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ABSTRACT

Let Γ be a countably infinite group. A common theme in ergodic theory is
to start with a probability measure-preserving (p.m.p.) action Γ � (X, μ)
and a map f ∈ L1(X, μ), and to compare the global average

∫
f dμ of

f to the pointwise averages |D|−1
∑

δ∈D
f(δ · x), where x ∈ X and D

is a nonempty finite subset of Γ. The basic hope is that, when D runs
over a suitably chosen infinite sequence, these pointwise averages should
converge to the global value for μ-almost all x.

In this paper we prove several results that refine the above basic para-
digm by uniformly controlling the averages over specific sets D rather than
considering their limit as |D| → ∞. Our results include ergodic theorems
for the Bernoulli shift action Γ � ([0; 1]Γ, λΓ) and strengthenings of the
theorem of Abért and Weiss that the shift is weakly contained in every
free p.m.p. action of Γ. In particular, we establish a purely Borel version
of the Abért–Weiss theorem for finitely generated groups of subexponen-
tial growth. The central role in our arguments is played by the recently
introduced measurable versions of the Lovász Local Lemma, due to the
current author and to Csóka, Grabowski, Máthé, Pikhurko, and Tyros.
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1. Introduction

The Lovász Local Lemma (the LLL for short) is a powerful tool in probabilis-
tic combinatorics, introduced by Erdős and Lovász [16]. The LLL is mostly
used to obtain existence results, and it is particularly well-suited for showing
that a given structure X admits a coloring satisfying some “local” constraints.
Roughly speaking, in order for the LLL to apply in this context, two require-
ments must be met: First, a random coloring should be “likely” to fulfill each
individual constraint; second, the constraints must not interact with each other
“too much.” For the precise statement, see §6.A.

It has been a matter of interest to determine if the LLL can be used to
derive conclusions that are, in some sense, “constructive” (as opposed to pure
existence results). A decisive breakthrough was made by Moser and Tardos [26],
who developed an algorithmic approach to the LLL. (The work of Moser and
Tardos was preceded by a line of earlier results, starting with Beck’s paper [5];
for more details, see the references in [26].) The Moser–Tardos method proved
quite versatile and was adapted to establish “constructive” analogs of the LLL in
a variety of different contexts. For example, Rumyantsev and Shen [27] proved
a computable version of the LLL. Here we will be focused on the measurable
versions of the LLL that were studied in [6] by the current author and in [14] by
Csóka, Grabowski, Máthé, Pikhurko and Tyros (see also [23] for related work
by Kun).

Measurable analogs of the LLL are designed to apply in the following frame-
work. Let (X, μ) be a standard probability space and let C be a set of colors
(we will only consider the case when C is finite). Suppose we are looking for
a coloring f : X → C that fulfills a family B of constraints. Under suitable
assumptions, the ordinary LLL implies that such a coloring f exists; however,
this f need not behave well with respect to the measurable structure on (X, μ).
In contrast to that, measurable versions of the LLL can provide a μ-measurable
(or sometimes even Borel) function f : X → C that satisfies the constraints B,
or at least does so on a “large” subset of X . Such results appear to be partic-
ularly relevant in ergodic theory, since many concepts pertaining to measure-
preserving group actions are phrased in terms of measurable partitions of the
underlying probability space—which can naturally be thought of as measur-
able colorings. Some ergodic-theoretic applications of the LLL can be found
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in [6, 7]. Here we present further consequences of the LLL in measurable dy-
namics, specifically in the study of ergodic averages and of weak containment
of measure-preserving group actions.

Our arguments employ a general approach that is standard in combinatorics,
in particular in graph coloring theory (see, e.g., the book [25] for many exam-
ples). The first step is to use concentration of measure to obtain strong upper
bounds on probabilities of certain “bad” random events; the LLL is then in-
voked to eliminate all the “bad” events. Nontrivial results can also be derived
by combining the concentration of measure bounds with more classical tools,
such as the Borel–Cantelli lemma (Theorem 2.1 below is an example). Roughly
speaking, using the LLL instead of the Borel–Cantelli lemma results in replacing
pointwise convergence with approximation in the ∞-norm.

Acknowledgements. I am very grateful to Anush Tserunyan for many in-
sightful discussions and to the anonymous referee for helpful suggestions.

2. Statements of results

Throughout, Γ denotes a countably infinite group with identity element 1. We
study probability measure-preserving (p.m.p.) actions of Γ, i.e., actions
of the form α : Γ � (X, μ), where (X, μ) is a standard probability space and
the measure μ is α-invariant. We also consider, more generally, Borel actions
α : Γ � X , i.e., actions of Γ on a standard Borel space X by Borel automor-
phisms.

Given a set A, the shift action σA : Γ � AΓ on the set of all maps x : Γ → A

is defined by

(γ · x)(δ) := x(δγ) for all x ∈ AΓ and γ, δ ∈ Γ.

We are particularly interested in the case when A is the unit interval [0; 1]
equipped with the Lebesgue probability measure λ. (Owing to the measure
isomorphism theorem [19, Theorem 17.41], any other atomless standard proba-
bility space could be used instead.) To unclutter the notation, set

(Ω,λ) := ([0; 1]Γ, λΓ)

and σ := σ[0;1]. Note that the action σ : Γ � (Ω,λ) is measure-preserving.
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2.A. Ergodic theorems for the shift action. Let α : Γ � (X, μ) be a
p.m.p. action. Given f ∈ L1(X, μ), we can compute its global average:

Eμf :=
∫

X

f dμ,

and compare it to the pointwise averages of the form

EDf(x) := 1
|D|

∑
δ∈D

f(δ · x),

where x ∈ X and D is a nonempty finite subset of Γ. Note that
ED : L1(X, μ) → L1(X, μ) is a linear operator of norm 1: The lower bound
on ‖ED‖op is witnessed by the constant 1 function, while the upper bound fol-
lows from the fact that, since μ is α-invariant, we have EμEDf = Eμf , and
hence

‖EDf‖1 = Eμ|EDf | � EμED|f | = Eμ|f | = ‖f‖1.

Assuming the action α is ergodic, one hopes to show that the pointwise
averages EDf converge, in a suitable sense, to Eμf , as D ranges over a given
infinite family of finite subsets of Γ. Results of this kind are usually referred
to as ergodic theorems (often with adjectives indicating the mode of conver-
gence, such as “pointwise”). Two prototypical examples are von Neumann’s [31]
and Birkhoff’s [8] ergodic theorems. Both of these classical results apply when
Γ = Z and D ranges over the sets of the form {0, 1, . . . , n − 1} with n ∈ N+.
Von Neumann’s theorem yields convergence in the 2-norm (assuming f∈L2(X,μ)
to begin with), while Birkhoff’s result ensures pointwise convergence almost ev-
erywhere. An extension of Birkhoff’s pointwise ergodic theorem to all
amenable Γ was obtained by Lindenstrauss [24]; there D ranges over a tempered
Følner sequence (the special case of Lindenstrauss’s result for f ∈ L2(X, μ) fol-
lows from the earlier work of Shulman, see [29, §5.6]). Generalizing ergodic
theorems beyond the realm of amenable groups is a major challenge; for further
background, see, e.g., [4, 10, 9] and the references therein.

Here we work with an arbitrary group Γ; moreover, the only condition on
the sequence (Dn)n∈N of averaging sets is that |Dn| grows sufficiently quickly
with n. On the other hand, instead of studying arbitrary ergodic actions, we
focus our attention on the shift action σ : Γ � (Ω,λ) in the hope of exploiting its
mixing properties. Our first result is a pointwise ergodic theorem for continuous
functions f : Ω → C:
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Theorem 2.1 (Pointwise ergodic theorem for continous maps on the shift): Let
(Dn)n∈N be a sequence of finite subsets of Γ such that |Dn|/ log n → ∞. Then,
for all continuous f : Ω → C,

lim
n→∞EDn f(x) = Eλf, for λ-a.e. x ∈ Ω.

Since the set of all continuous functions is dense in L1(Ω,λ) and ‖ED‖op = 1
for all nonempty finite D ⊂ Γ, Theorem 2.1 has the following immediate corol-
lary:

Corollary 2.2 (Mean ergodic theorem for the shift): Let (Dn)n∈N be a
sequence of finite subsets of Γ such that |Dn|/ log n → ∞. Then, for all
f ∈ L1(Ω,λ), we have

lim
n→∞EDnf = Eλf in L1(Ω,λ).

It is natural to ask whether Theorem 2.1 can be extended to all f ∈ L1(Ω,λ).
The answer turns out to be negative even if the lower bound on the growth rate
of the averaging sets is raised, as the constructions of Akcoglu and del Junco [2]
and del Junco and Rosenblatt [15] (with minor modifications) demonstrate:

Theorem 2.3 (ess. Akcoglu–del Junco [2] and del Junco–Rosenblatt [15]): Sup-
pose that Γ = Z and let h : N → N be an arbitrary function. There exists a
sequence (Dn)n∈N of finite subsets of Z with the following properties:

– each Dn is an interval, i.e., a set of the form {s, s + 1, . . . , s + � − 1} for
s ∈ Z and � ∈ N+;

– |Dn| � h(n) for all n ∈ N;
– for every free p.m.p. action Z � (X, μ), there is a Borel set A ⊆ X such that

lim inf
n→∞ EDn�A(x) = 0 and lim sup

n→∞
EDn�A(x) = 1, for μ-a.e. x ∈ X,

where �A : X → {0, 1} is the indicator function of A. Moreover, the family of
such sets A is comeager in the measure algebra MAlg(X, μ).

For completeness, we sketch a proof of Theorem 2.3 using Rokhlin’s lemma
in the appendix.

