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ABSTRACT

The famous Banach–Mazur problem, which asks if every infinite-dimen-

sional Banach space has an infinite-dimensional separable quotient Banach

space, has remained unsolved for 85 years, though it has been answered

in the affirmative for reflexive Banach spaces and even Banach spaces

which are duals. The analogous problem for locally convex spaces has

been answered in the negative, but has been shown to be true for large

classes of locally convex spaces including all non-normable Fréchet spaces.

For a topological group G there are four natural analogous problems:

Does G have a separable quotient group which is (i) non-trivial; (ii) infi-

nite; (iii) metrizable; (iv) infinite metrizable. Positive answers to all four

questions are proved for groups G which belong to the important classes

of (a) all compact groups; (b) all locally compact abelian groups; (c) all

σ-compact locally compact groups; (d) all abelian pro-Lie groups; (e) all

σ-compact pro-Lie groups; (f) all pseudocompact groups.

However, a surprising example of an uncountable precompact group G

is produced which has no non-trivial separable quotient group other than

the trivial group. Indeed Gτ has the same property, for every cardinal

number τ ≥ 1.

1. Introduction

It is natural to attempt to describe all objects of a certain kind in terms of

basic building blocks of that kind. For example, one may try to describe general

Banach spaces in terms of separable Banach spaces. Recall that a topological

space is said to be separable if it has a countable dense subset.

To put our investigation into context, we begin with a famous unsolved prob-

lem in Banach space theory. The Separable Quotient Problem for Banach

Spaces has its roots in the 1930s and, according to a private communication

from W�ladys�law Orlicz to Jerzy Ka̧kol, is due to Stefan Banach and Stanis�law

Mazur.

Problem 1.1 (Separable quotient problem for Banach spaces): Does every

infinite-dimensional Banach space have a quotient Banach space which is sepa-

rable and infinite-dimensional?

The related Quotient Schauder Basis Problem for Banach Spaces is due to

Aleksander (Olek) Pe�lczyński [33].
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Problem 1.2 (Quotient Schauder basis problem for Banach spaces): Does

every infinite-dimensional Banach space have a quotient Banach space which

is infinite-dimensional and has a Schauder basis?

Of course any Banach space with a Schauder basis is separable. Mazur’s

Problem 153 in The Scottish Book [29], for which the prize was a live goose,

was answered by Per Enflo [12] in 1973. Enflo proved that there exist sepa-

rable Banach spaces which do not have a Schauder basis (and hence lack the

approximation property).

However William Johnson and Haskell Rosenthal proved the following result:

Theorem 1.3 ([21]): Every separable infinite-dimensional Banach space has a

quotient infinite-dimensional Banach space with a Schauder basis.

Corollary 1.4: The Quotient Schauder Basis Problem for Banach Spaces 1.2

and the Separable Quotient Problem for Banach Spaces 1.1 are equivalent.

Steve Saxon and Albert Wilansky proved some equivalent versions of the

Separable Quotient Problem for Banach Spaces.

Theorem 1.5 ([39]): The following are equivalent for an infinite-dimensional

Banach space B:

(i) B has a quotient Banach space which is separable and infinite-dimen-

sional;

(ii) B has a dense subspace which is not barrelled;

(iii) B has a dense subspace E which is the union of a strictly increasing

sequence of closed linear subspaces.

Some extensions of this result to topological vector spaces are obtained in

[24]. We have then that Problem 1.1 is equivalent to each of Problem 1.6 and

Problem 1.7:

Problem 1.6: Does every infinite-dimensional Banach space have a dense sub-

space E which is the union of a strictly increasing sequence of closed linear

subspaces?

Problem 1.7: Does every infinite-dimensional Banach space have a dense

infinite-dimensional subspace which is not barrelled?

As a corollary of Theorem 1.5 (see Corollary 3.5 of [32]) one obtains the result

first proved by Dan Amir and Joram Lindenstrauss.
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Corollary 1.8 ([1]): Every infinite-dimensional weakly compactly generated

(WCG) Banach space has a separable infinite-dimensional quotient Banach

space.

As reflexive Banach spaces (and separable Banach spaces) are WCG, one

obtains:

Corollary 1.9 ([33]): Every infinite-dimensional reflexive Banach space has

a separable infinite-dimensional quotient Banach space.

From Corollary 1.9 one easily obtains:

Corollary 1.10: LetB be a Banach space such that the dual Banach spaceB∗

has an infinite-dimensional reflexive subspace E. Then B has a quotient Banach

space isomorphic to E∗. So B has an infinite-dimensional separable quotient

Banach space.

Spiros Argyros, Pandelis Dodos and Vassilis Kanellopoulos in 2008 general-

ized Corollary 1.9.

Theorem 1.11 ([2]): IfB is the Banach dual of any infinite-dimensional Banach

space, then B has a separable infinite-dimensional quotient Banach space.

In the literature many special cases of the Separable Quotient Problem for

Banach Spaces have been proved, however the general problem remains un-

solved.

Turning to locally convex spaces one can state the analogous problem.

Throughout this paper all locally convex spaces will be assumed to be Hausdorff.

Problem 1.12 (Separable quotient problem for locally convex spaces): Does

every infinite-dimensional locally convex space have a quotient locally convex

space which is separable and infinite-dimensional?

This question was answered in the positive for a wide class of locally convex

spaces by M. Eidelheit [11]. (See also Chapter 6, Section 31.4 of [25].)

Theorem 1.13 ([11]): Every infinite-dimensional Fréchet space (= locally con-

vex space with its topology determined by a complete translation invariant

metric) which is non-normable has the separable metrizable topological vector

space Rω as a quotient space.
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Definition 1.14 ([35]): A topological vector space is said to be properly

separable if it has a proper dense vector subspace of countably infinite (Hamel)

dimension.

Wendy Robertson [35] observed that a Fréchet space is properly separable if

and only if it is separable and that a metrizable barrelled locally convex space is

properly separable if and only if it is separable. The following result generalizes

Theorem 1.13. For further generalizations along this line, see [38].

Theorem 1.15 ([35]): Every strict inductive limit of a strictly increasing se-

quence (Em) of Fréchet spaces with at least one Em non-normable has a properly

separable quotient locally convex space.

Jerzy Ka̧kol, Steve Saxon and Aaron Todd [23] answered Problem 1.12 in the

negative.

Theorem 1.16 ([23]): There exist infinite-dimensional barrelled locally convex

spaces which do not have any infinite-dimensional separable quotient locally

convex spaces.

However the following results go in the positive direction.

Theorem 1.17 ([23]): Let X be any infinite Tychonoff space and Cc(X) the

linear space of all real-valued continuous functions on X endowed with the

compact-open topology. If Cc(X) is barrelled, then it has a quotient locally

convex space which is infinite-dimensional and separable.

Theorem 1.18 ([23]): Let X be any infinite Tychonoff space. Both the strong

and weak duals of Cc(X) have a quotient locally convex space which is infinite-

dimensional and separable.

Once again we note that there are many partial positive solutions in the

literature to Problem 1.12 (see also [22]) which are out of the scope of these

introductory remarks.

Now we turn to the specific topic of this paper, the Separable Quotient Prob-

lem(s) for Topological Groups. We shall in fact state nine quite natural prob-

lems.
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Terminology and basic facts. A topological space X is said to be hered-

itarily separable if X and every subspace of X is separable. A topological

space is said to be second countable if its topology has a countable base.

A topological space X is said to have a countable network if there exists a

countable family B of (not necessarily open) subsets such that each open set

of X is a union of members of B.

(i) Any space with a countable network is hereditarily separable;

(ii) a metrizable space is separable if and only if it is second countable;

(iii) any continuous image of a separable space is separable;

(iv) countable networks are preserved by continuous images;

(v) a quotient image of a second countable space need not be second count-

able;

(vi) a closed subgroup of a separable topological group is not necessarily

separable. However, the class of topological groups with the property

that every closed subgroup is separable is quite large and natural, and

in particular it includes all separable locally compact groups. This class

of topological groups has been thoroughly investigated in [27], [28] (see

also [26]).

An abstract group is called simple if it has no proper non-trivial normal

subgroup, where a group is called non-trivial if it has at least two elements. A

topological group G is said to be topologically simple if it has no proper non-

trivial closed normal subgroup. As the connected component of the identity of

any topological group is a closed normal subgroup, every topologically simple

group is either totally disconnected or connected.

Throughout this paper all topological groups are assumed to be Hausdorff.

The circle group with the usual multiplication and compact topology inherited

from the complex plane is denoted by T. The product of elements x, y ∈ T will

be denoted by x · y, while we will use additive notation for all abelian groups

distinct from T. A character of a group H is a homomorphism of H to T.

The additive topological group of all real numbers with the euclidean topology

is denoted by R. The cardinality of the continuum is denoted by c, so c = 2ω.

By Lie group we mean a real finite-dimensional Lie group; the 0-dimensional

Lie groups are discrete.

We begin with an example which says that we must exclude some discrete

groups and indeed some totally disconnected groups.
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Example 1.19: Let ℵ be any uncountable cardinal number and S a set of car-

dinality ℵ. Let Aℵ be the finitary alternating group on the set S; that is,

Aℵ is the group of all even permutations of the set S which fix all but a finite

number of members of S. That Aℵ is an uncountable simple group follows

easily from [36, 3.2.4]. So if Aℵ is given the discrete topology, it is an infinite

discrete topologically simple group and so does not have a (proper) quotient

group which is a non-trivial topological group.

