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ABSTRACT

We study the group of interval exchange transformations. Let T be an m-

interval exchange transformation. By the rank of T we mean the dimension

of the Q-vector space spanned by the lengths of the exchanged subintervals.

We prove that if T satisfies Keane’s infinite distinct orbit condition and

rank(T ) > 1 + �m/2�, then the only interval exchange transformations

which commute with T are its powers.

In the case that T is a minimal 3-interval exchange transformation,

we prove a more precise result: T has a trivial centralizer in the group

of interval exchange transformations if and only if T satisfies the infinite

distinct orbit condition.

1. Introduction

An interval exchange transformation (IET) is a bijective map T : [0, 1) → [0, 1)

defined by partitioning the unit interval [0, 1) into finitely many subintervals

and then rearranging these subintervals by translations. The formal definition

appears below. The permutation group of the set {1, 2, . . . ,m} will be denoted

by Sm.
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Definition 1.1: Let m ∈ N. Let π ∈ Sm and let λ = (λ1, λ2, . . . , λm) be a vector

in the simplex

Δm =

{
(λ1, λ2, . . . , λm) ∈ Rm : λi > 0,

∑
i

λi = 1

}
.

Let

β0 = 0 and βj =

j∑
i=1

λj for 1 ≤ j ≤ m.

The set {β0, β1, . . . , βm} partitions [0, 1) into m subintervals of the form

Ij = [βj−1, βj). Define T(π,λ) : [0, 1) → [0, 1) by

T(π,λ)(x) = x−
(∑

i<j

λi

)
+

( ∑
π(i)<π(j)

λi

)
, for x ∈ Ij .

The map T(π,λ) rearranges the intervals Ij by translations according to the

permutation π. We will refer to a map constructed in this manner as an m-

IET. For convenience, we sometimes drop the reference to π and λ and simply

denote an IET by a single letter, typically T .

The set of all IETs forms a group G under composition. Given T ∈ G, let

C(T ) denote the centralizer of T in G and let 〈T 〉 denote the cyclic subgroup

generated by T . Novak proved that the quotient C(T )/〈T 〉 is typically finite

[6, Proposition 5.3]. However, there are examples of IETs which satisfy the

hypotheses of Novak’s theorem for which C(T ) �= 〈T 〉 (some of these examples

will be described in the next section of this paper). In fact, to the best of

the author’s knowledge, the only previously known examples where it could be

proven that C(T ) = 〈T 〉 are due to del Junco [3], who constructed IETs which

do not commute with any Lebesgue measure preserving transformations of [0, 1)

except for their powers.

In this paper, we will show that for a large class of IETs, the groups C(T )

and 〈T 〉 coincide. Recall that an IET T is said to be minimal if for each

x ∈ [0, 1), the orbit

OT (x) = {T n(x) : n ∈ Z}

is dense in [0, 1). Recall also that an IET is said to be of rotation type if there

exists α ∈ R such that T (x) = x+ α (mod 1) for all x ∈ [0, 1).
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Theorem 1.2: Let T be a minimal IET which is not of rotation type. Suppose

that the lengths of the exchanged subintervals are linearly independent over Q.

Then

C(T ) = 〈T 〉.
Theorem 1.2 is a simplified version of our main result, which will be stated

in the next section of this paper (see Theorem 2.9).

We will denote n-fold compositions T ◦ · · · ◦ T by T n. We will say that T

has an nth root in G if there exists S ∈ G such that T = Sn. If T is minimal,

then the existence of an nth root for some n ≥ 2 implies that C(T ) �= 〈T 〉.
In a previous paper [1], the author proved that many IETs do not have any

nontrivial roots in G. In particular, it was proven that an IET which satisfies

the hypotheses of Theorem 1.2 does not have an nth root for any n ≥ 2. Though

the non-existence of roots is weaker than the statement that C(T ) = 〈T 〉, our
proofs of the results in this paper depend on the results in [1].

In the case that T is a 3-IET, we will prove a more precise result. We recall

the following definition.

Definition 1.3: Let T be an m-IET. Let β1, β2, . . . , βm−1 be as in Definition 1.1.

We say that T satisfies the infinite distinct orbit condition (IDOC) if each

of the orbits OT (β1),OT (β2), . . . ,OT (βm−1) is infinite and

OT (βi) ∩ OT (βj) = ∅
for i �= j.

The IDOC was originally formulated by Keane, who showed that any IET

which satisfies it and exchanges two or more intervals is minimal [4].

Theorem 1.4: Let T be a minimal 3-IET which is not of rotation type. Then

C(T ) = 〈T 〉 if and only if T satisfies the infinite distinct orbit condition.

Let T be a 3-IET which is not of rotation type, and let λ1, λ2, λ3 be the lengths

of the exchanged subintervals. As explained in [1, page 251], T is minimal if

and only if λ1−λ3

1−λ3
/∈ Q. Moreover, assuming that T is minimal, T satisfies the

IDOC if and only if

n(λ1 − λ3) �= λ1 +m(1− λ3)

for every pair of integersm,n. This enables one check whether or not C(T )=〈T 〉,
provided one understands the rational dependencies among λ1, λ2, λ3.
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2. Centralizers in G

In this section we will define the rank of an IET and use this to state our main

result, a generalization of Theorem 1.2. We will also explain how our results

are related to the work of Novak [6] and the previous work of the author [1].