As mentioned in the introduction, Theorem 2.1 follows by combining a con-
centration of measure inequality with the Borel–Cantelli lemma. We now turn
to further results that can be obtained if the Borel–Cantelli lemma is replaced
by the LLL.
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For a p.m.p. action α : Γ � (X, μ), f ∈ L1(X, μ), and a nonempty finite set
D ⊂ Γ, define the discrepancy norm of f with respect to D by the formula

‖f‖disc
D := ‖EDf − Eμf‖∞.

(Here ‖ · ‖∞ is the ∞-norm in the sense of L∞(X, μ).) Even if f : Ω → C

is continuous, its discrepancy norm may be separated from 0. For instance,
consider the continuous map

f : Ω → [−1; 1] : x �→ −1 + 2 · x(1).

Then Eλf = 0 yet ‖EDf‖∞ = 1, and hence ‖f‖disc
D = 1, for all nonempty finite

D ⊂ Γ. However, we show that any f ∈ L1(Ω,λ) can be written as a sum of
two functions g, h ∈ L1(Ω,λ), where g is small in the discrepancy norm, while h

is small in the 1-norm:

Theorem 2.4 (L∞-ergodic theorem for the shift): For all f ∈ L1(Ω,λ) and
ε > 0, there exists C > 0 with the following property:

Let (Dn)n∈N be a sequence of finite subsets of Γ with |Dn| � C log(n + 2) for
all n ∈ N. Then there exist g, h ∈ L1(Ω,λ) such that f = g + h, ‖h‖1 � ε, and
‖g‖disc

Dn
� ε for all n ∈ N.

Note that Theorem 2.4 also yields Corollary 2.2.
Our ultimate goal in this subsection is to sharpen Theorem 2.4 by consid-

ering other statistical properties of the function f , beside its average Eλf .
This is made precise by the following formalism. Let K be a compact metric
space. We use Prob(K) to denote the space of all probability Borel measures
on K equipped with the usual weak-∗ topology (see, e.g., [19, §17.E]). Given a
p.m.p. action α : Γ � (X, μ) and a Borel function f : X → K, define

Mμf := f∗(μ),

where f∗ : Prob(X) → Prob(K) is the pushforward map. (This notation is
intended to be reminiscent of Eμf , while the letter “M” emphasizes that Mμf

is a measure.) For x ∈ X and a nonempty finite set D ⊂ Γ, let υx,D be the
probability measure on X with (finite) support D · x given by

υx,D({y}) := 1
|D| · |{δ ∈ D : δ · x = y}| for all y ∈ D · x.
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If the α-stabilizer of x is trivial, then υx,D is simply the uniform probability
measure on D · x. Let

MDf(x) := f∗(υx,D).

The measures Mμf and MDf(x) are points in Prob(K) that encode the global
and the pointwise statistics of f , respectively. In particular, when K is a sub-
set of C, Mμf and MDf(x) contain the information about Eμf and EDf(x);
explicitly,

(2.5) Eμf =
∫

K

z d(Mμf)(z) and EDf(x) =
∫

K

z d(MDf(x))(z).

We wish to also take into account more detailed information about the inter-
action of f with the action α. Toward that end, let πf : X → KΓ denote the
equivariant map given by

πf (x)(γ) := f(γ · x) for all x ∈ X and γ ∈ Γ.

The map πf is called the symbolic representation, or the coding map,
of the dynamical system (X, Γ, α, f). Notice that the projection function
p : KΓ → K : κ �→ κ(1) satisfies f = p ◦ πf and gives rise to a continuous
map p∗ : Prob(KΓ) → Prob(K) such that f∗ = p∗ ◦ (πf )∗. This observation
shows that, by considering πf , we achieve greater generality than just by work-
ing with f itself.

Given a standard probability space (X, μ) and a compact metric space (K, d),
let B(X, K) denote the set of all Borel functions from X to K. We equip
B(X, K) with a psedometric dμ given by

dμ(f, g) :=
∫

X

d(f(x), g(x)) dμ(x).

If K is a subset of C equipped with the metric d(z1, z2) = |z1 − z2|, then
dμ(f, g) = ‖f − g‖1.

Theorem 2.6 (Pushforward-ergodic theorem for the shift): Let (K, d) be a
compact metric space and let f : Ω → K be a Borel function. For any ε > 0
and an open neighborhood U of the measure Mλπf , there exists C > 0 with
the following property:

Let (Dn)n∈N be a sequence of finite subsets of Γ with |Dn| � C log(n + 2) for
all n ∈ N. Then there is a Borel map g : Ω → K such that dλ(f, g) � ε and

MDnπg(x) ∈ U, for all n ∈ N and for λ-a.e. x ∈ X.



262 A. BERNSHTEYN Isr. J. Math.

In the light of (2.5), it is clear that Theorem 2.4 is a special case of Theo-
rem 2.6.

We end this subsection with a simple application of Theorem 2.6. Recall that
a group Γ is called residually finite if the intersection of all its subgroups of
finite index is trivial. The following is an easy observation:

Proposition 2.7: A countable group Γ is residually finite if and only if every
open neighborhood U ⊆ Prob(Ω) of λ contains a finitely supported measure ν

that is shift-invariant.

Proof. Let (νn)n∈N be a sequence of finitely supported shift-invariant measures
on Ω that converges to λ. This gives us a sequence of actions of Γ on the finite
sets Xn := supp(νn) and, since νn → λ, each nonidentity group element γ ∈ Γ
acts on Xn nontrivially for all large enough n. This shows that Γ is residually
finite.

Conversely, suppose that Γ is residually finite and let (Δn)n∈N be a decreasing
sequence of finite index subgroups of Γ with trivial intersection. For k ∈ N+,
let

Qk := {0, 1/k, . . . , (k − 1)/k} ⊂ [0; 1].

Let P (k, n) denote the set of all maps x : Γ → Qk that are constant on the right
cosets of Δn. Then the set P (k, n) is finite and shift-invariant, and, letting
νk,n be the uniform probability measure on P (k, n), we see that νk,n → λ as
k, n → ∞.

Motivated by Proposition 2.7, we say that a group Γ is approximately
residually finite if for every open neighborhood U of λ, there is a finitely
supported measure ν such that γ · ν ∈ U for all γ ∈ Γ. Proposition 2.7 implies
that every residually finite group is approximately residually finite, so our ter-
minology is consistent. An intuitive way of thinking about approximate residual
finiteness is as follows: To show that a group Γ is approximately residually finite,
we have to find finite subsets X ⊂ Ω that are “almost uniformly distributed”
over the space (Ω,λ) and also remain such when shifted by any γ ∈ Γ. We
remark that a random finite set X fails to have this property: For any n ∈ N

+,
the product action σn : Γ � (Ωn,λn) is ergodic, and hence if x1, . . . , xn ∈ Ω are
chosen randomly and independently from each other, then, with probability 1,
for every open V ⊆ Ω there is some γ ∈ Γ such that γ · x1, . . . , γ · xn ∈ V .
Nevertheless, we have the following:
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Corollary 2.8 (to Theorem 2.6): Every countable group is approximately
residually finite.

Proof. Let U be an open neighborhood of λ. It suffices to exhibit a finitely
supported measure ν ∈ U such that ν · γ ∈ U for all γ ∈ Γ, where the right
shift action Ω � Γ is given by

(x · γ)(δ) := x(γδ) for all x ∈ Ω and γ, δ ∈ Γ.

Applying Theorem 2.6 with K = [0; 1] and f = (x �→ x(1)), we obtain a
nonempty finite set D ⊂ Γ and a Borel map g : Ω → [0; 1] such that MDπg(x)∈U

for λ-a.e. x ∈ Ω. Since Γ is countable and the measure λ is right-shift-invariant,
there is x ∈ Ω such that MDπg(x · γ) ∈ U for all γ ∈ Γ. Set ν := MDπg(x).
Then ν is finitely supported; furthermore, it is straightforward to verify, using
the (left-)equivariance of πg and the fact that the left and the right shift actions
of Γ on Ω commute with each other, that ν · γ = MDπg(x · γ) for all γ ∈ Γ.
Hence, ν is as desired.

Since the above argument only involves the properties of g on a countable
subset of Ω, Corollary 2.8 can also be derived directly from the classical LLL,
without using its measurable analogs.

2.B. Pointwise versions of the Abért–Weiss theorem. So far we have
considered the action σ : Γ � (Ω,λ) on its own. Now we would like to discuss
the relationship between σ and other actions of Γ.

The concepts of weak containment and weak equivalence of p.m.p. actions
were introduced by Kechris in [20, §10(C)]. They are inspired by the analo-
gous notions for unitary representations and are closely related to the so-called
local-global convergence in the theory of graph limits [18]. The relation of
weak equivalence is much coarser than the isomorphism relation, which makes
it relatively well-behaved. On the other hand, several interesting parameters
associated with p.m.p. actions—such as their cost, type, etc.—turn out to be in-
variants of weak equivalence. Due to these favorable properties, the relations of
weak containment and weak equivalence have attracted a considerable amount
of attention in recent years. For a survey of the topic, see [12].

Roughly speaking, a p.m.p. action α: Γ�(X, μ) is weakly contained in another
p.m.p. action β : Γ � (Y, ν) if for every compact metric space K and for any
Borel map f : X → K, the interaction of f with α can be arbitrarily well “simu-
lated” by a Borel map g : Y → K interacting with β. Here is a precise definition:
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Definition 2.9 (Weak containment; [12, §2.2(2)]): Let α : Γ � (X, μ) and
β : Γ � (Y, ν) be p.m.p. actions of Γ. We say that α is weakly contained
in β, in symbols α � β, if for any compact metric space K, a Borel function
f : X → K, and an open neighborhood U of the measure Mμπf , there exists a
Borel map g : Y → K such that Mνπg ∈ U . If both α � β and β � α, then α

and β are said to be weakly equivalent, in symbols α � β.

Weak containment can be defined in a number of equivalent ways, several of
which can be found in [12, §§2.1, 2.2]. The characterization given above is due
to Abért and Weiss [1, Lemma 8] (see also [30, Proposition 3.5]). We sometimes
write (α, μ) � (β, ν) instead of α � β in order to emphasize the dependence of
weak containment on the invariant measures μ and ν.

