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ABSTRACT
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is strongly dependent for any Henselian valuation v.
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1. Introduction

Ordered abelian groups were classified up to elementary equivalence (and be-

yond) by Gurevich [12] and Schmitt [29] (and references therein). One signifi-

cant application was the proof in [11] that ordered abelian groups are dependent

(i.e., do not have the independence property). This result, when combined with

transfer principles (such as [5] and [2], and most recently [18]), reduced—under

fairly general conditions—the task of checking whether a (pure) Henselian val-

ued field is dependent to checking whether its residue field is.

The finer classification of Henselian dependent fields, motivated mainly by

Shelah’s conjecture ([32]) that all infinite (strongly) dependent fields are sep-

arably closed, real closed or admit a definable Henselian valuation, called for

a finer classification of ordered abelian groups. The immediate motivation for

the investigation carried out in the present paper was the lack of worked out

examples of strongly dependent ordered abelian groups (and Henselian fields)

that are not dp-minimal. We prove, generalising the classification of dp-minimal

ordered abelian groups of [21]:

Theorem 1: Let G be an ordered abelian group. The following are equivalent:

(1) G is strongly dependent;

(2) dp-rk(G) < ℵ0;

(3) G has finite spines and |{p prime : [G : pG] = ∞}| <∞;

(4) G is elementary equivalent to a lexicographic sum
⊕

i∈I Gi, where

(b) for every prime p, |{i ∈ I : pG �= G}| <∞ and

(b) [Gi : pGi] = ∞ for only finitely many primes p.

The spines of an ordered abelian group, in the terminology of [30], are (inter-

pretable) coloured linear orders determining the first order theory of the group.

To the best of our knowledge, no systematic study of ordered abelian groups

with finite spines has been carried out before. In Section 2, we collect a few

useful facts about ordered abelian groups. In Section 3 we apply Schmitt’s char-

acterization of lexicographic sums of ordered archimedian groups to characterize

groups with finite spines.

Theorem 1 is proved in Section 4. The proof proceeds by showing that

strongly dependent ordered abelian groups have finite spines and explicitly cal-

culating the dp-rank of the latter. This is done by first calculating the dp-rank

of a certain 1-based reduct of the group, and then studying the effect of re-

introducing the order into that structure.
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We have recently learned that Rafel Farré [9], Alfred Dolich and John

Goodrick [7] have obtained, independently and using different methods, some

of the results concerning ordered abelian groups obtained in this paper.

In Section 5 we apply our classification of strongly dependent ordered abelian

groups to the study of strongly dependent Henselian fields. Our main result is:

Theorem 2: LetK be a strongly dependent field and v any Henselian valuation

on K. Then (K, v) is strongly dependent. The value group, vK, is stably

embedded in (K, v) as a pure ordered abelian group (up to one constant), and

the residue field, Kv, is stably embedded as a pure field.

As a corollary we deduce (using results of Johnson, [22]) that strongly de-

pendent fields are defectless (and therefore also algebraically maximal) with

respect to any Henselian valuation. Our study of strongly dependent valued

fields builds on ideas of Jahnke and Simon ([17], [18]).

Acknowledgements. We would like to thank Franziska Jahnke for a long dis-

cussion of an earlier draft of this paper. Her comments and ideas contributed

to considerably improve the paper, especially Section 5. We would also like to

thank Nick Ramsey, Itay Kaplan and Antongiulio Fornasiero for pointing out

some mistakes in an early draft. We thank the anonymous referee for a metic-

ulous reading of the paper, and his or her detailed comments and suggestions.

2. Preliminaries and notation

Throughout the text G will denote a group, usually abelian and often ordered, C

will denote a sufficiently saturated model of Th(G). By definable we will mean

definable with parameters. We will need a few results from [29]. Since this text

is not readily available, we try to keep the present work as self-contained as

possible, referring to more accessible sources whenever we are aware of such. In

particular, for the study of ordered abelian groups we chose the language of [4],

rather than the language used by Schmitt. The next sub-section is dedicated

to a quick overview of (parts) of the language we are using, and to the basic

properties of definable sets.
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2.1. Ordered abelian groups. Recall that an abelian group (G; +) is or-

dered if it is equipped with a linear ordering < such that a < b implies

a + g < b + g for all a, b, g ∈ G. An ordered abelian group is discrete if it

has a minimal positive element, and dense otherwise. It is archimedean if

for all a, b ∈ G there exists n ∈ Z such that na > b. In particular, archimedean

ordered abelian groups do not have non-trivial convex subgroups.

Schmitt and Gurevich [12, 29] were the first to provide quantifier elimination

for ordered abelian groups. For most of our needs in the present paper a slightly

different language introduced by Cluckers and Halupczok in [4] will be more

convenient. We recall some of the notation and conventions from [4]:

For any n ∈ N and a ∈ G\nG let Hn(a) be the largest convex subgroup of G

such that a /∈ Hn(a) + nG (equivalently, it is the largest convex subgroup not

meeting a+nG), and Hn(a) = 0 if a ∈ nG. By [4, Lemma 2.1] the groupsHn(a)

are definable (uniformly in a) in the language of ordered abelian groups. We

set Sn := G/∼, with a ∼ a′ if and only if Hn(a) = Hn(a
′), and let sn : G→ Sn

be the canonical map; we denote Hn(a) by Gα for sn(a) = α.

Since the system of convex subgroups of an ordered abelian group are linearly

ordered, Sn is an interpretable set linearly ordered by α ≤ α′ if Gα ⊆ Gα′ .

For any α ∈ Sn and m ∈ N define

G[m]
α :=

⋂
{H +mG : Gα � H ⊆ G, H a convex subgroup}.

Other than the sorts Sp, Cluckers–Halupczok define two more auxiliary

sorts Tp and T +
p parametrizing more definable convex subgroups of G. It suf-

fices, for our needs, to know that they are intersections and unions of convex

subgroups Gα for α ranging in Sp.

Remark: As we will need results from [29] we note that the groups denoted

Hn(a) in [4] (and in the present text) are denoted Fn(a) by Schmitt.

We conclude this section with some basic results.

Fact 2.1 ([29, Lemmas 2.8, 2.9, 2.10]):

(1) Hn(a) = Hn(a+ ng), for any g ∈ G.

(2) If Hn(a) � Hn(b) then (a+ nG) ∩Hn(b) �= ∅,
(3) as a result, if Hn(a) � Hn(b) then Hn(a+ b) = Hn(b)

(4) and if Hn(a) = Hn(b) then Hn(a+ b) ⊆ Hn(a).

(5) For every prime p, Hpm(a) = Hpm+k(pka).
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2.2. Examples. Some important examples of ordered abelian groups:

Example 2.2 ([29, Lemma 1.19]): Let χ : {primes} → N ∪ {ℵ0} be a function

and B =
⋃

p{Bp : p prime} be a linearly independent subset of R as a Q-vector

space such that the Bp are disjoint and |Bp| = χ(p). Let

G =
∑
p

Z(p) ⊗ 〈Bp〉,

where Z(p) = {n/m ∈ Q : gcd(m, p) = 1} and 〈Bp〉 is the Z module generated

by Bp. Due to the linear independence of B,

G =
⊕

{Z(p) · b : p prime, b ∈ Bp},

and thus

[G : pG] = pχ(p)

for every prime p. LettingG inherit the order fromR we get a dense archimedean

group with the same property.

Example 2.3: Any discrete archimedean group is isomorphic (as an ordered

abelian group) to Z.

Example 2.4: Let (I,<) be an ordered set and for each i ∈ I let Gi be an

ordered abelian group. Let
∏

i∈I Gi be the direct product of the groups, as

abelian groups. For f ∈
∏

i∈I Gi we define

supp(f) = {i ∈ I : f(i) �= 0}.

The Hahn-product of the Gi is the subgroup

H := {f ∈
∏
i∈I

Gi : supp(f) is a well ordered subset of I}

endowed with an order defined by

f < g ⇔ f(i) < g(i) where i = min supp(g − f).

The subgroup ⊕
i∈I

Gi = {f ∈ H : supp(f) is finite}

is called the lexicographic product\sum.
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2.3. Strong dependence, burden and dp-rank. We recall the basic model-

theoretic definitions with which this paper is concerned:

Definition 2.5: Let T be a complete theory and C a sufficiently saturated model.

All elements and sequences below are taken from C.

(1) T has an inp-pattern of depth κ over A if there are (bαi )i<ω , where

α < κ, integers kα < ω and formulas ϕα(x, yα) such that each system

{ϕα(x, bαi ) : i < ω} is kα-inconsistent, but for any function η ∈ ωκ the

partial type {ϕα(x, bαη(α)) : α < κ} is consistent.

(2) The burden (over A) of T is the supremum over all κ such that there

is an inp-pattern of depth κ (over A).

(3) The dp-rank (over A) of T is the supremum over all κ such that there

is a b and a system of κ sequences mutually indiscernible over A such

that none of them is indiscernible over Ab.

(4) For a structure M , define burden(M) and dp-rk(M) over A to be

burden(Th(M)) and dp-rk(Th(M)) over A, respectively.

(5) T is strongly dependent if there are no ℵ0 mutually indiscernible

sequences and b such that none of them is indiscernible over b.