It is proved in [31, Corollary 7] that for each positive integer n, there exists

a non-discrete Hausdorff totally disconnected group Gn of cardinality ℵn such

that each proper subgroup is discrete (that is, Gn is strongly minimal) and each

proper subgroup has cardinality strictly less than ℵn (that is Gn a Johnson

group). Assuming the Continuum Hypothesis this implies that for n > 1 the

group Gn has no separable quotient group, since all non-trivial quotient groups

have cardinality strictly greater than ℵ1 = 2ℵ0 .

Without the assumption of the Continuum Hypothesis, George A. Willis [43,

§3] (see also [7]) extended the examples of discrete topologically simple groups to

produce, for each infinite cardinal number ℵ, a non-discrete totally disconnected

locally compact topologically simple group of cardinality (and weight) ℵ.

By contrast, Theorem 2.13 shows that every infinite discrete abelian group G

does indeed have a quotient group which is a countably infinite (discrete) group.

(Indeed G has a quotient group of cardinality κ, for each infinite κ less than

the cardinality of G.)

Remark 1.20: Comprehensive surveys about the decomposition theory of totally

disconnected locally compact groups can be found in the recent book [9].

Problem 1.21 (Separable quotient problem for topological groups): Does every

non-totally disconnected topological group have a quotient group which is a

non-trivial separable topological group?

Problem 1.22 (Separable infinite quotient problem for topological groups): Does

every non-totally disconnected topological group have a quotient group which

is an infinite separable topological group?

Problem 1.23 (Separable metrizable quotient problem for topological groups):

Does every non-totally disconnected topological group have a quotient group

which is a non-trivial separable metrizable topological group?
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Problem 1.24 (Separable infinite metrizable quotient problem for topological

groups): Does every non-totally disconnected topological group have a quotient

group which is an infinite separable metrizable topological group?

Regarding Problem 1.24, one might reasonably ask: If the topological groupG

has a quotient group which is infinite and separable, does G necessarily have

a quotient group which is infinite, separable and metrizable? This question is

answered negatively in Proposition 4.4.

Corollary 1.9 suggests the following problem for reflexive topological groups;

that is, topological groups for which the natural map of the topological group

into the Pontryagin dual of its Pontryagin dual is an isomorphism of topological

groups.

Problem 1.25 (Separable quotient problem for reflexive topological groups):

Does every infinite reflexive abelian topological group, G, have a separable

quotient group which is (i) non-trivial; (ii) infinite; (iii) metrizable; (iv) infinite

metrizable?

A special case of Problem 1.25 is:

Problem 1.26 (Separable quotient problem for locally compact abelian groups):

Does every infinite locally compact abelian group, G, have a separable quo-

tient group which is (i) non-trivial; (ii) infinite; (iii) metrizable; (iv) infinite

metrizable?

As another special case of Problem 1.25 one might be tempted to ask whether

every topological group, G, which is the underlying topological group of an

infinite-dimensional Banach space has a separable quotient group which is (i)

non-trivial; (ii) infinite; (iii) metrizable; (iv) infinite metrizable? But a positive

answer to all these questions follows immediately from the fact that Rn, for every

n ∈ N, is a quotient locally convex space of every infinite-dimensional locally

convex space. Noting that according to the Anderson–Kadec theorem each

infinite-dimensional separable Banach space (indeed each infinite-dimensional

separable Fréchet space) is homeomorphic to Rω ([6, Chapter VI, Theorem

5.2]), the next question is pertinent. Of course a positive answer to Problem

1.1 would yield a positive answer to Problem 1.27.
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Problem 1.27 (Separable quotient problem for Banach topological groups): Does

every topological group, which is the underlying topological group of an infinite-

dimensional Banach space have a separable quotient group which is homeomor-

phic to Rω?

Related to this problem we mention the following recent result in [14].

Theorem 1.28 ([14]): Every infinite-dimensional Fréchet space, and in partic-

ular every infinite-dimensional Banach space, has the infinite separable metriz-

able tubby torus group Tω as a quotient group.

The non-abelian version of Problem 1.26 is:

Problem 1.29 (Separable quotient problem for locally compact groups): Does

every non-totally disconnected locally compact group, G, have a separable quo-

tient group which is (i) non-trivial; (ii) infinite; (iii) metrizable; (iv) infinite

metrizable?

As a special case of Problem 1.29 we have:

Problem 1.30 (Separable quotient problem for compact groups): Does every

infinite compact group, G, have a separable quotient group which is (i) non-

trivial; (ii) infinite; (iii) metrizable; (iv) infinite metrizable?

We shall address these problems in subsequent sections.

2. Locally compact groups and pro-Lie groups

In this section we provide a positive answer to each of Problem 1.30 (i), (ii), (iii),

and (iv) and Problem 1.26 (i), (ii), (iii), and (iv), and a partial answer to Prob-

lem 1.29. We prove satisfying results for pro-Lie groups. We also prove stronger

structural results for compact abelian groups, connected compact groups and

totally disconnected compact groups.

Theorem 2.1: Every non-metrizable compact abelian group G has a quotient

group Q which is a countably infinite product of non-trivial compact finite-

dimensional Lie groups. The quotient group, Q, is therefore an infinite separable

metrizable group.
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Proof. As G is non-metrizable, Theorem 29 of [30] implies that the dual group Ĝ

is uncountable. By Kulikov’s Theorem, Corollary 18.4 of [13], every abelian

group A is the union of an ascending chain

A1 ≤ A2 ≤ · · · ≤ An ≤ · · ·

of subgroups, where each An is a direct sum of (finite or infinite) cyclic groups.

Putting A = Ĝ implies that Ĝ has a subgroup An which is a direct sum of

uncountably many cyclic subgroups, each of which is a finite cyclic or infinite

cyclic group. By the Pontryagin van-Kampen Duality Theorem, then, G has a

quotient group Ĥ which is an infinite product of finite-dimensional Lie groups,

each of which is either a discrete finite cyclic group or the (compact) circle

group T. So G has a quotient group Q which is a countably infinite product of

finite-dimensional abelian Lie groups.

We shall use the following lemma which follows immediately from the

Sandwich Theorem for compact connected groups, Corollary 9.25, and The-

orems 9.19 and 9.24 of [19]. We have previously defined what we mean by a

simple group and a topologically simple group. We now record that a simple

Lie group is a finite-dimensional Lie group which has no non-trivial connected

normal subgroup. The center of a group S will be denoted by Z(S).

Lemma 2.2: Let G be a connected compact group and let G′ be its closed

commutator subgroup. Then

(i) G′ is a quotient group of
∏
j∈J Sj/Z(Sj), where J is some index set, Sj

is a simple simply connected compact finite-dimensional Lie group, for

each j ∈ J ; and

(ii) G/G′ ×∏
j∈J Sj/Z(Sj) is a quotient group of G.

Theorem 2.3: Every non-metrizable connected compact group, G, has a quo-

tient group, Q, which is a countably infinite product of non-trivial compact

finite-dimensional Lie groups. The quotient group, Q, is therefore an infinite

separable metrizable group.

Proof. We apply Lemma 2.2(ii) and consider three cases.

Case 1. J is infinite. Then G has
∏
j∈J Sj/Z(Sj) as a quotient group. Con-

sequently G has a quotient group which is a countably infinite product of non-

trivial compact finite-dimensional Lie groups.
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Case 2. J is finite and rank Ĝ/G′ is finite. By Theorem 9.52 of [19], G′ is a

compact Lie group and G/G′ is a connected finite-dimensional compact abelian

group. Thus G′ is metrizable, and G/G′ also is metrizable by Theorem 8.49

of [19]. As metrizability is a Three Space Property by Theorem 12.13 of [37],

this implies that G is metrizable, which contradicts our assumption that G is

non-metrizable. So Case 2 does not occur.

Case 3. J is finite and rank Ĝ/G′ is infinite. By the remark immediately

following Proposition 8.15 of [19], G/G′, and hence also G, have a quotient

group which is a torus group of dimension equal to rank Ĝ/G′, which completes

our proof.

Remark 2.4: No discrete group has a quotient group which is a countably infinite

product of non-trivial topological groups since every quotient of a discrete group

is evidently discrete. In particular then, a locally compact abelian group need

not have a quotient group which is a countably infinite product of non-trivial

topological groups.

Theorem 2.5: Every non-metrizable connected locally compact abelian group,

G, has a quotient group, Q, which is a countably infinite product of non-trivial

compact finite-dimensional Lie groups. The quotient group, Q, is therefore an

infinite separable metrizable group.

Proof. By Theorem 26 of [30], G is isomorphic as a topological group to Rn×K,

where n is a non-negative integer and K is a non-metrizable compact group.

The required result then follows from Theorem 2.3.

Theorem 2.6: Every infinite totally disconnected compact group G has a quo-

tient group, Q, which is homeomorphic to a countably infinite product of finite

discrete topological groups. The quotient group, Q, is thus homeomorphic to

the Cantor set and therefore is an infinite separable metrizable group.