Burton [11, Corollary 4.2] (see [12, Theorem 3.3]) proved that there exist
continuum many distinct weak equivalence classes of (not necessarily ergodic)
p.m.p. actions of Γ. Glasner, Thouvenot and Weiss [17] and independently
Greg Hjorth (unpublished) proved that the pre-order of weak containment has
a maximum element (see also [12, Theorem 3.1]). A complementary result of
Abért and Weiss [1, Theorem 1] (see also [12, Theorem 3.5]) asserts that the shift
action σ : Γ � (Ω,λ) is minimum among all p.m.p. actions α : Γ � (X, μ) that
are (almost everywhere) free, i.e., such that the α-stabilizer of μ-a.e. x ∈ X

is trivial:

Theorem 2.10 (Abért–Weiss [1, Theorem 1]): Let α : Γ � (X, μ) be an almost
everywhere free p.m.p. action of Γ. Then (σ,λ) � (α, μ); or, explicitly, the
following statement holds:

Let K be a compact metric space and let f : Ω → K be a Borel function.
Then, for any open neighborhood U of the measure Mλπf , there is a Borel map
g : X → K such that Mμπg ∈ U .

We strengthen Theorem 2.10 by replacing the measure Mμπg by its pointwise
analogs of the form MDπg(x). Moreover, our result applies to actions that are
not necessarily free but only “close enough” to being free. Specifically, for a
set S ⊆ Γ, we say that an action α : Γ � X is S-free if for all γ, δ ∈ S and
x ∈ X , γ · x = δ · x implies γ = δ. (Thus, “free” is the same as “Γ-free.”) Given
a sequence of sets S1, . . . , Sn ⊆ Γ, we say that α is (S1, . . . , Sn)-free if α is
Si-free for each 1 � i � n.
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Theorem 2.11 (Pointwise Abért–Weiss): Let K be a compact metric space
and let f : Ω → K be a Borel function. For any open neighborhood U of the
measure Mλπf , there exist C > 0 and a finite set S ⊂ Γ with the following
property:

Let D be a finite subset of Γ with |D| � C and let α : Γ � X be an (S, D)-free
Borel action of Γ. Then, for any μ ∈ Prob(X) and δ > 0, there is a Borel map
g : X → K such that

μ({x ∈ X : MDπg(x) ∈ U}) � 1 − δ.

Remarks 2.12: Let us make a few comments about the statement of Theo-
rem 2.11.

(i) To see that Theorem 2.11 is a strengthening of the Abért–Weiss theorem,
let α : Γ � (X, μ) be a free p.m.p. action. Given a compact metric space K

and a Borel function f : Ω → K, we can apply Theorem 2.11 to obtain a finite
set D ⊂ Γ and a Borel map g : X → K such that the pushforward measure
MDπg(x) is arbitrarily close to Mλπf , for all points x ∈ X away from a set of
arbitrarily small measure. The α-invariance of μ yields

μ =
∫

X

υx,D dμ(x), hence Mμπg =
∫

X

MDπg(x) dμ(x),

and thus Mμπg is also close to Mλπf , as desired.
(ii) The measure μ in Theorem 2.11 is not required to be α-invariant (or

even α-quasi-invariant) and is only used to bound the set of all x ∈ X with
MDπg(x) �∈ U .

(iii) We emphasize that the averaging set D in Theorem 2.11 is independent
of the choice of δ > 0; that is what makes this result particularly interesting. It is
possible that the conclusion of Theorem 2.11 also holds with δ = 0, but we do not
know how to prove (or disprove) that in general; see Problem 8.2 in Section 8.
(However, we can make δ be zero under some additional assumptions—see (iv)
and Theorem 2.14 below.)

(iv) In contrast to the Abért–Weiss theorem, the conclusion of Theorem 2.11
is nontrivial even if (X, μ) = (Ω,λ) and α = σ. This case, however, is already
covered by the ergodic Theorem 2.6, in fact even with δ = 0.

(v) For actions α that are free and measure-preserving, Theorem 2.11 fol-
lows relatively straightforwardly by combining Theorem 2.6 with the usual
Abért–Weiss theorem. We sketch the argument here. Let α : Γ � (X, μ) be
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a free p.m.p. action. Let K be a compact metric space and let f : Ω → K

be a Borel function. Fix an open neighborhood U of the measure Mλπf . By
Theorem 2.6, for any sufficiently large finite set D ⊂ Γ, there is a Borel map
h : Ω → K with

(2.13) MDπh(x) ∈ U, for λ-a.e. x ∈ Ω.

The equivariance of πh yields MDπh(x) = (πh)∗(υx,D) = υπh(x),D, and hence
(2.13) is equivalent to

υκ,D ∈ U, for Mλπh-a.e. κ ∈ KΓ.

Now we can use the Abért–Weiss theorem to obtain a Borel map g : X → K for
which the pushforward measure Mμπg is so close to Mλπh that

μ({x ∈ X : MDπg(x) ∈ U}) = Mμπg({κ ∈ KΓ : υκ,D ∈ U}) � 1 − δ,

for any given δ > 0, as desired. For non-free actions α, a different, more direct
proof is necessary.

(vi) The results of §2.A apply to an infinite sequence of averaging
sets (Dn)n∈N, while in Theorem 2.11 we only consider a single set D. Our
approach can be routinely adapted to extend Theorem 2.11 to the case of finitely
many averaging sets; however, when the family of averaging sets is infinite, our
methods are not applicable—see Remark 6.11.

Notice that the pointwise operator MD is well-defined for an arbitrary Borel
action α : Γ � X and does not require fixing a probability measure μ on X .
Therefore, it makes sense to ask for a purely Borel version of the Abért–Weiss
theorem, with the last line of Theorem 2.11 replaced by

MDπg(x) ∈ U , for all x ∈ X .

Here we establish such a version for finitely generated groups of subexponential
growth and, more generally, for uniformly subexponential Borel actions. Let
α : Γ � X be a Borel action of Γ. We say that α is uniformly subexponential
if for every finite set S ⊂ Γ and for all ε > 0, there is n0 ∈ N such that for all
n � n0 and for all x ∈ X , |Sn · x| � (1 + ε)n, where

Sn := {γ1 · · · γn : γi ∈ S for all 1 � i � n}.

For example, if Γ is a finitely generated group of subexponential growth, then
every action of Γ is uniformly subexponential.
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Theorem 2.14 (Borel Abért–Weiss for uniformly subexponential actions): Let
K be a compact metric space and let f : Ω → K be a Borel function. For any
open neighborhood U of the measure Mλπf , there exist C > 0 and a finite set
S ⊂ Γ with the following property:

Let D be a finite subset of Γ with |D| � C and let α : Γ � X be a uni-
formly subexponential (S, D)-free Borel action of Γ. Then there is a Borel map
g : X → K such that

MDπg(x) ∈ U, for all x ∈ X.

Note that, even though groups of subexponential growth are amenable, the
averaging set D in the statement of Theorem 2.14 is not assumed to be a
Følner set.

2.C. Outline of the remainder of the paper. This paper is organized
as follows. Section 3 contains a few definitions and some preliminary results
concerning the continuity of various basic operations, such as f �→ f∗. We
commence the proofs of Theorems 2.1, 2.6, 2.11, and 2.14 in Section 4, where
they are reduced to their special cases with a more “combinatorial” flavor. Then,
in Section 5, we state and prove a certain concentration of measure inequality.
At this point, we already have all the tools needed to derive Theorem 2.1, which
is done in §5.B. In Section 6 we review the LLL and its measurable analogs,
and in Section 7 we complete the proofs of Theorems 2.6, 2.11 and 2.14. It
turns out that in order to prove Theorem 2.6, it is not enough to simply apply
a known measurable version of the LLL—we actually have to go through the
proof of one of them to obtain some additional information; this is done in §7.B.
We conclude the paper with some open problems in Section 8. The appendix
contains a proof of Theorem 2.3.

3. Preliminaries

3.A. Further notation.

Integers. We use N to denote the set of all nonnegative integers and identify
each k ∈ N with the k-element set {i ∈ N : i < k}. Let N+ := N \ {0}. All finite
sets (including each k ∈ N) are assumed to carry discrete topologies.
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Sets and functions. Each function f is identified with its graph, i.e., the set
{(x, y) : y = f(x)}. This enables the use of set-theoretic notation, such as ⊆,
| · |, etc., for functions. For a function f and a set S of its domain, f |S denotes
the restriction of f to S. For sets A and B,

– [B]<∞ denotes the set of all finite subsets of B;
– [B → A] denotes the set of all partial functions ϕ : B ⇀ A;
– [B → A]<∞ denotes the set of all partial functions ϕ : B ⇀ A

with dom(ϕ) ∈ [B]<∞.

The identity function X → X on a set X is denoted by idX .

Symbolic dynamics. Let A be a set and let α : Γ � X be an action of Γ. We
extend the definition of the coding map to partial functions f : X ⇀ A by
letting πf (x) : Γ ⇀ A be given by

πf (x)(γ) :=

⎧⎨
⎩

f(γ · x) if γ · x ∈ dom(f);
undefined otherwise,

for all x ∈ X and γ ∈ Γ.

We similarly extend the shift action σA : Γ � AΓ to an action Γ � [Γ → A] in
the obvious way.

The free part of an action. For an action α : Γ�X of Γ, let Free(X)⊆X denote
the set of all x ∈ X whose α-stabilizer is trivial and let Free(α): Γ� Free(X)
denote the induced action of Γ on Free(X); we call Free(α) the free part of α.

Miscellaneous. For a metric space (K, d), a, b ∈ K, and ε > 0, we write a ≈ε b

to mean d(a, b) < ε.

3.B. Topological preliminaries.