Remark: (1) In the compuation of the dp-rank of a theory T the parameter

set A appearing in the definition does not make a difference.

(2) In the definition of an inp-pattern, we may assume the (bαi )i<ω

are mutually indiscernible in which case we may require only that

{ϕα(x, bαi ) : i < ω} be inconsistent.

The above definitions are tied together by:

Fact 2.6 ([1]): If T is dependent then burden(T ) = dp-rk(T ).

Fact 2.7 ([32, Observation 2.1]): T is strongly dependent if and only if for any

infinite indiscernible sequence 〈āt : t ∈ I〉 (the āt may be infinite sequences

themselves) and c a singleton there exists a finite convex equivalence relation E

on I such that if s ∈ I then 〈āt : t ∈ (s/E)〉 is indiscernible over c.

In Section 5 Shelah’s expansion, Msh of a structure M, will play an impor-

tant role. We recall that Msh is obtained by expanding M with all externally

definable sets. Shelah, [31], shows that if M is dependent, Msh has quanti-

fier elimination, and is therefore dependent. It follows immediately from the

above definitions (and is well known) that if M is dp-minimal (resp., strongly

dependent) then Msh is dp-minimal (resp., strongly dependent).
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3. Ordered abelian groups with finite spines

We start by defining our main object of interest for the present and the following

sections:

Definition 3.1: A pure ordered abelian group G has finite spines if Sp is finite

for every prime p.

Remark: If Sp is finite for all p then Sn is finite for all n [4, Lemma 2.2].

We will see in Proposition 4.14 that every strongly dependent ordered abelian

group has finite spines. We collect a few easy or known facts about groups with

finite spines.

Lemma 3.2: Let G be an ordered abelian group with finite spines. For n ∈ N

denote

H−
n (g) :=

⋃
{Hn(h) : g /∈ Hn(h), h ∈ G}.

Then

X = {H−
n (g) : g ∈ G} = {Hn(g) : g ∈ G} = Y

for all n.

Proof. Because Sn is finite and convex subgroups are linearly ordered by inclu-

sion, X ⊆ Y . In the other direction, if Hn(h) is maximal within the set X then

Hn(h) =
⋃
{Hn(g) : h /∈ Hn(g)} = H−

n (h). Otherwise let x ∈ Hn(h
′) \Hn(h)

where Hn(h
′) is the immediate successor of Hn(h) in Y . It is easy to see that

H−
n (x) = Hn(h).

Proposition 3.3: Let G be an ordered abelian group with finite spines. Then

{Gα : α ∈ Sn, n ∈ N} are all the definable convex subgroups of G. In particular,

there are only countably many definable convex subgroups.

Proof. By [6, Theorem 4.1],1 for every definable convex subgroup of (any) or-

dered abelian group, there exists n ∈ N such that

H =
⋂
g/∈H

H−
n (g).

If G has finite spines, then by Lemma 3.2, H = Hn(g) for some n ∈ N

and g ∈ G.

1 By [4, Section 1.5], what Schmitt and Delon–Farré denote by An(g) is equal to H−
n (g).
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Quantifier elimination for G with finite spines is considerably simpler than in

the case of arbitrary ordered abelian groups:

Proposition 3.4: Let G be an ordered abelian group with finite spines and let

{Hi}i<α be its definable convex subgroups (including {0}) for some 0 < α ≤ ω.

Then G has quantifier elimination in the the following language:

L = Loag ∪ {(x =Hi y + kG/Hi
)k∈Z,i<α, (x ≡m,Hi y + kG/Hi

)k∈Z,m∈N,i<α},

where

• for each k ∈ Z, “x =H y + kG/H” is defined by

π(x) = π(y) + kG/H

for π : G → G/H and kG/H denotes k times the minimal positive

element of G/H , if it exists, and 0 otherwise;

• for each k ∈ Z and each m ∈ N, “x ≡m,H y + kG/H” is defined by

π(x) ≡m π(y) + kG/H .

Proof. This is a direct consequence of the main theorem of [4]. The auxiliary

sorts Tn and T +
n do not add any new convex subgroups because they are unions

or intersection of convex subgroups coming from Sn, and Sn is finite. Also the

ternary relation given by x ≡[m′]
m,α y if and only if x − y ∈ G

[m′]
α + mG is not

needed, since by [4, Lemma 2.4], and the finiteness of Sn, G
[n]
α = Gα′ + nG for

some α′ ∈ Sn.

Remark: We do not need predicates for π(x) > π(y)+kG/H since, for example,

π(x) > π(y) + 1G/H ⇔ x > y ∧ x �=H y ∧ x �=H y + 1G/H .

We will need the following result, due to Schmitt:

Fact 3.5 ([29, Theorem 4.13]): An ordered abelian group G is elementary

equivalent to a lexicographic sum of archimedean groups if and only if for all

n,m ∈ N and 0 �= x ∈ G there exists y ∈ G such that

Hn(x) = H−
n·m(y).

The application of the above fact to groups with finite spines is summed up

in the next two results:
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Corollary 3.6: Every ordered abelian group with finite spines is elementary

equivalent to a lexicographic sum of non-zero archimedean groups.

Proof. Let n,m ∈ N and 0 �= x ∈ G. Since, by [4, Lemma 2.2], Sn ↪→ Sn·m,

there exists z ∈ G such that Hn(x) = Hn·m(z) and by Lemma 3.2 there exists

y ∈ G such that

Hn(x) = Hn·m(z) = H−
n·m(y).

Recall the notation and definitions from Example 2.4.

Lemma 3.7: Let

G =
⊕
i∈I

Gi

be a lexicographic sum of non-zero archimedean groups.

(1) For g /∈ nG,

Hn(g) = {h ∈ G : for all k ≤ j, h(k) = 0},

where j is the smallest index in supp(g) such that g(j) /∈ nGj .

(2) Sp is finite if and only if |{i ∈ I : Gi not p-divisible}| <∞.

Proof. (1) Straightforward calculation.

(2) Let ei(j) = δi,j . It follows from (1) above that every i ∈ I such that Gi

is not p-divisible gives a different group Hp(ei) ∈ Sp.

Example 3.8: A group G with finite spines may be strongly dependent, even dp-

minimal even if it has infinitely many definable convex subgroups. For instance,

G =
⊕

p prime

Z(p)

where Z(p) is as in Example 2.2. Indeed, since [G : pG] <∞ for every prime p,

by [21, Proposition 5.1] G is dp-minimal. By an easy direct calculation G has

finite spines (see Proposition 4.14 for an abstract proof).

By Lemma 3.7(1) the definable convex subgroups are all of the form

⊕
p≤p0

0⊕
⊕
p>p0

Z(p),

for prime p0.
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4. Calculating the dp-rank

In the present section we combine the results and observations collected in the

previous sections to calculate the dp-rank of ordered abelian groups with finite

spines. Let G be an ordered abelian group with finite spines. We consider G

as a structure in the language L of Proposition 3.4. The reduct of G to the

group language is the restriction of G obtained by dropping the order symbol.

Namely, it is G considered as a structure in the language:

Lreduct = Lgrp ∪ {(x =Hi y + kG/Hi
)k∈Z,i<α, (x ≡m,Hi y + kG/Hi

)k∈Z,m∈N,i<α}.
Recall that a group (G,+, 0, . . . ) is 1-based if every definable set (of Gn)

is a boolean combination of cosets of acleq(∅)-definable subgroups (of Gn).

In the following, by abelian structure we mean an abelian group A with

some predicates for subgroups of powers of A. The key fact about abelian

structures is:

Fact 4.1 ([34, Theorem 4.2.8]): Every abelian structure is 1-based.

This will allow us to compute the dp-rank of strongly dependent ordered

abelian groups by, first, computing the dp-rank of their reduct to the group

language (using [14]), and then compute the effect of re-introducing the order

on the dp-rank. Of course, quantifier elimination will play a crucial role in this

computation. In the next proposition we will prove that G in the language

Lreduct is 1-based. Since we do not, a priori, know what are, in the present set-

ting, all ∅-definable subgroups (allowing imaginary elements) we will essentially

reprove below (Proposition 4.7) a variant of this better suited for our needs.

Proposition 4.2: The reduct of G to the language Lreduct is 1-based.

Proof. Consider G as an abelian group with predicates for {Hi}i<α; it is

1-based. Adding constants, it is still 1-based (see [27, Remark 4.1.8]). The

group G in the language Lreduct is a reduct of this structure (in fact, they are

bi-interpretable), hence it is also 1-based (see [27, Proposition 4.6.4]).

In what follows we will be using the following fact.

Fact 4.3 ([14, Proposition 3.3]): Let G be a 1-based group. Then there is an

inp-pattern of depth κ over acleq(∅) if and only if there exist acleq(∅)-definable
subgroups (Hα)α<κ such that for any i0 < κ[ ⋂

i0 �=α<κ

Hα :
⋂
α<κ

Hα

]
= ∞.
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Furthermore, if such subgroups exist, they witness an inp-pattern of depth κ,

i.e., there exists an indiscernible array (bαi )α<κ,i<ω, such that {x∈bαi Hα}α<κ,i<ω

forms an inp-pattern of depth κ.

