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ABSTRACT

In this paper we study some consequences of the author’s classification

of graph manifolds by their profinite fundamental groups. In particu-

lar we study commensurability, the behaviour of knots, and relation to

mapping classes. We prove that the exteriors of graph knots are dis-

tinguished among all 3-manifold groups by their profinite fundamental

groups. We also prove a strong conjugacy separability result for certain

mapping classes of surfaces.

Introduction

There has been a recent slew of papers dealing with the properties of 3-manifold

groups which may be detected via the finite quotients of the group. Examples

of major advances in this field include the detection of fibring for compact

3-manifolds by Jaikin-Zapirain [9]; the detection of the geometry of a closed

3-manifold by Wilton and Zalesskii [16]; the proof that each once-punctured

torus bundle may be distinguished from all other 3-manifolds by the set of

finite quotients of its fundamental group [3]; and the classification of those

Seifert fibre spaces whose fundamental groups have the same finite quotients by

the author [14].
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Instead of talking of sets of finite quotients of a group G, one generally packs

this information into the profinite completion Ĝ of G, defined as the inverse

limit of the system of finite groups

{G/N | N � G,G/N finite},
which is naturally a compact Hausdorff topological group. See [11, Section

3.2] for basic facts about profinite completions. We say that a 3-manifold

M is profinitely rigid if, for any 3-manifold N , a (topological) isomorphism

π̂1M ∼= π̂1N implies that N is homeomorphic to M . We may abuse this ter-

minology by saying instead that π1M is profinitely rigid—that is, a 3-manifold

group π1M is ‘profinitely rigid’ if, whenever any other 3-manifold group π1N

has the same profinite completion as π1M , the manifolds M and N must be

homeomorphic. Note that other authors use the term ‘profinitely rigid’ in a

broader sense to say that the profinite completion of a finitely generated resid-

ually finite group distinguishes it from all other finitely generated residually

finite groups. In this paper however we only speak of profinite rigidity in the

more restricted sense of rigidity within the class of 3-manifold groups.

In the paper [15] the author proved a result classifying graph manifolds by

the profinite completions of their fundamental groups. This classification (see

Theorem 1.6 of the present paper) takes the form of a finite list of numerical

conditions which are easy to check for a given pair of graph manifolds when

presented in a certain standard form. This present paper represents a contin-

uation of [15]. A certain familiarity with at least Section 10 of [15] will be

required. Initially we seek to shed light on the classification theorem by means

of examples. In Section 3 we prove the following corollary (Proposition 3.1).

Theorem A: Every closed orientable graph manifold has a finite-sheeted cover

which is profinitely rigid. Hence if two graph manifold groups have isomorphic

profinite completions, then they are commensurable.

Following this we will use the techniques from [15] to investigate two other

entities of great interest to low dimensional topologists—knots and mapping

classes. In Section 4 we will study those knot exteriors in S3 which are graph

manifolds and prove that they are all determined by the profinite completions of

their fundamental groups. Strikingly this result does not assume any condition

on the behaviour with respect to the peripheral structures of the groups of the

isomorphisms of profinite completions. The following appears as Theorem 4.1.
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Theorem B: Let MK be the exterior of a graph knot K. Let N be another

compact orientable 3-manifold and assume that π̂1MK
∼= π̂1N . Then

π1MK
∼= π1N.

In particular, ifK is prime andN is also a knot exterior thenN is homeomorphic

to MK .

Finally in Section 5 we use the behaviour of profinite completions of fibred

graph manifolds to deduce the following result (Theorem 5.5) concerning map-

ping classes. A ‘piecewise periodic but not periodic’ mapping class is one for

which the corresponding mapping torus is a graph manifold (but not a Seifert

fibre space).

Theorem C: If φ1 and φ2 are piecewise periodic but not periodic automor-

phisms of a closed surface group π1S which are not conjugate in Out(π1S),

then φ1 is not conjugate to φκ2 in Out(π̂1S) for any κ ∈ Ẑ×.

Conventions: In this paper, we will adopt the following conventions.

• Generally speaking, discrete groups will generally be given Roman let-

ters A,G,H, . . ..

• A finite graph of spaces will be denoted (X,M•) where X is a finite

graph and M• will be an edge or vertex space. Similarly for graphs of

groups.

• For us, a graph manifold will be required to be non-geometric, i.e., not

a single Seifert fibre space or a Sol-manifold, hence not a torus bundle.

All 3-manifolds will be orientable.

• For two elements g, h of a group, gh will denote h−1gh. That is, conju-

gation will be a right action.

• We will sometimes shorten the phrase ‘profinite completion of the fun-

damental group’ to ‘profinite fundamental group’. In such cases we

may use the term ‘discrete fundamental group’ to mean the fundamen-

tal group itself.

Acknowledgements. The author is grateful to Marc Lackenby for carefully

reading this paper, and to Michel Boileau for helpful and insightful conversa-

tions. The author was supported by the EPSRC.
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1. Results from previous papers

In this section we shall recall those results and notions from [15] and other papers

which will be required for our discussions. We begin with some information and

conventions concerning 2-orbifolds and Seifert fibre spaces.

Definition 1.1 (Definition 2.6 of [15]): Let O be an orientable 2-orbifold of

genus g with s+ 1 boundary components and r cone points, with fundamental

group

B = πorb
1 O = 〈a1, . . . , ar, e1, . . . , es, u1, v1, . . . , ug, vg | apii 〉

where the boundary components of O are represented by the conjugacy classes

of the elements e1, . . . , es together with

e0 = (a1 · · · are1 · · · es[u1, v1] · · · [ug, vg])−1.

Let μ ∈ Ẑ×. An exotic automorphism of O of type μ is an automorphism

ψ : B̂ → B̂ such that

ψ(ai) ∼ aμi and ψ(ei) ∼ eμi

for all i, where ∼ denotes conjugacy in B̂.

There is a corresponding notion for non-orientable orbifolds, but this will not

be relevant to this paper.

Proposition 1.2 (Proposition 10.5 of [15]): Let O be an orientable 2-orbifold

with boundary. Then O admits an exotic automorphism of type μ for any

μ ∈ Ẑ. Moreover, this automorphism may be induced by an automorphism of

the orbifold O̊ obtained from O by removing a small disc about each cone point.