Continuity of the coding map. Fix an arbitrary enumeration {γn}n∈N of the
elements of Γ. If (K, d) is a compact metric space, then the product topology
on KΓ is induced by the metric d̂:

d̂(κ, η) :=
∞∑

n=0

d(κ(γn), η(γn))
2n+1 .

Recall that if X is a standard Borel space and μ ∈ Prob(X), then the space
B(X, K) is endowed with the pseudometric dμ. Additionally, we shall consider
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the uniform metric duni given by

duni(f, g) := sup
x∈X

d(f(x), g(x)).

Lemma 3.1: Let (K, d) be a compact metric space and let α : Γ � X be a
Borel action of Γ.

(a) If μ ∈ Prob(X) is α-invariant, then the function

(B(X, K), dμ) → (B(X, KΓ), d̂μ) : f �→ πf

is distance-preserving, hence continuous.
(b) The function

(B(X, K), duni) → (B(X, KΓ), d̂uni) : f �→ πf

is 1-Lipschitz, hence continuous.

Proof. (a) For all f , g ∈ B(X, K), we have

d̂μ(πf , πg) =
∫

X

d̂(πf (x), πg(x)) dμ(x) =
∫

X

∞∑
n=0

d(f(γn · x), g(γn · x))
2n+1 dμ(x).

Switching the order of integration and summation, we rewrite the last expression
as ∞∑

n=0

1
2n+1

∫
X

d(f(γn · x), g(γn · x)) dμ(x).

Since μ is α-invariant, this is equal to
∞∑

n=0

1
2n+1

∫
X

d(f(x), g(x)) dμ(x) =
∞∑

n=0

dμ(f, g)
2n+1 = dμ(f, g).

(b) For all f , g ∈ B(X, K) and x ∈ X , we have

d̂(πf (x), πg(x)) =
∞∑

n=0

d(f(γn · x), g(γn · x))
2n+1 �

∞∑
n=0

duni(f, g)
2n+1 = duni(f, g),

and the desired conclusion follows.

Continuity of the pushforward operator. For a Polish space X , let Cb(X) denote
the set of all bounded continuous real-valued functions on X . By definition, the
weak-∗ topology on Prob(X) is generated by the maps

Prob(X) → R : μ �→
∫

ξ dμ,

where ξ ∈ Cb(X).
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Lemma 3.2: Let X and K be Polish spaces and let f : X → K be continuous.
Then f∗ : Prob(X) → Prob(K) is also continuous.

Now we turn to the continuity properties of the mapping f �→ f∗.

Lemma 3.3: Let (K, d) be a compact metric space and let (X, μ) be a standard
probability space. Then the function (B(X, K), dμ) → Prob(K) : f �→ f∗(μ) is
continuous.

Proof. Let f , f0, f1, . . . ∈ B(X, K) be such that fn → f in (B(X, K), dμ). To
demonstrate that (fn)∗(μ) → f∗(μ), let ξ ∈ Cb(X); we have to show that

(3.4)
∫

K

ξ d(fn)∗(μ) →
∫

K

ξ df∗(μ).

We may scale ξ if necessary to make it bounded in absolute value by 1. Take
any ε > 0. Since K is compact, ξ is uniformly continuous, so we can let δ > 0
be such that ξ(a) ≈ε ξ(b) whenever a ≈δ b. For n ∈ N, let Xn denote the set
of all x ∈ X with d(fn(x), f(x)) < δ. Since dμ(fn, f) → 0, we have μ(Xn) → 1,
and hence, for all large enough n ∈ N,∣∣∣∣

∫
K

ξ d(fn)∗(μ) −
∫

K

ξ df∗(μ)
∣∣∣∣ �

∫
X

|ξ ◦ fn − ξ ◦ f | dμ

�εμ(Xn) + 2(1 − μ(Xn)) � 2ε.

Since ε was chosen arbitrarily, (3.4) follows.

If K is a compact metric space, then the space Cb(K), equipped with the
uniform norm, is separable. Therefore, there exists a countable set {ξn}n∈N of
continuous real-valued functions on K bounded in absolute value by 1 such that
{aξn : a ∈ R, n ∈ N} is a dense subset of Cb(K). With this choice of {ξn}n∈N,
the topology on Prob(K) is induced by the metric ΔK :

ΔK(μ, ν) :=
∞∑

n=0

| ∫
K

ξn dμ − ∫
K

ξn dν|
2n+1 .

Lemma 3.5: Let X be a Polish space and let (K, d) be a compact metric space.
Then the map (B(X, K), duni) → (B(Prob(X), Prob(K)), ΔK

uni) : f �→ f∗ is con-
tinuous.

Proof. Let {ξn}n∈N be the set of functions used to define ΔK . Take any N ∈ N+

and ε > 0. Since K is compact, each ξn is uniformly continuous, hence we
can choose δ > 0 so that ξn(a) ≈ε ξn(b) for all n � N , whenever a ≈δ b.
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Let f , g ∈ B(X, K) and suppose that duni(f, g) < δ. Then, for any μ ∈ Prob(K),
we have

ΔK(f∗(μ), g∗(μ)) =
∞∑

n=0

| ∫
K

ξn df∗(μ) − ∫
K

ξn dg∗(μ)|
2n+1

�
N∑

n=0

1
2n+1

∫
X

|ξn ◦ f − ξn ◦ g| dμ +
1

2N−1 < ε +
1

2N−1 .

Hence, ΔK
uni(f∗, g∗) < ε + 2−N+1. Since ε and N are arbitrary, this completes

the proof.

Density of continuous functions. Recall that a topological space X is zero-
dimensional if it has a basis consisting of clopen sets.

Lemma 3.6: Let X be a zero-dimensional Polish space and let (K, d) be a
compact metric space. If μ ∈ Prob(X), then the set of all continuous maps
f : X → K is dense in (B(X, K), dμ).

Proof. Without loss of generality, assume that the metric d is bounded by 1.
Let f ∈ B(X, K) and ε > 0. Since K is compact, it contains a finite ε-net
Z = {z0, . . . , zn−1} ⊆ K. Let g : X → Z be the map that sends each x ∈ X to
the point z ∈ Z that is closest to f(x) (ties may be broken arbitrarily). Then
duni(f, g) < ε by construction. Since the measure μ is regular [19, Theorem
17.10] and the space X is zero-dimensional, for each 0 � i < n, there is a
clopen set Ui ⊆ X such that μ(Ui � g−1(zi)) < ε/n. For every x ∈ X , set
h(x) := zi if x ∈ Vi := Ui \ (U0 ∪ · · · ∪ Ui−1) for some 0 � i < n, and h(x) := z0

if x ∈ V := X \ (U0 ∪ · · · ∪ Un−1). Since the sets V0, . . . , Vn−1, V are clopen,
the map h is continuous. If h(x) �= g(x), then either x ∈ Vi \ g−1(zi) for some
0 � i < n, in which case x ∈ Ui \ g−1(zi); or else, x ∈ V \ g−1(z0), in which
case x ∈ g−1(zi) \ Ui for some 1 � i < n. Since the metric d is bounded by 1,
we conclude that

dμ(g, h) �
n−1∑
i=0

μ(Ui \ g−1(zi)) +
n−1∑
i=1

μ(g−1(zi) \ Ui) �
n−1∑
i=0

μ(Ui � g−1(zi)) < ε.

Therefore, we have found a continuous function h : X → K with dμ(f, h) < 2ε.
As ε is arbitrary, the proof is complete.
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4. Combinatorial reductions

For k ∈ N+, let uk denote the uniform probability measure on k, i.e., let
uk({i}) := 1/k for all i < k. Set Ωk := kΓ and uk := uΓ

k . Recall that the
space (Ωk,uk) is equipped with the shift action σk.

Given ϕ ∈ [Γ → k]<∞ and a partial map c : Γ ⇀ k, we say that γ ∈ Γ is an
occurrence of ϕ in c if γ · c ⊇ ϕ. The set of all occurrences of ϕ in c is denoted
by Oϕ(c). By definition, if γ ∈ Oϕ(c), then, in particular, dom(ϕ)γ ⊆ dom(c).
Define

Ωk(ϕ) := {c ∈ Ωk : 1 ∈ Oϕ(c)} = {c ∈ Ωk : ϕ ⊂ c}.

Note that uk(Ωk(ϕ)) = k−|ϕ| (where |ϕ| is the cardinality of the domain of ϕ).
The family of sets {Ωk(ϕ) : ϕ ∈ [Γ → k]<∞} forms a basis for the topology
on Ωk consisting of clopen sets. From this fact and [19, Theorem 17.20], we
obtain the following:

Lemma 4.1: Let k ∈ N+ and μ, μ0, μ1, . . . ∈ Prob(Ωk). Then limn→∞ μn = μ if
and only if, for all ϕ∈ [Γ → k]<∞, we have limn→∞ μn(Ωk(ϕ))=μ(Ωk(ϕ)).

We also consider the space Ω̃k := (kN)Γ, equipped with the product mea-
sure ũk := (uN

k )Γ and the shift action σkN of Γ. To simplify the notation,
given x ∈ Ω̃k, γ ∈ Γ, and n ∈ N, we write x(γ, n) to mean x(γ)(n) (however,
x(γ) still denotes the corresponding element of kN). If k � 2, then, by the
measure isomorphism theorem [19, Theorem 17.41], the standard probability
spaces ([0; 1], λ) and (kN, uN

k ) are Borel isomorphic, which allows us to replace
σ : Γ � (Ω,λ) by σkN : Γ � (Ω̃k, ũk) in the statements of Theorems 2.6, 2.11,
and 2.14. This gives us two main advantages. First, the space Ω̃k is zero-di-
mensional; in particular, Lemma 3.6 applies to it. Second, the structure of Ω̃k

will be explicitly used in the proof of Theorem 2.6 presented in §7.B.