Remark: The proof of the above actually shows:

(1) If every definable set is a boolean combination of cosets of some fam-

ily F of definable groups, then the inp-pattern may be witnessed by

intersections of definable groups from F (see [14, Remark 3.3]).

(2) The collection of subgroups witnessing such an inp-pattern of subgroups

has the property that their intersection has unbounded index in any

proper subintersection.

Thus, in order to compute the dp-rank we must first study the definable

subgroups. We start by collecting some useful well-known observations:

Lemma 4.4: Let G be an ordered abelian group.

(1) Let A ⊆ B and C ⊆ D be subgroups of G; then

(A+D) ∩ (B + C) = A+ (D ∩B) + C.

(2) Let H be a convex subgroup; then nG ∩H = nH .

(3) Let H1 ⊆ · · · ⊆ Hk be convex subgroups and n1|n2| · · · |nk be integers;

then

(n1H1 + n2Hk) ∩ (n1H2 ∩ n3Hk) ∩ . . . ∩ (n1Hk−1 + nkHk)

=n1H1 + n2H2 + · · ·+ nkHk.

(4) Let H be a subgroup and n = pe11 · · · pekk be the prime decomposition of

an integer n; then

H + nG = (H + pe11 G) ∩ · · · ∩ (H + pekk G).

Proof. (1) By an old (and easy) fact due to Dedekind, the lattice of

subgroups of an abelian group is modular (i.e., if x ≤ z then

x ∨ (y ∧ z) = (x ∨ y) ∧ z), so

(A+D) ∩ (B + C) =C + ((A+D) ∩B)

=C + (A+ (D ∩B))

=A+ (D ∩B) + C.
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(2) Let h ∈ nG ∩H , and write ng = h for g ∈ G. Replacing h with −h if

needed, we may assume that 0 < g. Since 0 < g < ng and ng = h ∈ H ,

convexity of H , g ∈ H .

(3) By induction on k: The case k = 1 is clear, so we proceed to the

induction step.

(n1H1 + n2Hk) ∩ · · · ∩ (n1Hk−2 + nk−1Hk) ∩ (n1Hk−1 + nkHk)

=(n1H1 + n2H2 + · · ·+ nk−2Hk−2 + nk−1Hk) ∩ (n1Hk−1 + nkHk).

Since (n1H1 + n2H2 + · · ·+ nk−2Hk−2) ⊆ n1Hk−1, we may use (1) and

thus it is equal to

(n1H1 + n2H2 + · · ·+ nk−2Hk−2) + (nk−1Hk ∩ n1Hk−1) + nkHk).

Finally, using (2), we get our result.

(4) This is just the Chinese remainder theorem for Z-modules (i.e., abelian

groups) in G/H .

The next lemma follows directly from the definition of Hn(g):

Lemma 4.5: Let G be an ordered abelian group and H1 � H2 be convex

subgroups. Then H2/H1 is not p-divisible if and only if there exists H ′ ∈ Sp

with

H1 ⊆ H ′ � H2.

The following is a special case of [15, Lemma A.2.1]:

Fact 4.6 ([15, Lemma A.2.1]): The theory of torsion free abelian groups proves

that for every nα, λα,j ∈ Z, the formula

∃ȳ
∧
α∈J

(
nαx+

|ȳ|∑
j=1

λα,jyj = 0

)

is equivalent to n|x for some integer n, where n|x is shorthand for ∃ y(ny=x).

Proposition 4.7: Let G be an ordered abelian group with finite spines and

{Hi}i<κ be all the definable convex subgroups of G, where H0 = {0}. Then

every formula in one variable in the reduct language Lreduct is a boolean com-

bination of cosets of subgroups of the form

Hi or Hi + pnG, for n ≥ 0 and Hi ∈ Sp.
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Proof. For simplicity of notation we assume that the Hi are enumerated by

inclusion, i.e., if α < β < κ then Hα < Hβ .

As in the proof of Proposition 4.2, we may expand the reduct language to

{G,+, 0, {Hi}i<κ}

(possibly with some constants). In that language, by [15, Theorem A.1.1], every

formula ϕ(x, b̄) is equivalent to a boolean combination of formulas of the form

(∗) ∃ȳ
∧
α∈J

(nαx+ tα(b̄) +

|ȳ|∑
j=1

λα,jyj ∈ Hα),

where nα, λα,j are integers, and tα(x̄) is a term.

Note that if g1, g2 |= ϕ(x, b̄), then g1 − g2 |= ψ(x) where

ψ(x) := ∃ȳ
∧
α∈J

(
nαx+

|ȳ|∑
j=1

λα,jyj ∈ Hα

)
.

So ϕ(x, b̄) defines a coset of the subgroup defined by ψ(x). Thus it will suffice

to show that any definable subgroup of G of the form ψ(x) is the intersection

of subgroups of the desired form. Since ψ(x) is ∅-definable, we may apply

Corollary 3.6, and assume that

G =
⊕
i∈I

Gi,

where all the Gi are non-zero archimedean ordered abelian groups.

By Lemma 3.7(1) and Proposition 3.3 all definable convex subgroups of G

are of the form

Hα =
⊕
j≤α−

0⊕
⊕
j>α−

Gj

for some α− ∈ I.

Because theHα are enumerated by inclusion, we get—considering each ai∈Gi

separately—that (ai)i∈I |= ψ(x) if and only if for every β ∈ J and i ≤ β− (for

β− as appearing in the above representation of Hβ)

(∗∗) ai |= ∃ȳi
∧

β≥α∈J

(
nαxi +

|ȳi|∑
j=1

λα,jyi,j = 0

)
.

Note that, by Fact 4.6, for a fixed β ∈ J there exists mβ ∈ N such that the

formula (∗∗) is equivalent to mβ | x (with mβ independent of i ≤ β−). Assume

that J = {β1, . . . , βk}, β1 < · · · < βk < κ.
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Claim: ψ(G) = Hβ1 +mβ1Hβ2 + · · ·+mβk−1
Hβk

+mβk
G.

Proof. Let g = gi1 + · · · + gim |= ψ(x), where supp(g) = {i1, . . . , im} and

i1 < · · · < im. Since, clearly, ψ(G) ⊇ Hβ1 , we may assume that im ≤ β−
1 . So

for each 1 ≤ j ≤ m there exists 1 ≤ � ≤ k such that ij ≤ β−
� so ij satisfies

the corresponding formula (∗∗), implying that, considered in Gij , mβ�
| gij . So

gij ∈ mβ�
Hβ�−1

.

The other inclusion follows in a similar way from the characterization of those

elements realizing ψ(G) in (∗∗), and the fact that if β > β′ then

∃ȳ
∧

β≥α∈J

(
nαx+

|ȳ|∑
j=1

λα,jyj = 0

)

defines a subgroup of

∃ȳ
∧

β′≥α∈J

(
nαx+

|ȳ|∑
j=1

λα,jyj = 0

)
. (claim)

Since for any natural numbers n,m and H ⊆ H ′ convex subgroups,

nH +mH ′ = nH +mH +mH ′ = gcd(n,m)H +mH ′,

we may assume that mβ1 |mβ2 | · · · |mβk
and that all the mβi are distinct. By

Lemma 4.4(3) this implies that ψ(G) is the intersection of subgroups of the form

niHi∩njHj . Finally, we finish by applying Lemma 4.4(4) with the observation

that for every n | m and convex subgroups H ⊆ H ′,

nH +mH ′ = ({0}+ nH ′) ∩ (H +mH ′)

and

H +mH ′ = (H +mG) ∩ (H ′ + {0}).
To show that Hi can be taken in Sp, consider the subgroup Hi + pnG.

If Hi /∈ Sp, then let H ∈ Sp ∪ {G} be such that there is no H ′ ∈ Sp with

Hi � H ′ � H . Since Sp is finite such a subgroup H exists. By Lemma 4.5,

H/Hi must be p-divisible. Thus Hi = H + pnH so Hi + pnG = H + pnG.

Remark: For future reference we note that the proof of the previous proposition

shows that any p.p. formula ϕ(x, b̄) as in (∗) defines a coset of a ∅-definable group
A ≤ G not depending on the constant b̄ (or indeed, on the terms tα as in (∗)).

We will first compute the dp-rank of G in the reduct language.
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Notation: Let G be an ordered abelian group with finite spines and p a prime.

Denote by kp the maximal n for which there exist definable convex subgroups

H0 � · · · � Hn−1 � Hn = G such that for all i < n,

[Hi+1/Hi : p(Hi+1/Hi)] = ∞.

Lemma 4.8: If G has finite spines and kp = n there are H0 � · · · � Hn−1

witnessing it such that Hi ∈ Sp for all i.

Proof. Take any sequence H0 � H1 � · · · � Hkp−1 of definable convex sub-

groups with

[Hi+1/Hi : p(Hi+1/Hi)] = ∞
for every 0 ≤ i ≤ kp − 1. Choose the Hi so that a maximal number among

them is in Sp. Assume towards a contradiction that there is some Hi /∈ Sp. By

Lemma 4.5 there exists H ∈ Sp with Hi ⊆ H � Hi+1. Take such a subgroup H

which is minimal possible (such a minimal subgroup exists because Sp is finite).

Then (excatly) one of [Hi+1/H : p(Hi+1/H)] = ∞ or [H/Hi : p(H/Hi)] = ∞.

