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ABSTRACT

For transitive shifts of finite type, and more generally for shifts with spec-

ification, it is well-known that every equilibrium state for a Hölder con-

tinuous potential has positive entropy as long as the shift has positive

topological entropy. We give a non-uniform specification condition under

which this property continues to hold, and demonstrate that it does not

necessarily hold for other non-uniform versions of specification that have

been introduced elsewhere.
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1. Introduction

Given a compact metric space X , a continuous map f:X→X , and a continuous

potential function ϕ : X → R, an equilibrium state for (X, f, ϕ) is an f -invariant

measure realising the supremum in the variational principle

P (ϕ) = sup
μ

(
hμ(f) +

∫
ϕdμ

)
.

It is often important to know under what conditions an equilibrium state is

forced to have positive entropy, or equivalently, for which potentials we have

(1.1) P (ϕ) > sup
μ

∫
ϕdμ.

Following [IRRL12], a potential satisfying (1.1) will be called hyperbolic.

If (X, σ) is a transitive subshift of finite type (SFT) with positive topologi-

cal entropy, then every Hölder potential is hyperbolic. This also holds for all

systems with the specification property [CFT19, Theorem 6.1].

The importance of (1.1) is discussed in [Buz04]; see [DKU90, Buz01] for its

consequences regarding uniqueness of equilibrium states, and [Ryc83, Kel84,

BK90] for its connection to quasi-compactness of the transfer operator, which

has implications for the statistical properties of the system.

In [Buz04], Buzzi considers continuous piecewise monotonic interval maps f

and shows that if f is topologically transitive and ϕ is Hölder continuous in the

natural coding via the branch partition, then (1.1) holds. Buzzi conjectured that

the result remains true without the assumption that the map f is continuous,

but so far this question remains open.

We offer partial progress towards this conjecture by giving a general condition

under which every Hölder potential satisfies (1.1). Our condition is formulated

in terms of the symbolic representation of f , and can be thought of as a stronger

version of the almost specification property [PS07, Tho12].

Given a shift space X , we write L for the language of X (the set of all finite

words appearing in some element of X). A prefix of a word w ∈ L is any word

of the form w1 · · ·wk for some k ≤ |w|; similarly, a suffix of w is any word

of the form wk · · ·w|w|. We say that a subset G ⊂ L has specification if there

is τ ∈ N such that for every v, w ∈ G there is u ∈ L with |u| ≤ τ such that

v′uw′ ∈ G whenever v′ is a suffix of v and w′ is a prefix of w with v′, w′ ∈ G.
(This includes the case when v′ = v and w′ = w.)
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Given a non-decreasing function g : N → N, the language L is said to be

g-Hamming approachable by G if every sufficiently long w ∈ L can be trans-

formed into a word in G by changing no more than g(|w|) symbols.

Theorem 1.1: Let X be a shift space on a finite alphabet with positive topo-

logical entropy, and L its language. If there is a function g : N → N with

limn→∞ g(n)/ log(n) = 0 and a set G ⊂ L with specification such that L is

g-Hamming approachable by G, then every Hölder continuous potential on X

is hyperbolic.

An important class of shifts satisfying the conditions of the theorem is given

by the β-shifts, which code the transformations x �→ βx (mod 1) for β > 1. In

this case g(n) = 1 for every n, and it was already shown in [CT13, Proposition

3.1] that every Hölder potential is hyperbolic. The proof there relied strongly

on the lexicographic structure of the β-shifts; in particular it does not apply to

their factors. Our approach here does pass to factors.

Proposition 1.2: Let X be a shift space satisfying the hypotheses of Theo-

rem 1.1. Then every subshift factor of X satisfies them as well.

Proof. By the proof of [CTY17, Lemma 2.12], if g(n) works for X , and X̃ is a

subshift factor obtained via an r-block code, then g̃(n) = (4r+3)g(n+2r)+ 4r

works for X̃ .

Corollary 1.3: Let X be any subshift factor of a β-shift. Then every Hölder

potential on X satisfies (1.1), and has a unique equilibrium state, which has

exponential decay of correlations and the central limit theorem for Hölder ob-

servables.

Proof. Theorem 1.1 and Proposition 1.2 give (1.1); for the rest, see [Cli18,

Theorem 1.4, Example 1.5, and §§1.7–1.8].
Remark 1.4: Another class of shift spaces studied in [CT12, CTY17] are the

S-gap shifts, for which there is no function g as in Theorem 1.1; the best that

can be done in general is g(n) ≈ √
n, see [CTY17, §5.1.2]. On the other hand,

it was shown in [CTY17, (5.1)] that every Hölder potential for these shifts is

hyperbolic. The corresponding question for their subshift factors remains open.

Remark 1.5: Another condition that appears in the literature to guarantee hy-

perbolicity of Hölder potentials is the ‘local specification’ condition of Hofbauer
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and Keller [HK82, Theorem 3], which can be stated as follows. Given k ∈ N,

let Fk be the set of w ∈ L such that for every v ∈ L, there is u ∈ L with |u| ≤ k

such that wuv ∈ L. (Then L has specification iff there is k such that Fk = L.)
The ‘local specification’ property from [HK82, Theorem 3] is equivalent to: for

every x ∈ X and every infinite J ⊂ N, there is k ∈ N and an infinite J ′ ⊂ J

such that x1 · · ·xj ∈ Fk for every j ∈ J ′.
Another result for interval maps was given in [LRL14], which showed that

for a class of smooth interval maps with critical points and some non-uniformly

expanding properties, (1.1) holds for every Hölder continuous potential (not

just those that are Hölder in the natural coding).