4.A. Reduction for Theorem 2.1. In this subsection we reduce Theorem 2.1
to the following statement:

Theorem 2.1
′
: Let k ∈ N+ and let (Dn)n∈N be a sequence of finite subsets

of Γ with |Dn|/ log n → ∞. Then, for all S ∈ [Γ]<∞ and ϕ : S → k, we have

lim
n→∞

|Dn ∩ Oϕ(c)|
|Dn| = 1

k|S| , for uk-a.e. c ∈ Ωk.

Lemma 4.2: Theorem 2.1′ implies Theorem 2.1.
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Proof. Assume Theorem 2.1′. Fix a sequence (Dn)n∈N of nonempty finite sub-
sets of Γ such that |Dn|/ log n → ∞. Notice that Theorem 2.1 is equivalent to
the following assertion:

(4.3) lim
n→∞ υx,Dn = λ, for λ-a.e. x ∈ Ω.

On the other hand, by Lemma 4.1, the conclusion of Theorem 2.1′ is equivalent
to

(4.4) lim
n→∞ υc,Dn = uk, for uk-a.e. c ∈ Ωk.

Claim 4.2.1: If π : (Ω,λ) → (Ωk,uk) is a factor map, then

lim
n→∞MDnπ(x) = Mλπ = uk, for λ-a.e. x ∈ Ω.

Proof. From the equivariance of π, it follows that for all x ∈ Ω and
D ∈ [Γ]<∞ \ {∅},

MDπ(x) = π∗(υx,D) = υπ(x),D.

Using (4.4) and the fact that, since π is a factor map, Mλ(π) = π∗(λ) = uk,
we conclude that

MDnπ(x) = υπ(x),Dn
−−−−→
n→∞ uk, for λ-a.e. x ∈ Ω. �

Define a function p : Ω → [0; 1] by

p(x) := x(1),

Notice that πp = idΩ. For each k ∈ N+, let Qk ⊂ [0; 1] be the set of all fractions
of the form i/k, 0 � i < k, and define fk : Ω → Qk by

fk(x) := max{q ∈ Qk : q � p(x)}.

Let πk := πfk
. By definition, fk(x) ≈1/k p(x) for all x ∈ Ω; in other words,

the sequence (fk)k∈N converges to p uniformly. By Lemmas 3.1(b) and 3.5, this
implies that

πk → idΩ and (πk)∗ → idProb(Ω) uniformly.

By construction, (fk)∗(λ) is the uniform probability measure on Qk, and
(πk)∗(λ) is the corresponding product measure on QΓ

k . Thus, we may apply
Claim 4.2.1 to πk and conclude that

lim
n→∞MDn πk(x) = Mλπk, for λ-a.e. x ∈ Ω.
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We can put all of these facts together as follows:

MDnπk(x)

Mλπk

υx,Dn

λ

n
→

∞

k → ∞

k → ∞
uniformly in n

It is clear from the above diagram that υx,Dn converges to λ as n → ∞, prov-
ing (4.3).

4.B. Reductions for Theorems 2.6, 2.11, and 2.14. Theorem 2.6 reduces
to the following statement:

Theorem 2.6
′
: For all k ∈ N

+, S ∈ [Γ]<∞, and ε > 0, there is C > 0 with the
following property:

Let (Dn)n∈N be a sequence of finite subsets of Γ with |Dn| � C log(n + 2) for
all n ∈ N. Then there exists a Borel map g : Ω̃k → k such that

ũk({x ∈ Ω̃k : g(x) �= x(1, 0)}) � ε,

and, for all ϕ : S → k, we have

|Dn ∩ Oϕ(πg(x))|
|Dn| ≈ε

1
k|S| , for all n ∈ N and for ũk-a.e. x ∈ Ω̃k.

Lemma 4.5: Theorem 2.6′ implies Theorem 2.6.

Proof. Assume Theorem 2.6′. Taking advantage of the measure isomorphism
theorem, we will prove the statement of Theorem 2.6 with (Ω̃2, ũ2) in place of
(Ω,λ). We equip the Cantor space 2N with the metric m given by

m(a, b) :=
∞∑

n=0

�a(n) �=b(n)

2n+1 .

Define p : Ω̃2 → 2N by p(x) := x(1). Note that πp = idΩ̃2
and Mũ2 πp = ũ2.

Claim 4.5.1: It suffices to prove Theorem 2.6 with K = 2N and f = p.
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Proof. Let (K, d) be a compact metric space. Without loss of generality, assume
that the metric d is bounded by 1. Fix a Borel function f : Ω̃2 → K, ε > 0,
and an open neighborhood U of Mũ2 πf . The space Ω̃2 is zero-dimensional,
so Lemmas 3.6, 3.1(a), and 3.3 allow us to assume that f is continuous (after
replacing ε by, say, ε/2). Since Ω̃2 is compact, f is uniformly continuous, so we
can pick δ ∈ (0; ε/2) such that f(x) ≈ε/2 f(y) whenever x ≈δ y. By Lemma 3.2,
the set U ′ := (πf )−1∗ (U) is an open neighborhood of ũ2.

Let q : Ω̃2 → 2N be a Borel map and consider the function g := f ◦ q. Note
that if mũ2(p, q) � δ2, then dũ2(f, g) � ε. Indeed, if mũ2(p, q) � δ2, then, by
Markov’s inequality,

ũ2({x ∈ Ω̃2 : p(x) �≈δ q(x)}) � δ,

and, by the choice of δ and since d is bounded by 1, we have

dũ2(f, g) � ε/2 + δ < ε.

Additionally, if D ∈ [Γ]<∞ \ {∅} and x ∈ Ω̃2 satisfy MDπq(x) ∈ U ′, then

MDπg(x) = (πf )∗(MDπq(x)) ∈ U.

Therefore, if Theorem 2.6 holds for p, δ2, and U ′, then it also holds for f , ε,
and U , as desired. �

The remainder of the argument is similar to the last part of the proof of
Lemma 4.2. For each n ∈ N+, let Qn be the set of all a ∈ 2N such that a(i) = 0
for all i � n, and define pn : Ω̃2 → Qn by

pn(x)(i) :=

⎧⎨
⎩

x(1, i) if i < n;
0 if i � n.

Then pn → p uniformly, so to prove Theorem 2.6 for p, it is enough to prove it
for each pn. Due to Lemma 4.1, Theorem 2.6 for p1 is equivalent to Theorem 2.6′

applied with k = 2. For larger n, consider the mapping ϑn : 2N → (2n)N given
by

ϑ(a)(i) := (a(in), a(in + 1), . . . , a(in + n − 1)) for all a ∈ 2N and i ∈ N,

where we identify the natural numbers less than 2n with the n-tuples of zeros
and ones. This mapping induces an equivariant isomorphism between (Ω̃2, ũ2)
and (Ω̃2n , ũ2n) and shows that Theorem 2.6 for pn is equivalent to Theorem 2.6′

applied with k = 2n.
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Similarly, Theorems 2.11 and 2.14 reduce to the following statements:

Theorem 2.11
′
: For all k ∈ N+, S ∈ [Γ]<∞, and ε > 0, there is C > 0 with

the following property:
Let D be a finite subset of Γ with |D| � C and let α : Γ � X be an (S, D)-free

Borel action of Γ. Then, for any μ ∈ Prob(X) and δ > 0, there is a Borel map
g : X → k such that, for all ϕ : S → k,

μ
({

x ∈ X : |D ∩ Oϕ(πg(x))|
|D| ≈ε

1
k|S|

})
� 1 − δ.

Theorem 2.14
′
: For all k ∈ N+, S ∈ [Γ]<∞, and ε > 0, there is C > 0 with

the following property:
Let D be a finite subset of Γ with |D| � C and let α : Γ � X be a uni-

formly subexponential (S, D)-free Borel action of Γ. Then there is a Borel map
g : X → k such that, for all ϕ : S → k,

|D ∩ Oϕ(πg(x))|
|D| ≈ε

1
k|S| for all x ∈ X.

The proof of the following lemma is essentially the same as of Lemma 4.5,
and we omit it.

Lemma 4.6: Theorem 2.11′ implies Theorem 2.11, while Theorem 2.14′ implies
Theorem 2.14.

5. Using concentration of measure

5.A. The main probabilistic bound. The following inequality is the main
probabilistic input for our arguments:

Lemma 5.1: Let k ∈ N
+, S ∈ [Γ]<∞, and ε > 0. Let D be a nonempty finite

subset of Γ and let α : Γ � X be an (S, D)-free action of Γ. Take any x ∈ X and
pick a function c : (SD · x) → k uniformly at random. Then, for all ϕ : S → k,

P

[ |D ∩ Oϕ(πc(x))|
|D| �≈ε

1
k|S|

]
� 2 exp

(
− ε2 |D|

2|S|3
)

.

Proof. We shall apply the following concentration of measure result, which is a
consequence of Azuma’s inequality for Doob martingales [3, §7.4]:
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Theorem 5.2 (Simple Concentration Bound; see [25, 79]): Let ξ be a random
variable determined by s independent trials such that changing the outcome of
any one trial can affect ξ at most by b. Then

P[ξ �≈t Eξ] � 2 exp
(

− t2

2b2s

)
.

Let k, S, ε, D, α, and c be as in the statement of Lemma 5.1. Since the
action α is S-free, for all ϕ : S → k, we have

E[|D ∩ Oϕ(πc(x))|] =
∑
δ∈D

P[δ ∈ Oϕ(πc(x))] = |D|
k|S| .

Consider any y ∈ SD · x and let c1, c2 : (SD · x) → k be two maps that agree
on (SD · x) \ {y}. Let ϕ : S → k and suppose that some δ ∈ D belongs to
Oϕ(πc1 (x)) � Oϕ(πc2 (x)). Then y ∈ S · (δ · x), i.e., δ · x ∈ S−1 · y. Since α is
D-free, there are at most |S−1 · y| = |S| possible values for δ. Thus, we may
apply the Simple Concentration Bound with parameters

s := |SD · x| � |S||D|, b := |S|, and t := ε|D|,

to obtain

P

[
|D ∩ Oϕ(πc(x))| �≈ε|D|

|D|
k|S|

]
� 2 exp(−ε2 |D|

2|S|3 ),

as desired.