The study of centralizers in G was initiated by Novak. Given T ∈ G, let

d(T n) denote the number of discontinuities of T n. Novak showed that for a

given T ∈ G, there are only two possibilities for the growth rate of d(T n)

[6, Theorem 1.1]. The first possibility is that the growth rate is bounded:

there exists a constant M such that d(T n) ≤ M for all n ≥ 1. The second

possibility is that d(T n) grows linearly: there exists a natural number c such

that limn→∞ d(T n)/n = c. In the second case, Novak showed that C(T ) cannot

be too large.

Theorem 2.1 (Novak [6, Proposition 5.3]): Suppose that T is a minimal IET

and that d(T n) grows linearly in n. Then 〈T 〉 has finite index in C(T ).

An examination of the proof of Proposition 2.3 of [6] makes it clear that any

IET T satisfying the IDOC will exhibit linear discontinuity growth, provided

that T is not of rotation type. Novak makes a similar observation on p. 381 of

his paper.

It is now convenient to introduce a definition. If T is an m-IET, and

β1, . . . , βm−1 are as in Definition 1.1, then it is clear that the discontinuities

of T must be among β1, . . . , βm−1. However, it is possible that T is continu-

ous at some of these points. Whether or not T is continuous at these points

depends on the permutation π. More specifically, if 1 ≤ i ≤ m− 1, then T(π,λ)

is discontinuous at βi if and only if π(i + 1) �= π(i) + 1. This motivates the

following definition.

Definition 2.2: We will say that π ∈ Sm is separating if π(i+1) �= π(i)+1 for

1 ≤ i ≤ m− 1.

For example, the permutation τ = (4213) ∈ S4 is separating, while the per-

mutation σ = (4231) ∈ S4 is not. The following result, whose proof can be

found in [1, Proposition 2.3], shows that there is no loss of generality in only

considering IETs defined by separating permutations.

Proposition 2.3: Let T be an IET with precisely m−1 discontinuities. There

exists a separating permutation π ∈ Sm and a vector λ ∈ Δm, both of which

are unique, such that T = T(π,λ).
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We will make use of the following special case of Theorem 2.1.

Proposition 2.4: Let m ≥ 3. Suppose that T is an m-IET defined by a

separating permutation. If T satisfies the IDOC, then 〈T 〉 has finite index in

C(T ).

Proof. Recall that any IET which satisfies the IDOC is minimal. Therefore, by

Theorem 2.1 and the remarks immediately following it, we only need to show

that T is not of rotation type. Since the permutation defining T is separating, T

has m− 1 ≥ 2 discontinuities, so T is not of rotation type.

It is natural to wonder under what circumstances we have equalityC(T )=〈T 〉.
The hypotheses of Theorem 2.1 are not enough to guarantee this. For example,

let S be a 3-IET with permutation (321) which satisfies the IDOC. Let T = Sn

for some n ≥ 2. Then T is minimal and has linear discontinuity growth, but

C(T ) �= 〈T 〉, since S ∈ C(T ) and S �∈ 〈T 〉.
As the preceding example shows, one obstruction to having C(T ) = 〈T 〉 is

the existence of an nth root for some n ≥ 2. In a previous paper, the author

showed that most IETs do not have nontrivial roots. In order to state this

result precisely, we recall the following definition.

Definition 2.5: Let T be an IET. Let γ1 < γ2 < · · · < γm−1 be the points

at which T is discontinuous. Let γ0 = 0 and γm = 1. We will refer to the

dimension of the Q-vector space spanned by {γi − γi−1 : 1 ≤ i ≤ m} as the

rank of T . This will be denoted by rank(T ).

The term “rank” was originally used in this setting by Boshernitzan [2], who

proved that minimal rank two IETs are uniquely ergodic and described an

algorithm which tests a rank two IET for minimality and aperiodicity.

Using the notation of Definition 1.1, we observe that if T(π,λ) is an m-IET

and π is separating, then the discontinuities of T are precisely the points

β1, β2, . . . , βm−1, so rank(T ) is equal to the dimension of the Q-vector space

spanned by λ1, λ2, . . . , λm. If π is not separating, then rank(T(π,λ)) may be

smaller than the dimension of the Q-vector space spanned by λ1, λ2, . . . , λm.

Notice that if T is an m-IET defined by a separating permutation, then

rank(T ) can assume any value from 1 to m. The following result was established

by the author [1, Theorem 2.4].
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Theorem 2.6: Let T be a minimalm-IET defined by a separating permutation.

Suppose that rank(T ) > 1+ �m/2. Then T does not have an nth root in G for

any n ≥ 2.

A second obstruction to having C(T ) = 〈T 〉 is the presence of torsion in C(T ).

For convenience, we will give an example defined on [0, 2) rather than [0, 1). Let

S : [0, 1) → [0, 1) be a 3-IET with permutation (321) which satisfies the IDOC.

Define U : [0, 2) → [0, 2) by

U(x) =

⎧⎨
⎩
S(x), x ∈ [0, 1),

x, x ∈ [1, 2).