Remark: In this proposition the word ‘induced’ is supposed to have the follow-

ing meaning. By excising a small disc around each cone point one obtains a

surface with boundary whose fundamental group has a free basis consisting of

the ai, ei, ui and vi. There is an exotic automorphism of this orbifold (i.e., an

automorphism of the free profinite group on these letters) sending each ai to a

conjugate of aμi and so on. On passing to the quotient by the relations apii = 1

this gives an exotic automorphism of the original orbifold. It is occasionally

necessary in applications to know that the automorphism is specified in this

way (that is, it lifts to a certain automorphism of a free profinite group).
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Theorem 1.3 (Theorem 2.7 of [15]; adaption of Theorems 5.8 and 5.9 of

[14]): Let M and N be Seifert fibre spaces whose boundary components are

∂M1, . . . , ∂Mn and ∂N1, . . . , ∂Nn respectively. Suppose Φ is an isomorphism of

group systems

Φ: (π̂1M ; π̂1∂M1, . . . , π̂1∂Mn) → (π̂1N ; π̂1∂N1, . . . , π̂1∂Nn)

(where we allow the replacement of peripheral subgroups by conjugates). Then:

• If M is a twisted I-bundle over the Klein bottle or a copy of S1×S1× I,

then M = N .

• Otherwise, the base orbifolds of M and N may be identified with the

same orbifold O such that Φ splits as an isomorphism of short exact

sequences

0 Ẑ π̂1M π̂orb
1 O 1

0 Ẑ π̂1N π̂orb
1 O 1

·λ Φ φ

where λ is some invertible element of Ẑ and φ is an exotic automorphism

of O of type μ.

Hence if N is a surface bundle over the circle with fibre a hyperbolic

surface Σ with periodic monodromy ψ, then M is also such a surface

bundle with monodromy ψk where k is congruent to κ = μ−1λ modulo

the order of ψ.

In this theorem, as elsewhere, we follow the convention that the short exact

sequence is the profinite completion of a short exact sequence for the discrete

fundamental group, so that the generator 1 ∈ Ẑ is the homotopy class of a

regular fibre rather than an arbitrary generator of Ẑ.

Definition 1.4: If M,N are as in the latter case of the above theorem, we say

that (M,N) is a Hempel pair of scale factor κ, where κ = μ−1λ. Note that

κ is only well-defined modulo the order of ψ, which may be taken to be the

lowest common multiple of the orders of the cone points of M . Note that a

Hempel pair of scale factor ±1 is a pair of homeomorphic Seifert fibre spaces.

Finally we state the results from [15] concerning graph manifolds. The reader

is warned that at certain points in this paper we will be needing details from

the proofs of these theorems as well as just the statements.



356 G. WILKES Isr. J. Math.

Theorem 1.5 (Theorem 6.2 of [15]): Let M and N be closed graph mani-

folds with respective JSJ decompositions (X,M•) and (Y,N•). Assume that

there is an isomorphism Φ: π̂1M → π̂1N . Then the isomorphism Φ induces an

isomorphism of JSJ decompositions in the following sense:

• there is a graph isomorphism ϕ : X → Y ;

• Φ restricts to an isomorphism from π̂1Mx to a conjugate of ̂π1Nϕ(x) for

every x ∈ V (X) ∪ E(X).

After performing an automorphism of π̂1N , one may eliminate the conjugacy

in the last point.

We will henceforth restrict attention to those graph manifolds whose vertex

spaces have orientable base orbifolds. Let us recall how one obtains numerical

invariants of a graph manifold M . Let the JSJ decomposition be (X,M•).
In this section we shall adopt the convention (from Serre) that each ‘geometric

edge’ of a finite graph is a pair {e, ē} of oriented edges, with ē being the ‘reverse’

of e. Fix presentations in the standard form [10, Section 5.3]

〈a1, . . . , ar, e1, . . . , es, u1, v1, . . . , ug, vg, h | apii hqi , h central 〉

for each Mx (x ∈ V (X)). This determines an ordered basis (h, ei) for the

fundamental group of each boundary torus of Mx, where the final boundary

component is described by

e0 = (a1 · · · are1 · · · es[u1, v1] · · · [ug, vg])−1.

Then with these bases the gluing map along an edge e (from the boundary

component of Md0(e) to that of Md1(e)) takes the form of a matrix (acting on

the left of a column vector) (
α(e) β(e)

γ(e) δ(e)

)
where γ(e), the intersection number of the fibre of d0(e) with that of d1(e),

is non-zero by the definition of a graph manifold. The number γ(e) is well-

defined up to a choice of orientation of the fibres of the two vertex groups.

This matrix has determinant −1 from the requirement that the graph manifold

be orientable. Once an orientation of the fibre and base are fixed, the number

δ(e) becomes independent of the choice of presentation, modulo γ(e). Changing

these orientations multiplies the matrix by −1. The precise values of the δ(e)
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and qi may be changed by arbitrary integer multiples of γ(e) and pi using ‘Dehn

twists’ of the form

ei �→ eih, ej �→ ejh
−1 or ei �→ eih

±1, aj �→ ajh
∓1.

These operations however leave the total slope

τ(x) =
∑

d0(e)=x

δ(e)

γ(e)
−
∑ qi

pi

of the vertex space invariant. Note also that these quantities are all invariant

under the conjugation action of the group on itself, i.e., it does not matter which

conjugate of each edge or vertex group we consider.

Theorem 1.6 (Theorem 10.9 of [15]): LetM and N be closed orientable graph

manifolds with JSJ decompositions (X,M•) and (Y,N•) respectively, in which

all Seifert fibred pieces have orientable base orbifold. Suppose M and N are

not homeomorphic.

(1) If X is not bipartite, then π1M is profinitely rigid.

(2) If X is bipartite, on two sets R and B, then π1M and π1N have isomor-

phic profinite completions if and only if, for some choices of orientations

on fibre subgroups, there is a graph isomorphism φ : X → Y and some

κ ∈ Ẑ× such that:

(a) For each edge e of X , γ(φ(e)) = γ(e).

(b) The total slope of every vertex space of M or N vanishes.

(c1) If d0(e) = r∈R then δ(φ(e)) = κδ(e)modulo γ(e), and (Mr, Nφ(r))

is a Hempel pair of scale factor κ.

(c2) If d0(e) = b ∈ B then δ(φ(e)) = κ−1δ(e) modulo γ(e), so that

(Mb, Nφ(b)) is a Hempel pair of scale factor κ−1.

Remark: In the present paper we shall only need to deal with manifolds whose

Seifert fibred pieces have orientable base orbifold, so we have cleaned up this

statement slightly from Theorem 10.9 of [15] which deals with the general case.