5.B. Proof of Theorem 2.1. We are now ready to prove Theorem 2.1 (or
rather Theorem 2.1′). Let k ∈ N+ and let (Dn)n∈N be a sequence of finite
subsets of Γ such that |Dn|/ log n → ∞. Take any S ∈ [Γ]<∞, ϕ : S → k, and
ε > 0. We will show that for uk-a.e. c ∈ Ωk and for all sufficiently large n ∈ N,

(5.3) |Dn ∩ Oϕ(c)|
|Dn| ≈ε

1
k|S| ,

which will imply the conclusion of Theorem 2.1′. For each n ∈ N, let Xn denote
the set of all c ∈ Ωk for which (5.3) fails. By Lemma 5.1, we have

∑
n∈N

uk(Xn) �
∑
n∈N

2 exp
(

− ε2 |Dn|
2|S|3

)
< ∞,

since ε2|Dn|/(2|S|3) > 2 log n for all sufficiently large n. An application of the
Borel–Cantelli lemma completes the proof.
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6. The Lovász Local Lemma and its measurable versions

6.A. The classical LLL. The reader is referred to [3, Chapter 5] and [25] for
background on the LLL and its applications in combinatorics. The presentation
below follows, with slight modifications, [6, Section 1.2].

Let X be a set and let k ∈ N+. A bad (k-)event over X is a nonempty
subset B ⊆ [X → k]<∞ such that for all ϕ, ϕ′ ∈ B, dom(ϕ) = dom(ϕ′). If a
bad event B is nonempty, then its domain is the set dom(B) := dom(ϕ) for
any (hence all) ϕ ∈ B; the domain of the empty bad event is, by definition, the
empty set. The probability of a bad k-event B with domain F is defined to
be

P[B] := |B|
k|F | .

We say that a map f : X → k avoids a bad k-event B if there is no ϕ ∈ B

such that ϕ ⊆ f . Note that if X is finite and f : X → k is chosen uniformly at
random, then P[B] is the probability that f does not avoid B.

A (k-)instance (of the LLL) over a set X is an arbitrary set B of bad
k-events. A solution to a k-instance B is a function f : X → k that avoids all
B ∈ B. For an instance B and a bad event B ∈ B, the neighborhood of B

in B is the set

NB(B) := {B′ ∈ B \ {B} : dom(B′) ∩ dom(B) �= ∅}.

The degree of B in B is defined to be

degB(B) := |NB(B)|.
Let

p(B) := sup
B∈B

P[B] and d(B) := sup
B∈B

degB(B).

An instance B is correct for the Symmetric LLL (the SLLL for short) if

e · p(B) · (d(B) + 1) < 1,

where e = 2.71 . . . denotes the base of the natural logarithm. Note that if B

is correct for the SLLL, then, in particular, degB(B) < ∞ for all B ∈ B

(instances B with this property are called locally finite in [6]).

Theorem 6.1 (Erdős–Lovász [16]; Symmetric Lovász Local Lemma): Let k ∈N+

and let B be a k-instance of the LLL over a set X . If B is correct for the SLLL,
then B has a solution.
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The Symmetric LLL was introduced by Erdős and Lovász (with 4 in place of e)
in their seminal paper [16]; the constant was subsequently improved by Lovász
(the sharpened version first appeared in [28]). Theorem 6.1 is a special case
of the SLLL in the so-called variable framework (the name is due to Kolipaka
and Szegedy [22]), which encompasses most typical applications. For the full
statement of the SLLL, see [3, Corollary 5.1.2]. Deducing Theorem 6.1 from
[3, Corollary 5.1.2] is routine when X is finite (see, e.g., [25, 41]); the case of
infinite X then follows by compactness. A more general version of Theorem 6.1
for infinite X , with k replaced by an arbitrary standard probability space, was
proved by Kun [23, Lemma 13].

Theorem 6.1 can be extended to instances B with d(B) = ∞, provided
that the probability P[B] of a bad event B ∈ B decays sufficiently quickly
as |dom(B)| increases. An instance B is correct for the General LLL
(the GLLL for short) if NB(B) is countable for every B ∈ B, and there is
a function ω : B → [0; 1), called a witness to the correctness of B, such that
for all B ∈ B,

P[B] � ω(B)
∏

B′∈NB(B)

(1 − ω(B′)).

Theorem 6.2 (General Lovász Local Lemma; [3, Lemma 5.1.1]): Let k ∈ N
+

and let B be a k-instance of the LLL over a set X . If B is correct for the GLLL,
then B has a solution.

A standard calculation (see [3, proof of Corollary 5.1.2]) shows that if an
instance B is correct for the SLLL, then it is also correct for the GLLL (hence
the name “General LLL”).

6.B. Measurable versions of the LLL. Let X be a standard Borel space
and let k ∈ N+. Then the set of all bad k-events is also naturally equipped with
the structure of a standard Borel space (indeed, each bad event is a finite set,
so the set of all bad k-events is a Borel subset of the space [[X → k]<∞]<∞).
Thus, it makes sense to talk about Borel instances of the LLL, i.e., Borel sets
of bad events.

Given a Borel k-instance B over X that is correct for the SLLL, it is natural
to wonder if it has a Borel solution f : X → k. Although the answer is negative
in general (see [13, Theorem 1.6]), Csóka, Grabowski, Máthé, Pikhurko and
Tyros [14] answered the question in the affirmative for uniformly subexponential
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instances. Given an instance B over a set X , an element x ∈ X , and an integer
n ∈ N, let Rn

B(x) denote the set of all y ∈ X such that either y = x, or there
exists a sequence B1, . . . , Bm ∈ B with m � n satisfying

x ∈ dom(B1), dom(Bi) ∩ dom(Bi+1) �= ∅ for all 1 � i < m,

and y ∈ dom(Bm).

The instance B is uniformly subexponential if for every ε > 0, there exists
n0 ∈ N such that for all n � n0 and for all x ∈ X ,

|Rn
B(x)| < (1 + ε)n.

Theorem 6.3 (Csóka–Grabowski–Máthé–Pikhurko–Tyros [14, Theorem 1.3],
Borel SLLL for uniformly subexponential instances): Let k ∈ N+ and let B be
a Borel k-instance of the LLL over a standard Borel space X . If B is correct for
the SLLL and uniformly subexponential, then B has a Borel solution f : X → k.

For a k-instance B over a set X and a map f : X → k, we define the defect
Def(f ; B) of f with respect to B by

(6.4) Def(f, B) := {x ∈ X : x ∈ dom(ϕ) for some ϕ ∈ B ∈ B with ϕ ⊆ f}.

Evidently, f is a solution to B if and only if Def(f, B) = ∅. Thus, in the
absence of a Borel solution to B, it is natural to seek a Borel map f : X → k

whose defect is “small” in some sense. The next result was proved by the current
author in [6]:

Theorem 6.5 ([6, Theorem 5.1], approximate SLLL): Let k ∈ N+ and let B

be a Borel k-instance of the LLL over a standard Borel space X . If B is correct
for the SLLL, then for any μ ∈ Prob(X) and δ > 0, there is a Borel function
f : X → k with

μ(Def(f, B)) � δ.

It is an open question whether the conclusion of Theorem 6.5 holds with
δ = 0; see Problem 8.1 in Section 8. Also, Theorem 6.5 fails for instances
that are correct for the GLLL instead of the SLLL (see [6, Theorem 7.1] and
Remark 6.11 below). However, when the underlying structure is in a certain
sense induced by the shift action σ, even instances that are only correct for
the GLLL can be solved with a null defect—see Theorem 6.10 in the next
subsection.
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6.C. Using the LLL over group actions. Now we describe a convenient
set-up for applying the LLL to problems in ergodic theory.

Let α : Γ � X be an action of Γ and let Φ ⊆ [Γ → k]<∞ be a bad k-event
over Γ with domain F ∈ [Γ]<∞. For each x ∈ X , define a bad k-event Bx(Φ, α)
over X via

Bx(Φ, α) := {ϕ : (F · x) → k : πϕ(x)|F ∈ Φ}.

Note that if Bx(Φ, α) �= ∅, then dom(Bx(Φ, α)) = F · x. (If α is not F -free,
then Bx(Φ, α) may be empty even if Φ is not.) By construction, a function
f : X → k avoids Bx(Φ, α) precisely when πf (x) avoids Φ. Define an instance
B(Φ, α) of the LLL over X as follows:

B(Φ, α) := {Bx(Φ, α) : x ∈ X}.

Clearly, if X is a standard Borel space and α : Γ � X is a Borel action, then the
instance B(Φ, α) is Borel. A function f : X → k is a solution to B(Φ, α) if and
only if πf (x) avoids Φ for all x ∈ X . Hence, it is somewhat more convenient to
define the defect of a map f : X → k as the set of all x ∈ X such that πf (x)
does not avoid Φ:

Def(f, Φ, α) := {x ∈ X : πf (x)|F ∈ Φ}.

There is a straightforward relationship between this definition and the one
in (6.4), namely,

(6.6) Def(f, B(Φ, α)) = F · Def(f, Φ, α).

Using the above notation, we can formulate the following corollaries of Theo-
rems 6.3 and 6.5:

Corollary 6.7 (to Theorem 6.3): Let α : Γ � X be a uniformly subexpo-
nential Borel action of Γ and let k ∈ N

+. Let Φ be a bad k-event over Γ and
suppose that the instance B(Φ, α) is correct for the SLLL. Then B(Φ, α) has
a Borel solution f : X → k.