By minimality of H it must be that Hi/H is p-divisible (otherwise, apply

Lemma 4.5 with Hi and H), so

[Hi+1/H : p(Hi+1/H)] = ∞.

Replacing Hi with H we get a contradiction to the choice of the sequence

H0, . . . , Hkp−1.

Remark: The above lemma gives a simple way of computing kp. Writing

Sp = {H0, . . . , Hn−1}

and denoting

S∞
p = {Hi ∈ Sp : [Hi+1/Hi : p(Hi+1/Hi)] = ∞},

with Hn = G, the previous lemma shows that |S∞
p | = kp.

Since S∞
p ⊆ Sp we immediately have:

Lemma 4.9: If G is an ordered abelian group with finite spines and p a prime,

then kp is finite.

In the following proposition we study subgroups of the form Hi + peiG and

of the form Hi. In order to avoid dividing into cases, we will allow ei = ∞ with

the convention that Hi + p∞i G = Hi.
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Lemma 4.10: Let G be an ordered abelian group with finite spines, p a prime

number,H0 �H1 � · · · � Hn−1 definable convex subgroups and e0 < · · · < en−1,

where en−1 may be ∞. If en−1 �= ∞, then for every r < n,[ ⋂
r �=i<n

(Hi + peiG) :
⋂
i<n

(Hi + peiG)

]
= ∞

⇐⇒ [Hr+1/Hr : p(Hr+1/Hr)] = ∞.

If en−1 = ∞ then it is always true that[ ⋂
i<n−1

(Hi + peiG) :
⋂
i<n

(Hi + peiG)

]
= ∞,

and for every r < n− 1,[ ⋂
r �=i<n

(Hi + peiG) :
⋂
i<n

(Hi + peiG)

]
= ∞

⇐⇒ [Hr+1/Hr : p(Hr+1/Hr)] = ∞.

Proof. As the lemma is elementary and involves no parameters, we may assume

that

G =
⊕
i∈I

Gi,

where all the Gi are non-zero archimedean ordered abelian groups. For every

i < n there exists i− ∈ I such that

Hi =
⊕
j≤i−

0⊕
⊕
j>i−

Gj .

By Lemma 4.4(3),
⋂

i<n(Hi + peiG) is equal to

H0 + pe0H1 + pe1H2 + · · ·+ pen−2Hn−1 + pen−1G

=pen−1 ·
( ⊕

j≤(n−1)−
Gj

)
⊕ · · · ⊕ pe0 ·

( ⊕
1−<j≤0−

Gj

)
⊕

⊕
j>0−

Gj .

Likewise,
⋂

r �=i<n(Hi + peiG) is equal to

H0 + pe0H1 + · · ·+ per−1Hr+1 + per+1Hr+2 + · · ·+ pen−2Hn−1 + pen−1G.

Thus, [
⋂

r �=i<n(Hi + peiG) :
⋂

i<n(Hi + peiG)] = ∞ is equivalent to[
per−1

( ⊕
(r+1)−<j≤r−

Gj

)
: per

( ⊕
(r+1)−<j≤r−

Gj

)]
= ∞,
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which is equivalent (if er �= ∞), since G is torsion-free, to

[Hr+1/Hr : p(Hr+1/Hr)] = ∞.

The case where en−1 = ∞ is obvious since for all i we have that

[Hi+1 : Hi] = ∞.

Before computing the dp-rank we combine the above results to obtain:

Proposition 4.11: Let G be an ordered abelian group with finite spines,

{Hi}i<κ≤ω a collection of definable convex subgroups with Hi � Hj if i < j

and {ei}i<κ ⊆ N ∪ {0,∞}. Assume that for every i0 < κ[ ⋂
i0 �=i<κ

(Hi + peiG) :
⋂
i<κ

(Hi + peiG)

]
= ∞.

Then

(1) ei �= 0 for every i < κ, and if ei0 = ∞ then i0 is maximal in κ;

(2) i < j < κ if and only if ei < ej ;

(3) κ ≤ kp + 1, and is, therefore, finite.

Proof. (1) If ei0 = 0, then Hi0 + pei0G = G and thus[ ⋂
i0 �=i<κ

(Hi + peiG) :
⋂
i<κ

(Hi + peiG)

]
= 1.

If ei0 = ∞, then Hi0 + pei0G = Hi and note that i0 must be maximal

in κ. For otherwise, if i0 < i1, then Hi0 � Hi1 + pei1G and thus[ ⋂
i1 �=i<κ

(Hi + peiG) :
⋂
i<κ

(Hi + peiG)

]
= 1.

(2) Assume i < j < κ, and by the above we may assume that ej �= ∞. If

ej ≤ ei then, since Hi � Hj , Hi + peiG � Hj + pejG leading to that

same contradiction as above. Since both the index set and the set of ei

are ordered, this also proves the other implication.

(3) For any group, G, ifH,K≤G are subgroups then [K :K ∩H ] ≤ [G : H ].

So any (finite) sub-family of the Hi will also satisfy the assumptions of

the lemma (with the associated ei). So assume towards a contradiction

that κ > kp + 1 and fix a sub-family of size kp + 2 of the Hi. Applying

Lemma 4.10 to this sub-family, we see that this sub-family witnesses

kp > kp + 1, which is absurd.
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Notation: (1) For an abelian group G, let

P∞(G) = {p prime : [G : pG] = ∞}.

(2) For an ordered abelian group G with finite spines and prime p ∈ P∞(G)

let Hp denote the maximal element in S∞
p . If there exists a defin-

able convex subgroup strictly containing all the {Hp}p∈P∞(G) then set

cG = 1, otherwise set cG = 0.

The need for introducing the error-term cG is illustrated in the following

example:

Example 4.12: Let A1, A2 be archimedean ordered abelian groups such that A1

is p-divisible for every prime p �= 2, [A1 : 2A1] = ∞, and A2 p-divisible for every

prime p �= 2, 3 and [A2 : 2A2] = [A2 : 3A2] = ∞. Consider G1 = Q ⊕ A1 ⊕ A2

and G2 = Z⊕A1 ⊕A2.

The convex subgroups of G1, G2 are 0, A2, A1 ⊕ A2 (as direct summands)

and Gi. Among those 0 and A2 are definable in both (as H2(g) for g ∈ 0⊕H1⊕0

with g /∈ 2G). For similar reasons H1 ⊕H2 is in S2(G2) but not in S2(G1). It

follows that

S∞
2 (Gi) = {0, H2}

(because in G2 we have that [G2/(H1 ⊕H2) : 2(G/(H1 ⊕H2))] = 2).

Similar arguments show that S3 = {0} in both groups. Thus, k2 = 2 and

k3 = 1 in both groups. It follows from Proposition 3.3 that H1 ⊕ H2 is not

definable in G1. So cG2 = 1 whereas cG1 = 0. We will see in the next proposition

that, despite the fact that kp is equal in both groups for all p, in the reduct

language, dp-rk(G1) = 3 whereas dp-rk(G2) = 4.

Proposition 4.13: Let G be an ordered abelian group with finite spines, con-

sidered in the reduct language. Then dp-rk(G) is equal to

(�)

⎧⎨
⎩
cG +

∑
p∈P∞(G) kp if P∞(G) �= ∅,

1 otherwise.

Proof. Let {Hα}α<γ≤ω be the definable convex subgroups ofG. If dp-rk(G)=κ,

then by Fact 4.3 we may find definable subgroups {Nβ}β<κ, and an indiscernible

array (bβs )s<ω,β<κ such that

{x ∈ bβs +Nβ}s<ω,β<κ
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is an inp-pattern of depth κ. Furthermore, by the remark following Fact 4.3 and

Proposition 4.7, we may assume that the Nβ appearing in such an inp-pattern

are of the form Hi + peiG, where possibly ei = ∞ (recall the convention that

Hi + p∞G = Hi). So we fix once and for all such an inp-pattern of maximal

depth. Call a prime p meaningful for H if some H + peiG appears in our fixed

inp-pattern (with ei <∞). Call p meaningful if it is meaningful for some H .

Fix a meaningful p and let

{Hα + peαG}α<mp

be the family of all occurrences of p in our fixed inp-pattern. By Fact 4.3, for

every i0 < mp [ ⋂
i0 �=α<mp

(Hα + peαG) :
⋂

α<mp

(Hα + peαG)

]
= ∞.

This implies that if i �= j then Hi �= Hj . Otherwise, assuming without loss of

generality that ei < ej , we would get[ ⋂
i�=α<mp

(Hα + peαG) :
⋂

α<mp

(Hα + peαG)

]
= 1.

This allows us to apply Proposition 4.11, with the implication that mp ≤ kp+1

(in particular mp is finite), if Hα � Hβ then eα < eβ and eα �= 0 for every

α < mp. Also, note that necessarily [G : pG] = ∞, for, otherwise, this would

entail [G : Hα+p
eαG] <∞ which, as noted in the proof of Proposition 4.11(3),

is impossible.

Summing up the above observations, we may assume the inp-pattern is wit-

nessed by a family of subgroups

{Hαp + peαpG}αp<mp,p∈P∞(G).