Let P : [0, 2) → [0, 2) be the 2-IET of order two which interchanges [0, 1)

and [1, 2). Since the U fixes [1, 2) and PUP fixes [0, 1), U and PUP commute

with one another. Consider the map T = PUPUP = UPU . It is not difficult

to see that T is minimal and that d(T n) ≈ 2n, so T exhibits linear discontinuity

growth. However, P commutes with T and P �∈ 〈T 〉.
One of the goals of this paper will be to establish that C(T ) is torsion-free

under the following conditions.

Theorem 2.7: Let T be an m-IET defined by a separating permutation.

Suppose that T satisfies the infinite distinct orbit condition and that

rank(T ) > 1 + �m/2. Then the only element of C(T ) which has finite or-

der is the identity.

For n ∈ N, let rn denote the periodic IET defined by

rn(x) = x+
1

n
(mod 1).

Suppose that T is minimal and that S ∈ C(T ) has finite order n. Then S is

conjugate to rn, and consequently T is conjugate to some element of C(rn).

Novak gives a precise description of C(rn) [6, Proposition 5.5], and it is clear

from Novak’s description that all of the elements of C(rn) fail to satisfy the

estimate on the rank given in Theorem 2.7. However, this argument does not

prove Theorem 2.7 since conjugation need not preserve rank (see the Appendix

for an example). Instead of trying to circumvent this difficulty, we will prove

Theorem 2.7 using a different technique. Incidentally, our proof can be used

to show that there actually is a conjugating map from S to rn which does not

alter rank(T ).
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The proof of Theorem 2.7 will be given in the fifth section of this paper. We

will now show how to combine Proposition 2.4 and Theorems 2.6 and 2.7 to

establish our main result.

Lemma 2.8: Let G be a group and let x ∈ G. Suppose that

(1) 〈x〉 has finite index in C(x);

(2) x does not have an nth root in G for any n ≥ 2;

(3) C(x) is torsion-free.

Then C(x) = 〈x〉.
Proof. Let y ∈ C(x). By (1), there exists n ∈ N such that yn ∈ 〈x〉, say

yn = xm. We will prove that y ∈ 〈x〉 by induction on the number of primes

dividing n. If there are no such primes, then n = 1 and there is nothing to

prove. Suppose that n ≥ 2. Let p be a prime dividing n, say n = up. Write

m = qp + r, where 0 ≤ r < p. We claim that r = 0. If not, then r and p are

relatively prime, so there exist integers k and l such that kr − lp = 1. Then

yupk = ynk = xmk = xkqp+kr = xkqp+lp+1 .

Since x commutes with y, it follows that (yukx−l−kq)p = x. This contradicts (2).

So r = 0 and m = qp. We now have

yup = yn = xm = xqp.

After rearranging, we find that (yux−q)p = e, where e denotes the identity in G.

By (3), it must be that yux−q = e. Therefore,

yu = xq.

Since u = n/p, it now follows by induction that y ∈ 〈x〉.
Theorem 2.9: Let T be an m-IET defined by a separating permutation.

Suppose that T satisfies the infinite distinct orbit condition and that

rank(T ) > 1 + �m/2. Then C(T ) = 〈T 〉.
Proof. Recall that any IET which satisfies the IDOC is minimal. Notice also

that we must have m ≥ 3, since otherwise the inequality rank(T ) > 1 + �m/2
could not possibly be true. The hypotheses of Proposition 2.4 and Theorems 2.6

and 2.7 are all satisfied. The claim now follows from Lemma 2.8.
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Recall that a permutation π ∈ Sm is said to be irreducible if

π({1, 2, . . . , k}) �= {1, 2, . . . , k}
for any k < m. A result of Keane asserts that if π ∈ Sm is irreducible and the

coordinates of λ ∈ Δm are linearly independent over Q, then the IET T(π,λ)

satisfies the IDOC [4]. We will also have rank(T(π,λ)) = m in this case, provided

that π is separating. Combining these observations with Theorem 2.9 proves

the following result, which justifies the statement that “most” IETs have trivial

centralizers in G.

Corollary 2.10: Let m ≥ 3. Let π ∈ Sm be separating and irreducible. Let

A = {λ ∈ Δm : C(T(π,λ)) = 〈T(π,λ)〉}.
Then A is a residual subset of Δm of full Lebesgue measure.

For completeness, we explain why Theorem 1.2 follows from Theorem 2.9.

Proof of Theorem 1.2. Let T be a minimal IET which is not of rotation type.

Suppose that the lengths of the exchanged subintervals are linearly indepen-

dent over Q. Let m− 1 be the number of discontinuities of T . The assumption

that T is not of rotation type implies that T has at least two discontinuities.

So m ≥ 3. Choose π ∈ Sm and λ ∈ Δm according to Proposition 2.3. The

assumption that the lengths of the exchanged subintervals are linearly inde-

pendent over Q implies that the dimension of the Q-vector space spanned by

λ1, λ2, . . . , λm is m. Since T is minimal, it is clear that π is irreducible. There-

fore T satisfies the IDOC. Moreover, since π is separating, rank(T ) = m. Since

m ≥ 3, rank(T ) > 1 + �m/2, so Theorem 2.9 implies that C(T ) = 〈T 〉.
We now turn our attention to Theorem 1.4. Our proof will follow the same

strategy as our proof of Theorem 2.9. In place of Theorem 2.6, we will use

following result, which was established by the author [1, Theorem 1.5].