Proof. As G is a profinite group it is isomorphic as a topological group to a

closed subgroup of a product
∏
i∈I Fi, where I is an index set, and each Fi

is a discrete finite group. Let pi be the projection mapping of G to Fi, for

i ∈ I. We can assume that pi(G) = Fi, for each i ∈ I. As G is an infinite

group and each Fi is a finite group, for each y ∈ G and i ∈ I there is an

infinite number of members z of G such that pi(y) = pi(z). Fixing g1 ∈ G

and i1 ∈ I, let t1 = pi1(g1) ∈ Fi1 . There exists an index i2 and an element g2



342 A. G. LEIDERMAN, S. A. MORRIS AND M. G. TKACHENKO Isr. J. Math.

in G such that pi1(g1) = pi1(g2) and pi2(g1) �= pi2(g2) = t2 ∈ Fi2 . There are

infinitely many y in G such that pi1(y) = t1 and pi2(y) = t2. So there exists an

index i3 and an element g3 ∈ G such that pi1(g2) = pi1(g3), pi2(g2) = pi2(g3)

but pi3(g2) �= pi3(g3) = t3 ∈ Fi3 . So by induction we obtain infinite sequences

of indices i1, i2, i3, . . . , in, . . . and elements g1, g2, g3, . . . , gn, . . . in G such that

pij (gn+1) = pij (gn), j = 1, 2, . . . , n but pin+1(gn+1) �= pin+1(gn). Therefore the

image p(G) of G in the product
∏
j∈N

Fij is infinite, where p is the projection

mapping.

So p(G) is an infinite separable metrizable totally disconnected compact

group. By Theorem 10.40 of [19], p(G) is a Cantor set, and so is homeomorphic

to a countably infinite product of finite discrete topological groups. As G is

compact, p is a quotient mapping, which proves the result.

We now give a positive answer to Problem 1.30 (i), (ii), (iii), and (iv).

Theorem 2.7 (Separable quotient theorem for compact groups): Let G be

an infinite compact group. Then G has a quotient group which is an infinite

separable metrizable (compact) group.

Proof. By Corollary 2.43 of [19], G is a strict projective limit of compact Lie

groups. So G is isomorphic as a topological group to a subgroup of a product∏
i∈I Li, where I is an index set and each Li, i ∈ I, is a Lie group. Let pi be

the projection map of G into Li, i ∈ I.

Assume first that each group pi(G) is finite. Then G is a compact group

which is isomorphic as a topological group to a subgroup of a product of finite

Lie groups; that is, G is a totally disconnected compact group. The required

result then follows from Theorem 2.6.

So, assume that for some n ∈ I, pn(G) is infinite. As G is compact, pn is a

quotient mapping of G onto the infinite compact metrizable (separable) group

pn(G), as required.

Remark 2.8: Note that the Kakutani–Kodaira–Montgomery–Zippin Theorem,

in the particular case of compact groups, immediately shows that G has a

separable metrizable (compact) quotient group. However, this quotient might

be finite, and we have to spend additional effort in order to prove there is an

infinite one.

Theorem 2.7 for compact groups is used in the proof of the more general

Theorem 2.17 dealing with σ-compact locally compact groups.
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Having settled the compact group case, we mention three related problems.

Problem 2.9 (Separable quotient problem for σ-compact groups): Does every

non-discrete σ-compact group have a separable quotient group which is (i) non-

trivial; (ii) infinite; (iii) metrizable; (iv) infinite metrizable?

Problem 2.10 (Separable quotient problem for precompact groups): Does every

infinite precompact group have a separable quotient group which is (i) non-

trivial; (ii) infinite; (iii) non-trivial metrizable; (iv) infinite metrizable?

Problem 2.11 (Separable quotient problem for pseudocompact groups): Does

every infinite pseudocompact group have a separable quotient group which is

(i) non-trivial; (ii) infinite; (iii) non-trivial metrizable; (iv) infinite metrizable?

Problem 2.9 is answered in Corollary 4.3 and Proposition 4.4. Problem 2.11

is answered in Proposition 4.5, while Problem 2.10 is answered in Theorem 3.5.

We now give a positive answer to Problem 1.26 (i), (ii), (iii), and (iv). First

we state a proposition due to W. R. Scott [40]. (See EA1.12 of [19] and 16.13(c)

of [17].)

Proposition 2.12: Let A be an uncountable abelian group and ℵ a cardinal

number satisfying ℵ0 ≤ ℵ < |A|, where |A| denotes the cardinality of the group

A. Then A has a subgroup B such that |A/B|, the cardinality of the quotient

group A/B, equals ℵ. In particular, every uncountable abelian group has a

quotient group which is countably infinite.

Theorem 2.13 (Separable quotient theorem for locally compact abelian

groups): Let G be an infinite locally compact abelian group. Then G has a

quotient group which is an infinite separable metrizable group.

Proof. By the principal structure theorem for locally compact abelian groups,

Theorem 26 of [30], G has an open subgroup H isomorphic as a topological

group to Rn×K, where n is a non-negative integer and K is a compact abelian

group.

Case 1. G = H . Then the theorem follows from Theorem 2.7.

Case 2. G/H is an infinite discrete abelian group. Then by Proposition 2.12

G/H , and hence also G, has a quotient group which is countably infinite and

discrete.
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Case 3. G/H is finite. Then G is a compactly-generated locally compact

abelian group. By Exercise Set 14 #3 of [30], G is isomorphic as a topological

group to Rn × Zm × C, where n and m are non-negative integers and C is a

compact abelian group. The required result then follows from Theorem 2.7.

Recall that a proto-Lie group is defined in [18, Definition 3.25] to be a

topological group G for which every neighborhood of the identity contains a

closed normal subgroup N such that the quotient group G/N is a Lie group. If

G is also a complete topological group, then it is said to be a pro-Lie group.

If G is a proto-Lie group (respectively, pro-Lie group) with all the quotient

Lie groups G/N discrete then G is said to be protodiscrete (respectively,

prodiscrete). It is immediately clear that if G is a proto-Lie group which is

not a Lie group, then it is not topologically simple.

Theorem 2.14 (Separable quotient theorem for proto-Lie groups): Let G be

an infinite proto-Lie group which is not protodiscrete; that is, G is not to-

tally disconnected. Then G has a quotient group which is an infinite separable

metrizable (Lie) group.

Proof. By definition, G has a quotient group G/N which is a Lie group L.

Case 1. All such L are discrete. Then G is a subgroup of a product of discrete

groups; that is G is a protodiscrete group. This contradicts the assumption in

the theorem.

Case 2. At least one such L is not discrete. Then G has a quotient group which

is a non-discrete Lie group and so is infinite separable and metrizable.

Theorem 2.15 (Separable quotient theorem for σ-compact pro-Lie groups):

Let G be an infinite σ-compact pro-Lie group. Then G has a quotient group

which is an infinite separable metrizable group.

Proof. If G is not prodiscrete, the theorem follows immediately from Theo-

rem 2.14.

So consider the case that G is prodiscrete. Whenever N is a closed normal

subgroup such that G/N is discrete, the group G/N must also be σ-compact

and therefore countable. If it is countably infinite, then we have immediately

that G has an infinite separable metrizable quotient group. If each such G/N

is finite, then G is compact (and totally disconnected) and the theorem follows

from Theorem 2.7.
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Another significant generalization of Theorem 2.13 is Theorem 2.16.

Theorem 2.16 (Separable quotient theorem for abelian pro-Lie groups): Let G

be an infinite abelian pro-Lie group. Then G has a quotient group which is an

infinite separable metrizable group.

Proof. We modify Case 1 in the proof of Theorem 2.14. If all such L are discrete

then we have one of the two cases:

Case (i) All such Li are finite. Then G is isomorphic as a topological group

to a closed subgroup of a product of finite discrete groups. So G is compact.

Thus by Theorem 2.7, G has a quotient group which is an infinite separable

metrizable group.

Case (ii) At least one such L is infinite and discrete. So G has a quotient

group which is an infinite discrete group. Thus by Proposition 2.12, G has a

quotient group which is an infinite separable metrizable group, which completes

the proof of the theorem.

The next theorem, which generalizes Theorem 2.7, provides a partial but

significant answer to Problem 1.29.

Theorem 2.17 (Separable quotient theorem for σ-compact locally compact

groups): Every infinite σ-compact locally compact group has a quotient group

which is an infinite separable metrizable group.

Proof. By the Kakutani–Kodaira–Montgomery–Zippin Theorem, every

σ-compact locally compact group, G, has a compact normal subgroup, K, such

that G/K is a separable metrizable group. (See Theorem 2 of [20] for a more

general statement and elegant proof.)

Case 1. G/K is finite. Then G must be compact as compactness is a Three

Space Property by Theorem 5.25 of [17]. The required result then follows from

Theorem 2.7.

Case 2. G/K is infinite. Then G has a quotient group which is infinite sepa-

rable and metrizable, as required.

Pierre-Emmanuel Caprace studied the class S of all non-discrete compactly-

generated locally compact groups that are topologically simple. He writes:

“Simple Lie groups and simple algebraic groups over local fields are the most
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prominent members of the class S ” [7]. (See also [8].) Recall that, in con-

tradistinction with the notions of simple abstract group and topologically sim-

ple topological group, a Lie group is said to be simple if it has no non-trivial

connected normal subgroup.

As an immediate corollary of Theorem 2.17, we observe the following ap-

parently new result which reveals the topological structure of members of the

class S .

Proposition 2.18: Every topological group in the class S is a separable

metrizable group.

Proof. A quotient group of any G ∈ S is trivial or it is G itself. But every

compactly-generated topological group is σ-compact, and therefore by Theo-

rem 2.17, every G ∈ S has a quotient group which is an infinite separable

metrizable group. So G itself is an infinite separable metrizable group.

Recall that a topological group G is said to be almost connected if the

quotient group G/G0 is compact, where G0 denotes the connected component

of the identity of G.

Theorem 2.19 (Separable quotient theorem for almost connected locally com-

pact groups): Every infinite almost connected locally compact group has a quo-

tient group which is an infinite separable metrizable group.