Corollary 6.8 (to Theorem 6.5): Let α : Γ � X be a Borel action of Γ and let
k ∈ N

+. Let Φ be a bad k-event over Γ and suppose that the instance B(Φ, α)
is correct for the SLLL. Then, for any μ ∈ Prob(X) and δ > 0, there is a Borel
function f : X → k with

μ(Def(f, Φ, α)) < δ.
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Remark 6.9: In the statement of Corollary 6.8, the measure μ is not assumed
to be α-invariant. Because of that, to derive Corollary 6.8, one has to apply
Theorem 6.5 not to μ itself, but to the measure obtained by shifting μ by one
of the elements of dom(Φ), and then use (6.6).

More generally, let (Φn)n∈N be a sequence of bad k-events over Γ. For an
action α : Γ � X and a map f : X → k, define

B((Φn)n∈N, α) :=
∞⋃

n=0
B(Φn, α)

and

Def(f, (Φn)n∈N, α) :=
∞⋃

n=0
Def(f, Φn, α).

When α = σ, we have the following strengthening of Corollary 6.8:

Theorem 6.10 ([6, Corollary 6.7], measurable GLLL over the shift): Let k ∈N
+

and let (Φn)n∈N be a sequence of bad k-events over Γ. Suppose that the instance
B((Φn)n∈N, Free(σ)) is correct for the GLLL. Then there is a Borel function
f : Ω → k with

λ(Def(f, (Φn)n∈N, σ)) = 0.

Remark 6.11: Theorem 6.10 can fail for actions other than σ: According to [6,
Theorem 7.1], if Γ is amenable, then the analog of Theorem 6.10 holds for a
free ergodic p.m.p. action α : Γ � (X, μ) if and only if there is a factor map
π : (X, μ) → (Ω,λ).

Theorem 6.10 is a special case of [6, Theorem 6.6], whose full statement is
rather technical and will not be needed here. Roughly speaking, [6, Theorem 6.6]
asserts that any combinatorial argument proceeding via a series of iterative
applications of the GLLL can be performed in a measurable fashion over the
shift action σ : Γ � (Ω,λ).

7. Proofs of Theorems 2.6, 2.11, and 2.14

7.A. Proofs of Theorems 2.11 and 2.14. We first establish Theorems 2.11
and 2.14, as their proofs are somewhat more straightforward than that of The-
orem 2.6 (for instance, they only use the Symmetric LLL rather than the more
technical General LLL).
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Let k ∈ N+, S ∈ [Γ]<∞, and ε > 0. For a nonempty finite subset D ⊂ Γ, let
Φ(k, S, ε, D) denote the bad k-event over Γ with domain SD consisting of all
maps c : SD → k such that

|D ∩ Oϕ(c)|
|D| �≈ε

1
k|S| for some ϕ : S → k.

By definition, if α : Γ � X is a Borel action of Γ and g : X → k is a Borel map,
then we have

(7.1)
x ∈ Def(g, Φ(k,S, ε, D), α)

⇐⇒|D ∩ Oϕ(πg(x))|
|D| �≈ε

1
k|S| for some ϕ : S → k.

Lemma 7.2: Let k ∈ N
+, S ∈ [Γ]<∞, and ε > 0. There exists C > 0 such that

for all D ∈ [Γ]<∞ with |D| > C and for every (S, D)-free action α : Γ � X , the
instance B(Φ(k, S, ε, D), α) is correct for the SLLL.

Proof. Let D ∈ [Γ]<∞ \ {∅} and let α : Γ � X be (S, D)-free. Set

Φ := Φ(k, S, ε, D), B := B(Φ, α), and Bx := Bx(Φ, α) for all x ∈ X.

Due to Lemma 5.1, we have

p(B) � 2k|S| exp
(

− ε2 |D|
2|S|3

)
.

To upper bound d(B), note that for each x ∈ X ,

NB(Bx) = {By ∈ B \ {Bx} : (SD · y) ∩ (SD · x) �= ∅}.

Since (SD · y) ∩ (SD · x) �= ∅ if and only if y ∈ (SD)−1SD · x, we obtain

degB(Bx) � |(SD)−1SD| − 1 � |S|2|D|2 − 1.

(We subtracted 1 since y cannot be equal to x.) Hence, d(B) � |S|2|D|2 − 1,
and B is correct for the SLLL as long as

e · 2k|S| exp
(

− ε2 |D|
2|S|3

)
· |S|2|D|2 < 1,

which holds whenever |D| is sufficiently large.

Theorems 2.11′ and 2.14′ now follow immediately by combining (7.1) and
Lemma 7.2 with Corollaries 6.8 and 6.7 respectively.
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7.B. Proof of Theorem 2.6. For the purposes of proving Theorem 2.6, the
role of Lemma 7.2 is played by the following fact:

Lemma 7.3: Let k ∈ N+, S ∈ [Γ]<∞, and ε > 0. There exists C > 0 with the
following property:

Let (Dn)n∈N be a sequence of finite subsets of Γ with |Dn| � C log(n + 2) for
all n ∈ N and let α : Γ � X be a free action of Γ. Set

Φn := Φ(k, S, ε, Dn) for all n ∈ N,

B := B((Φn)n∈N, α), and Bn,x := Bx(Φn, α) for all n ∈ N and x ∈ X.

Then the instance B is correct for the GLLL. Moreover, there is a function
ω : N → [0; 1) such that

(7.4)
∞∑

n=0
|SDn| · ω(n)

1 − ω(n)
< ε,

and the mapping ω̃ : B → [0; 1) : Bn,x �→ ω(n) is a witness to the correctness
of B.

Proof. Fix any 0 < a < ε2/(2|S|3). We claim that if C is large enough, then
the function

ω(n) := exp(−a|Dn|)
has the desired properties. To begin with, we are going to assume that C is so
large that

exp(−a · C log(2)) < 1/2,

and that the function ξ �→ ξ exp(−aξ) is decreasing for all ξ � C log 2. For any
such C, we have

∞∑
n=0

|SDn| · ω(n)
1 − ω(n)

�|S|
∞∑

n=0
|Dn| · exp(−a|Dn|)

1 − exp(−a|Dn|)

�2|S|
∞∑

n=0
|Dn| exp(−a|Dn|)

�2|S|C
∞∑

n=0

log(n + 2)
(n + 2)Ca

.

The last expression approaches 0 as C → ∞, so we can guarantee (7.4).
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Consider any n ∈ N and x ∈ X . By Lemma 5.1, we have

P[Bn,x] � 2k|S| exp
(

− ε2 |Dn|
2|S|3

)
.

If dom(Bn,x) ∩ dom(Bm,y) �= ∅ for some m ∈ N and y ∈ X , then

y ∈ (SDm)−1SDn · x,

and hence for any particular m ∈ N, there are at most |S|2|Dm||Dn| choices of
such y. Therefore, the mapping ω̃ : B → [0; 1) is a witness to the correctness
of B as long as we have

(7.5) 2k|S| exp
(

− ε2 |Dn|
2|S|3

)
� ω(n)

∞∏
m=0

(1 − ω(m))|S|2|Dm||Dn|,

for all n ∈ N. Using the definition of ω and then taking the logarithm of both
sides of (7.5) and dividing them by (−|Dn|), we rewrite (7.5) as

(7.6) − log(2k|S|)
|Dn| + ε2

2|S|3 � a − |S|2
∞∑

m=0
|Dm| log(1 − exp(−a|Dm|)).

Let us first look at the left-hand side of (7.6). We have

− log(2k|S|)
|Dn| + ε2

2|S|3 � − log(2k|S|)
C log 2

+ ε2

2|S|3 −−−−→
C→∞

ε2

2|S|3 .

As for the right-hand side of (7.6), note that − log(1−ξ) < 2ξ for all 0 < ξ < 1/2,
so

a − |S|2
∞∑

m=0
|Dm| log(1 − exp(−a|Dm|))

<a + 2|S|2
∞∑

m=0
|Dm| exp(−a|Dm|)

� a + 2|S|2C

∞∑
m=0

log(m + 2)
(m + 2)Ca

−−−−→
C→∞

a.

Since a was chosen to be less than ε2/(2|S|3), we conclude that (7.6) holds for
all large C.

From (7.1), Lemma 7.3, and Theorem 6.10, we can derive most of Theo-
rem 2.6′. The only part that is missing is that the map g : Ω̃k → k can be
chosen so that

ũk({x ∈ Ω̃k : g(x) �= x(1, 0)}) � ε.
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To argue this, we have to review the proof of Theorem 6.10. As mentioned
in the introduction, the tool used to prove Theorem 6.10 is the Moser–Tardos
algorithm, developed by Moser and Tardos in [26]. Here we outline only the
most relevant elements of the Moser–Tardos theory when applied to our current
situation. For further details, see [26] and [6, §3].

For the rest of this subsection, fix k ∈ N
+ and a sequence (Φn)n∈N of bad

k-events over Γ. For each n ∈ N, set Fn := dom(Φn). Define

B :=B((Φn)n∈N, Free(σkN )),

and

Bn,x :=Bx(Φn, σkN ) for all n ∈ N and x ∈ Ω̃k.

Consider the following inductive construction:
Set t0(x) := 0 for all x ∈ Ω̃k.
Step i ∈ N: Define

gi(x) := x(1, ti(x)) for all x ∈ Ω̃k;

A′
i := {(n, x) ∈ N × Ω̃k : gi does not avoid Bn,x}.

Choose Ai ⊆ A′
i to be an arbitrary Borel maximal subset of A′

i with the
property that

(Fn · x) ∩ (Fm · y) = ∅ for all distinct pairs (n, x), (m, y) ∈ Ai.

(Such Ai exists by, e.g., [21, Lemma 7.3].) Let

Ti :=
⋃

(n,x)∈Ai

(Fn · x) and ti+1(x) :=

⎧⎨
⎩

ti(x) + 1 if x ∈ Ti;
ti(x) otherwise.