Theorem 2.11: Let T be a minimal 3-IET which is not of rotation type. Then

T has an nth root in G for some n ≥ 2 if and only if T fails to satisfy the infinite

distinct orbit condition.

In place of Theorem 2.7, we will use the following result.

Theorem 2.12: Let T be a 3-IET which satisfies the infinite distinct orbit

condition and which is not of rotation type. Then C(T ) is torsion-free.
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The proof of Theorem 2.12 will be given in the sixth section of this paper.

We now proceed with the proof of Theorem 1.4.

Proof of Theorem 1.4. Let T be a minimal 3-IET which is not of rotation type.

Suppose that T satisfies the IDOC. The assumption that T is not of rotation

type implies that T must be defined by the permutation (321), which is sepa-

rating. Thus the hypotheses of Proposition 2.4 and Theorems 2.11 and 2.12 are

all satisfied. An application of Lemma 2.8 shows that C(T ) = 〈T 〉.
Conversely, suppose that T does not satisfy the IDOC. By Theorem 2.11,

there exists S ∈ G and n ≥ 2 such that T = Sn. Since T has infinite order

in G, it is clear that S �∈ 〈T 〉. Therefore C(T ) �= 〈T 〉.
We remark that if T is a minimal 3-IET which is not of rotation type and

which does not satisfy the IDOC, then Theorems 1.7 and 1.8 of [1] can be used

to show that C(T ) is actually uncountable and contains a subgroup isomorphic

to the circle. We omit the details.

The main results of this paper have been established, but the proofs of The-

orems 2.7 and 2.12 are still pending. The rest of this paper will be devoted to

proving these two results.

3. The first return map

In this section we briefly review some facts about first return maps which will

be used in our proofs of Theorems 2.7 and 2.12. Given an IET T , let D(T )

denote the set of points at which T is discontinuous.

Let A denote the set algebra consisting of finite unions of half-open

intervals [a, b) contained in [0, 1). If J ∈ A, let E(J) denote the set of end-

points of the connected components of J . For example, if J = [0, 13 ) ∪ [ 45 ,
5
6 ),

then E(J) = {0, 13 , 4
5 ,

5
6}.

It is well-known that if T is an IET and J ∈ A, then the first return map to J

is essentially an IET. The following lemma is a precise formulation of this fact.

Lemma 3.1: Let T be an IET. Suppose that J ∈ A and that no point in D(T )

belongs to the interior of J . Let P ⊆ J consist of those points x in the interior

of J for which there exists an n ≥ 1 such that T j(x) /∈ J ∪ D(T ) ∪ E(J)

for 0 < j < n and T n(x) ∈ D(T ) ∪ E(J). The set P is finite. Therefore P
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partitions J into finitely many subintervals J1, J2, . . . , Jk. There exist positive

integers m1,m2, . . . ,mk such that

(1) for each i, the restriction of T j to Ji is a translation for 1 ≤ j ≤ mi;

(2) for each i, T j(Ji) ∩ J = ∅ for 0 < j < mi;

(3) for each i, Tmi translates Ji onto a subinterval of J ;

(4) the intervals Tmi(Ji), 1 ≤ i ≤ k, are pairwise disjoint.

For a proof of this result, see, e.g., [7, Lemma 4.2].

Definition 3.2: Let T be an IET. Suppose that J ∈ A satisfies the hypothesis

of Lemma 3.1. For each x ∈ J , let

nJ (x) = inf{n ≥ 1 : T n(x) ∈ J}.
According to the lemma, nJ (x) = mi for x ∈ Ji. The map TJ : J → J defined

by

TJ(x) = T nJ(x)(x)

is the first return map to J . The integers m1,m2, . . . ,mk are the return

times.

For convenience, we will sometimes refer to first return maps as IETs, even

though this is technically inconsistent with Definition 1.1, since the domain is

not necessarily [0, 1).

4. Fundamental discontinuities

In this section we use a result of Novak to derive some facts which will be used

in our proofs of Theorems 2.7 and 2.12.

Let T be a minimal IET. Let p ∈ D(T ). Since OT (p) is infinite, there exists

a smallest positive integer Np such that T n(p) �∈ D(T )∪{0} for n ≥ Np. If T
Np

is continuous at p, then all of the iterates T n for n ≥ Np are continuous at p.

On the other hand, if TNp is discontinuous at p, then all of the iterates T n for

n ≥ Np are discontinuous at p. This dichotomy played an important role in

Novak’s study of the discontinuity growth rate of IETs [6].

Definition 4.1: Let T be a minimal IET. We will say that p ∈ D(T ) is a fun-

damental discontinuity if T n(p) �∈ D(T ) for all negative n and T n is dis-

continuous at p for all sufficiently large positive n. We will denote the set of

fundamental discontinuities by Df(T ).
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We emphasize that Definition 4.1 implies that distinct fundamental discon-

tinuities belong to different T -orbits. The following result is due to Novak. It

is not stated as a separate lemma in [6], but it is established in the proof of

Proposition 5.3 in [6].