There can be only one prime p for which eαp = ∞, for some αp. For otherwise,

we would have Hα � Hβ both arising as subgroups in the inp-pattern but this

can not be (as already mentioned above). Hence for all but (maybe) one prime

p, mp ≤ kp. This proves that (�) is an upper bound on dp-rk(G) and that

κ ≤ ω with equality possible only if P∞(G) is infinite. We will now show that

this bound is attained.

If P∞(G) is empty, then any sequence of pairwise distinct elements gives an

inp-pattern of depth 1 (with the formula x = y) so assume that P∞(G) �= ∅.
Let p ∈ P∞(G) and let Hip,1 � · · · � Hip,kp be S∞

p ∪ {G} (so Hip,kp+1
= G).
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Claim: The subgroups

{Hip,1 + pG, . . . , Hip,kp + pkpG}

witness an inp-pattern of depth kp

Proof. This follows from the paragraph concluding the statement of Fact 4.3

using Lemma 4.10. To apply this last lemma note that the groups Hip,j were

chosen specifically so that they satisfy the assumptions of the lemma. (claim)

As a result, for every p ∈ P∞(G) we have an inp-pattern of depth kp. The

next claim shows that we can combine these inp-patterns into one large pattern:

Claim: The subgroups⋃
p∈P∞(G)

{Hip,1 + pG, . . . , Hip,kp + pkpG}

witness an inp-pattern of depth
∑

p∈P∞(G) kp.

Proof. Since cosets are always 2-inconsistent, we only need to check the consis-

tency part of the definition. For each p ∈ P∞(G), consider a collection

{Hip,1 + pG+ bip,1 , . . . , Hip,kp + pkpG+ bip,kp }

of cosets with non-empty intersection. Note that if bp is any element witnessing

this, then

{Hip,1 + pG+ bp, . . . , Hip,kp + pkpG+ bp}

defines the exact same set. So our task is to show that the (partial) type

(†)
⋃

p∈P∞(G)

{x ∈ Hip,1 + pG+ bp, . . . , x ∈ Hip,kp + pkpG+ bp}

is consistent. Note that for every p,

pkpG+ bp ⊆ (Hip,1 + pG+ bp) ∩ · · · ∩ (Hip,kp + pkpG+ bp).

By the Chinese remainder theorem for abelian groups, there is an element b ∈ G

such that b ≡pkpG bp for all p ∈ P∞(G), proving the consistency of the type (†)
and finishing the proof of the claim. (claim)

The last claim finishes the proof of the proposition in case cG = 0. If cG = 1

let H be a definable convex subgroup witnessing it. Consider the following
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collection of definable subgroups from above

⋃
p∈P∞(G)

{Hip,j + pjG}1≤j≤kp .

Enumerate these subgroups by {Aα}α<λ, where λ =
∑

p∈P∞(G) kp. Let Aλ = H .

We will show that for every i0 < λ+ 1
[ ⋂
i0 �=α<λ+1

Aα :
⋂

α<λ+1

Aα

]
= ∞.

If i0 = λ then [ ⋂
α<λ

Aα :
⋂

α<λ+1

Aα

]
= ∞,

as in Lemma 4.10. If i0 < λ then we need to show that[ ⋂
i0 �=α<λ

Aα ∩H :
⋂
α<λ

Aα ∩H
]
= ∞.

But since (Hip,j + pjG)∩H = Hip,j + pjH , this boils down to showing that the

index is ∞ when we do the calculation inside H . By quantifier elimination H

is a stably embedded convex subgroup of G. As a result, this follows from the

same calculation we conducted when cG = 0.

The following argument is similar to the one given by Farré in [9, Theo-

rem 6.2].

Proposition 4.14: Let G be an ordered abelian group, possibly with addi-

tional structure. If G is strongly dependent then G has finite spines, i.e., Sp is

finite for all p, and P∞(G) is finite.

Proof. If P∞(G) is infinite then G is already not strongly dependent in the

group language (see, for example, [14]).

Since Sp is an interpretable linear order, in order to show that it is finite it

is enough, by compactness, to show that it has no infinite ascending chain. By

Lemma 4.5, if H1 � H2 are in Sp then H2/H1 is not p-divisible. Therefore,

if G is sufficiently saturated and Sp is infinite we can find for all n an increasing

sequence 〈αi ∈ Sp : i < ω〉 with

[Gαi+1/Gαi : p(Gαi+1/Gαi)] > n,
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for every i < ω. By compactness and saturation we may find such an increasing

sequence 〈βi ∈ Sp : i < ω〉 such that for every i < ω

[Gβi+1/Gβi : p(Gβi+1/Gβi)] = ∞.

As in the proof of Proposition 4.13, by Lemma 4.10 and Fact 4.3, the definable

subgroups

{Gβi + pi+1G : i < ω}

witness an inp-pattern of depth ω, contradicting strong dependence.

We now proceed to reintroducing the order:

Lemma 4.15: Let (G; +,−, 0, <, . . . ) be an ordered abelian group, possibly with

some more relational symbols and constants, admitting quantifier elimination.

Let c ∈ G and I1 = 〈ai : i < ω〉, I2 = 〈bi : i < ω〉 be mutually indiscernible

sequences which are also indiscernible over c in the language without the order.

Then at least one of I1, I2 is indiscernible over c in the full language.

Proof. Every term t(x1, . . . , xn) is equivalent to a term of the form

n∑
i=1

zi · xi + d,

where zi ∈ Z and d is a Z-linear combination of constants. Thus every quantifier

free formula in the ordered group language, not using equality, is equivalent to

n∑
i=1

ai · xi + d > 0.

Assume towards a contradiction that there are terms t1(x̄) and t2(ȳ), of the

above form, such that t1(āI) < zc < t1(āI′) and t2(b̄J) < wc < t2(b̄J′) where

w, z ∈ N and I, I ′, J, J ′ ⊆ ω are some index sets of the appropriate lengths. By

replacing t1 with wt1, t2 with zt2 and c with wzc we may assume that

t1(āI) < c < t1(āI′)

and that

t2(b̄J ) < c < t2(b̄J′).

Without loss of generality t2(b̄J ) ≤ t1(āI) < c so t1(āI) < t2(b̄
′
J), contradicting

mutual indiscernibility.
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Proposition 4.16: Let (G; +,−, 0, <, {Hi}i<ω) be an ordered abelian group

with finite spines, possibly with some more constants, admitting quantifier elim-

ination. Then, in the above notation,

dp-rk(G) ≤
∑

p∈P∞(G)

kp + 1.

In particular, if cG = 1 then

dp-rkreduct(G) = dp-rk(G).

Proof. Because G has finite spines dp-rk(G) ≤ ℵ0, and in case dp-rk(G) = ℵ0

we get from Lemma 4.9 combined with Proposition 4.13 and the previous lemma

that |P∞(G)| = ∞, and the result follows. So we assume that G is of finite dp-

rank. Let κ =
∑

p∈P∞(G) kp and 〈Ii : i < κ + 2〉 be a sequence of mutually

indiscernible sequences. Fix some c ∈ G. We will show that at least one of

the Ii is indiscernible over c.

If there are two sequences Ii1 and Ii2 , both indiscernible over c in the reduct

language then by Lemma 4.15 at least one of them is indiscernible over c in the

full language. We may thus assume that there is at most one of the Ii which

is indiscernible over c in the reduct language and as dp-rkreduct(G) ≤ κ + 1,

such Ii does exist.

Assume, without loss of generality, that I0 is indiscernible over c in the reduct

language, but not indiscernible over c in the full language; furthermore, assume

that for i > 0, Ii is not indiscernible over c in the reduct language. Consequently,

for each such i > 0, there is a formula ϕi(x̄i, c) in the reduct language witnessing

this. Namely, if Ii = 〈ai,j : j < ω〉 then ϕi(aJi,1 , c) and ¬ϕi(aJi,2 , c) for some

Ji,1, Ji,2 ⊆ {i} × ω of the same order type.

Note that if ϕi(x̄, c) is a boolean combination of some formulas, then already

one of the formulas in this combination witnesses non-indiscernibility over c.

By Proposition 4.7 and the remark following it we may assume that for every

tuple b̄ and each ϕi(x̄i, x), the formula ϕi(b̄, x) defines a coset of Ai, where Ai

is a definable subgroup of the form Hi or Hi + peii G with Hi ∈ Spi .

Claim: (1) For every distinct i, j > 0, Ai �⊆ Aj .

(2) For every distinct i, j > 0, if Ai, Aj are of the form Hi+p
eiG, Hj+p

ejG

then p ∈ P∞(G), and either [Ai : Aj ∩ Ai] = ∞ or [Ai : Aj ∩Ai] = ∞.

(3) For every i > 0, Ai is not of the form Hi.
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Proof. Let i, j > 0 be distinct, and assume that Ai ⊆ Aj . Thus ϕi(aJi,1 , x) also

defines a coset of Aj , and since c satisfies ϕi(aJi,1 , x) ∧ ϕj(aJj,1 , x), necessarily

ϕi(aJi,1 , x) → ϕj(aJj,1 , x).

Therefore, by mutual indiscernibility,

ϕi(aJi,1 , x) → ϕj(aJi,2 , x)

but this contradicts the fact that ¬ϕj(aJj,2 , c). This gives (1).