Proof. Let G be an almost connected locally compact group and G0 the con-

nected component of the identity, so that G/G0 is a compact group. If G/G0

is infinite, then by Theorem 2.7 it has an infinite separable metrizable quotient

group. Thus G also has an infinite separable metrizable quotient group.

So assume G/G0 is finite. Noting that every connected locally compact group

is σ-compact, it follows in this case that G is σ-compact. So by Theorem 2.17,

G has an infinite separable metrizable quotient group.

The class of R-factorizable groups (see [4, Chapter 8]) contains all pseudo-

compact groups as well as σ-compact groups. We note that by Theorem 8.1.9

of [4], a locally compact group is R-factorizable if and only if it is σ-compact.

This suggests the following problem which will be answered in Section 3.

Problem 2.20 (Separable quotient problem for R-factorizable groups): Does ev-

ery R-factorizable group have a separable quotient group which is (i) non-trivial;

(ii) infinite; (iii) metrizable; (iv) infinite metrizable?
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3. A precompact counterexample

In this section, firstly we address Problem 2.10 and Problem 2.20 and answer

both in the negative by producing a counterexample.

We present an example of a “weird” precompact topological group G with

no non-trivial separable quotient groups. Indeed we proceed to prove that

the group Gτ has no non-trivial separable quotient groups, for τ any cardinal

number.

Recall that a subset X of an abelian group G with identity 0G is called

independent if the equality

n1x1 + · · · + nkxk = 0G,

where n1, . . . , nk ∈ Z and x1, . . . , xk are pairwise distinct elements of X , implies

that

n1x1 = · · · = nkxx = 0G.

The conclusion of the following lemma is well-known; it is a form of saying

that the dual Π∧ of the product Π =
∏
i∈I Ki of compact abelian groups Ki is

isomorphic to the discrete group ⊕
i∈I

K∧
i ,

the direct sum of the discrete dual groups K∧
i (see [30, Theorem 17] or [4,

Proposition 9.6.25]; the latter result is dual to the lemma).

Lemma 3.1: Let A be a non-empty set and χ a continuous character on the

group TA. Then one can find pairwise distinct indices α1, . . . , αk ∈ A and

integers n1, . . . , nk such that

χ(x) =

k∏
i=1

x(αi)
ni ,

for each x ∈ TA.

Lemma 3.2: Let G be an uncountable precompact abelian group such that

every countable subgroup of G is closed. Then the following are equivalent:

(a) every uncountable subgroup of G is dense in G;

(b) the kernel of every non-trivial continuous character of G is countable.

Furthermore, each of the items (a), (b) implies

(c) every quotient group of G is either trivial or non-separable.
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Proof. (a)⇒(b). Assume that every uncountable subgroup of G is dense in G.

Let χ be a continuous non-trivial character on G. Then the kernel K of χ must

be countable—otherwise K = G and χ is trivial.

(b)⇒(a). Let D be an uncountable subgroup of G. Then K = clG(D) is a

closed subgroup of G. If K �= G, then the quotient group G/K is non-trivial

and precompact, so there exists a non-trivial continuous character ψ on G/K.

Let p : G → G/K be the quotient homomorphism. Then χ = ψ ◦ p is a non-

trivial continuous character on G and K ⊂ kerχ. This contradicts (b) of the

lemma and proves that D is dense in G.

We have thus proved that (a) and (b) of the lemma are equivalent.

(b)⇒(c). Let h : G → H be a continuous open homomorphism of G onto

a topological group H with |H | > 1. Then H is precompact and abelian.

Since |H | > 1, there exists a non-trivial continuous character χH on H . Hence

χG = χH ◦ h is a non-trivial continuous character on G. By (b) of the lemma,

the kernel of χG is countable. Therefore the kernel of h is countable as well.

This implies that

|H | = |G| > ω.

Let C be a countable subgroup of H . Then h−1(C) is a countable subgroup

of G, so h−1(C) is closed in G by (a) of the lemma. Since the homomorphism h

is continuous and open, C is closed in H . We have thus proved that all countable

subgroups of H are closed. If S is a countable subset of H , then the subgroup C

of H generated by S is also countable and, hence, C is closed in H . Since the

group H is uncountable, we conclude that it cannot be separable.

The proof of the following fact is quite simple and left to the reader.

Lemma 3.3: Let A,B,C be subgroups of an abelian group K.

(a) The equality (A+B)∩C = (A∗+B)∩C holds, where A∗ = A∩(B+C).

(b) If A and B + C have trivial intersection, then (A+B) ∩ C = B ∩C.
Notice that item (b) of the above lemma is immediate from (a).

Following [42, Section 4] we say that a subgroup S of an abelian topologi-

cal group G is h-embedded in G if every homomorphism f of S to the circle

group T extends to a continuous character of G. In particular, every homomor-

phism of an h-embedded subgroup of G to T is continuous. If the group G is

precompact, then a subgroup S of G is h-embedded if and only if S inherits

from G the maximal precompact group topology, i.e., the Bohr topology.
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The following fact is a weaker version of [5, Proposition 2.1]. It also follows

from [15, Lemma 2.3].

Lemma 3.4: If every countable subgroup of an abelian topological group G is

h-embedded in G, then the countable subgroups of G are closed.

In the next theorem we present an uncountable precompact group without

non-trivial separable quotients.

Theorem 3.5: There exists an uncountable dense subgroup G of the compact

group Tc satisfying dimG = 0 such that every countable subgroup of G is h-

embedded in G and closed and every uncountable subgroup of G is dense in G.

Hence every quotient group of G is either trivial or non-separable.

Proof. Let X be a set of cardinality c and A(X) the free abelian group on X .

We will define a monomorphism f of the group A(X) to Tc and then take G to

be f(A(X)), considered as a topological subgroup of Tc.

Since |A(X)| = |X | = c, the group A(X) contains exactly cω = c countable

subgroups. Let C be the family of all countable subgroups of A(X). For every

C ∈ C, the family H(C) of all homomorphisms of C to T has cardinality at

most c, so the family H =
⋃{H(C) : C ∈ C} satisfies |H| = c.

Let {(Cα, gα) : α < c} be an enumeration of the family

{(C, g) : C ∈ C, g ∈ H(C)}.
The subgroup Cα of A(X) being countable, there exists a countable subset Yα

of X such that Cα ⊂ 〈Yα〉, where α < c. Let

Zα = X \ Yα.
Further, let E be an independent subset of T such that |E| = c and each

element of E has infinite order (see [4, Lemma 7.1.6]). Let also {Eα : α < c}
be a partition of E into c pairwise disjoint subsets Eα, each of cardinality c.

For every α < c, we will define a homomorphism fα : A(X) → T satisfying

the following conditions:

(i) fα and gα coincide on the subgroup Cα of A(X);

(ii) bα = fα �Zα is a bijection of Zα onto a subset of Eα, so the restriction

of fα to 〈Zα〉 is a monomorphism;

(iii) the subgroups of T generated by the sets fα(Yα) ∪ (
⋃
ν<α fν(X)) and

fα(Zα) have trivial intersection;

(iv) fα(A(X)) ⊂ 〈fα(Yα)〉 · 〈Eα〉.
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Notice that (ii) and (iii) together imply that ker fα ⊂ 〈Yα〉, so the kernel of fα

is countable for each α < c. Indeed, it follows from the equality X = Yα ∪ Zα
that every element g ∈ ker fα has the form g = y ·z with y ∈ 〈Yα〉 and z ∈ 〈Zα〉.
Then 1 = fα(g) = fα(y) · fα(z), where fα(y) ∈ 〈fα(Yα)〉 and fα(z) ∈ 〈fα(Zα)〉.
So we conclude that fα(z) = fα(y)−1 ∈ 〈fα(Yα)〉 ∩ 〈fα(Zα)〉 and, by (iii),

fα(z) = 1. According to (ii) the latter implies that z is the identity element

of A(X), whence g = y ∈ 〈Yα〉. This shows that ker fα ⊂ 〈Yα〉.
Also, since the equality X = Yα ∪ Zα holds for each α < c, (iv) follows

from (ii). However, we isolate (iv) for further applications. To construct the

family {fα : α < c} satisfying (i)–(iv) we argue as follows.

For every α < c, we extend gα to a homomorphism hα of 〈Yα〉 to T. There

exists a countable set D0 ⊂ E such that

〈h0(Y0)〉 ∩ 〈E〉 ⊂ 〈D0〉.
Let F0 = E0 \D0. Then |F0| = c, so we choose a bijection b0 of Z0 = X \ Y0
onto F0. Since

A(X) = 〈Y0〉 ⊕ 〈Z0〉,
there exists a homomorphism f0 : A(X) → T which extends h0 and coincides

with b0 on Z0. Clearly the restriction of f0 to 〈Z0〉 is a monomorphism. One

can easily verify that the groups 〈f0(Y0)〉 and 〈F0〉 = 〈f0(Z0)〉 have trivial

intersection. Therefore f0 satisfies (i)–(iv).

Assume that for some α < c, we have defined a family {fν : ν < α} of homo-

morphisms of A(X) to T satisfying (i)–(iv). The subgroup Hα of T generated

by hα(Yα) ∪⋃
ν<α fν(Yν) has cardinality at most |α+ 1| · ω < c. Let

H∗
α = Hα ∩

〈⋃
ν≤α

Eν

〉
.

Then |H∗
α| ≤ |Hα| < c, so we can find a subset Dα of

⋃
ν≤αEν with |Dα| < c

such that H∗
α ⊂ 〈Dα〉. Let Fα = Eα \Dα. Notice that |Fα| = c.