Lemma 4.2 (Novak): Suppose that T is a minimal IET and that S ∈ C(T ).

Then S permutes the orbits of the fundamental discontinuities of T . More

precisely, for each x ∈ Df (T ), there exists a unique y ∈ Df (T ) such that

S(OT (x)) = OT (y).

Corollary 4.3: Suppose that T is a minimal IET and that S ∈ C(T ) has

finite order q. Then S induces a Z/qZ action on the set Df(T ). Specifically,

the generator of Z/qZ acts on Df(T ) by x �→ y where y is the unique element

of Df (T ) with the property that S(OT (x)) = OT (y).

It will be useful to know that each of the orbits of the Z/qZ action described

in Corollary 4.3 has size q. We will prove this, but first we need the following

lemma.

Lemma 4.4: Let T be a minimal IET and let S ∈ C(T ). If S has a fixed point,

then S is the identity map.

Proof. Let F be the set of points in [0, 1) which are fixed by S. The definition of

an IET implies that F is a finite union of half-open intervals. Since T commutes

with S, the set F must be T -invariant. Since T is minimal, F = [0, 1).

Corollary 4.5: Let T be a minimal IET and let S ∈ C(T ). If S has finite

order q, then each of the orbits of the Z/qZ action described in Corollary 4.3

has size q.

Proof. Let x ∈ Df (T ) and suppose that the orbit of x under the Z/qZ action

has size u, where 1 ≤ u < q. Then Su(OT (x)) = OT (x), so Su(x) = T k(x)

for some k. The map SuT−k fixes x, so Lemma 4.4 implies that SuT−k = I,

where I denotes the identity map. So Su = T k. Since T has infinite order

and Su has finite order, it must be that k = 0. But then Su = I, contrary to

the fact that S has order q.

The Z/qZ action described above will play an important role in our proofs of

Theorems 2.7 and 2.12. We will also use the following fact.
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Lemma 4.6: Suppose that T satisfies the IDOC. Then every discontinuity of T ,

with the possible exception of T−1(0), is a fundamental discontinuity.

Proof. Let p ∈ D(T ) and suppose that p �= T−1(0). Since T satisfies the IDOC,

T n(p) �∈ D(T ) for all n < 0. Let n ≥ 1. Since T satisfies the IDOC, T is

continuous at all points in the forward orbit of p. Since T (p) is contained in

the interior of [0, 1), it follows that T n−1 is a translation on some open interval

containing T (p). Combining this with the fact that T is discontinuous at p, it

follows that T n is discontinuous at p. Since this is true for all n ≥ 1, p is a

fundamental discontinuity of T .

5. Proof of Theorem 2.7

In this section we will prove Theorem 2.7. It is convenient to introduce the

following notation. Let T be an IET. Given x ∈ [0, 1) and integers n ≤ m, let

OT (x, n,m) = {T j(x) : n ≤ j ≤ m}.
Each set OT (x, n,m) is just a finite part of the T -orbit of x. Notice that if S is

an IET which commutes with T , then S(OT (x, n,m)) = OT (S(x), n,m).

Theorem 5.1: Suppose that T is a minimal IET. Let df denote the number

of fundamental discontinuities. Let dnf denote the number of discontinuities

which are not fundamental. If S ∈ C(T ) has finite order q, then

rank(T ) ≤ df
q

+ dnf + 1.

Proof. For clarity, suppose first that every discontinuity of T is fundamental.

Consider the Z/qZ-action on Df(T ) described in Corollary 4.3. According to

Corollary 4.5, the orbits of this action have size q. Let x1, x2, . . . , xk be repre-

sentatives for the distinct Z/qZ-orbits in Df (T ) = D(T ).

Using Lemma 4.4, it is not hard to see that every S-orbit has size q. Therefore

there exists a subinterval K = [a, b) ⊆ [0, 1) such that the sets Si(K) for

0 ≤ i ≤ q − 1 are pairwise disjoint and the restriction of S to each of these sets

is a translation. Notice that the set

J =

q−1⋃
i=0

Si(K)

is S-invariant. We claim that if K is chosen appropriately, then J will not

contain any of the discontinuities of T .
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In order to see this, let N be a positive integer which will be specified later.

By shrinking K if necessary, we can assume that none of the points in the set⋃k
i=1 OT (xi,−N,N) belong to J . Since J is S-invariant, it follows that none of

the points in
q−1⋃
j=0

k⋃
i=1

Sj(OT (xi,−N,N))

belong to J . Each of the sets

Sj(OT (xi,−N,N)) = OT (S
j(xi),−N,N)

is part of the T -orbit of one of the discontinuities of T . Moreover, every dis-

continuity of T belongs to one of the orbits OT (S
j(xi)), where 1 ≤ i ≤ k

and 0 ≤ j ≤ q − 1. It follows that if N is chosen large enough, then all of

the discontinuities of T belong to
⋃q−1

j=0

⋃k
i=1 S

j(OT (xi,−N,N)) and therefore

D(T ) ∩ J = ∅, as claimed.