2. Examples

We now give some simple illustrative examples to demonstrate some of the

phenomena that may occur in consequence of Theorem 1.6. For some of the

examples we will also explicitly describe the isomorphisms of profinite comple-

tions.
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Example 2.1 (Changing a vertex space): Fix a positive integer p and let

0 < q < p/2 be coprime to p. Consider the following family of graph mani-

fold groups, whose vertex groups for different values of q are not isomorphic.

The manifolds themselves are schematically illustrated in Figure 1.

Gq =〈a1, a2, u, v, h, u′, v′, h′ | ap1hq, ap2h−q, e′ = h, h′ = e,

[h, a1], [h, a2], [h, u], [h, v], [h
′, u′], [h′, v′]〉

=〈a1, a2, u, v, h〉 ∗Z2 〈u′, v′, h′〉
where e = (a1a2[u, v])

−1 and e′ = [u′, v′]−1. One may readily check that the

conditions of Theorem 1.6 are satisfied so that all these groups as q varies have

isomorphic profinite completions. The isomorphism from Ĝ1 to Ĝq defined in

the theorem may be described as follows. Let κ = q + pρ be an element of Ẑ×

congruent to q modulo p. Let φ be an automorphism of the free profinite group

on the generators u′ and v′ such that

φ([u′, v′]) = [u′, v′]κ,

i.e., an exotic automorphism of type κ of a once-punctured torus, which exists

by Proposition 1.2. Then define Φ: Ĝ1 → Ĝq by sending u′ and v′ to their

images under φ, by mapping

h �→ hκ, a1 �→ a1h
−ρ, a2 �→ a2h

ρ

and by the ‘identity’ on all other generators. The reader may readily verify that

this gives a well-defined surjection of profinite groups. As argued in the proof

of the theorem it is in fact an isomorphism. This may also be seen from the

fact that the map so given is an isomorphism of graphs of profinite groups.

Example 2.2 (Changing a gluing map): Consider the two graph manifolds de-

picted schematically in Figure 2. Each is composed of two product Seifert fibre

spaces S × S1 and S′ × S1 glued together, where S and S′ are copies of a torus

with two open discs removed. One readily verifies that the conditions of Theo-

rem 1.6 hold, so the fundamental groups have isomorphic profinite completions.

As in the previous example, we will write down the isomorphism explicitly. The

fundamental group of the first manifold has presentation

G1 = 〈e1, u, v, h, e′1, u′, v′, h′, t |[h, e1], [h, u], [h, v], [h′, e′1], [h′, u′], [h′, v′]
e′1 = e1, h

′ = h−1e51, (e
′
0)
t = e−1

0 , (h′)t = he50〉
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Figure 1. A schematic depiction of the graph manifolds con-

sidered in Example 2.1. Here we represent each Seifert fibred

piece as a surface with some marked points, where the marked

points represent exceptional fibres and are labelled with the

Seifert invariants of that fibre. Each boundary subgroup T (′)

is given the ordered basis (h(′), e(′)). The top pair of Seifert

fibre spaces, glued together by the map on the horizontal ar-

row, gives the manifold whose fundamental group is G1. The

bottom pair yields Gq.

where e0 = (e1[u, v])
−1 and similarly for e′0. The second group has presentation

G2 = 〈e1, u, v, h, e′1, u′, v′, h′, t |[h, e1], [h, u], [h, v], [h′, e′1], [h′, u′], [h′, v′]
e′1= he−2

1 , h′= h−2e51, (e
′
0)
t= he20, (h

′)t= h2e50〉.

Let κ ∈ Ẑ× be congruent to 2 modulo 5, so that −2κ is congruent to 1 modulo 5.

Take λ, μ ∈ Ẑ such that

κ = 2 + 5λ, 1 = −2κ+ 5μ.
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Figure 2. The graph manifolds considered in Example 2.2.

Here each Seifert fibred piece is a product of a surface with

S1. Each boundary subgroup T
(′)
i is given an ordered basis

(h(′), e(′)i ). Please note that for clarity we have swapped the

roles of T0 and T1 in the lower diagram and omitted the maps

induced by Φ on T0 and T ′
0.

Let φ be an exotic automorphism of S′ of type κ, such that

φ(e′1) = (e′1)
κ, φ(e′0) = [(e′0)

κ]g

for some g in the subgroup of Ĝ2 generated by u′, v′ and e′1. Now define

Φ: Ĝ1 → Ĝ2 as follows:

h �→hκ, e1 �→ e1h
λ, u �→ u, v �→ v, t �→ g−1t,

h′ �→h′, e′1 �→ φ(e′1)(h
′)μ, u′ �→ φ(u′), v′ �→ φ(v′).
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The reader is left to verify that this map is well-defined. The only real issue is

whether the maps on the edge tori match up correctly. As indicated in Figure 2,

this amounts to checking a matrix equation(
−2 1

5 −2

)
=

(
κ λ

0 1

)(
−1 0

5 1

)(
1 μ

0 κ

)−1

=

(
−κ+ 5λ μ− 5λκ−1μ+ λκ−1

5 κ−1(1− 5μ)

)
on the ‘e1 edge’ (and a similar one on the ‘e0 edge’). These equations hold by

the definitions of λ and μ.

Example 2.3 (Fibred examples): Consider the surface S formed from a sphere

by removing 10 small discs spaced equidistantly along the equator. This surface

has an order 5 self-homeomorphism ϕ given by a rotation. The surface bundle

Mq = S �ϕq S1

with monodromy ϕq (for q coprime to 5) is a Seifert fibre space whose base

orbifold has genus 0, two boundary components and two exceptional fibres,

each of order 5 and with Seifert invariants (5, q) and (5,−q) in some order. The

surfaces S describe parallel circles on each boundary torus; choose one such

curve to give the second basis element of the fundamental group of the boundary.

Take two such Seifert fibre spaces Mq1 and Mq2 . Glue the ‘e0 boundary’ ofMq2

to the ‘e0 boundary’ of Mq1 by a map(
−1 0

1 1

)
(interpreted as a map from the boundary of Mq2 to the boundary of Mq1) and

glue the ‘e1 boundary’ of Mq2 to the ‘e1 boundary’ of Mq1 by a map(
−1 0

−1 1

)
.

These gluings give a graph manifold Lq1,q2 (see Figure 3). The choice of the

second column guarantees that the glued-up manifold is still fibred, since in

each case the fibre surfaces, each running exactly five times over the boundary

components in curves isotopic to e0 or e1, may be matched by this gluing

homeomorphism. By construction the total slope at each vertex space Mqi is
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zero. We may now apply Theorem 1.6 to conclude that the distinct fibred graph

manifolds L1,1 and L2,−2 have isomorphic profinite completions of fundamental

groups.