Claim 1: The groups 〈Fα〉 and Hα · 〈⋃ν<αEν〉 have trivial intersection.

Indeed, we apply (a) of Lemma 3.3 with A = Hα, B = 〈⋃ν<αEν〉, and

C = 〈Fα〉 to deduce that

(1) (A ·B) ∩ C = (A∗ · B) ∩C ⊂
(
H∗
α ·

〈⋃
ν<α

Eν

〉)
∩ 〈Fα〉,
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where A∗ = A ∩ (B · C) ⊂ H∗
α. Further, Fα and Dα ∪ ⋃

ν<α Eν are pairwise

disjoint subsets of the independent set E ⊂ T, so the groups 〈Dα〉 · 〈
⋃
ν<αEν〉

and 〈Fα〉 have trivial intersection. Since H∗
α ⊂ 〈Dα〉, it follows from (1) that

(A · B) ∩ C = {1}. This proves Claim 1.

Consider an arbitrary bijection bα : Zα → Fα. There exists a homomorphism

fα : A(X) → T which extends hα and coincides with bα on Zα. It is clear that

fα extends gα and the restriction of fα to 〈Zα〉 is a monomorphism. Hence

conditions (i) and (ii) hold true at the step α. Condition (iv) is also fulfilled.

Indeed, it follows from the definition of fα that fα(Zα) = Fα ⊂ Eα. Hence,

applying the equality X = Yα ∪ Zα we deduce that

fα(A(X)) = 〈fα(X)〉 ⊂ 〈fα(Yα)〉 · 〈Eα〉.
It remains to verify that (iii) is also valid. Indeed, according to (iv) we have

fν(X) ⊂ 〈fν(Yν)〉 · 〈Eν〉 = 〈fν(Yν) ∪ Eν〉,
for each ν < α. Hence the group generated by fα(Yα) ∪ ⋃

ν<α fν(X) (see

condition (iii)) is contained in〈
fα(Yα) ∪

⋃
ν<α

(fν(Yν) ∪ Eν)

〉
=

〈⋃
ν≤α

fν(Yν) ∪
⋃
ν<α

Eν

〉

=

〈⋃
ν≤α

fν(Yν)

〉
·
〈⋃
ν<α

Eν

〉
= Hα ·

〈⋃
ν<α

Eα

〉
.

By Claim 1, the groups 〈Fα〉 = 〈fα(Zα)〉 and Hα · 〈⋃ν<α Eα〉 have trivial

intersection. Clearly this implies (iii) and finishes our recursive construction.

Let f be the diagonal product of the family {fα : α < c}. We claim that f is

a monomorphism of A(X) to Tc. Indeed, take an arbitrary element x ∈ A(X)

distinct from the identity and let Cx be the cyclic subgroup of A(X) generated

by x. Take a homomorphism g of Cx to T such that g(x) �= 1. There exists α < c

such that (Cα, gα) = (Cx, g). Then (i) implies that fα(x) = gα(x) = g(x) �= 1,

so the element f(x) is distinct from the identity of the group Tc. This proves

our claim.

We consider the group G = f(A(X)) with the topology inherited from the

compact group Tc. Let pα be the projection of Tc to the αth factor T(α),

where α < c. Our definition of f implies that the equality pα ◦ f = fα holds for

each α < c. Since f is a monomorphism and ker fα is countable, the restriction

of each projection pα to G has countable kernel as well.
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To show that every countable subgroup, say, D of G is h-embedded, we

consider a homomorphism h : D → T. Take a countable subgroup C of G such

that f(C) = D and let g = h◦f . There exists α < c such that (C, g) = (Cα, gα).

Then, for every x ∈ C, we have the equalities

(h ◦ f)(x) = g(x) = gα(x) = fα(x) = (pα ◦ f)(x).

Since f is a monomorphism, we conclude that h and pα coincide on D = f(C).

Hence pα�G is a continuous character on G extending h. It follows from

Lemma 3.4 that every countable subgroup of G is closed.

Our next step is to show that G is dense in Tc. This is equivalent to the

density of the projection of G to every subproduct TA, where A is a finite

subset of the index set c. So let A ⊂ c be a finite non-empty set. Then

Y =
⋃
α∈A Yα is a countable subset of X , so we can take an element x ∈ X \Y .

It follows from condition (ii) of our construction that fα(x) ∈ Eα, for each

α ∈ A. Since the sets Eα ⊂ E with α ∈ A are pairwise disjoint, we see that

the coordinates {fα(x) : α ∈ A} of the element pA(f(x)) ∈ TA are pairwise

distinct and form a subset of E; here pA : Tc → TA is the projection. Notice

that the set E is independent and consists of elements of infinite order. Hence

the element pA(f(x)) generates a dense subgroup of TA (this follows, e.g., from

[34, Example 65]). Therefore pA(G) is dense in TA, as claimed.

Let us verify that dimG = 0. It follows from (iv) and our choice of the par-

tition E =
⋃
α<cEα that for every α < c, Gα = fα(A(X)) is a proper subgroup

of T. Hence the space Gα is zero-dimensional (all classic definitions of dimen-

sion coincide for separable metrizable spaces). Since G is a topological subgroup

of the product
∏
α<cGα of zero-dimensional groups, we see that indG = 0 or,

equivalently, G has a base of clopen sets. The group G being precompact, it

follows from [41, Corollary 3.4] that dimG = 0.

To show that every non-trivial quotient group of G is not separable it suffices,

by Lemma 3.2, to verify that the kernel of every non-trivial continuous character

of G is countable.

Let ϕ : G → T be a continuous homomorphism with |ϕ(G)| > 1. Then ϕ

extends to a continuous homomorphism ψ : Tc → T (see [16, Lemma 2.2]). By

Lemma 3.1, there exist pairwise distinct indices α1, . . . , αk ∈ c and non-zero

integers n1, . . . , nk such that

ψ(x) =
k∏
i=1

x(αi)
ni ,
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for each x ∈ Tc. We can assume that α1 < · · · < αk. Since pα ◦ f = fα for each

α ∈ c, the expression for ψ(x) can be rewritten as follows:

(2) ϕ(f(b)) = ψ(f(b)) =

k∏
i=1

fαi(b)
ni , for each b ∈ A(X).

Clearly the set Y =
⋃k
i=1 Yαi ⊂ X is countable.

Claim 2: The kernel of the homomorphism ϕ ◦ f is contained in 〈Y 〉.
Indeed, take an arbitrary element b ∈ A(X) \ 〈Y 〉. Let Z = X \ Y . Then

b = y + z, where y ∈ 〈Y 〉 and z ∈ 〈Z〉. Clearly z is distinct from the identity

of A(X). For simplicity, let α = αk. It follows from (2) that

(3) ϕ(f(b)) = fα(z)nk · fα(y)nk ·
k−1∏
i=1

fαi(y)ni ·
k−1∏
i=1

fαi(z)ni .

Since Z ⊂ Zα and fα�Zα is a monomorphism, we see that fα(z)nk �= 1.

Let us put

A =

〈
fα(Yα) ∪

k−1⋃
i=1

fαi(X)

〉
, B = 〈fα(Y \ Yα)〉, and C = 〈fα(Z)〉.

Since Y = Yα ∪ (Y \ Yα) and y ∈ 〈Y 〉, the element on the right hand side of

equality (3) is in C ·B ·A. Suppose for a contradiction that ϕ(f(b)) = 1. Then,

by (3), we have that 1 �= fα(z)nk ∈ C ∩ (B · A). Further, the group B · C is

algebraically generated by the set

fα(Y \ Yα) ∪ fα(X \ Y ) = fα(X \ Yα) = fα(Zα),

so condition (iii) of our construction implies that A ∩ (B · C) = {1}. Hence,

by (b) of Lemma 3.3, the equality (A ·B)∩C = B ∩C holds. Since Y \Yα and

X \Y are disjoint subsets of the independent set Zα, condition (ii) implies that

the groups B and C have trivial intersection. Hence the intersection (B ·A)∩C
is trivial. This contradiction shows that kernel of ϕ ◦ f is a subgroup of 〈Y 〉,
which proves Claim 2.

Since the set Y is countable, Claim 2 implies that | ker(ϕ ◦ f)| ≤ ω. We

already know that f is a monomorphism, so the kernel of ϕ is also countable.

Hence every non-trivial quotient of the group G = f(A(X)) is not separable,

according to the implication (b)⇒ (c) in Lemma 3.2.

We now give an answer to Problem 2.20.
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Corollary 3.6: There exist infinite R-factorizable groups without non-trivial

separable or metrizable quotients.

Proof. Since the group G in Theorem 3.5 is precompact, it is R-factorizable

according to [4, Corollary 8.1.17]. Every quotient of G is also precompact.

Notice that every precompact metrizable group is separable (this follows, e.g.,

from [4, Proposition 3.4.5]). Therefore the precompact group G does not have

non-trivial separable or metrizable quotients.

Our next aim is to show that every power of the group G in Theorem 3.5

does not have non-trivial separable quotients. The proof of this fact requires

several preliminary results.

Lemma 3.7: Let H be an abelian topological group, k ∈ N, and n1, . . . , nk

be integers, not all equal to zero, such that the highest common divisor of

n1, . . . , nk equals 1. Let also ϕ be a homomorphism of Hk to H defined by

ϕ(x1, . . . , xk) = n1x1 + · · · + nkxk, for each (x1, . . . , xk) ∈ Hk. Then the

homomorphism ϕ is open and surjective. In particular, the quotient group

Hk/N is isomorphic as a topological group to H , where N = kerϕ.