Beyond β-transformations, it is natural to study the class of interval maps

given by x �→ α + βx for α ∈ (0, 1), β > 1. The coding spaces for these maps

can be represented in terms of a countable graph using the general theory of

Hofbauer [Hof79], but it is not clear what mistake function g these shifts admit,

and so Buzzi’s conjecture remains open for this class.

In light of Remark 1.4 above on S-gap shifts, and other results from [CTY17]

in which g(n)/n → 0 seems to be the relevant condition, it is natural to ask

how sharp the sublogarithmic condition on g is. In fact, one cannot do much

better, as the following family of examples shows.

Theorem 1.6: Let f : N → N be non-decreasing, and suppose that there is

n1 ∈ N such that 1 ≤ f(n) ≤ n/2 for all n ≥ n1. Let

G = {0a1b | a, b ≥ f(a+ b)},
and let X be the coded shift generated by G. Then for ϕ=−1[1], the potentials

tϕ have P (tϕ) ≥ 0 for all t ∈ R, and t �→ P (tϕ) is non-increasing. Writing

(1.2) t0 = inf{t | P (tϕ) = 0} = sup{t | P (tϕ) > 0}
for the first root of Bowen’s equation (possibly +∞), the following are true.

(i) For the function g(n) = 2n1+2max(f(n), n1), L = L(X) is g-Hamming

approachable by G = G∗.
(ii) Given t ≥ 0, the potential tϕ is hyperbolic if and only if t < t0.

(iii) If 0 ≤ t < t0, then there is a unique equilibrium state for tϕ, and it has

positive entropy.

(iv) If t > t0, then δ0 is the unique equilibrium state for tϕ.

(v) t0 <∞ if and only if there exists γ > 0 such that
∑
n∈N

γf(n) <∞.
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Remark 1.7: The examples in Theorem 1.6 are modifications of the coded shift

generated by G = {0n1n : n ∈ N}, which was studied by Conrad [Con], who

showed that for sufficiently large values of t, the potential tϕ has the delta

measure δ0 as its unique equilibrium state, and in particular is not hyperbolic.

The last statement in Theorem 1.6 allows us to give a class of shifts for which

there is a Hölder potential that is not hyperbolic.

Corollary 1.8: If lim inf g(n)/ log(n) > 0, then the conclusion of Theorem 1.1

fails in the following sense: there is a shift X with language L and a collection

G ⊂ L such that G∗ ⊂ G and L is g-Hamming approachable by G, but there is

a locally constant potential function with a delta measure as its unique equilib-

rium state.

Remark 1.9: In fact, Theorem 1.6 shows that hyperbolicity can fail for some

error functions g with lim inf g(n)/ log(n) = 0 and lim sup g(n)/ log(n) > 0,

as long as there is γ > 0 such that
∑

n γ
g(n) < ∞. This does not cover all

functions g with lim inf = 0 and lim sup > 0; it would be interesting to know

if Theorem 1.1 can be extended to include functions g where lim sup > 0 but∑
n γ

g(n) = ∞ for all γ > 0.

Acknowledgments. We are grateful to the anonymous referee for pointing

out an error in the original version of §4.1.

2. Background definitions

2.1. Shift spaces. Given a finite set A, let σ : AN → AN denote the left shift

map.1 Equip AN with the product topology; equivalently, define a metric on A

by d(x, y) = 2−min{n∈N|xn �=yn}. A shift space over the alphabet A is a

closed σ-invariant subset X ⊂ AN.

Write A∗ =
⋃∞
n=0A

n for the collection of all finite words over A. Given a

shift space X , the language of X is

L = L(X) = {w ∈ A∗ | x1 · · ·xn = w for some x ∈ X and n ∈ N}.

Given D ⊂ L, write Dn = D ∩ An for the set of all words of length n in D. In

particular, Ln denotes the set of all words of length n in the language of X .

1 Our results all remain true for two-sided shifts (σ : AZ → AZ).
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Given w ∈ Ln, let
[w] = {x ∈ X | x1 · · ·xn = w}

be the corresponding cylinder in X .

2.2. Thermodynamic formalism and equilibrium states. Let X be a

shift space and L its language. Given a continuous function ϕ : X → R, which

we call a potential, consider for each w ∈ Ln the quantity

Φ(w) := sup
x∈[w]

Snϕ(x),

where

Snϕ(x) =

n−1∑
k=0

ϕ(σkx).

Given D ⊂ L, the nth partition sum associated to D and ϕ is

Λn(D, ϕ) :=
∑
w∈Dn

eΦ(w).

The pressure of D with respect to ϕ is

P (D, ϕ) := lim
n→∞

1

n
log Λn(D, ϕ).

In the specific case ϕ = 0, this reduces to the entropy of D:

h(D) := lim
n→∞

1

n
log#Dn.

When D = L(X), we write P (X,ϕ) = P (L(X), ϕ). Let Mσ(X) denote the set

of σ-invariant Borel probability measures on X . The variational principle

[Wal82, Theorem 9.10] says that

P (X,ϕ) = sup

{
hμ(σ) +

∫
ϕdμ | μ ∈ Mσ(X)

}
.

A measure achieving this supremum is called an equilibrium state.