Figure 3. Schematic picture of the graph manifold Lq1,q2 con-

sidered in Example 2.3

Remark: The study of fibred manifolds is closely connected with the study of

mapping class groups. This will be discussed in Section 5.

3. Commensurability of graph manifolds

The following proposition answers a question asked of me by Michel Boileau at

a conference in Marseille. All other known pairs of 3-manifold groups with the

same profinite completions are commensurable—both Seifert fibred examples

and examples with Sol geometry. The graph manifolds given by Theorem 1.6

also fit in this pattern.

Proposition 3.1: Every closed orientable graph manifold has a finite-sheeted

cover with profinitely rigid fundamental group. Hence if two graph manifold

groups have isomorphic profinite completions, then they are commensurable.

Proof. The second statement follows easily from the first. For the first, we

will consider the following class of graph manifolds. We will say that a graph

manifold M with JSJ decomposition (X,M•) is right-angled if the following

conditions hold:
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(RA1) the total slope at every vertex space of M is zero,

(RA2) for every edge space the intersection number of the fibres of the adjacent

vertex spaces is 1, and

(RA3) every vertex space is of the form S×S1 for S an orientable surface with

genus at least 2 (that is, if all boundary components are filled in with

discs, the result has genus at least 2).

Conditions (RA1) and (RA2) together imply that, after performing suitable

Dehn twists, the gluing maps on every torus are simply ( 0 1
1 0 ). That is, the

fibres of adjacent pieces ‘are at right angles to each other’. A right-angled

graph manifold is thus determined completely by its underlying graph and the

first Betti numbers of the vertex groups. This graph, and the first Betti numbers

of the vertex spaces, are profinite invariants by Theorem 1.5. Therefore to show

that right-angled graph manifolds are indeed profinitely rigid it only remains to

show that the property of being right-angled is a profinite invariant.

Theorem 1.6.2(b) immediately shows that having all total slopes zero is a

profinite invariant. Theorem 1.6.2(a) shows that property (RA2) is preserved

by profinite completions. Finally (RA3) is a profinite invariant by Theorems 1.3

and 1.5. Hence right-angled graph manifolds are indeed profinitely rigid.

Now consider a closed orientable graph manifold M . If the total slope of

some vertex is non-zero then we have rigidity by Theorem 1.6, so we will ignore

this case for the rest of the proof. Also notice that the vanishing of total slopes

is essentially equivalent to the vanishing of Euler numbers of the Seifert fibre

spaces obtained by filling each boundary torus of a Seifert fibred piece by a

solid torus with meridian running along the fibre of the adjacent piece; so this

condition is preserved by taking finite-sheeted covers of M . We will show that

every graph manifold with zero total slope at each vertex has a finite-sheeted

cover which is right-angled.

First pass to a suitable index 1 or 2 cover to eliminate all pieces which are

homeomorphic to a twisted I-bundle over a Klein bottle (in the terminology

of [15], the ‘minor’ pieces). The base orbifold of every other Seifert fibre space

appearing in the graph manifold has a finite cover which is a surface S of genus

at least two; hence every Seifert fibred piece has a finite cover of the form S×S1.

The JSJ decomposition is efficient in the profinite topology (Theorem A of [16])

so some finite-sheeted cover of the graph manifold induces such a cover on every

Seifert-fibred piece (it may be necessary to pass to a deeper cover on each vertex

space than the one specified—but this is still of the required form S × S1).
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We must now aim to satisfy the condition on intersection numbers. Consider

some edge group Te = Z2. The fibres of the adjacent vertex groups are primitive

elements generating an index γ subgroup of Te, so there is a quotient map

Te � Z/γZ

sending both fibres to zero. The fibres therefore lift to the corresponding de-

gree γ cover of the torus, and the intersection number of any choice of such lifts

is 1. So if we can find a finite-sheeted cover of the graph manifold inducing this

precise cover of each boundary torus, we are done.

For each vertex space Mv we may, as previously noted, fill in each boundary

torus Te by gluing in a solid torus whose meridian is the fibre of the adjacent

piece. This gives a Seifert fibre space whose base orbifold is the base orbifold

ofMv with each boundary component collapsed and replaced by a cone point of

order γ(e), the intersection number of the two fibres. The fundamental group

of this orbifold is residually finite, so there is a finite quotient into which all the

isotropy groups of cone points inject. That is, we have a quotient Gv � Qv such

that the map on each boundary subgroup Te is precisely the map Te � Z/γ(e)Z

discussed above.

We may now piece all these quotient groups together into a quotient graph

of groups

(X,G•) � (X,Q•)

where each Qv is as above and each edge group Qe is a copy of Z/γ(e)Z. This is

a graph of finite groups, hence is residually finite (see, for example, [12], Section

II.2.6, Proposition 11). So there is some finite quotient into which all the finite

groups Qx inject. The corresponding finite-sheeted cover of the graph manifold

is the required rigid cover.

4. Behaviour of knot complements

A graph knot is a knot in S3 whose exterior is a graph manifold. In this

section we will prove the following theorem.

Theorem 4.1: Let MK be the exterior of a graph knot K. Let N be an-

other compact orientable 3-manifold and assume that π̂1MK
∼= π̂1N . Then

π1MK
∼= π1N . In particular, if K is prime and N is also a knot exterior then N

is homeomorphic to MK .
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While the theorems of [15] were stated for closed manifolds, for most of the

paper the assumption that the boundary was empty was not relevant. The

arguments prior to Section 10 of [15] were based on the existence and prop-

erties of a JSJ decomposition along tori. This structure, and its properties,

holds just as well for manifolds with toroidal boundary. In particular for graph

knot exteriors we find that an isomorphism of profinite fundamental groups

still induces an isomorphism of JSJ graphs and isomorphisms of the profinite

fundamental groups of each vertex space of the JSJ decomposition. It is not

necessarily true that any such isomorphism preserves the fundamental group

of the boundary component (even up to conjugacy). Indeed this is not even

true for the discrete fundamental group. However, we shall see that the only

ambiguities in determining the manifold from its profinite fundamental group

come from ambiguities in the discrete fundamental group.

Before proving the theorem we will need to discuss in more detail the Seifert

fibre spaces arising in the JSJ decomposition of a graph knot exterior. State-

ments made in this discussion will be used without explicit reference in the

following proofs.