We can also ensure that the endpoints of the components of J belong to the

orbits of some of the points in D(T ). Indeed, let M1 be the largest negative

integer such that TM1(x1) ∈ J . Let M2 be the smallest positive integer such

that TM2(x1) ∈ J . By construction, M1 < −N and M2 > N . By shrinking K,

we can assume that the endpoints of the q connected components of J are

precisely the points Si(TMj (x1)) for j = 1, 2 and i = 0, 1, . . . , q−1. Notice that

none of the points in the set
⋃q−1

j=0 S
j(OT (x1,M1 + 1,M2 − 1)) belong to J .

We now consider the first return map TJ . We claim that the set P de-

scribed in Lemma 3.1 consists of exactly df points. By definition, the points

belonging to P are precisely those points in the interior of J whose forward

T -orbit encounters one of the discontinuities of T or one of the endpoints of J

before returning to J . By construction, a point has this property if and only

if its forward T -orbit encounters one of the sets Sj(OT (x1,M1 + 1,M2 − 1)),

where 0 ≤ j ≤ q − 1, or one of the sets Sj(OT (xi,−N,N)), where 2 ≤ i ≤ k

and 0 ≤ j ≤ q − 1, before returning to J . Clearly, the backward T -orbit of

each discontinuity contains precisely one point with this property, so |P | = df

as claimed.

The discussion in the preceding paragraph makes it clear that the set P is

S-invariant. Indeed, since S commutes with T , the forward T -orbit of a point

p ∈ J encounters one of the sets Sj(OT (xi,−N,N)) or returns to J at precisely

the same time that the forward T -orbit of S(p) encounters Sj+1(OT (xi,−N,N))

or returns to J , respectively.
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Since |P | = df and J has q connected components, P partitions J into

q + df subintervals J1, J2, . . . , Jq+df
. Let l1, l2, . . . , lq+df

denote the lengths of

these intervals, respectively. Let m1,m2, . . . ,mq+df
be the return times for the

map TJ . The set

A =

q+df⋃
i=1

mi−1⋃
j=0

T j(Ji)

is T -invariant. Since T is minimal, it must be that A = [0, 1). Moreover, each of

the intervals T j(Ji), for 1 ≤ i ≤ q + df and 0 ≤ j ≤ mi − 1, must be contained

in one of the intervals on which T is continuous. For if this were not the case,

then some point in the interior of J would have to contain a discontinuity in its

forward T -orbit. This point would then have to belong to P , a contradiction.

It follows that each of the intervals on which are exchanged by T must be

a disjoint union of some of the intervals T j(Ji), where 1 ≤ i ≤ q + df and

0 ≤ j ≤ mi−1. These intervals are themselves just translates of the intervals Ji,

for 1 ≤ i ≤ q+df . Therefore rank(T ) is at most equal to the number of distinct

lengths appearing among l1, l2, . . . , lq+df
.

Since the partition P which determines the intervals J1, J2, . . . , Jq+df
is S-

invariant, and S acts on the q connected components of J by translation, it

follows that there are at most

q + df
q

=
df
q

+ 1

different lengths appearing among l1, l2, . . . , lq+df
. It follows that

rank(T ) ≤ df
q

+ 1,

which is exactly what we wanted to show.

In the case when some of the discontinuities are not fundamental, we can

proceed as we did above. The only essential difference is that for each non-

fundamental discontinuity, there might be an additional point in the set P . This

point divides one of the intervals Jt into two intervals, and increases the rank

of T by at most one. Our previous estimate on the rank is therefore increased

by at most dnf , the number of non-fundamental discontinuities. Thus

rank(T ) ≤ df
q

+ 1 + dnf .

This completes the proof.
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Proof of Theorem 2.7. Let T be anm-IET defined by a separating permutation.

Suppose that T satisfies the IDOC. Assume that S ∈ C(T ) has finite order q ≥ 2.

We have to prove that rank(T ) ≤ 1 + �m/2.
Since T is defined by a separating permutation, D(T ) = m − 1. Since T

satisfies the IDOC, Lemma 4.6 tells us that there are two possibilities: either

df = m − 1 and dnf = 0 or else df = m − 2 and dnf = 1. In the first case,

Theorem 5.1 tells us that

rank(T ) ≤ 1 +
m− 1

q
≤ 1 +

m

2
.

Since rank(T ) is an integer, it follows that rank(T ) ≤ 1+ �m/2. In the second

case, Theorem 5.1 tells us that

rank(T ) ≤ 2 +
m− 2

q
≤ 2 +

m− 2

2
= 1 +

m

2
.

Once again, we conclude that rank(T ) ≤ 1 + �m/2.

6. Proof of Theorem 2.12

Unlike our proof of Theorem 2.7, which was combinatorial in nature, our proof of

Theorem 2.12 is based on the notion of topological weak-mixing. The following

definition of topological weak-mixing will be sufficient for our purposes.

Definition 6.1: Let λ denote Lebesgue measure on [0, 1). If T is an IET, then

the map f �→ f ◦ T defines a unitary operator on L2([0, 1), λ). We say that T

is topologically weak-mixing if this operator has no non-constant piecewise

continuous eigenfunctions.