As for (2), let I ′i and I
′
j be sequences of tuples of order type Ji,1 (resp. Jj,2)

tuples in Ii (resp. Ij) such that the convex hulls of any two tuples are disjoint.

By mutual indiscernibility of Ii and Ij , I
′
i and I

′
j are also mutual indiscernible

sequences, and together with ϕi(x̄i, x) and ϕj(x̄j , x) they form an inp-pattern

of depth 2. Indeed, inconsistency is clear, as for consistency,

c |= ϕi(aJi,1 , x) ∧ ϕj(aJj,1 , x),

but since I ′i and I
′
j are mutually indiscernible any path in the array is consistent.

By Fact 4.3 the desired conclusion follows. Note that this also proves that

p ∈ P∞(G), for otherwise [G : Ai] <∞.

Finally, for (3), if Ai is of the form Hi then, since I0 is not indiscernible

over c, we can find J0, J
′
0 ⊆ {0} × ω and Ji,1, Ji,2 ⊆ {i} × ω such that, after

replacing c with mc for some m ∈ Z, we get

t0(aJ0) > c but t0(aJ′
0
) < c,

and

ϕi(aJi,1 , c) but ¬ϕi(aJi,2 , c).

We may assume that c > 0. Note that by indiscernibility of Ii necessarily

c /∈ Hi, indeed otherwise

ϕi(aJi,1 , x) ↔ x ∈ Hi.

Since Hi is convex, necessarily

¬ϕi(aJi,2 , t0(aJ0))

and

ϕi(aJi,1 , t0(aJ′
0
)),

which contradicts mutual indiscernibility. (claim)
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We can now finish the proof. If cG = 0, then dp-rk(G) = κ and so we must

have two sequences which are indiscernible over c in the reduct language, so we

finish by Lemma 4.15. Otherwise, cG = 1 and dp-rkreduct(G) = κ+1. By (3) of

the above claim for all i > 0, if Ai is a definable group appearing above, then Ai

is of the form Hi + peii G with ei < ∞. By (2) of the claim and Lemma 4.8,

if Ap is the collection of all groups Ai above associated with the same prime p,

then |Ap| ≤ kp. By (2) again all primes p appearing above belong to P∞(G)

and by (1) of the claim they are, in particular, distinct. So, all in all, there are

at most

κ =
∑
p∈P∞

kp

groups Ai appearing in the above. By assumption, Ii is associated with some

definable group Ai for all 0 ≤ i ≤ k + 1. This is a contradiction.

The following example shows that quantifier elimination is essential for the

proposition.

Example 4.17: In the notation of Example 2.2 consider

G =
⊕
i<ω

Z(2)

in the language of ordered abelian groups. It has infinitely many definable

convex subgroups. Indeed, fixing

ei(j) =

⎧⎨
⎩
1 if j = i,

0 otherwise,

we get that the groups H2(ei) (in the sense of Section 2.1) are all definable and

distinct for i < ω. But by Proposition 4.14, G is not strongly dependent. On

the other hand, as an abelian group G is dp-minimal (see, for example, [14]).

Summing up all of the above we can finally conclude our computation of the

dp-rank:

Proposition 4.18: Let G be an ordered abelian groups with finite spines.

Then

dp-rk(G) = 1 +
∑

p∈P(G)

kp.
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Proof. If [G : pG] <∞ for every prime p, then G is dp-minimal by [21, Propo-

sition 5.1] in which case the proposition holds. So we may assume this is not

the case.

Case 1: Assume cG = 0, and hence

dp-rkreduct(G) =
∑

p∈P∞(G)

kp.

Since G is not dp-minimal, there exists a prime q with [G : qG] = ∞. By

Corollary 3.6, we may assume that

G =
⊕
i∈I

Gi,

where theGi are non zero archimedean groups. Since every discrete archimedean

ordered abelian group is isomorphic to Z, the existence of a prime q such that

[G : qG] = ∞, and the fact that G is with finite spines, guarantee the existence

of a dense archimedean Gj .

Let (bi)i<ω be an ascending indiscernible sequence of elements of the ordered

set Gj and Ci be the definable convex subset defined by

x ∈ ((. . . , 0, bi, 0, . . . ), (. . . , 0, bi+1, 0, . . . )).

The proof of Proposition 4.13 provides an inp-pattern witnessing the fact that

dp-rkreduct(G) =
∑

p∈P(G)

kp.

Our goal is to augment this inp-pattern by adjoining the formulas {x ∈ Ci}i<ω.

By Proposition 4.16, it will suffice to show that this augmented pattern is an

inp-pattern. Since inconsistency is automatic, we only have to check consistency

of paths. As before, since cG = 0 and

pekG ⊆ (Hi1 + pe1G) ∩ · · · ∩ (Hik + pekG),

we only need to show that nG ∩ Ci is consistent for every n ∈ N and i < ω.

This is an easy exercise (see, e.g., [3, Lemma 1.1]).

Case 2: If cG = 1, the result is given by Proposition 4.16.

Corollary 4.19: Let G1 and G2 be ordered abelian groups with finite spines;

then

dp-rk(G1 ⊕G2) = dp-rk(G1) + dp-rk(G2)− 1.

Finally we obtain as a direct corollary of Propositions 4.14 and 4.18:
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Theorem 4.20: Let G be an ordered abelian group. The following are equiv-

alent:

(1) G is strongly dependent;

(2) dp-rk(G) < ℵ0;

(3) G is with finite spines and |P∞(G)| <∞;

(4) G is elementary equivalent to a lexicographic sum
⊕

i∈I Gi, where

(a) for every prime p, |{i ∈ I : pG �= G}| <∞ and

(b) [Gi : pGi] = ∞ for only finitely many primes p.

Proof. (1)⇒(2): If G is strongly dependent, then by Proposition 4.14, G has

finite spines and P∞(G) is finite and thus dp-rk(G) is finite by Proposition 4.18.

(2)⇒(3): Since every structure of finite dp-rank is strongly dependent (see

Definition 2.5), the result follows from Proposition 4.14.

(3)⇒(4): An ordered abelian group with finite spines is elementary equivalent

to a lexicographic sum of non zero archimedean groups by Corollary 3.6. The

rest follows from the analysis in Lemma 3.7.

(4)⇒(1): Again, by Lemma 3.7 it is easily seen that G has finite spines and

that P∞(G) is finite. Thus by Proposition 4.18, G has finite dp-rank and thus

strongly dependent.

The following is now easy:

Corollary 4.21: Let G be an ordered abelian group, H ≤ G a convex sub-

group. If G/H and H are strongly dependent as pure ordered abelian groups,

then so is G.

Proof. We readily get that P∞(G) = P∞(H)+P∞(G/H). Similarly, the p-spine

of G is naturally isomorphic to the ordered union of the p-spine of H and the

p-spine of G/H .

5. Strongly dependent Henselian fields

As an application of our results on strongly dependent ordered abelian groups

we show that if (K, v) is Henselian, with K strongly dependent (as a pure field),

then (K, v) is strongly dependent. The heart of the proof, and the main new

ingredient, will be showing that the value group vK is strongly dependent. To

conclude we adapt a transfer theorem (due, essentially, to Jahnke, [17], after

Johnson, [22]) to the strongly dependent setting. For a valued field (K, v) we
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denote by vK its value group, Kv its residue field and Ov its valuation ring.

All other standard valuation-theoretic terminology used in this section can be

found in any textbook on the subject, e.g, [25] or [8].

The following fact will be used repeatedly

Fact 5.1 ([32, Proof of Claim 5.40]): Every strongly dependent field is perfect.

First we show that the residue field must be strongly dependent, hence perfect.

Proposition 5.2: LetK be a strongly dependent field and let v be a Henselian

valuation on K. Then Kv is strongly dependent.

Proof. If Kv is not separably closed, then v is definable in Ksh, the Shelah

expansion of K ([17, Theorem A]), and as Ksh is strongly dependent so is Kv.

If Kv is separably closed and perfect it is algebraically closed and hence

strongly dependent. If it is not perfect then, by an argument of Scanlon’s [17,

Proposition 3.7], v is definable in K and hence (K, v) is strongly dependent, so

that Kv is perfect, a contradiction.

Dealing with the value group is more complicated. The valuation itself may

not be definable but under mild assumptions Theorem 4.20 allows us to find a

definable (non-trivial) coarsening of it. We need the following:

Definition 5.3 ([20]): Let G be an ordered abelian group and p a prime. Then,

G is p-antiregular if no non-trivial quotient of G is p-divisible and G has no

rank one quotient.

Remark: p-antiregularity is an elementary property of G; see [20, Section 3].

Proposition 5.4: Let G be a non-divisible ordered abelian group with finite

spines. Then there exists a prime p such that G is not p-divisible and not

p-antiregular.

Proof. By the above remark and by Corollary 3.6 we may assume that

G =
⊕

i∈I Gi, where all the Gi are non-zero archimedean groups. Let p be

a prime with G not p-divisible. Since G has finite spines, Sp is finite and

hence there is a maximal element α ∈ Sp. Let g ∈ G be such that sp(g) = α

(i.e., Gα = Hp(g)). By Lemma 3.7(1) we may assume that | supp(g)| = 1, so if

supp(g) = {i0} then g(i0) /∈ pG and

Hp(g) =
⊕
j≤i0

0⊕
⊕
j>i0

Gj .
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Define the following convex subgroup:

H =
⊕
j<i0

0⊕
⊕
j≥i0

Gj .