Write

I(ϕ) =

{∫
ϕdμ : μ ∈ Mσ(X)

}
.

Following [IRRL12], we call a potential function hyperbolic if it satisfies (1.1);

that is, if P (X,ϕ) > sup I. Given ε > 0, there is n ∈ N such that

1

n
Snϕ(x) < sup I + ε
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for all x ∈ X ; consequently, ϕ is hyperbolic if and only if there is n ∈ N such

that

(2.1) P (X,ϕ) > sup
x∈X

1

n
Snϕ(x).

Equivalently, one may observe that ϕ and 1
nSnϕ(x) are cohomologous,2 and

so ϕ is hyperbolic if and only if there is a potential ψ cohomologous to ϕ such

that

(2.2) P (X,ϕ) = P (X,ψ) > sup
x∈X

ψ(x).

2.3. Specification, decompositions, and uniqueness. Following the def-

inition in [CTY17, Cli18], say that G ⊂ L has specification if there is τ > 0

such that for every v, w ∈ G there exists u ∈ L with length |u| ≤ τ such that

v′uw′ ∈ G whenever v′ is a suffix of v and w′ is a prefix of w with v′, w′ ∈ G. This
is a version of a condition that appeared in [CT12, CT13] and generalises the

classical specification property of Bowen [Bow75], which corresponds roughly

to this definition with G = L.
If G has specification with τ = 0, then we have vw ∈ G whenever v, w ∈ G,

and in this case we say that G has the free concatenation property.

When L has specification, it was proved by Bertrand [Ber88] that L contains

a sychronising word; that is, a word s ∈ L with the property that if vs ∈ L
and sw ∈ L, then vsw ∈ L. In this case the collection {sw : sws ∈ L} has

the free concatenation property. The following generalisation of this fact was

proved in [Cli18, Proposition 7.3 and §7.1.2].
Proposition 2.1: If G ⊂ L has specification, then there is a collection F ⊂ L
and a number N ∈ N such that

(1) F has the free concatenation property, and

(2) given any w ∈ G, there are u, v ∈ L with |u|, |v| ≤ N and uwv ∈ F .

See [Cli18] for a more explicit description of the collection F ; all we will need

are the properties listed above. Writing

d = gcd{|v| : v ∈ F},

2 Put ξ(x) = 1
n

∑n−1
k=0 (n− k)ϕ(σkx), then ξ(x)− ξ(σx) = 1

n
Snϕ(x)− ϕ(x).
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it follows from the free concatenation property that we can choose N ∈ N large

enough that Fn �= ∅ whenever n ≥ N is a multiple of d. Thus Proposition 2.1

has the following consequence.

Corollary 2.2: Given G,F as in Proposition 2.1 and d as in the previous

paragraph, there is N ∈ N such that given any w ∈ G and any n ≥ |w| + 2N

that is a multiple of d, there are u, v ∈ L with |u| < N , uwv ∈ F , and |uwv| = n.

Proof. Let N0 be given by Proposition 2.1, and N1 by the previous paragraph;

then chooseN large enough that N > N0 and N−2N0 ≥ N1. Given any w ∈ G,
Proposition 2.1 gives u, v′ ∈ L with |u|, |v′| ≤ N0 < N such that uwv′ ∈ F . Let

n ≥ |w| + 2N be a multiple of d. By definition, |uwv′| is a multiple of d, and

thus n− |uwv′| is also a multiple of d. Moreover,

n− |uwv′| ≥ (|w| +N)− |w| − 2N0 ≥ N1,

so there is v′′∈F with |v′′|=n−|uwv′|, hence uwv′v′′∈F and |uwv′v′′|=n.

If G is ‘large enough’, then specification for G can be used to deduce unique-

ness of the equilibrium state. More precisely, a decomposition of L is a choice

of Cp,G, Cs ⊂ L such that for every w ∈ L there are up ∈ Cp, v ∈ G, and us ∈ Cs
with w = upvus.

Theorem 2.3 ([Cli18], Theorem 1.1): Suppose that G has specification and is

closed under intersections and unions in the following sense: if u, v, w ∈ L are

such that uvw ∈ L, uv ∈ G, and vw ∈ G, then we have v, uvw ∈ G. Let ϕ be a

Hölder potential and CpGCs a decomposition of L with P (Cp ∪ Cs, ϕ) < P (ϕ).

Then ϕ has a unique equilibrium state μ, and μ has exponential decay of corre-

lations (up to a finite period) and satisfies the central limit theorem for Hölder

observables.

One can also use the results of [CT13] to deduce uniqueness (but not the

statistical properties) under extremely similar hypotheses.

Remark 2.4: For β-shifts and their factors, one can find a decomposition with

h(Cp ∪Cs) = 0, and then the pressure gap condition in Theorem 2.3 can be ver-

ified by proving hyperbolicity of the potential function, since an easy argument

shows that P (D, ϕ) ≤ h(D) + supμ
∫
ϕdμ for every D ⊂ L.
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2.4. Hamming approachability and asymptotic estimates. Given a

function g : N → N, we say that L is g-Hamming approachable by G ⊂ L if

there is n0 ∈ N such that for every n ≥ n0 and w ∈ Ln, there is v ∈ Gn with

(2.3) dHam(v, w) := #{1 ≤ i ≤ |w| : vi �= wi} ≤ g(|w|).
This follows [CTY17, Definition 2.10], with the difference that we include the

function g in the notation, and will ultimately require that g be sublogarith-

mic, not just sublinear. We assume without loss of generality that g is non-

decreasing.