Proof. Clearly the homomorphism ϕ is continuous. By our assumption about

n1, . . . , nk, there exist integers m1, . . . ,mk such that m1n1 + · · · + mknk = 1.

Consider the homomorphism λ of H to Hk defined by λ(x) = (m1x, . . . ,mkx).

The continuity of λ is evident. Notice that ϕ ◦ λ = IdH , so ϕ is surjective.

Therefore it suffices to verify that ϕ is open.

Take an arbitrary open neighborhood U of the identity element in Hk. We

can assume that U = V ×· · ·×V , for some open neighborhood V of the identity

element in H (V is taken k times as a factor). Let M = max{|m1|, . . . , |mk|}
and choose an open symmetric neighborhood W of the identity in H such that

W + · · · +W︸ ︷︷ ︸
M times

⊂ V.

It follows from our choice of M and W that λ(W ) ⊂ U . Further, the equality

ϕ ◦ λ = IdH implies that

W = ϕ(λ(W )) ⊂ ϕ(U),

so the set ϕ(U) contains a non-empty open neighborhood of the identity. Hence

the homomorphism ϕ is open.
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The conclusion of the next lemma is only formally stronger than that of

Theorem 3.5.

Lemma 3.8: Let G ⊂ Tc be the group constructed in Theorem 3.5 and let H be

a quotient group of G. Then every countable subgroup of H is h-embedded and

closed in H , while every quotient group of H is either trivial or non-separable.

Proof. Since every quotient group of H is also a quotient of G, the second

part of the conclusion is immediate from Theorem 3.5. Therefore, according

to Lemma 3.4, it suffices to verify that every countable subgroup of H is h-

embedded.

If H is trivial, there is nothing to prove. Assume therefore that |H | > 1.

Denote by p an open continuous homomorphism of G onto H and let K be the

kernel of p. Clearly the group H is precompact and, hence, there is a non-trivial

continuous character χ on H . Since the kernel of p is contained in the kernel

of the continuous character χ ◦ p of G and each non-trivial character of G has

countable kernel, we conclude that the kernel of p is countable.

Let C be a countable subgroup of H and f a homomorphism of C to T. Then

D = p−1(C) is a countable subgroup of G and fD = f ◦p �D is a homomorphism

of D to T. Since D is h-embedded in G, fD admits an extension to a continuous

character f∗ on G. It follows from D = p−1(C) and the definition of fD and f∗

that ker p ⊂ ker fD ⊂ ker f∗. Therefore, by [4, Corollary 1.5.11], there exists a

continuous character g of H satisfying f∗ = g ◦ p. Then

g ◦ p �D = f∗ �D = fD = f ◦ p �D,

whence it follows that g extends f . Hence the group C = p(D) is h-embedded

in H .

In the following lemma we establish that one of the properties of the group G

constructed in Theorem 3.5 is finitely productive.

Lemma 3.9: Let H1, . . . , Hn be abelian topological groups such that for each

i ≤ n, all countable subgroups of Hi are h-embedded. Then all countable

subgroups of the group H = H1 × · · · ×Hn are also h-embedded.

Proof. Let C be a countable subgroup of H and f : C → T a homomorphism.

For every i ≤ n, let Ci = pi(C), where pi : H → Hi is the projection. Then C

is a subgroup of the countable group D = C1 × · · · × Cn. Since the group T is
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divisible, f extends to a homomorphism fD : D → T. Taking the restrictions

of fD to the factors, we can find homomorphisms fi : Ci → T, where i = 1, . . . , n

such that

fD(x1, . . . , xn) = f1(x1) · · · fn(xn)

for each (x1, . . . , xn) ∈ C1×· · ·×Cn. For every i ≤ n, there exists a continuous

character gi on Hi extending fi. We define a continuous character g on H by

g(y1, . . . , yn) = g1(y1) · · · gn(yn),

for each (y1, . . . , yn) ∈ H1 × · · · ×Hn. Then g extends both fD and f . So the

group C is h-embedded in H .

Let p : G → H be a continuous surjective homomorphism of topological

groups and τH be the topology of H . Denote by τpH the finest topology on H

such that the mapping p of G to G∗ = (H, τpH ) is continuous. It is clear that G∗

is a topological group, τH ⊂ τpH , and the homomorphism p : G→ G∗ is open. We

will say that τpH is the p-quotient topology on H . It follows that the groups G∗

and G/K are isomorphic as topological groups, where K is the kernel of p.

The proof of the following lemma is elementary, so we omit it.

Lemma 3.10: Let p : G → H , q : H → K and r : G → K be continuous sur-

jective homomorphisms of topological groups satisfying r = q ◦ p. Then the

r-quotient topology on K is finer than the q-quotient topology of K. If the

homomorphism p is open, then two topologies on K coincide.

The next lemma extends the conclusion of Lemma 3.8 to finite powers of the

group G.

Theorem 3.11: Let G ⊂ Tc be the group constructed in Theorem 3.5 and

k ≥ 1 be an integer. Then every quotient group of Gk is either trivial or

non-separable.

Proof. Let ϕ : Gk → H be an open continuous homomorphism onto a topolog-

ical group H with |H | > 1. It is clear that the group H is precompact and

abelian. Hence there exists a non-trivial continuous character χ on H . Then

χ∗ = χ ◦ ϕ is a non-trivial continuous character on the dense subgroup Gk

of (Tc)k. Let the group H∗ = χ∗(Gk) carry the χ∗-quotient topology. By

Lemma 3.10, H∗ is a continuous homomorphic image of H , so it suffices to

prove that H∗ is not separable.
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Denote by ψ an extension of χ∗ to a continuous character of (Tc)k. Then

there exist continuous characters ψ1, . . . , ψk on Tc such that

ψ(x1, . . . , xk) =
k∏
i=1

ψi(xi),

for all x1, . . . , xk ∈ Tc.

It follows from Lemma 3.1 that for every i ∈ {1, . . . , k}, one can find ordinals

αi,1 < αi,2 < · · · < αi,ni in c and integers mi,1,mi,2, . . . ,mi,ni such that

ψi(x) =

ni∏
j=1

x(αi,j)
mi,j , for each x ∈ Tc.

Some of the integers mi,1,mi,2, . . . ,mi,ni can be zeros. Therefore we can as-

sume that the sets Ai = {αi,1, αi,2, . . . , αi,ni} coincide for all i ≤ k. Let

A1 = A2 = · · · = Ak = A. In particular, ni = ni′ = n for all i, i′ ≤ k and, for

each j ≤ n, there exists an ordinal αj ∈c such that α1,j = α2,j = · · · = αk,j = αj ;

hence A = {α1, . . . , αn}. In other words, the columns of the rectangular k × n

matrix (αi,j) are constant. Hence, combining the expressions for the charac-

ters ψ and ψi, 1 ≤ i ≤ k, and changing the order of multiplication, we get the

following equality:

(4) ψ(x1, . . . , xk) =

n∏
j=1

k∏
i=1

xi(αj)
mi,j .

Furthermore, we can additionally assume that the set A ⊂ c is minimal by in-

clusion among those that admit a representation of ψ in the form (4). Therefore

k∑
i=1

|mi,j | > 0,

for each j ∈ {1, . . . , n}.

For every j ≤ n, denote by λj the continuous character on (Tc)k defined by

(5) λj(x1, . . . , xk) =

k∏
i=1

xi(αj)
mi,j ,

where x1, . . . , xk ∈ Tc. It follows from (4) and (5) that ψ = λ1 · · ·λn. For every

j ≤ n, the character λj can be represented in the form λ∗j ◦ (pαj)k, where pαj is

the projection of Tc to the factor T(αj) and λ∗j is the continuous character on

Tk(αj)
defined by

λ∗j (t1, . . . , tk) = t
m1,j

1 · · · tmk,j

k .
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We supply the subgroup Hj = pαj (G) of T with the qj-quotient topol-

ogy, where qj = pαj �G and 1 ≤ j ≤ n. Since the kernel of qj is count-

able, the group Hj is uncountable. By Lemma 3.8, every countable subgroup

of Hj is h-embedded. Let Mj be the maximal common divisor of the inte-

gers m1,j , . . . ,mk,j (we recall that at least one of these integers is distinct from

zero). For each i ≤ k, we put ni,j = mi,j/Mj and consider the character δj

on Tk defined by

δj(t1, . . . , tk) = t
n1,j

1 · · · tnk,j

k .

It is clear from the definition that λ∗j = δ
Mj

j . Since the maximal common divisor

of n1,j , . . . , nk,j is equal to 1, it follows from Lemma 3.7 that the homomorphism

δj : Hk
j → Hj is open and surjective. Notice that the group Hj is algebraically

a subgroup of T.

Let vj : T → T be the homomorphism defined by vj(t) = tMj , for each t ∈ T.

It follows from λ∗j = δ
Mj

j that λ∗j = vj ◦ δj . Clearly the kernel of vj is finite and

the restriction vj �Hj is continuous when considered as a homomorphism of Hj

to itself. Hence the group λ∗j (H
k
j ) = vj(Hj) is uncountable.

Hk
j

δj ��

λ∗
j

��

Hj

vj
����
��
��
��

Hj

Strictly speaking, one should replace δj, λ
∗
j and vj in the above diagram by

δj �Hk
j , λ∗j �Hk

j and vj �Hj , respectively.

We define a homomorphism

λ∗ : (T(α1))
k × · · · × (T(αn))

k → T(α1) × · · · × T(αn)

by

λ∗(y1, . . . , yn) = (λ∗1(y1), . . . , λ∗n(yn)).