By definition, g0(x) = x(1, 0) for all x ∈ Ω̃k. We call a sequence A := (Ai)∞
i=0

obtained via the above procedure a Borel Moser–Tardos process. Note that
there is not a unique Borel Moser–Tardos process, as there is some freedom in
the choice of the Borel maximal subset Ai ⊆ A′

i.
Let A = (Ai)∞

i=0 be a Borel Moser–Tardos process. For x ∈ Ω̃k, define
t(x) ∈ N ∪ {∞} by

t(x) := lim
i→∞

ti(x).

We say that x is A-stable if t(x) < ∞, i.e., if the corresponding sequence t0(x),
t1(x), . . . is eventually constant. Let St(A) ⊆ Ω̃k denote the set of all A-stable
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elements. For x ∈ St(A), we can define

(7.7) g(x) := x(1, t(x)).

It is easy to verify (see [6, Proposition 3.3]) that if Fn · x ⊆ St(A), then
x �∈ Def(g, Φn, σkN ). The index Ind(n, x, A) ∈ N∪{∞} of a pair (n, x) ∈ N×Ω̃k

in A is defined by the formula

Ind(n, x, A) := |{i ∈ N : (n, x) ∈ Ai}|.
Note that for all x ∈ Free(Ω̃k), we have

(7.8) t(x) =
∞∑

n=0

∑
δ∈Fn

Ind(n, δ−1 · x, A),

and hence such x is A-stable if and only if the expression on the right-hand side
of (7.8) is finite. The following theorem is the central result of the Moser–Tardos
theory:

Theorem 7.9 (Moser–Tardos [26]; see also [6, Theorem 3.5]): Let ω : N → [0; 1)
be a function such that the mapping ω̃ : B → [0; 1) : Bn,x �→ ω(n) is a witness
to the correctness of B. Then, for any Borel Moser–Tardos process A and for
all n ∈ N, we have ∫

Ω̃k

Ind(n, x, A) dũk(x) � ω(n)
1 − ω(n)

.

Corollary 7.10 (to Theorem 7.9): Let ω : N → [0; 1) be such that
ω̃ : B → [0; 1) : Bn,x �→ ω(n) is a witness to the correctness of B. Then there
is a Borel function g : Ω̃k → k such that

ũk(Def(g, (Φn)n∈N, σkN)) = 0

and

ũk({x ∈ Ω̃k : g(x) �= x(1, 0)}) �
∞∑

n=0
|Fn| · ω(n)

1 − ω(n) .

Proof. First we show that the sum

S :=
∞∑

n=0
|Fn| · ω(n)

1 − ω(n)

is finite. Without loss of generality, assume that Φ0 �= ∅. Consider any
x ∈ Free(Ω̃k). Since ω̃ is a witness to the correctness of B, we have

P[B0,x] � ω(0) < 1,
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so F0 �= ∅. Hence, for every n ∈ N+, there exist at least |Fn| distinct y with
Bn,y ∈ NB(B0,x). Therefore,

∞∏
n=1

(1 − ω(n))|Fn| � P[B0,x] > 0,

which implies that
∑∞

n=0 |Fn|ω(n) is finite. In particular, for all sufficiently
large n we have ω(n) � 1/2 and ω(n)/(1 − ω(n)) � 2ω(n), and hence S is also
finite.

Let A = (Ai)∞
i=0 be an arbitrary Borel Moser–Tardos process and let g be

given by (7.7). From (7.8) and the Moser–Tardos theorem, we get
∫

Ω̃k

t(x) dũk(x) =
∞∑

n=0

∑
δ∈Fn

∫
Ω̃k

Ind(n, δ−1 · x, A) dũk(x)

[ũk is shift-invariant] =
∞∑

n=0
|F | ·

∫
Ω̃k

Ind(n, x, A) dũk(x) � S < ∞.

In particular, t(x) < ∞ for ũk-a.e. x ∈ Ω̃k, i.e., ũk(St(A)) = 1, so

ũk(Def(g, (Φn)n∈N, σkN )) = 0.

Furthermore, if x ∈ St(A) and g(x) �= x(1, 0) = g0(x), then t(x) � 1; thus,

ũk({x ∈ Ω̃k : g(x) �= x(1, 0)}) � ũk({x ∈ Ω̃k : t(x) � 1})�
∫

Ω̃k

t(x) dũk(x)�S,

as desired.

Since the domain of Φ(k, S, ε, D) is, by definition, SD, (7.4) in the statement
of Lemma 7.3 and Corollary 7.10 yield the remaining part of Theorem 2.6′.

8. Open problems

The following is perhaps the central open question regarding the behavior of
the LLL in the measurable setting:

Problem 8.1: Does the SLLL hold measurably with a null defect? In other
words, can one replace μ(Def(f, B)) � δ by μ(Def(f, B)) = 0 in the conclusion
of Theorem 6.5?

A positive solution to Problem 8.1 would allow one to strengthen Theo-
rem 2.11 by taking δ = 0. For now, we leave this potential strengthening
as an open problem.
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Problem 8.2: Does Theorem 2.11 hold with δ = 0?

As mentioned in §6.B, the SLLL fails in the purely Borel context [13, Theo-
rem 1.6]. However, it is still conceivable that a purely Borel pointwise version
of the Abért–Weiss theorem, similar to Theorem 2.14, holds in full generality,
in which case a different proof approach might be needed to establish it. We
state it here as another open question.

Problem 8.3: Let K be a compact metric space and let f : Ω → K be a Borel
function. Fix an open neighborhood U of the measure Mλπf . Does there always
exist a nonempty finite set D ⊂ Γ such that the following statement holds?

Let α : Γ � X be a free Borel action of Γ. Then there is a Borel map
g : X → K such that

MDπg(x) ∈ U, for all x ∈ X.

Appendix A. Proof of Theorem 2.3

Let α : Z � (X, μ) be a free p.m.p. action of Z. For a Borel set A ⊆ X , let
[A] denote the class of all Borel sets B ⊆ X with μ(A � B) = 0. The measure
algebra MAlg(X, μ) is the space of all classes [A] with the metric

d([A], [B]) := μ(A � B).

Note that the space MAlg(X, μ) is Polish. For a sequence (Dn)n∈N of nonempty
finite subsets of Γ, let

L(α, X,μ, (Dn)n∈N)

:={[A] ∈ MAlg(X, μ) : lim inf
n→∞ EDn�A(x) = 0 for μ-a.e. x ∈ X};

U(α, X,μ, (Dn)n∈N)

:={[A] ∈ MAlg(X, μ) : lim sup
n→∞

EDn�A(x) = 1 for μ-a.e. x ∈ X}.

It is straightforward to check that the sets

L(α, X, μ, (Dn)n∈N) and U(α, X, μ, (Dn)n∈N)

are Gδ in MAlg(X, μ). Therefore, to establish the conclusion of Theorem 2.3,
it is enough to ensure that both these sets are dense. Below we only give
the argument that shows that U(α, X, μ, (Dn)n∈N) is dense; the proof for
L(α, X, μ, (Dn)n∈N) is the same, mutatis mutandis.
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Lemma A.1: Let h : N → N be an arbitrary function and let ε > 0. There
exists a finite sequence D0, . . . , DN−1 of finite subsets of Z with the following
properties:

– each Dn is an interval;
– |Dn| � h(n) for all 0 � n < N ;
– for every free p.m.p. action Z � (X, μ), there is a Borel set A ⊆ X with

μ(A) � ε such that

μ({x ∈ X : Dn · x ⊆ A for some 0 � n < N}) � 1 − ε.

Proof. Take any N so large that
2

N + 1
< ε and (1 − ε/2)

N

N + 1
> 1 − ε.

Let � := maxN−1
n=0 h(n) and, for each 0 � n < N , define

Dn := {n�, n� + 1, . . . , n� + � − 1}.

We claim that this sequence of intervals works. Let α : Z � (X, μ) be a free
p.m.p. action of Z induced by a measure-preserving transformation T : X → X .
By Rokhlin’s lemma, there exists a Borel set R ⊆ X such that its translates R,
T R, . . . , T (N+1)�−1R are pairwise disjoint and their union has measure at least
1 − ε/2. Let

A :=
(N+1)�−1⋃
i=(N−1)�

T iR and B :=
N�−1⋃
i=0

T iR.

. . . . . .

B

A

Figure 1. A cartoon of the sets A and B.

Then
μ(A) = 2�μ(R) � 2/(N + 1) < ε

and
μ(B) = N�μ(R) � (1 − ε/2)N/(N + 1) > 1 − ε,

and for each x ∈ B, there is some 0 � n < N with Dn · x ⊆ A, as desired (see
Fig. 1).
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Let h : N → N be any function. Applying Lemma A.1 repeatedly, we construct
an increasing sequence of natural numbers (Ni)i∈N starting with N0 := 0 and a
sequence of finite intervals (Dn)n∈N with |Dn| � h(n), such that for every free
p.m.p. action Z � (X, μ), there exists a sequence of Borel sets (Ai)i∈N with
μ(Ai) � 2−i−1 and μ(Bi) � 1 − 2−i−1, where

Bi := {x ∈ X : Dn · x ⊆ Ai for some Ni � n < Ni+1}.

For k ∈ N, let A�k :=
⋃∞

i=k Ai. We claim that A�k ∈ U(α, X, μ, (Dn)n∈N).
Indeed,

lim sup
n→∞

EDn�A�k
(x) = 1 for all x ∈ lim sup

i→∞
Bi,

and, by Fatou’s lemma,

μ(lim sup
i→∞

Bi) � lim sup
i→∞

μ(Bi) = 1.

Now if [S] ∈ MAlg(X, μ), then [S ∪ A�k] ∈ U(α, X, μ, (Dn)n∈N) as well, and

d([S], [S ∪ A�k]) � μ(A�k) �
∞∑

i=k

μ(Ai) � 2−k.

Since k is arbitrary, this shows that U(α, X, μ, (Dn)n∈N) is dense in MAlg(X, μ),
as desired.
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