We will also need to use the fact that for any k ≤ m ∈ N and any w ∈ Lm,

we have

(2.4) #{v ∈ Lm : dHam(v, w) ≤ k} ≤
(
m

k

)
(#A)k.

This becomes more useful with an estimate for
(
m
k

)
. Recall from Stirling’s

formula that log(n!) = n logn− n+O(log n), and thus

log

(
m

k

)
=(m logm−m)− (k log k − k)

− ((m− k) log(m− k)− (m− k)) +O(logm)

=k log
m

k
+ (m− k) log

m

m− k
+O(logm).

Writing

h(t) = −t log t− (1− t) log(1− t)

for the bipartite entropy function, this gives

(2.5) log

(
m

k

)
= h

( k
m

)
m+O(logm),

and so there is a constant Q such that (2.4) gives

(2.6) #{v ∈ Lm : dHam(v, w) ≤ k} ≤ emh(k/m)mQ(#A)k.

Lemma 2.5: Suppose D ⊂ L has h(D) > 0, and let β > 0 be small enough

that h(β) + β log(#A) < h(D). Then for every N ∈ N there are arbitrarily

large m ∈ N with the following property: given any w1, . . . , wN ∈ Dm, there is

v ∈ Dm with dHam(v, wi) > βm for all 1 ≤ i ≤ N .

Proof. Choose η, ξ > 0 such that

h(β) + β log(#A) + ξ < η < h(D).
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Given m ∈ N and w1, . . . , wN ∈ Dm, (2.6) gives

#
N⋃
i=1

{v ∈ Lm : dHam(v, wi) ≤ βm} ≤ Nemh(β)mQ(#A)βm < NmQe(η−ξ)m.

The right-hand side is < #Dm whenever NmQ < emξ and #Dm ≥ emη; this

happens infinitely often.

2.5. Coded systems. Given a finite alphabet A and a collection of words

G ⊂ A∗, write G∗ for the set of all finite concatenations of words in G. The

coded shift generated by G is the subshift X over the alphabet A whose lan-

guage consists of all subwords of elements of G∗. We refer to G as a generating

set forX . The generating set is said to be uniquely decipherable if whenever

u1u2 · · ·um = v1v2 · · · vn with ui, vj ∈ G, we have m = n and uj = vj for all j

[LM95, Definition 8.1.21].

Theorem 2.6: [Cli18, Theorem 1.8] Let X be a coded shift on a finite alphabet

and ϕ a Hölder potential on X . If X has a uniquely decipherable generating

set G such that

D = D(G) := {w ∈ L : w is a subword of some g ∈ G}
satisfies P (D, ϕ) < P (ϕ), then ϕ has a unique equlibrium state μ, and μ has

exponential decay of correlations (up to a finite period) and satisfies the central

limit theorem for Hölder observables.

3. Proof of Theorem 1.1

In §3.1 we establish some preliminary results that are needed in order to describe

precisely (in §3.2) the mechanism by which we generate entropy.

3.1. Preliminaries for the proof. We start with the following consequence

of Corollary 2.2.

Lemma 3.1: Under the hypotheses of Theorem 1.1, there areN ∈ N and F ⊂ L
with the free concatenation property such that writing d = gcd{|v| : v ∈ F},
the following is true: for every w ∈ L such that |w| ≥ 2N and |w| is a multiple

of d, there is some w′ ∈ F such that |w| = |w′| and
(3.1) dHam(w[1,|w|−i], w′

(i,|w′|]) ≤ g(|w|) + 2N for some 0 ≤ i ≤ N − 1.



Vol. 232, 2019 POSITIVE ENTROPY EQUILIBRIUM STATES 909

Proof. Let F be as in Proposition 2.1 and N as in Corollary 2.2. Then

x = w[1,|w|−2N ] has y ∈ G|w|−2N such that dHam(x, y) ≤ g(|w| − 2N) ≤ g(|w|),
where we use the fact that g is non-decreasing. Corollary 2.2 gives u, v ∈ L
such that |u| < N , uyv ∈ F and |uyv| = |w|. Let w′ = uyv and i = |u|; then
writing w = xzz′ where |z′| = i, we have

dHam(w[1,|w|−i], w′
(i,|w′|]) = dHam(xz, yv) = dHam(x, y) + dHam(z, v)

≤ g(|w|) + |z| ≤ g(|w|) + 2N.

Consider the map Ln → Fn given by w �→ w′ as in Lemma 3.1. By (2.6), the

multiplicity of this map is at most Nenh(
g(n)+2N

n−N )nQ(#A)g(n)+2N . Writing cn

for this quantity we observe that #Fn ≥ (#Ln)/cn whenever n is a multiple

of d, and that limn→∞ 1
n log cn = 0, so h(F) = h(L) = htop(X) > 0. Thus

we can take β > 0 small enough that h(β) + β log(#A) < h(F), and fix some

m ≥ max(3N,n0) such that the conclusion of Lemma 2.5 holds, where n0

is as in the paragraph preceding (2.3). Note that m must be a multiple of

d = gcd{|v| : v ∈ F}.
Now we fix several more parameters that will be used in the proof. First we

will find V > 0 that controls |Φ(v)−Φ(w)| in terms of dHam(v, w); then we will

choose γ > 0 small relative to m,V ; then we choose a large L > 0 that helps us

control
∑
i g(ni); and finally we will choose δ > 0 small enough that a certain

entropy estimate later on is positive.