Since a loop in the JSJ graph would imply the existence of a non-trivial

element of H1(MK ;Z) vanishing on the boundary component of MK , which is

impossible by standard properties of knots, the JSJ graph is a rooted tree with

root given by the single boundary component. It follows from Section 7 and

Corollary 9.3 of [5] that the only possible vertex spaces are those described in the

list below. A paraphrase of these results would be that all graph knots are built

up from torus knots by the operations of cabling and connected-summation.

See also Proposition 3.2 of [4]. Note that there are additional possibilities when

considering exteriors of graph links. We do not consider this issue here.

Torus knot exteriors. The exterior Ep,q of a (p, q)-torus knot, for |p|, |q| ≥ 2.

This is a Seifert fibre space with two exceptional fibres of orders p and q. Since p

and q are coprime there exist p̄ and q̄ such that p̄p+ q̄q = 1. Then a presentation

for the fundamental group is

〈a, b, h | h central, aphq̄, bqhp̄〉
where h is the homotopy class of a regular fibre and ab is a meridian curve of

the knot. We remark that replacing q̄ and p̄ by any integers coprime to p and q

respectively does not change this group up to isomorphism.
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The profinite completion of this group has centre Ẑ generated by h, and the

quotient by this centre is Z/p�Z/q, where � denotes the free profinite product.

By the techniques of [14] any Seifert fibre space group with the same profinite

completion has the same base orbifold (a disc with two cone points of orders p

and q), and will therefore have the same discrete fundamental group by the

above remark. It will also have only one boundary component. See also [7,

Section 4].

Theorem 1.3 implies that the Seifert fibre spaces with the same profinite

fundamental group as Ep,q preserving peripheral structures are precisely those

with the Seifert invariants q̄ and p̄ replaced by kq̄ and kp̄ for any k coprime

to pq. Note that the requirement p̄p+ q̄q = 1 additionally shows that, for k not

congruent to 1 modulo pq, this Seifert fibre space is not a knot exterior.

If a torus knot exterior arises as a JSJ piece of a graph knot exterior then

this piece must of course be a leaf of the JSJ tree. As the other possibilities in

the list will show, the converse also holds: any leaf (except the root) is a torus

knot exterior.

Products. Pieces of the form S×S1, where S is a sphere with at least k + 1 ≥ 3

open discs removed. The only Seifert fibre spaces with the same profinite fun-

damental group as S × S1 also have the same discrete fundamental group—see

Theorem 5.5 of [14]—and are therefore also of the form F×S1 for some surface F

with

π1F ∼= π1S.

Note that if F is orientable then either F = S or F has at most two fewer

boundary components than S.

The presence of such a piece in the JSJ decomposition of a graph knot exterior

represents the procedure of taking the connected sum of several graph knots.

Note that under this operation, the meridian of each summand becomes a fibre

of the product piece. Such a piece is either of valence k + 1 in the JSJ graph,

or k if it happens to be the root piece.

Cable spaces. A cable space Cs,t of type (s, t), for |s| ≥ 2, consists of the space

formed from a fibred solid torus T with Seifert invariants (s, t) by removing

a neighbourhood of a regular fibre. Equivalently this is the orientable Seifert

fibre space with base orbifold an annulus with a single cone point of Seifert

invariants (s, t) where s is coprime to t. A presentation for the fundamental
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group is

π1Cs,t = 〈c, e, j | j central, csjt〉
where the regular fibre is j and the boundary components are given by the

conjugacy classes of the subgroups 〈j, e〉 and 〈j, (ce)−1〉. Note also that, if the

boundary component of T is represented in π1Cs,t by 〈j, e〉, then the boundary

of a meridian disc of T is given by m = jte−s.
Notice that these groups π1Cs,t as t varies are abstractly isomorphic to each

other, and that such isomorphisms can be chosen to fix one (but not both)

boundary components. Theorem 1.3 shows that the profinite fundamental

groups of Cs,t as t varies are isomorphic while preserving all of the given pe-

ripheral structure.

Furthermore (the proof of) Theorem 5.5 of [14] shows that the only orientable

Seifert fibre spaces with the same profinite fundamental group (ignoring the

peripheral structure) as a cable space have orientable base orbifolds with fun-

damental group Z ∗ Z/s. There is only one such orbifold, so the Seifert fibre

space in question is again a cable space (with the same invariant s).

The presence of a cable space piece in the JSJ decomposition of a graph knot

exterior represents the cabling operation on knots. The corresponding vertex

of the JSJ graph has valence two, or one if it happens to be the root. Note

that in this case the meridian curve of the initial knot becomes the element m

given above (i.e., the meridian curve of T ). A longitude of the initial knot will

therefore be given by l = j s̄et̄ for some integers s̄, t̄ such that ss̄+ tt̄ = 1. The

ambiguity in the choice of these integers reflects the ambiguity in the choice of

longitude.

Lemma 4.2: Let K be a graph knot with exteriorMK . Let (X,M•) be the JSJ
decomposition of MK , where X is viewed as a rooted tree. Let x be a leaf of X

that is not the root. Then the total slope at x is non-zero.

Proof. Since x is a leaf, the corresponding manifoldMx is the exterior of a (p, q)

torus knot for some coprime integers p and q. As above choose a presentation

π1Mx = 〈a, b, h | h central, aphq̄, bqhp̄〉

where p̄p+ q̄q = 1 and the meridian of the torus knot is ab. Let y be the unique

vertex of X adjacent to x. There are two cases to consider: whether My is a

cable space or a product.
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Suppose first thatMy is a product. Then by the discussions above the merid-

ian ab of the torus knot is isotopic to the fibre j of the product. Thus the gluing

matrix along the edge joining x and y, oriented from x to y, has the form(
α β

γ δ

)
=

(
α 1

1 0

)
.

Hence the total slope at x is

τ(x) = 0− q̄

p
− p̄

q
= − 1

pq
�= 0.

Next we consider the case whenMy is an (s, t)-cable space whose fundamental

group has presentation

π1Cs,t = 〈c, e, j | j central, csjt〉
where the regular fibre is j and the boundary components are given by the con-

jugacy classes of the subgroups 〈j, e〉 and 〈j, (ce)−1〉. Without loss of generality

let the boundary component glued to Mx be 〈j, e〉. As discussed above the

meridian ab of the torus knot is given by ab = jte−s and the fibre h—which is

a longitude of the torus knot—is given by h = j s̄et̄ for some integers s̄, t̄ such

that ss̄+ tt̄ = 1.

Thus the gluing matrix along the edge joining x and y, again oriented from x

to y, has the form (
α β

γ δ

)
=

(
s̄ t

t̄ −s

)
.