In other words, λ∗ = λ∗1×· · ·×λ∗n. Since each groupHj is algebraically identified

with the subgroup pαj (G) of T we have that λ∗(Hk
1 ×· · ·×Hk

n) ⊂ H1×· · ·×Hn.

Further, the multiplication mapping P of Tn to T defined by

P (t1, . . . , tn) = t1 · · · tn
is a continuous character on Tn. It follows from the equality

ψ = λ1 · · ·λn = P ◦ (λ∗1 × · · · × λ∗n) ◦ (pkα1
× · · · × pkαn

)
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and our definition of λ∗ that

χ∗ = ψ �Gk = P ◦ λ∗ ◦ (pA)k �Gk,

where pA is the projection of Tc to TA. Let P ∗ be the restriction of P to the

(abstract) subgroup

S = λ∗(pA(G)k)

of Tn. We consider S with the topology inherited from H1 × · · · ×Hn.

Gk
χ∗

��

pkA
��

H∗ id �� T

(pA(G))k
λ∗

�� S

P∗

��

� � �� H1 × · · · ×Hn
id �� Tn

P

���������������

The natural isomorphic embeddings of the abstract groups H∗ to T and

H1 × · · · ×Hn to Tn in the above diagram are denoted by the same symbol id.

Our next step is to verify the following:

Claim 3: The kernel of the homomorphism P : H1×· · ·×Hn → T is countable,

where each groupHj is identified algebraically with the corresponding subgroup

pαj (G) of T.

Indeed, take an arbitrary element (y1, . . . , yn) ∈ H1 × · · · ×Hn and assume

that y1 · · · yn = 1. It follows from condition (iv) in the proof of Theorem 3.5

that for every j ≤ n, the element yj ∈ Hj = pαj (G) = fαj (A(X)) can be written

in the form yj = tj · zj , where tj ∈ 〈fαj (Yαj )〉 and zj ∈ 〈Eαj 〉. Therefore we

have the equality z1 · · · zn = t−1
1 · · · t−1

n ∈ 〈Y 〉, where

Y =

n⋃
j=1

fαj (Yαj ).

Since each set Yαj is countable, the group 〈Y 〉 is countable as well. Fur-

ther, since the set E ⊂ T is independent and the subsets Eα1 , . . . , Eαn of E

are pairwise disjoint, the products z1 · · · zn and z′1 · · · z′n are distinct provided

(z1, . . . , zn) and (z′1, . . . , z
′
n) are distinct elements of 〈E1〉 × · · · × 〈En〉. There-

fore it follows from |〈Y 〉| ≤ ω that there exist at most countably many n-

tuples (z1, . . . , zn) ∈ 〈E1〉 × · · · × 〈En〉 with z1 · · · zn ∈ 〈Y 〉. Finally, since the

group 〈Y 〉 is countable, we conclude that the kernel of P is countable. This

proves Claim 3.



360 A. G. LEIDERMAN, S. A. MORRIS AND M. G. TKACHENKO Isr. J. Math.

To finish the proof of the theorem we argue as follows. We know that for

every j ≤ n, all countable subgroups of Hj are h-embedded. By Lemma 3.9,

the countable subgroups of H1 × · · · × Hn are also h-embedded. Hence ev-

ery countable subgroup of H1 × · · · × Hn is closed (see Lemma 3.4), and the

same holds for its subgroup S. For every j ≤ n, let πj be the projection of

T(α1) × · · · × T(αn) to the factor T(αj). It follows from the definition of λ∗ that

πj ◦ λ∗ = λ∗j ◦ πkj . Therefore

πj(S) = πj(λ
∗(pA(G)k)) = λ∗j (H

k
j ) = vj(Hj)

and the latter group is uncountable. Hence |S| > ω. By Claim 3, the kernel of

the homomorphism P restricted to H1 × · · · ×Hn is countable. Therefore the

group H∗ = P ∗(S) is uncountable as well.

By Lemma 3.10, the χ∗-quotient topology of H∗, i.e., the original topology

of H∗, is finer than the P ∗-quotient topology of H∗ denoted by τ∗. Since all

countable subgroups of S are closed, it follows that the group (H∗, τ∗) has the

same property. Hence all countable subgroups of H∗ are closed as well. Since

the group H∗ is uncountable it cannot be separable.

We have established in the proof of Theorem 3.11 that all countable subgroups

of the group H∗ = χ∗(Gk) are closed provided that H∗ carries the χ∗-quotient

topology. Since χ∗ is a continuous character on Gk, this prompts the following

question:

Problem 3.12: Let G be the group constructed in Theorem 3.5 and H a quo-

tient group of Gk, for some integer k ≥ 1. Are all countable subgroups of H

h-embedded or closed?

Finally we extend Theorem 3.11 to arbitrary powers of the group G.

Theorem 3.13: Let G ⊂ Tc be the group constructed in Theorem 3.5 and

τ ≥ 1 be a cardinal. Then every quotient group of Gτ is either trivial or

non-separable.

Proof. We start as in the proof of Theorem 3.11. Let ϕ : Gτ → H be an open

continuous homomorphism onto a non-trivial Hausdorff topological group H .

Then the group H is precompact and abelian. Hence there exists a continuous

character χ on H distinct from the trivial one, so χ∗ = χ ◦ ϕ is a non-trivial

continuous character on Gτ . We consider the group H∗ = χ∗(Gτ ) endowed
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with the χ∗-quotient topology. Since H∗ is a continuous homomorphic image

of H , it suffices to verify that H∗ is not separable.

The group Gτ is a dense subgroup of the compact group (Tc)τ ∼= Tc×τ . Let ψ

be a continuous character on Tc×τ extending χ∗. By Lemma 3.1, the character ψ

depends on at most finitely many coordinates. In other words, we can find finite

non-empty sets A ⊂ c and B ⊂ τ and a continuous character ψ∗ on the group

TA×B ∼= (TA)B such that ψ = ψ∗ ◦ pA,B, where pA,B is the projection of Tc×τ

onto TA×B. Let the subgroup K = pA(G) of TA carry the quotient topology

with respect to the homomorphism pA �G, where pA : Tc → TA is the projection.

Let also ψ∗
B be the restriction of ψ∗ to KB = pA,B(Gτ ). Then

χ∗ = ψ∗
B ◦ pA,B �Gτ .

Further, we can represent the restriction p = pA,B�Gτ as the composition of

the projection πB : Gτ → GB and the homomorphism (pA)B : GB → KB, which

makes the following diagram commute:

GB

(pA)B ���
��

��
��

� Gτ
πB��

χ∗

���
��

��
��

�

p

��
KB

ψ∗
B �� H∗

Since the mapping p is open, all homomorphisms in the diagram are contin-

uous. Clearly f = ψ∗
B ◦ (pA)B is a continuous homomorphism of GB onto H∗.

Since χ∗ = f ◦πB, it follows from Lemma 3.10 that the χ∗-quotient topology on

H∗ is finer than the f -quotient topology on H∗, say, τf . Further, as the set B is

finite, we can apply Theorem 3.11 to the continuous homomorphism f : G→ H∗

and deduce that the group (H∗, τf ) is not separable. Therefore H∗ with the

χ∗-quotient topology is not separable either. This completes the proof.

Problem 3.14: Does there exist a precompact abelian groupG as in Theorem 3.5

which has one of the following additional properties:

(a) G is connected;

(b) G is Baire;

(c) G is reflexive?

Remark 3.15: We observe that Theorem 1.5 for Banach spaces suggests ques-

tions for topological groups. Let us define a topological group to be a Gσ-group

if it has a dense subgroup H which is the union of a strictly increasing sequence
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of closed subgroups. We might ask: Does every non-discrete Gσ-group have a

separable quotient group which is (i) non-trivial; (ii) infinite; (iii) metrizable;

(iv) infinite metrizable? We answer each of these questions in the negative in

Theorem 3.16.

Theorem 3.16: For every cardinal τ ≥ c, there exists a precompact topological

abelian group H with the following properties:

(a) w(H) = τ ;

(b) H =
⋃
n∈ωHn, whereH0 ⊂ H1 ⊂ H2 ⊂ · · · are proper closed subgroups

of H ;

(c) every quotient group of H is either trivial or non-separable.

Proof. Let τ be a cardinal with τ ≥ c and G the precompact abelian group

as in Theorem 3.5. Then G is a dense subgroup of Tc, so w(G) = c. Clearly

the group K = Gτ is precompact, abelian, has weight τ , and every non-trivial

quotient of K is not separable (see Theorem 3.13).

We denote by Π the group Kω endowed with the Tychonoff product topology.

For every n ∈ ω, let pn be the projection of Π to the nth factor K(n). Given an

element x ∈ Π, we denote by supp(x) the set {n ∈ ω : pn(x) �= e}, where e is

the identity element of K. We also put

H = {x ∈ Π : | supp(x)| < ω}.
It is clear that H is a dense subgroup of Π and

w(H) = w(Π) = w(K) = τ.

For every n ∈ ω, denote by Hn the subgroup of H which consists of all x ∈ Π

with supp(x) ⊂ {0, 1, . . . , n}. It is easy to see that Hn
∼= Kn+1 is closed in H ,

Hn ⊂ Hn+1 for each n ∈ ω, and H =
⋃
n∈ωHn.