Let α > 0 be the Hölder exponent of ϕ, and write

|ϕ|α = sup
x �=y

|ϕ(x) − ϕ(y)|
d(x, y)α

.

Then for every n ∈ N, w ∈ Ln, and x, y ∈ [w], we have

|Snϕ(x) − Snϕ(y)| ≤
n−1∑
k=0

|ϕ(σkx) − ϕ(σky)| ≤
n−1∑
k=0

|ϕ|α2−(n−k)α <
|ϕ|α

1− 2−α
.

In particular, writing V := |ϕ|α(1− 2−α)−1, we have

(3.2) |Snϕ(x) − Φ(w)| ≤ V for all n ∈ N, w ∈ Ln, and x ∈ [w].

This has the corollary that for every v, w ∈ L with |v| = |w|, we have

(3.3) |Φ(v)− Φ(w)| ≤ V dHam(v, w).



910 V. CLIMENHAGA AND V. CYR Isr. J. Math.

Lemma 3.2: For every γ > 0 there is L > 0 such that for every n1, . . . , n� ∈ N

we have

(3.4)

�∑
i=1

g(ni) ≤ 
(
L+ γ log

∑
ni


)
.

Proof. Since g(n)/ logn→ 0, there exists K ∈ N such that

(3.5) g(n) < γ log(n) for all n > K.

Let L := max{g(n) : 1 ≤ n ≤ K}. Then we have the following estimate: given

any n > K,  ∈ N, and n1, . . . , n� ∈ N such that
∑�
i=1 ni = n, we have

(3.6)

�∑
i=1

g(ni) ≤
∑

{i:ni≤K}
g(ni) +

∑
{i:ni>K}

g(ni)

≤ L#{i : ni ≤ K}+
∑

{i:ni>K}
γ logni

≤ L+ γ log(n/) = (L+ γ log(n/)).

The last inequality uses convexity; the function (x1, . . . , x�) �→ ∑
i log xi is

maximized (subject to the constraint
∑
xi = n) when x1 = · · · = x� = n/, for

which values we have
∑
i log xi =  log(n/).

For the duration of the proof, we fix 0 < γ < (16m2V )−1, and let L be given

by Lemma 3.2. Without loss of generality, we assume that L ≥ 2m. Finally,

with V, β,m, γ, L fixed, we choose δ > 0 small enough that

(3.7)
| log δ|
8m2

> 2 log
(2L+ γ| log δ|

βm

)
+ 4V L.

3.2. Construction of nearby words. To prove hyperbolicity of ϕ it suffices

to show that for every x ∈ X , we have

P (ϕ) > lim
n→∞

1

n
Snϕ(x).

To this end, we take w ∈ L to be a (sufficiently long) word, and estimate

Λ|w|(L, ϕ) in terms of eΦ(w).

Let m ∈ N be as above. Given n � m with (2m)|n, fix kn ∈ [δn, 2δn] ∩ N,

and let

Jn =

{
n = (n1, . . . , nkn) :

∑
ni = n and (2m)|ni for all i

}
.
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Given n ∈ Jn, let Nj = n1 + n2 + · · · + nj−1 be the partial sums. For a fixed

w ∈ Ln, we will associate to each n ∈ Jn a word ψ(n) ∈ Ln such that

(1) ψ(n) is Hamming-close to w on the intervals (Ni, Ni+1 −m];

(2) ψ(n) is Hamming-far from w on the intervals (Ni −m,Ni].

This will allow us to decipher n from ψ(n) up to some (controllable) error; that

is, we will be able to control the multiplicity of the map ψ : Jn → Ln. Moreover,

each ψ(n) will have ergodic sum Φ(ψ(n)) that is close to Φ(w). These two

facts, together with an estimate on #Jn, will give us the desired lower bound

on Λn(L, ϕ).
Let us make this more precise. Given n, we have ni ≥ 2m ≥ m+2N for all i,

and so applying Lemma 3.1 to w(Ni,Ni+1−m] ∈ Lni−m gives vi ∈ Fni−m such

that

(3.8) dHam(w(Ni,Ni+1−m−ai], v
i
(ai,ni−m]) ≤ g(ni) + 2N for some 0 ≤ ai < N.

Consequently, we have

(3.9) dHam(v
i, w(Ni−ai,Ni+1−m−ai]) ≤ g(ni) + 3N ≤ g(ni) +m.

Moreover, by Lemma 2.5 there are words si ∈ Fm such that

(3.10) dHam(s
i, w(Ni−m−a,Ni−a]) ≥ βm for all 1 ≤ a ≤ N.

Now we can define the map ψ = ψw : Jn → Ln by

(3.11) ψ(n) = v1s1v2s2 · · · vknskn .
Summing over all n ∈ Jn gives

log Λn(L, ϕ) ≥ Φ(w) + log#Jn − max
n∈Jn

|Φ(ψ(n)) − Φ(w)| − max
u∈Ln

#ψ−1(u).