And the vanishing of the total slope would imply

0 = pqt̄τ(x) = pq(−s)− t̄(q̄q + p̄p) = −pqs− t̄

and hence s would divide t̄, so s = 1 giving a contradiction. So the total slope

is non-zero as required.

Proof of Theorem 4.1. Let (X,M•) and (Y,N•) be the JSJ decompositions

of MK and N respectively. Let G = π1MK , G• = π1M•, H = π1N and

H• = π1N•. Let Φ: Ĝ → Ĥ be an isomorphism. By Theorem 1.5 and Theo-

rem 7.1 of [15] (whose proofs do not rely on the manifolds being closed) we find

that N is a graph manifold and, possibly after post-composing Φ with some au-

tomorphism of Ĥ , there is a graph isomorphism φ : X → Y such that Φ restricts

to an isomorphism Ĝx ∼= Ĥφ(x) for each x ∈ X . By the discussions above, this

implies that Gx and Hφ(x) are abstractly isomorphic.
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Now X is a rooted tree with root r distinguished by the single boundary

component of MK . For standard cohomological reasons (for example, Corol-

lary 4.2 of [2]) the manifold N cannot be closed. We claim that N has exactly

one boundary component, located in the piece Nφ(r). We do not claim—indeed

it may not be true even for isomorphisms of discrete fundamental groups—that

this boundary component ∂N satisfies

∂̂N = Φ( ̂π1(∂MK)),

even up to conjugacy. However, its position in the JSJ decomposition is fixed

because of the following argument. Here a ‘free boundary component’ of a

JSJ piece of a 3-manifold will mean a boundary torus not glued to any JSJ

piece—that is, those boundary components which survive in the boundary of

the ambient manifold.

Every Seifert fibre space with fundamental group isomorphic to that of a torus

knot exterior has exactly one boundary component—and every such piece of N

has valence 1 in Y because of the isomorphism Φ, hence has no free boundary

components. Similarly every Seifert fibre space with fundamental group iso-

morphic to that of a cable space has two boundary components, and all such

pieces Ny have valence 2 in Y unless y = φ(r), when there is one free boundary

component ∂N . Comparing X and Y , every piece Ny with fundamental group

isomorphic to Fk × Z has valence k + 1 in Y unless y = φ(r), when it has va-

lence r. Now any orientable Seifert fibre space with fundamental group Fk ×Z

has either k + 1 boundary components or has strictly fewer than k—hence all

these pieces have no free boundary components except if y = φ(r) when it has

exactly one. So we see that N may have at most one boundary component, and

it is located in the piece Nφ(r).

Now consider the isomorphisms Φx : Ĝx → Ĥφ(x). For x �= r, the fact that Φ

preserves the JSJ decomposition implies that the peripheral structure is pre-

served by Φx. So by Theorem 1.3 the isomorphism Φx determines constants

λx, μx ∈ Ẑ× such that λx gives the map from the fibre subgroup of Mx to the

fibre subgroup of Nφ(x) and the map on base orbifolds is an exotic isomorphism

of type μx. Analysing the gluing maps in M and N as in the proof of The-

orem 1.6 we find that if x′ is adjacent to x (and neither is the root) we have

λx = μx′ and μx = λx′ , perhaps up to choosing appropriate orientations on

fibre subgroups to eliminate minus signs. Furthermore the total slopes of Mx

and Nφ(x) are related by multiplication by λx/μx. (Strictly speaking we have
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not defined multiplication of an element of Q by an element of Ẑ; we really

mean that after clearing denominators by an integer n ∈ Z we have

nτ(φ(x)) = λxμ
−1
x τ(x).

Alternatively one can consider the ring obtained from Ẑ by inverting all the

elements of Z.)

However the total slope τ(x) of any pieceMx which is a torus knot exterior is

non-zero by Lemma 4.2. So the total slope of Nφ(x) is a rational number equal

to λx/μx times a non-zero rational number. This implies that λx = μx (up to

changes in orientations) using Lemma 2.2 of [15]. Every connected component

of X � {r} contains a leaf of X , hence has a vertex space which is a torus

knot exterior. It follows that λ• and μ• are constant on connected components

of X � {r}.
Now on the root pieces ofM and N , the fibre subgroup is the unique maximal

central subgroup of the relevant profinite fundamental group by Theorem 5.5

of [14] and so is preserved by Φr. Let the map on fibre subgroups be multipli-

cation by λr (as usual, identifying this fibre subgroup with Ẑ via a generator in

the discrete fundamental group). Again, examining the gluing maps along the

tori gluing r to other vertices and using the same analysis as in Theorem 1.6 we

find that if x is adjacent to r then ±μx = λr . Therefore we find that λ• and μ•
are constants over all of X (up to reversing all the orientations on components

of X � {r} to fix the signs).

By Theorem 1.3, the fact that λx/μx = 1 (together with the fact that away

from the root all boundary tori of JSJ pieces are edge groups in the JSJ decom-

position, hence are preserved by Φ) implies that Mx and Nφ(x) are homeomor-

phic for x �= r.

Now, the fundamental group of the graph manifold N is determined up to

isomorphism by the following data: the JSJ graph; the isomorphism types

of group pairs given by each vertex group and its adjacent edge groups; the

intersection numbers γ(e) of adjacent fibres, for each edge e of the JSJ graph;

the invariants δ(e) modulo γ(e); and the total slope of each vertex space that

is not the root. These allow us to reconstruct the total group uniquely—as

explained in the preliminaries, the indeterminacy of δ(e) modulo γ(e) may be

resolved using Dehn twists given that the total slope is fixed. For the root one

may use the free boundary component for Dehn twists, hence no sort of total

slope condition is required.
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Now the analysis in Theorem 10.1 of [15] shows that the fact that λx/μx is

always equal to 1 fixes all of these data for N to be equal to those for M . Hence

the manifolds have the same fundamental group.

In the case when K is prime (that is, the root piece is a cable space) and

N is also a knot exterior, then the fundamental group determines the homeo-

morphism type and final statement of the theorem also follows. See Section 7

and Corollary 9.3 of [5] for the proof of this for graph knots. The more general

result is [6, Corollary 2.1], which states the stronger result that the fundamental

group determines the knot in S3.