To be clear, the term “piecewise continuous” here means that f : [0, 1) → C

has only finitely many discontinuities, that the left- and right-hand limits

limx→a− f(x) and limx→a+ f(x) exist for every a ∈ (0, 1), and that the lim-

its limx→0+ f(x) and limx→1− f(x) both exist.

The next result follows from [5, Theorem 4.1], but we include a proof for

completeness.

Lemma 6.2: Suppose that T satisfies the IDOC (and exchanges two or more in-

tervals). Then any piecewise continuous eigenfunction of T must be continuous

everywhere on [0, 1).
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Proof. Let f be a piecewise continuous eigenfunction of T and let α ∈ C be the

eigenvalue associated to f .

Let a ∈ (0, 1) and let ε > 0. Let y ∈ (0, 1) be any point at which f is

continuous. Then there exists an η > 0 such that |f(p) − f(q)| < ε whenever

p, q ∈ (y − η, y + η). Consider the sets {T k(a) : k ≥ 0} and {T k(a) : k < 0}.
Since T is minimal, both of these sets are dense in [0, 1). Since T satisfies the

IDOC, at least one of these sets does not contain any of the discontinuities of T .

Suppose that {T k(a) : k ≥ 0} has this property. Then T k is continuous at a

for all k > 0. Choose k ≥ 0 such that T k(a) ∈ (y − η, y + η). Since T k is

continuous at a, there exists δ > 0 such that T k(a− δ, a+ δ) ⊆ (y − η, y + η).

If x ∈ (a− δ, a+ δ), then both T k(x) and T k(a) belong to (y− η, y+ η). Using

the fact that |α| = 1, we see that

|f(x)− f(a)| = |αkf(x)− αkf(a)| = |f(T k(x))− f(T k(a))| < ε.

This shows that f is continuous at a. An analogous argument can be given

when the set {T k(a) : k < 0} contains no discontinuities of T . Continuity of f

at 0 can be proven in a similar way.

The following result is folklore. The author learned about it from Michael

Boshernitzan.

Proposition 6.3: Let T be a 3-IET which satisfies the IDOC and which is not

of rotation type. Then T is topologically weak-mixing.

Proof. Let f : [0, 1) → C be a piecewise continuous eigenfunction of T . Let

α ∈ C be the associated eigenvalue. By Lemma 6.2, f is continuous everywhere

on [0, 1).

If f vanishes at some point x ∈ [0, 1), then f also vanishes along the T -

orbit of x, which is dense in [0, 1). Since f is continuous, this implies that f is

identically zero. So we may assume that f vanishes nowhere. In particular, after

multiplying f by a suitable constant, we may assume that f(0) = 1. Since f is

continuous at 0, limx→0+ f(x) = 1.

Let β1 and β2 be the two points at which T is discontinuous. Since T is not of

rotation type, the permutation defining T must be (321). Therefore T ([β2, 1))

lies to the far left of the unit interval. It follows that

lim
x→β+

2

f(x) = lim
x→β+

2

f(T (x))

α
= lim

x→0+

f(x)

α
=

1

α
.
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We also know that the interval T ([β1, β2)) lies immediately to the left of

T ([0, β1)). Since f is continuous at T (0), it follows that

lim
x→β−

2

f(x) = lim
x→β−

2

f(T (x))

α
= lim

x→0+

f(T (x))

α
= lim

x→0+
f(x) = 1.

Since f is continuous at β2, it must be that

1 = lim
x→β−

2

f(x) = lim
x→β+

2

f(x) =
1

α
.

So α = 1 and f ◦T = f . Since T is minimal, f must be a constant function.

The next few results involve the concept of a tower over an IET, which we

now explain. Let T be an m-IET. Here we allow the domain of T to be any finite

interval [a, b), possibly different from [0, 1). Let I1, I2, . . . , Im be the intervals

which are exchanged by T and suppose that f : [a, b) → N is constant on each

of these intervals, say f(x) = nj for x ∈ Ij . We can define a new map Tf

as follows. The domain will consist of those points of the form (x, i) where

x ∈ [a, b) and i is an integer satisfying 1 ≤ i ≤ f(x). The map Tf is defined by

Tf (x, i) =

⎧⎨
⎩
(x, i + 1) if i + 1 ≤ f(x),

(T (x), 1) otherwise.

The domain may be visualized as a tower over [a, b). The map Tf transports a

point up to the next level of the tower, unless the point is already at the top,

in which case it is transported back to the first level according to the original

map T .

Definition 6.4: Let T and f be as in the preceding paragraph. We can view

the map Tf as an IET by laying the levels of the tower end to end, and then

rescaling so that the total length of the resulting interval is one. We will refer to

an IET constructed in this manner as a tower of type (n1, n2, . . . , nm) over T .

If all of the ni are equal, we will refer to Tf as a tower of constant height

n1 = n2 = · · · = nm.

Lemma 6.5: Let T be a tower over a minimal 2-IET. Then T is not topologically

weak-mixing.

Proof. By [1, Theorem 1.8], T is conjugate in the group G to either a minimal

2-IET or a tower of constant height d > 1 over a minimal 2-IET. Let g denote

the conjugating IET in either case.
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Suppose first that gTg−1 is a 2-IET, say x �→ x+α (mod 1). Let f(x) = e2πix.