If we divide both sides by n, send n→ ∞, and write

hJ := lim
n→∞

1

n
log#Jn,

ΔΦ := lim
n→∞

1

n
max
w∈Ln

max
n∈Jn

|Φ(ψw(n)) − Φ(w)|,

hψ := lim
n→∞

1

n
max
w∈Ln

max
u∈Ln

#ψ−1
w (u),

we get

(3.12) P (ϕ) ≥ sup I + hJ −ΔΦ − hψ,
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where we recall that

I =

{∫
ϕdμ : μ ∈ Mσ(X)

}
=

[
inf
x∈X

lim
n→∞

1

n
Snϕ(x), sup

x∈X
lim
n→∞

1

n
Snϕ(x)

]
.

To complete the proof of Theorem 1.1, it suffices to show that hJ > ΔΦ + hψ,

which we do in the next section.

3.3. Estimates on errors and entropy.

3.3.1. Entropy gained from J . Using (2.5) and the definition of Jn, we have

log#Jn = log

( n
2m

kn

)
≥ h

( δ

2m

) n

2m
+O(log n),

and thus

(3.13) hJ ≥ δ

4m2

∣∣∣ log δ

2m

∣∣∣ ≥ δ

4m2
| log δ|.

3.3.2. Errors in ergodic sums. Given any w ∈ Ln and n ∈ Jn, with vi as in the

definition of ψ we see from (3.3) and (3.8) that

|Φ(w(Ni,Ni+1−m])− Φ(vi)| ≤ (g(ni) + 3N)V ≤ (g(ni) +m)V,

and hence |Φ(w(Ni,Ni+1] − Φ(visi)| ≤ (g(ni) + 2m)V . Summing over all i and

using Lemma 3.2 gives

|Φ(ψ(n)) − Φ(w)| ≤
kn∑
i=1

(g(ni) + 2m)V ≤ kn(L+ 2m+ γ log(n/kn))V,

and since L ≥ 2m we get

(3.14) max
w∈Ln

max
n∈Jn

|Φ(ψ(n)) − Φ(w)| ≤ kn(2L+ γ log(n/kn))V.

Dividing by n and using kn ∈ [δn, 2δn] gives

(3.15) ΔΦ ≤ 2δV (2L+ γ| log δ|).
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3.3.3. Multiplicity of ψ. Given u ∈ Ln, let
Ru = {j ∈ [1, n] : m|j and dHam(u[j,j+m), w[j−a,j+m−a)) ≥ βm

for all 0 ≤ a < N}.
It follows from (3.10) that {Ni}kni=1 ⊂ Rψ(n) for all n ∈ Jn. Moreover, given

n ∈ Jn we see from (3.9) that u = ψ(n) has

(3.16)

(Ni+1/m)−1∑
j=Ni/m

dHam(u(jm,(j+1)m], w(jm−ai,(j+1)m−ai]) ≤ g(ni) + 2m

for every 1 ≤ i ≤ nk, and summing over i gives

(3.17)

βm ·#Ru ≤
n/m∑
j=1

min
0≤a<N

dHam(u[jm,jm+m), w[jm−a,jm+m−a))

≤
kn∑
i=1

(g(ni) + 2m) ≤ kn(2L+ γ| log δ|),

where the last inequality again uses Lemma 3.2 and the inequalities L ≥ 2m,

kn ≥ δn. Thus we have

#Ru ≤ kn · 2L+ γ| log δ|
βm

,

and since n ∈ Jn is determined by a choice of kn elements from Ru, we conclude

from (2.5) that

log#ψ−1(u) ≤ h
( βm

2L+ γ| log δ|
)2δn
βm

(2L+ γ| log δ|) +O(log n),

and so

(3.18)

hψ ≤ βm

2L+ γ| log δ| log
(2L+ γ| log δ|

βm

) 2δ

βm
(2L+ γ| log δ|)

= 2δ log
(2L+ γ| log δ|

βm

)
.

3.3.4. Completion of the proof. Combining (3.13), (3.15), and (3.18), we get

hJ −ΔΦ − hψ
δ

≥ | log δ|
4m2

− 4V L− 2V γ| log δ| − 2 log
(2L+ γ| log δ|

βm

)
.

Since we chose γ to be smaller than (16m2V )−1, we have

| log δ|
8m2

− 2V γ| log δ| > 0,
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and thus

hJ −ΔΦ − hψ
δ

>
| log δ|
8m2

− 4V L− 2 log
(2L+ γ| log δ|

βm

)
.

The right-hand side is positive by our choice of δ in (3.7), and we conclude that

hJ > ΔΦ + hψ. By (3.12), this gives P (ϕ) > sup I, which completes the proof

of Theorem 1.1.

4. Proof of Theorem 1.6

Now we consider the shift space X described in Theorem 1.6. Write L for the

language of X and f : N → N for the function used to define

G = {0a1b : a, b ≥ f(a+ b)}.
Recall that ϕ = −1[1]. Before we prove the five statements listed in the theorem,

we demonstrate that P (tϕ) is non-negative and non-increasing. Let δ0 be the

δ-measure on the fixed point 0 ∈ X . Then for every t ∈ R we have

P (tϕ) ≥ hδ0(σ) + t

∫
ϕdδ0 = tϕ(0) = 0.

Since ϕ ≤ 0 it follows from basic properties of pressure that whenever s < t, we

have

P (tϕ) = P (sϕ+ (t− s)ϕ) ≤ P (sϕ+ (t− s)0) = P (sϕ),

so the pressure function is non-increasing.

4.1. Hamming approachability. Let n1 be such that f(n) ≤ n/2 for all

n ≥ n1; in particular, for all n ≥ n1 there are a, b ≥ f(n) such that a + b = n,

and thus 0a1b ∈ G. We need the following lemma.