Remark: We comment that the properties deriving from the fact that MK was

a knot exterior were crucial to the rigidity in this theorem. In particular, the

fact that every leaf of the JSJ tree had non-zero total slope provides strong

rigidity to all complements of the root piece, leaving little flexibility in what re-

mained. If one had some complement of the root piece which was not profinitely

rigid (relative to the boundary component joining it to the root) one can easily

extend this to further non-rigid examples. The free boundary component in

the root means that results such as Theorem 1.3 which forces all the boundary

components of the root to behave in roughly the same way simply do not ap-

ply. Possibly one could impose extra constraints on the boundary to extend the

analysis of Theorem 1.6. However, a large part of the interest of Theorem 4.1

is that no such boundary condition is needed.

5. Relation to mapping class groups

In this section, we will only discuss closed orientable manifolds, to avoid worries

on the boundary. We will view a fibred 3-manifold (M, ζ) as a 3-manifold M

equipped with a choice of homomorphism ζ : π1M � Z with finitely generated

kernel π1S, where S is a closed orientable surface. By Stallings’ theorem on

fibred 3-manifolds [13, Theorem 2], this is equivalent to the topological defini-

tion. For such a fibred manifold, π1M has many expressions as a semidirect

product π1S �φ Z each given by a section of ζ. The different maps φ differ

by composition with an inner automorphism of π1S, hence give a well-defined

element of Out(π1S). If we have two automorphisms φ1 and φ2 of π1S, these

are conjugate in Aut(π1S) by some automorphism ψ if and only if there is an
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isomorphism of semidirect products

(ψ, id) : π1S �φ1 Z → π1S �φ2 Z.

Allowing for a change in section, we find that φ1 and φ2 are conjugate in

Out(π1S) if and only if there is a commuting diagram

π1M1 Z

π1M2 Z

Ψ

ζ1

id

ζ2

where (M1, ζ1) and (M2, ζ2) are the fibred manifolds corresponding to φ1 and φ2.

All the above equivalences still hold when one replaces all manifold groups

with their profinite completions and Aut(π1S) with Aut(π̂1S). There is a canon-

ical injection

Aut(π1S) ↪→ Aut(π̂1S)

and we will abuse notation by identifying an automorphism of π1S with the

induced automorphism of the profinite completion. As was noted by Boileau

and Friedl [1, Corollary 3.6], Theorem 5.2 of [14] implies that the canonical map

Out(π1S) → Out(π̂1S)

is also an injection.

Thus related to the question of whether two fibred manifolds can have iso-

morphic profinite fundamental groups we have a question concerning automor-

phisms of surface groups.

Question 5.1: Do there exist automorphisms φ1, φ2 of a surface group π1S

which are conjugate in Out(π̂1S) but not in Out(π1S)?

When S is a once-punctured torus, this question has been proven to have a

negative answer by Bridson, Reid and Wilton [3, Theorem A].

While a positive answer to Question 5.1 would give examples of fibred mani-

fold groups with isomorphic profinite completions, the converse does not always

hold; one could conceivably have profinite isomorphisms of the manifold groups

which do not in any sense preserve the fibrations. For instance, Example 2.3

above does not give a positive solution to Question 5.1; as we will see below, no

other graph manifold does either. Let us make this precise.
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Definition 5.2: Let (M, ζM ) and (N, ζN ) be fibred graph manifolds. Suppose

Ψ: π̂1M → π̂1N

is an isomorphism. We say that Ψ weakly preserves the fibration if there

is a commuting diagram

π̂1M Ẑ

π̂1N Ẑ

Ψ

ζ̂M

·κ
ζ̂N

for some κ ∈ Ẑ×. We say that Ψ strongly preserves the fibration if there

exists such a diagram with, additionally,

κ = +1.

Relating this definition to the discussion above, we see that strong fibre preser-

vation yields conjugacy in Out(π̂1S). Weak fibre preservation says that φ1 is

conjugate to φκ2 in Out(π̂1S).

Finite order automorphisms give rise to Seifert fibre spaces of geometry

H2 × R. Hempel’s original paper giving examples of Seifert fibre spaces which

are not profinitely rigid do not give an explicit isomorphism of profinite groups,

so do not say anything about mapping classes. The isomorphisms Ψ constructed

in [14] preserve the fibration weakly. For suitable choices of sections, the map-

ping classes involved are φk and φ for some k which is coprime to the order

of φ. In terms of mapping classes, the weak fibre preservation in this case

then says that φk is conjugate to φκ in Out(π1S), for κ ∈ Ẑ× such that κ is

congruent to k modulo the order of φ. This is not exactly surprising, since in

fact these automorphisms are equal. Indeed this gives yet another way to see

that the corresponding Seifert fibre space groups must have isomorphic profinite

completions.

We can however say more. The mapping classes φk and φ are genuinely

conjugate in Out(π̂1S)—that is, there exists an isomorphism which strongly

preserves the fibration. The isomorphisms in [14] do not do this, but armed

with the exotic automorphisms of surface groups from Proposition 1.2 we can

build new isomorphisms. The case with non-empty boundary was covered by

Theorem 10.7 of [15] as the focus was then on constructing graph manifolds.

We now deal with the case of closed Seifert fibre spaces.
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Theorem 5.3: Let S be a closed hyperbolic surface and let ϕ be a periodic

self-homeomorphism of S. Let k be coprime to the order of ϕ. Let (M, ζ) be the

surface bundle with fibre S and monodromy ϕ and let (M ′, ζ′) be the surface

bundle with fibre S and monodromy ϕk. Then there is an isomorphism

Ψ: π̂1M → π̂1M ′

which strongly preserves the fibration.

Proof. We may choose presentations for these two Seifert fibre spaces in the

standard form. Note that since M is fibred over the circle, the base orbifold

is orientable and the geometry is H2 × R. Given ζ, there is a presentation of

the form

π1M = 〈a1, . . . , ar, u1, v1, . . . , ug, vg, h |
h ∈ Z(π1M), apii h

qi , a1 . . . ar[u1, v1] . . . [ug, vg] = hb〉
where b = −∑ qi/pi since the Euler number vanishes, and where the map ζ is

given by

h �→
∏
j

pj , ai �→ −qi
∏
j �=i

pj

and by sending ui, vi to zero. Similarly we have

π1M = 〈a1, . . . , ar, u1, v1, . . . , ug, vg, h |
h ∈ Z(π1M), apii h

q′i , a1 . . . ar[u1, v1] . . . [ug, vg] = hb
′〉

where

b′ = −
∑ q′i

pi
.

Again the map ζ′ is given by

h �→
∏
j

pj, ai �→ −q′i
∏
j �=i

pj .

