), where g is the func-

tion taking s ∈ aκ to Ms and a = [a, s �→ s(a)]E . Then, since A� ∈ Vλ ∈ ME ,

	Loś’ Theorem for extenders tells us that

ME �“jE(g)(a) omits p”

⇐⇒ ME � “jE(g)(a) omits the φ-type generated by A0, A1”

⇐⇒ {s∈ bκ | g(s � a) omits the φ-type generated by f0(s), f1(s)}∈Eb

⇐⇒ {s∈ bκ |Ms�a omits ps} ∈ Eb.

Still, this doesn’t give a syntactic characterization of strength because it deals

with type omission for types over sets, whereas Theorem 3.5 deals just with type

omission over the empty set (in the appropriate language). Thus, we are still

left with the following question.

Question 5.5: Given κ ≤ λ, is there a syntactic property of logics such that

Lκ,ω(QWF ) (or some other sub-logic of Lκ,κ) satisfies this property iff κ is λ-

strong?
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