Aiming for a contradiction, assume that G is p-antiregular. If G = H then

G/Hp(g) = Gi0 , which is rank one, contradiction. Otherwise, by maximality of

Hp(g) and Lemma 4.5, G/H is p-divisible, contradiction.

Recall that if (K, v) is a valued field and u is a coarsening of v, then there

exists a convex subgroup Δ ≤ vK such that

uK ∼= vK/Δ.

In this situation v induces a valuation v̄ onKu with valuation ring {xu : x∈Ov},
where xu is the residue of x in the valued field (K,u), and there exists an

isomorphism

v̄(Ku) ∼= Δ.

For a field K and a prime p, let K(p) be the compositum of all Galois ex-

tensions of K of p-power degree. A field K is p-closed if K = K(p). A valued

field (K, v) is called p-Henselian if v extends uniquely to K(p). If there exists

a p-Henselian valuation with p-closed residue field, then there exists a unique

coarsest p-Henselian valuation whose residue field is p-closed. It is denoted

by vpK and called the canonical p-Henselian valuation. For more, and the

definition of the canonical p-Henselian valuation, see, e.g., [19]. We can now

show:

Proposition 5.5: LetK be a strongly dependent field. Assume thatK admits

some Henselian valuation v with vK non-divisible. Then K admits a non-trivial

∅-definable Henselian coarsening u of v. Moreover, if Kv is separably closed

and q is such that vK is not q-divisible, then u may be chosen so that the

convex subgroup corresponding to u is q-divisible.

Proof. K is necessarily not separably closed, otherwise, together with Fact 5.1,

we would get that vK is divisible.

Case 1: If the residue field is separably closed, and hence algebraically closed by

Fact 5.1 and Proposition 5.2, then K admits a ∅-definable non-trivial Henselian

valuation by [19, Theorem 3.10]. As the result we care about (i.e., that we

actually get a coarsening) appears only in the proof of that theorem (not in its

statement) we give the details:
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Let q be such that vK is not q-divisible (so q is different from the characteristic

of K). As Kv is algebraically closed, by definition, the canonical q-Henselian

valuation has a q-closed residue field. As K �= K(q) (since vK is not q-divisible)

it is also non-trivial (see [19, Section 2.2]). Denote it by vqK . It is coarser than v,

and—by definition—also coarser than the canonical Henselian valuation on K.

If K contains a primitive qth root of unity, then vqK is a ∅-definable coarsening
of v ([19, Theorem 2.7]). If K does not contain a primitive qth root of unity, we

repeat the same argument with L := K(ζq) to obtain a ∅-definable u coarsening

the unique extension of v to L. Since L is a ∅-definable extension, u|K is a

∅-definable coarsening of v.

Finally, if vqL is the canonical q-Henselian valuation on L, then by definition

LvqL = LvqL(q).

Since [L : K] <∞ and vqL extends vqK we get that

[LvqL : KvqK ] <∞.

Note that KvqK is not real closed. Indeed, since (K, v) is Henselian, so is

(KvqK , v̄). Hence if it were real closed, by [8, Lemma 4.3.6] we would get that

(KvqK)v̄ = Kv is orderable, contradiction. We conclude that

KvqK = KvqK(q).

So any valuation on the residue field has q-divisible valuation group. In partic-

ular v̄(KvqK) is q-divisible, as required.

Case 2: If Kv is not separably closed, as in Proposition 5.2, (K, v) is strongly

dependent and hence so is vK. So by Proposition 5.4, vK is not p-divisible

and not p-antiregular for some p. Thus, by [20, Corollary 3.7] K admits some

∅-definable non-trivial Henselian coarsening of v.

As any coarsening of a Henselian valuation is Henselian, the proposition is

proved.

The following observation will not be used for the proof of our main result,

but may be interesting in its own right:

Corollary 5.6: Let K be a strongly dependent field, (K, v) a Henselian field

with vK not divisible, and K elementarily equivalent to K (as pure fields).

Then K is Henselian (i.e., admits a non-trivial Henselian valuation).



Vol. 232, 2019 STRONGLY DEPENDENT OAGS AND FIELDS 749

Proof. By the last proposition K admits a ∅-definable non-trivial Henselian

valuation. Since K ≡ K the same is true of K.

Remark: Recall ([28]) that a field is t-Henselian if it is elementarily equivalent

(in the language of rings) to a Henselian field. The assumptions of the last

corollary are equivalent to K being t-Henselian, admitting some valuation v

with vK non-divisible.

Using the above results we can finally conclude the following:

Proposition 5.7: LetK be a strongly dependent field, v a Henselian valuation

on K. Then the value group vK is strongly dependent as a pure group.

Proof. IfK is separably closed, and hence algebraically closed, the result follows

from the strong dependence of ACVF. So we assume this not to be the case.

If P∞(vK) = ∅ we get by [21, Proposition 5.1] that vK is dp-minimal, and

we are done. So we may assume that |P∞(vK)| > 0 and fix some prime

p ∈ P∞(vK). We may assume that Kv is algebraically closed, otherwise, v

is Ksh-definable by [17, Theorem A]), and we are done (as in the proof of

Proposition 5.2).

Proposition 5.5 supplies us with a non-trivial ∅-definable Henselian coarsening

u of v. ConsiderKu, equipped with the valuation v̄. By Proposition 5.5, v̄(Ku),

the corresponding convex subgroup of vK, may be chosen to be p-divisible. So

P∞(v̄(Ku)) � P∞(vK).

Claim: |P∞(vK)| <∞.

Proof. Either by [24, Corollary 3.12] or by [14], sinceK× is a strongly dependent

abelian group |P∞(K×)| <∞. Now notice that

|P∞(vK)| ≤ |P∞(K×)|. (claim)

We conclude by induction on |P∞(vK)|: by the induction hypothesis v̄(Ku)

is strongly dependent (because v̄ is Henselian). It follows from Corollary 4.21

that vK is strongly dependent since vK/v̄(Ku) and v̄(Ku) are strongly depen-

dent.

Before proceeding to the proof of our main result, we need to sort out some

technicalities:
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Fact 5.8 ([18, Proposition2.5]): Let T be dependent in a relational language L,

let M |= T and let D be a definable set. Assume that D is stably embedded.

Let Dind be the structure with universe D(M) and the induced L-language.

Consider an expansion D′ of Dind in a relational language Lp and let M′ be
the corresponding expansion of M in the language L′ = L ∪ Lp. Then the

definable set D is stably embedded in M′. Furthermore, if D′ is dependent,

then so is M′.

Proposition 5.9: With the same assumptions and definitions as in Fact 5.8,

if we assume that T and D′ are strongly dependent then so is M′.

Proof. The proof is similar to that of [18, Proposition 2.5] (and uses it). By

Fact 5.8, D is stably embedded inM ′. As the conclusion of the proposition does

not depend on the choice of language, we may assume that D′ admits quan-

tifier elimination in the relational language Lp and that M admits quantifier

elimination in L.
Let 〈āt : t ∈ I〉 be an infinite indiscernible sequence in M′ and c a singleton.

By [32, Observation 2.1], we may assume that each āt = 〈at,α : α < α∗〉
enumerates a model Mt. By [32, Observation 2.1], in order to show that M′ is
strongly dependent, we need to find a convex equivalence relation E on I with

finitely many equivalence classes such that sEt⇒ tp(ās/c) = tp(āt/c).

Since D′ and M are strongly dependent there exists a finite convex equiv-

alence relation E on I such that if sEt, then tp(āt/c) and tp(ās/c) agree on

formulas of the form

ϕ(x̄, y) ∧ χ(x̄, y),

where ϕ(x̄, y) is a quantifier-free L-formula and χ(x̄, y) is a quantifier-free Lp-

formula (with all variables restricted to D). In particular, if c /∈ D the variable y

does not appear in χ(x̄, y).

Let s, t ∈ I be such that sEt. As in [18, Proposition 2.5], in order to show

that the types tp(āt/c) and tp(ās/c) are equal, we must show that they also

agree on D-bounded formulas, i.e., formulas of the sort

(Q1z1 ∈ D) . . . (Qnzn ∈ D)
∨
i

(ϕi(x̄z̄, y) ∧ χi(x̄z̄, y)),

where ϕi and χi are as before. We proceed by induction on the number of

quantifiers Qz ∈ D appearing in formulas. If there are no quantifiers, this

follows from the previous paragraph (namely, from the assumption on E). Now
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consider

(∃z ∈ D)ψ(x̄z, y),

where ψ(x̄z, y) is aD-bounded formula for which the inductive hypothesis holds.

If the types do not agree on this formula, there are α1 < · · · < αk < α∗, where
k = |x̄|, such that

(∃z ∈ D)ψ(at,α1 , . . . , at,αk
, z, c), but¬(∃z ∈ D)ψ(as,α1 , . . . , as,αk

, z, c).

Since Mt is a model, there exists a ∈ D(Mt) with

ψ(at,α1 , . . . , at,αk
, a, c).