Note that by construction we have qi ≡ κq′i modulo pi for every i, for κ ∈ Ẑ×

congruent to k modulo the order of ϕ. See Proposition 5.1 of [8] for the trans-

lation of data from surface bundles to Seifert invariants. Let ρi ∈ Ẑ be such

that qi = κq′i + ρipi. Now by Proposition 1.2 there is an automorphism ψ of

the free group on the generators {ai, ui, vi} which sends each ai to a conjugate

of aκi , sends every other generator to a conjugate of a power of itself, and sends

a1 . . . ar[u1, v1] . . . [ug, vg] �→ (a1 . . . ar[u1, v1] . . . [ug, vg])
κ
.
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Now define Ψ: π̂1M → π̂1M by

h �→ h, ai �→ ψ(ai)h
−ρi , ui �→ ψ(ui), vi �→ ψ(vi).

The reader may readily check that this map Ψ is a well-defined isomorphism of

profinite groups and that ζ̂ = ζ̂′Ψ as required.

Definition 5.4: A piecewise periodic self-diffeomorphism of a surface is one

for which the corresponding fibred manifold 3-manifold is a graph manifold or

Seifert fibre space. We abuse this terminology by also using it for the induced

automorphism of the fundamental group.

Remark: Those monodromies giving rise to Seifert fibre spaces are of course

those which are genuinely periodic. The terminology ‘piecewise periodic’ is

supposed to reflect the idea that there is a decomposition of the surface along

simple closed curves, fixed by the monodromy, so that the restriction of the

self-diffeomorphism to each complementary subsurface is isotopic to a periodic

one. These isotopies will not in general extend across all these simple closed

curves; if one can choose isotopies which do, then the self-diffeomorphism is

periodic.

Theorem 5.5: If M and N are non-homeomorphic closed fibred graph mani-

folds, and Ψ: π̂1M → π̂1N is any isomorphism, then Ψ does not preserve any

fibrations of M and N , even weakly. Hence if φ1 and φ2 are automorphisms of

a closed surface group π1S which are piecewise periodic but not periodic, and

which are not conjugate in Out(π1S), then φ1 is not conjugate to any power

of φ2 in Out(π̂1S).

Proof. For suppose (M, ζM ) and (N, ζN ) are fibred graph manifolds and Ψ is an

isomorphism of the profinite completions of their fundamental groups weakly

preserving the fibration. Suppose M and N are not homeomorphic. Let the

JSJ decompositions be (X,M•) and (Y,N•) and denote the regular fibre of

a vertex group π1Mx or π1Nx by hx. It follows from [5, Theorem 4.2] that

any fibre surface in a graph manifold must cut the Seifert fibres of all vertex

spaces transversely, so every Seifert fibre survives as a non-trivial element of Z

under the map ζM (or ζN ). Also, for an orientable fibred graph manifold all

the base orbifolds of major pieces must be orientable. We may therefore apply

the analysis in the proof of Theorem 10.1 of [15] to conclude that there is a

graph isomorphism ψ : X → Y and numbers λ, μ ∈ Ẑ× such that for adjacent
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vertices x and y of X , we have (where ∼ denotes conjugacy in π̂1N)

Ψ(hx) ∼ hλψ(x), Ψ(hy) ∼ hμψ(y)

(or vice versa). Since M and N are not homeomorphic the ratio λ/μ is not

equal to ±1. Now if Ψ weakly preserves the fibre, then we have equations

κζM (hx) = ζN (Ψ(hx)) = ζN (hλψ(x)) = λζN (hψ(x))

so that λ/κ, when multiplied by a non-zero element of Z, remains in Z. Thus by

standard theory (for example Lemma 2.2 of [15]), κ = ±λ. Applying the same

argument to y gives κ = ±μ, so that λ/μ = ±1, giving a contradiction.

Corollary 5.6: A closed fibred graph manifold of first Betti number one is

profinitely rigid.

Proof. By Theorem 7.1 of [15] and Theorem 1.1 of [9] any other manifold with

the same profinite fundamental group as the given manifold is also a closed

fibred graph manifold. If the first Betti number is 1, then there is a unique map

to Ẑ so that any isomorphism weakly preserves the fibration. Theorem 5.5 now

gives the result.

Remark: There is another proof of this corollary, which we will now sketch,

which is more closely related to Theorem 1.6. For consider a closed fibred

graph manifoldM of first Betti number one. Then there is an essentially unique

homomorphism ζ : π1M → Q which, as noted above, does not vanish on the

regular fibre of any Seifert-fibred piece of M . This in turn implies that the JSJ

graph of M is a tree and that the base orbifolds of all pieces are spheres with

cone points with discs removed.

Consider piece Ml corresponding to a leaf l in the JSJ graph. We will show

that the total slope at Ml is non-zero, so that M is profinitely rigid by Theo-

rem 1.6. Let e be the edge emanating from l, let h be the homotopy class of

a regular fibre of Ml, and let h′ be the regular fibre of d1(e). If π1Ml has a

standard form presentation

〈a1, . . . , ar, h
∣∣ apii hqi , h central〉

then, if e0 = (a1 · · · ar)−1, we have

h′ = e
−γ(e)
0 hδ(e) = (a1 · · · ar)γ hδ
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where γ �= 0. Without loss of generality suppose ζ(h) = 1. Then ζ(ai) = −qi/pi
and

ζ(h′) = −γ
∑ qi

pi
+ δ = γτ(l).

Since ζ(h′) �= 0 we find that the total slope at l is non-zero as claimed.

Theorem 5.5 shows that Theorem 1.6, while finding examples of non-rigid

fibred manifolds, leaves open the possibility that Question 5.1 could have a

negative answer for all infinite order mapping classes. It also raises the possi-

bility that even if profinite rigidity for hyperbolic 3-manifolds fails, the weaker

statement about mapping class groups could still hold.

Remark: It is curious to compare the directions of the proofs in this section

and in [3]. In the latter paper, strong properties of Out(F2) (‘congruence om-

nipotence for elements of infinite order’) were used to deduce that indepen-

dent mapping classes φ1, φ2 ∈ Out(F2) were not conjugate to any power of

each other in Out(F̂2), so that no isomorphism of the profinite completions of

once-punctured torus bundles could (in our terminology) weakly preserve the

fibration. Meanwhile the assumption that the first Betti number is 1 showed

that any such isomorphism must weakly preserve the fibration. In this way [3]

obtained a profinite rigidity theorem for once-punctured torus bundles.

In our situation, the direction is quite different; we investigated profinite

completions of graph manifolds, and in doing so learnt about conjugacy of

certain elements in Out(π̂1S). One rather suspects that the results about the

mapping class group should come first, but seem to be lacking except in the

case described above.
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