Lemma 4.1: Given n ≥ n1 and w ∈ Ln, suppose that w can be written as

w = u0a1bv for some u, v ∈ L with |u|, |v| ≤ n1 and a, b ≥ 0. (Note that u, v

are allowed to be empty.) Then there is w̃ ∈ G such that

dHam(w, w̃) ≤ n1 +max(f(n), n1).

Proof. If n1 + a < f(n), then w̃ = 0f(n)1n−f(n) ∈ G satisfies

dHam(w, w̃) ≤dHam(w[1,f(n)], 0
f(n)) + dHam(w(f(n),n], 1

n−f(n))

=dHam(u0
a1f(n)−a−|u|, 0f(n)) + dHam(1

n−f(n)−|v|v, 1n−f(n))

≤f(n) + n1.
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Similarly, if n1 + a > n− f(n), then w̃ = 0n−f(n)1f(n) ∈ G satisfies

dHam(w, w̃) ≤ n1 + f(n).

Finally, if f(n) ≤ n1 + a ≤ n− f(n), then w̃ = 0n1+a1n−n1−a satisfies

dHam(w, w̃) ≤ 2n1.

Now given any w ∈ L with |w| ≥ 2n1, there are integers

0 = 0 < 1 < · · · < m = n

such that

w(�i−1,�i] = 0ai1bi for all 1 ≤ i ≤ m,

ai, bi ≥ f(ai + bi) for all 1 < i < m,

a1, b1, am, bm ≥ 0.

Choose 0 ≤ j ≤ k ≤ m such that

n1 ∈ (j−1, j] and n− n1 ∈ (k−1, k].

If j = k then w has the form required for Lemma 4.1, and thus there is w̃ ∈ G

such that dHam(w, w̃) ≤ n1 + max(f(n), n1). If j < k, then we can write

w = wpwcws, where

wp := w(0,�j+1], wc := w(�j+1,�k], ws := w(�k,n].

Note that wc ∈ F , and wp, ws both have the form required for Lemma 4.1, so

taking w̃p and w̃s as given by that lemma, we have w̃pwcw̃s ∈ G∗ and

dHam(w, w̃
pwcw̃s) ≤ dHam(w

p, w̃p) + dHam(w
s, w̃s) ≤ 2n1 + 2max(f(n), n1).

This proves the first item in Theorem 1.6.

4.2. Hyperbolicity when P (tϕ) > 0. Let It = {∫ tϕ dμ : μ ∈ Mσ(X)}. The
second statement in Theorem 1.6 is equivalent to the claim that when t ≥ 0, we

have P (tϕ) > sup It if and only if t < t0, where t0 is the first root of Bowen’s

equation (1.2). Since t �→ P (tϕ) is non-increasing, we see that t < t0 if and

only if P (tϕ) > 0. On the other hand, since
∫
ϕ δ1 = −1 ≤ ϕ ≤ 0 =

∫
ϕ δ0,

we have It = [−t, 0] for all t ≥ 0, and so sup It = 0, which proves the desired

equivalence.
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4.3. Unique equilibrium state when t < t0. To deduce uniqueness of the

equilibrium state for tϕ when 0 ≤ t < t0, we apply Theorem 2.6. (Positive

entropy of the equilibrium state will then follow since tϕ is hyperbolic.) The

shift X is coded with generating set G = {0a1b : a, b ≥ f(a + b)}. This is

uniquely decipherable because if w = u1u2 · · ·um with ui ∈ G, then we can

recover u1 from w as the longest initial segment of the form 0a1b with a, b ≥ 1,

then u2 from the remainder of w by the same procedure, and so on. Moreover,

the set

D = D(G) := {w ∈ L : w is a subword of some g ∈ G}
is easily seen to satisfy D ⊂ {0a1b : a, b ≥ 0}, and hence #Dn ≤ n + 1, so

h(D) = 0. We conclude that

P (D, tϕ) ≤ h(D) + sup It = sup It for all t,

and since we showed that tϕ is hyperbolic whenever 0 ≤ t < t0, we conclude

that P (D, tϕ) < P (tϕ) for this range of t, and so we can apply Theorem 2.6.

4.4. Only the delta measure past t0. Since t �→ P (tϕ) is non-increasing

and nonnegative, we have P (tϕ) = P (t0ϕ) = 0 for all t ≥ t0. Thus δ0 is an

equilibrium state for all t ≥ t0. When t > t0, we observe that every other

μ ∈ Mσ(X) has μ[1] > 0 and hence
∫
ϕdμ < 0, so

hμ(σ) +

∫
tϕ dμ =hμ(σ) +

∫
t0ϕdμ+

∫
(t− t0)ϕdμ

≤P (t0ϕ) + (t− t0)

∫
ϕdμ < 0,

which shows that δ0 is the unique equilibrium state on this range of t.

4.5. Bowen’s equation has a root if and only if

∑
γf(n) <∞. For the

final statement in Theorem 1.6, we fix t > 0 and study the power series

F (x) :=

∞∑
n=1

Λn(G, tϕ)x
n and H(x) := 1 +

∞∑
n=1

Λn(G
∗, tϕ)xn.

Proposition 4.2: For the shift space in Theorem 1.6 and t > 0, the following

are equivalent:

(a) P (tϕ) = 0.

(b) The power series H(x) converges for every 0 ≤ x < 1.