Let us show that every non-trivial quotient of H is not separable. Consider

an open continuous homomorphism f : H → L onto a non-trivial topological

group L. Let N be the kernel of f and N the closure of N in Π. Denote

by π the quotient homomorphism of Π onto Π/N . Since N is dense in N , the

dense subgroup π(H) of Π/N is isomorphic as a topological group to L ∼= H/N

(see [4, Theorem 1.5.16]). The group Π is isomorphic as a topological group

to (Gτ )ω ∼= Gτ , so Theorem 3.13 implies that the non-trivial group Π/N is

not separable. Thus neither is the group L ∼= H/N which is isomorphic as a

topological group to the dense subgroup π(H) of Π/N .
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4. σ-compact groups, Lindelöf Σ-groups and pseudocompact groups

Here we give a positive answer to (i) and (ii) of Problem 2.9 for the wider

class of Lindelöf Σ-groups and then answer (iii) and (iv) of Problem 2.9 in the

negative. Recall that the class of Lindelöf Σ-groups contains all σ-compact

and all separable metrizable topological groups, and is closed with respect to

countable products, closed subgroups and continuous homomorphic images (see

[4, Section 5.3]).

Proposition 4.2 answers (i) and (ii) of Problem 2.9 in a stronger form. First

we present an important fact about Lindelöf Σ-groups (see [4, Lemma 5.3.24]).

Lemma 4.1: Let G be a Lindelöf Σ-group. Then

(a) for every closed normal subgroup N of type Gδ in G, the quotient group

G/N has a countable network;

(b) the family

{π−1(V ) :π is a continuous homomorphism of G

to a topological group K with a countable network,

V is open in K}
constitutes a base for G.

Proposition 4.2 (Separable quotient theorem for Lindelöf Σ-groups): Let G

be an infinite Lindelöf Σ-group. Then G has a quotient group which is infinite

and separable. Indeed, the topology of G is initial with respect to the family of

quotient homomorphisms onto infinite groups with a countable network.

Proof. It follows from (b) of Lemma 4.1 that the topology of G is initial with

respect to the family of quotient homomorphisms onto topological groups with

a countable network. Note that the identity of a topological group with a count-

able network is a Gδ-set (in fact, the singletons in every Hausdorff space with

a countable network are Gδ-sets). Hence (b) of Lemma 4.1 implies that every

neighborhood of the identity in G contains a closed normal subgroup of type Gδ

in G. Therefore, as G is infinite, there exists a closed normal subgroup N0 of G

of type Gδ such that G/N0 is infinite.

Finally, let N be the family of closed normal subgroups N of type Gδ in G

with N⊂N0. Then the family of quotient homomorphisms πN:G→G/N , with

N∈N , generates the topology ofG and each groupG/N is infinite. According to

(a) of Lemma 4.1, the group G/N has a countable network for each N ∈N .



364 A. G. LEIDERMAN, S. A. MORRIS AND M. G. TKACHENKO Isr. J. Math.

Since every σ-compact topological group is evidently a Lindelöf Σ-group, the

next result is immediate from Proposition 4.2.

Corollary 4.3 (Separable quotient theorem for σ-compact groups): Let G be

an infinite σ-compact topological group. Then G has a quotient group which

is infinite and separable. Indeed, the topology of G is initial with respect to

the family of quotient homomorphisms of the group onto infinite groups with a

countable network.

In Proposition 4.4 we give a negative answer to (iii) and (iv) of Problem 2.9 by

producing a countably infinite (hence, totally disconnected) σ-compact group

which has no non-trivial separable metrizable quotient group.

Proposition 4.4:There exists a countably infinite precompact abelian groupH

such that every quotient group of H is either trivial or non-metrizable.

Proof. For a given prime number p, denote by Cp the quasicyclic p-group

{z ∈ T : zp
n

= 1 for some n ∈ N}

considered as a subgroup of the group T. Clearly Cp is a countable infinite

abelian group. Let τ be the Bohr topology of Cp, i.e., the maximal precompact

topological group topology of Cp [4, Section 9.9]. We claim that the group

H = (Cp, τ)

is as required. Indeed, let N be a proper subgroup of H . Then there exists an

integer n ≥ 0 such that

N = {z ∈ Cp : zp
n

= 1}

(see [36, Chapter 4]), so N is finite and, hence, closed in H . Therefore the

quotient group H/N is infinite and, in fact, algebraically isomorphic to Cp. It

follows from [4, Proposition 9.9.9 c)] that the quotient topology of H/N and

the Bohr topology of the abstract group H/N coincide. We conclude, therefore,

that the groups H and H/N are isomorphic as topological groups. The group

H/N being infinite and precompact is not discrete. Further, according to [4,

Theorem 9.9.30], all compact subsets of the groups H and H/N are finite, so

the space H/N does not contain non-trivial convergent sequences. This implies

that H/N is not metrizable.
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We now answer Problem 2.11 in the affirmative. In fact, the argument in

Theorem 4.5 provides an alternative proof of Theorem 2.7 for compact groups

and complements it implying that the topology of an infinite compact group

is initial with respect to the family of continuous open homomorphisms onto

infinite compact metrizable groups.

Theorem 4.5 (Separable quotient theorem for pseudocompact groups): The

topology of every infinite pseudocompact topological group, G, is initial with

respect to the family of quotient homomorphisms onto infinite compact metriz-

able groups. In particular, G has a quotient group which is infinite separable

compact and metrizable.

Proof. The completion, �G, of the infinite pseudocompact topological group G

is a compact group that containsG as a dense topological subgroup. Hence �G is

a Lindelöf Σ-group and we can apply Proposition 4.2 to conclude that the topol-

ogy of �G is initial with respect to the family of quotient homomorphisms onto

infinite topological groups with a countable network or, equivalently, countable

base (every compact Hausdorff space with a countable network has a countable

base [3]).

Let p : �G→ K be an open continuous homomorphism of �G onto an infinite

topological group K with a countable base. In particular K is metrizable.

Denote by π the restriction of p to G. Since the group G is pseudocompact it

meets every non-empty Gδ-set in �G [10]. The points in K are Gδ-sets, and so

are the fibers p−1(y) in �G, for all y ∈ K. Therefore

G ∩ p−1(y) �= ∅

for each y ∈ K, which implies the equality

p(G) = K.

It is also clear that G∩ker p is dense in ker p, for ker p is a Gδ-set in �G. Hence

the restriction of p to G is an open continuous homomorphism of G onto K,

by [4, Theorem 1.5.16]. Since the group K is infinite, compact and metrizable,

this completes the proof.

Finally, we mention that Theorem 4.5 cannot be extended to precompact

topological groups, even in the weak form of the existence of non-trivial sepa-

rable quotients, as Theorem 3.5 shows.
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5. Conclusion

Throughout this paper many problems for Banach spaces, locally convex spaces

and topological groups have been listed. We have addressed the questions for

topological groups some of which are answered here completely, and the others

partially. For clarity we state the status of each problem in a table and for easy

reference purposes we include a table listing properties. All topological groups

in the left column of the first table are assumed to be infinite.

Groups

Non-

trivial

Separable

Quotient

Infinite

Separable

Quotient

Metrizable

Separable

Quotient

Infinite

Metrizable

Separable

Quotient

non-totally

disconnected

? ? ? ?

non-totally

disconnected

locally compact

? ? ? ?

reflexive ? ? ? ?

locally compact

abelian

Yes Yes Yes Yes

compact Yes Yes Yes Yes

non-discrete

σ-compact

Yes Yes No No

pseudocompact Yes Yes Yes Yes

non-totally

disconnected

proto-Lie

Yes Yes Yes Yes

σ-compact

pro-Lie

Yes Yes Yes Yes

abelian pro-Lie Yes Yes Yes Yes

σ-compact

locally compact

Yes Yes Yes Yes

almost

connected

locally compact

Yes Yes Yes Yes

precompact No No No No

R-factorizable No No No No
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Problem Answer Theorems

1.1 Partial 1.4, 1.5, 1.8, 1.9, 1.10, 1.11

1.2 Partial 1.3, 1.4, 1.5, 1.8, 1.9, 1.10, 1.11

1.6 Partial 1.5, 1.8, 1.9, 1.10, 1.11

1.7 Partial 1.5, 1.8, 1.9, 1.10, 1.11

1.12 No 1.13, 1.15, 1.16, 1.17, 1.18

1.21 Partial 1.28, 2.14, 2.15, 2.16, 2.17, 4.2, 4.5

1.22 Partial 1.28, 2.14, 2.16, 2.15, 2.17, 4.2, 4.5,

1.23 Partial 1.28, 2.14, 2.15, 2.16, 2.17, 4.5

1.24 Partial 1.28, 2.16, 2.15, 2.17, 4.5

1.25 Partial 1.5, 1.8, 1.9, 1.10, 1.11, 2.13

1.26 Yes 2.13

1.27 Partial 1.5, 1.8, 1.9, 1.10, 1.11

1.29 Partial 2.7, 2.13, 2.17, 2.19, 4.3

1.30 Yes 2.7, 4.3, 4.5

2.9(i)&(ii) Yes 4.3

2.9(iii)&(iv) No 4.4

2.10 No 3.5

2.11 Yes 4.5

2.20 No 3.6

3.12 ? —

3.14 ? —
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[30] S. A. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups,

London Mathematical Society Lecture Notes Series, Vol. 29, Cambridge University Press,

Cambridge, 1977.

[31] S. A. Morris and V. N. Obraztsov, Nondiscrete topological groups with many discrete

subgroups, Topology and its Applications 84 (1998), 105–120.

[32] J. Mujica, Separable quotients of Banach spaces, Revista Matemática de la Universidad
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