Then the function f ◦g is a non-constant piecewise continuous eigenfuncion of T ,

with eigenvalue e2πiα.

Now suppose that gTg−1 is a tower of constant height d > 1 over a 2-IET.

Let I1, I2, . . . , Id be the levels of the tower and let χ1, χ2, . . . , χd be their char-

acteristic functions, respectively. Let ζd be a primitive dth root of unity. Let

f(x) =

d∑
k=1

ζkdχk(x).

Then f ◦ g is a non-constant piecewise continuous eigenfunction of T , with

eigenvalue ζd.

Proposition 6.6: Let T be a 3-IET which satisfies the IDOC and which is

not of rotation type. If S ∈ C(T ) has order two, then T is not topologically

weak-mixing.

Proof. Let β1 and β2 be the discontinuities of T . According to Lemma 4.6, at

least one of β1, β2 is a fundamental discontinuity. Since S has order two, Corol-

lary 4.5 implies that both β1 and β2 are fundamental discontinuities, and that S

permutes their orbits: S(OT (β1)) = OT (β2). As in the proof of Theorem 5.1,

there exists some interval K ⊆ [0, 1) such that

(1) K and S(K) are disjoint;

(2) the set J = K ∪ S(K) satisfies the hypothesis of Lemma 3.1;

(3) the set P described in Lemma 3.1 is S-invariant and contains precisely

two points.

It follows that the first return map TJ exchanges four intervals, say J1, J2 ⊆ K

and J3 = S(J1), J4 = S(J2) ⊆ S(K). Let m1,m2,m3,m4 be the return times.

Since the set J is S-invariant and S commutes with T , the return time function

nJ (x) = inf{n ≥ 1 : T n(x) ∈ J} must be S-invariant. Therefore, m1 = m3 and

m2 = m4. This implies that the restriction of S to J commutes with TJ .

Let π ∈ S4 be the permutation which describes how TJ rearranges the in-

tervals J1, J2, J3, J4. Notice that S acts on J according to the permutation

(13)(24). Since S commutes with TJ , π must commute with (13)(24). So π must

be one of the following: the identity, (13), (24), (13)(24), (12)(34), (14)(23),

(1234), or (1432). We can rule out the first five possibilities, since these would

result in TJ , and hence T , not being minimal.



Vol. 233, 2019 INTERVAL EXCHANGE TRANSFORMATIONS 47

Let P be a tower of type (m1,m2) over a rotation. Let K1 and K2 be the in-

tervals which are exchanged by the underlying rotation. Notice that the lengths

of K1 and K2 are twice those of J1 and J2, respectively. Let g : [0, 1) → [0, 1)

be the two-to-one map which is defined as follows. For 0 ≤ j ≤ m1− 1, g scales

each of the intervals T j(J1) and T j(J3) by a factor of two, and then maps both

onto P j(K1). For 0 ≤ j ≤ m2 − 1, g scales each of the intervals T j(J2) and

T j(J4) by a factor of two, and then maps both onto P j(K2). Using the fact

that π is one of (1234), (1432), (14)(23), one can verify that g ◦ T = P ◦ g.
By Lemma 6.5, there exists a non-constant piecewise continuous eigenfunc-

tion, say f , of P . Let α ∈ C be the associated eigenvalue. Then, for any

x ∈ [0, 1), we have

f(g(T (x))) = f(P (g(x))) = αf(g(x)).

Since g is locally an affine map, it is clear that f ◦ g is piecewise continuous and

non-constant. This proves that T is not topologically weak mixing.

Proof of Theorem 2.12. Let T be a 3-IET which satisfies the IDOC and which

is not of rotation type. We have to prove that C(T ) is torsion-free.

Suppose that S ∈ C(T ) has finite order q > 1. By Lemma 4.6, T has at

least one fundamental discontinuity. Since T has at most two fundamental

discontinuities, Corollary 4.5 implies q ≤ 2, so it must be that q = 2. Proposi-

tion 6.6 now implies that T is not topologically weak-mixing. This contradicts

Proposition 6.3.

7. Appendix

In the second section of this paper, we stated that conjugation in the group G

need not preserve the rank of an IET. For the benefit of the reader, we provide

here a simple example to illustrate this phenomenon. For convenience, our

example will be defined on [0, 2) rather than [0, 1).

Given a real number s, let Rs : [0, 1) → [0, 1) be the rotation (2-IET) defined

by Rs(x) = x+s (mod 1). Let α, β be two irrational numbers lying in the inter-

val (0, 1). Assume furthermore that β �∈ Q(α). Define a map S : [0, 2) → [0, 2)

as follows:

S(x) =

⎧⎨
⎩
Rα(x) if x ∈ [0, 1),

Rβ(x− 1) + 1 if x ∈ [1, 2).
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Let P : [0, 2) → [0, 2) be the 2-IET which interchanges [0, 1) and [1, 2). Finally,

let T = PS. The reader can verify that

(1) every point in [0, 1) returns to [0, 1) after exactly two iterations of T ;

(2) the first return map induced by T on [0, 1) is Rα+β .

These two properties together imply that T is conjugate to a tower of constant

height two over Rα+β . Such a map has rank two. However, since β �∈ Q(α), T

has rank three.
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