(c) The power series F (x) converges for every 0 ≤ x < 1, with F (x) < 1.

(d) The power series F (x) converges for x = 1, with F (1) ≤ 1.
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Proof. (a)⇔(b). Consider the power series A(x) =
∑∞
n=0 Λn(X, tϕ)x

n (here

Λ0(X, tϕ) = 1). Since lim n
√
Λn(X, tϕ) = eP (tϕ), the root test tells us that the

radius of convergence of A(x) is e−P (tϕ) ≤ 1. In particular, P (tϕ) = 0 if and

only if A(x) converges for every 0 ≤ x < 1, so to prove the first equivalence

it suffices to show that the power series A(x) and H(x) converge for the same

values of x ∈ [0, 1). To this end, consider the sets of words

P = {0a1b : a < f(a+ b)} and S = {0a1b : b < f(a+ b)}.
Every w ∈ L admits a unique decomposition as w = upvus for some up ∈ P ,

v ∈ G∗, and us ∈ S, and since Φ(upvus) = Φ(up) + Φ(v) + Φ(us), we have

(4.1)

N∑
n=0

Λn(X, tϕ)x
n =

∑
a,b,c≥0

a+b+c≤N

Λa(P , tϕ)xaΛb(G∗, tϕ)xbΛc(S, tϕ)xc.

Consider the power series associated to P and S:

CP(x) := 1 +

∞∑
n=1

Λn(P , ϕ)xn and CS(x) := 1 +

∞∑
n=1

Λn(S, ϕ)xn.

Write HN , AN , C
P
N , C

S
N for the partial sums (over n ≤ N) of the respective

power series; then (4.1) gives

(4.2) CP
N (x)HN (x)CS

N (x) ≤ A3N (x) ≤ CP
3N (x)H3N (x)CS

3N (x).

We claim that CP(x) and CS(x) both converge for all 0 ≤ x < 1. For CS(x)
we have

CS(x) = 1 +

∞∑
n=1

( f(n)−1∑
k=0

e−tk
)
xn = 1 +

∞∑
n=1

(1− e−tf(n)

1− e−t
)
xn,

which has radius of convergence x = 1 since the coefficients lie in the interval

(0, 1]. Similarly for CP(x), we have

CP(x) = 1 +
∞∑
n=1

( f(n)−1∑
k=0

e−t(n−k)
)
xn = 1 +

∞∑
n=1

(e−t(n−f(n)) − e−tn

et − 1

)
xn,

and since 1 ≤ f(n) ≤ n/2 for all sufficiently large n, the coefficients converge

to 0 and the radius of convergence of CP (x) is greater than or equal to x = 1.

Thus CP (x) and CS(x) both converge for all 0 ≤ x < 1, and it follows from (4.2)

that for every such x, H(x) converges if and only if A(x) converges. This proves

the equivalence of (a) and (b).
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(b)⇔(c). Since X is uniquely decipherable we have

Λn(G
∗, tϕ) =

n∑
j=1

∑
n1+···+nj=n

j∏
i=1

Λni(G, tϕ).

It follows that whenever |F (x)| < 1 we have

(4.3) H(x) = 1 +

∞∑
k=1

F (x)k =
1

1− F (x)

and if 0 ≤ x < 1 is such that F (x) ≥ 1, then H(x) does not converge.

(c)⇔(d). Suppose F (1) converges. Then F (x) converges for all |x| < 1 by

standard facts on power series, and since all the coefficients are nonnegative

(and not all of them vanish), the function F is strictly increasing on [0, 1], so

0 ≤ F (x) < F (1) for all x ∈ [0, 1), which proves (d)⇒(c).

Now we prove (c)⇒(d). Suppose that for all 0 ≤ x < 1 we have F (x) < 1.

Then the partial sums FN (x) also satisfy FN (x) < 1 for all x ∈ [0, 1) andN ∈ N,

since the coefficients are nonnegative. By continuity we get FN (1) ≤ 1 for all

N ∈ N, and thus F (1) ≤ 1.

By Proposition 4.2, in order to complete the proof of Theorem 1.6(v) it suffices

to show that there is t > 0 with F (1) ≤ 1 if and only if there is γ > 0 such that∑
n γ

f(n) <∞. Observe that

(4.4) Λn(G, tϕ) =

n−f(n)∑
k=f(n)

e−tk =
e−t(f(n)−1) − e−t(n−f(n))

et − 1

whenever f(n) ≤ n/2, and Λn(G, tϕ) = 0 otherwise. Since f(n) ≤ n/2 for all

sufficiently large n, we have

∑ e−t(n−f(n))

et − 1
<∞,

implying that F (1) < ∞ if and only if
∑∞

n=1 e
−t(f(n)−1)/(et − 1) < ∞. In

particular, if F (1) ≤ 1 then
∑
γf(n) <∞ for γ = e−t.

For the converse direction, suppose that γ > 0 is such that
∑
γf(n) < ∞.

Then for all t ≥ − log γ, (4.4) gives

∞∑
n=1

Λn(G, tϕ) ≤
∞∑
n=1

e−t(f(n)−1)

et − 1
≤

∞∑
n=1

γf(n)−1

et − 1
≤ 1

γ(et − 1)

∞∑
n=1

γf(n).
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By taking t sufficiently large, the right-hand side can be made ≤ 1, so for this

value of t we have F (1) ≤ 1, which completes the proof of Theorem 1.6.
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