Without loss of generality, assume that a = at,α for some α1 ≤ α ≤ α2. But by

the second formula,

¬ψ(at,β1 , . . . , at,βk
, b, c)

for every b = at,β with β1 ≤ β ≤ β2. This is a contradiction to the assumption

that the inductive hypothesis holds on ψ(x̄z, y).

Recall the following definition:

Definition 5.10: A valued field (K, v) of residue characteristic p > 0 is a Ka-

plansky field if the value group is p-divisible, the residue field is perfect and the

residue field does not admit any finite separable extensions of degree divisible

by p.

In [18, Theorem 3.3], Jahnke–Simon show that any theory of separably al-

gebraically maximal Kaplansky fields of a fixed finite degree of imperfection is

dependent if and only if the residue field and value group are.

Proposition 5.11: Any theory of an algebraically maximal Kaplansky field is

strongly dependent if and only if the residue field and value group are.

Proof. Passing to an elementary extension we may assume that such a field

has an angular component map (see [33, Corollary 5.18]). In [26, Section 3],

Kuhlmann proves that if F and L are any such valued fields with F , |L|+-
saturated and K a common substructure, then any embedding RVL ↪→ RVF

(overRVK) may be lifted to an embedding L ↪→ F (overK), where RV is the rv-

structure (see, for instance, [10] for the connection to the amc-structures defined

by Kuhlmann). In [2, Lemma 4.3] Beláır deduces elimination of field quantifiers

in the Denef-Pas language (the 3-sorted language with an angular component
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map) from precisely this data. The result now follows from [32, Claim 1.17(2)].2

We may finally drop the ac-map; the valued field remains strongly dependent.

For a direct proof of this fact see also a subsequent paper [13].

Remark: By elimination of field quantifiers we only need to check that the

residue field and value group are strongly dependent as pure structures.

Lemma 5.12: Let K be a strongly dependent field of characteristic p > 0.

Then (K, v) is an algebraically maximal Kaplansky field with respect to any

Henselian valuation v. Furthermore, (K, v) is strongly dependent.

Proof. Since char(K) = p it is perfect and so vK is p-divisible. Moreover,

as K is dependent it follows from the proof of [23, Proposition 5.3] that Kv is

Artin–Schreier closed, and therefore infinite.

Recall that by [23, Corollary 4.4] infinite dependent fields of characteristic p

have no separable extensions of degree divisible by p, the characteristic of the

field. Thus, strongly dependent fields, which are perfect, have no finite ex-

tensions of degree dividing p. The residue field Kv is strongly dependent by

Proposition 5.2 and hence (K, v) is Kaplansky.

Since the degree of every finite extension of K is prime to p, K is defectless

and thus, by Henselianity, algebraically maximal. By Propositions 5.2, 5.7 and

5.11 (K, v) is strongly dependent.

Proposition 5.13 ([22, The proof of Theorem 4.3.1]): Let K be a strongly

dependent field and (K, v) Henselian of mixed characteristic (0, p). Then

(1) either [0, v(p)] is finite or there exists a non-trivial p-divisible convex

subgroup of vK,

(2) if [0, v(p)] is infinite then Kv is infinite.

Proof. (1) Assume [0, v(p)] is infinite. Let Δp be the maximal p-divisible convex

subgroup of vK.

Claim: There is a formula defining, in any ordered abelian group, the maximal

p-divisible convex subgroup.

2 The model-theoretic implications of elimination of field quantifiers used in the proof

appear in [32, Claim 1.16] for which no reference is given. With the exception of cell

decomposition (which is not used in the proof), they are an immediate consequence of

[5, Theorem 5].
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Proof. Consider

X = {g ∈ vK : for all 0 ≤ |x| ≤ |g|, x is p-divisible}.

All elements of X are obviously p-divisible and it is closed under inverses. Let

g, h∈X and assume for simplicity that 0<g+h. We may assume that g, h>0

and let 0<c<g+h. If c≤g or c≤h, then c is p-divisible so assume without loss

of generality that h<c, but then 0<c−h<g, hence c−h is p-divisible and thus

so is c. So X is a subgroup. By definition we must have that

X = Δp. (claim)

As a result, what we want to prove is first order expressible so we may assume

that (K, v) is sufficiently saturated and specifically that

|[0, v(p)]| > |R|.

Let Δ be the minimal convex subgroup of vK containing v(p) and Δ0 the

maximal convex subgroup not containing v(p). Since Δ/Δ0 is archimedean it

embeds into R. If Δ0 were trivial then, since [0, v(p)] ⊆ Δ, necessarily |Δ| > |R|,
which is impossible.

The following claim will finish (1).

Claim: Δ0 is p-divisible and thus

Δ0 ⊆ Δp.

Proof. The coarsening v0 : K → vK/Δ of v is Henselian of equi-characteristic 0.

In particular, K1 := Kv0 is strongly dependent by Proposition 5.2. Also, the

valuation v1 : K1 → Δ/Δ0 of mixed characteristic (0, p) is Henselian.

Finally, consider the valuation v2 : K2 → Δ0, where K2 := K1v1. Note

that K2 is of characteristic p > 0 and that K2 is strongly dependent by Propo-

sition 5.2. By Fact 5.1, K2 is perfect and hence Δ0 is p-divisible. (claim)

(2) Keeping the same notation, assume that [0, v(p)] is infinite. As before, Δ0

is non-trivial. The proof of [23, Proposition 5.3] shows that if K is dependent

and (K, v) is a valued field of characteristic p > 0, then Kv is infinite. Applying

this fact to the valuation v2 : K2 → Δ0, whose residue field is Kv, finishes the

proof.

We can now prove the main part of Theorem 2:
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Theorem 5.14: Let K be a strongly dependent field. Assume that v is a

Henselian valuation on K. Then (K, v) is strongly dependent.

Proof. We may move to a sufficiently saturated extension of (K, v), keeping the

base field strongly dependent. By Propositions 5.2 and 5.7, vK and Kv are

strongly dependent. The proof now splits into three cases:

Case 1: If char(Kv) = 0 then, since vK and Kv are strongly dependent, by

[32, Claim 1.17], (K, v) is also strongly dependent. Moreover, we note that in

this case vK and Kv are stably embedded as pure structures by [33, Corollary

5.25].

Case 2: Assume that char(K) = char(Kv) = p > 0. This case follows by

Lemma 5.12. Moreover, we note that vK and Kv are stably embedded as pure

structures by [18, Lemma 3.1].

Case 3: Assume that (K, v) is of mixed characteristic (0, p). Let Δ0 be the

largest convex subgroup of

Γ := vK

not containing v(p) and Δ the smallest convex subgroup containing v(p).

The coarsening v0 : K → Γ/Δ of v is Henselian of equi-characteristic 0. So

by Case 1, (K, v0) is strongly dependent. In particular, K1 := Kv0 is strongly

dependent. Also, the valuation v1 : K1 → Δ/Δ0 of mixed characteristic (0, p)

is Henselian.

Finally, consider the valuation v2 : K2 → Δ0, where K2 := K1v1. It is of

equi-characteristic (p, p) and thus (K2, v2) is strongly dependent by Case 2.

Case 3.1: If K1v1 = K2 is finite then so is Kv, and hence it is not separably

closed, by [17, Theorem A], v is definable inKsh so (K, v) is strongly dependent.

Case 3.2: Assume K2 is infinite.

Claim 1: (K1, v1) is unboundedly ramified, i.e., [0, v1(p)] is infinite, and Δ/Δ0

is p-divisible.

Proof. If [0, v1(p)] is finite then the valuation v1 : K1 → Δ/Δ0 is discrete, hence

by [16, Theorem 4] v1 is definable inK1, so (K1, v1) is strongly dependent. Now,

by [22, Lemma 4.2.1], K1v1 = K2 is finite, a contradiction.

We may now apply Proposition 5.13 to (K1, v1). Since Δ/Δ0 is archimedean,

if it contains a non-trivial p-divisible convex subgroup, Δ/Δ0 itself must be

p-divisible. (claim)
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We can now show:

Claim 2: (K1, v1) is strongly dependent, Kaplansky and algebraically maximal.

Moreover, the value group v1K1 and residue field K1v1 are stably embedded as

pure structures.

Proof. The following argument is taken from [22, Theorem 4.3.1]. Since (K, v)

is sufficiently saturated, any countable chain of balls in (K, v) has non-empty

intersection. Therefore, the same is true for (K1, v1). On the other hand,

Δ/Δ0 embeds into R and thus every cut has countable cofinality, consequently

(K1, v1) is spherically complete and thus algebraically maximal. It is obviously

Kaplansky and hence, by Proposition 5.11, (K1, v1) is strongly dependent. The

second part of the claim is due, again, to [18, Lemma 3.1]. (claim)

It will be enough to show that the structure (K, v0,K1, v1,K2, v2) is strongly

dependent, since v is definable there. We apply Proposition 5.9 twice. Since

(K, v0) is strongly dependent, and K1 is stably embedded as a pure structure

and (K1, v1) is strongly dependent, (K, v0,K1, v1) is strongly dependent. Doing

this again, we get our result.

Corollary 5.15: Let K be a strongly dependent field. Then for every

Henselian valuation v on K, the valued field (K, v) is defectless, and therefore

algebraically maximal.

Proof. By [22, Theorem 4.3.2] every strongly dependent (K, v) is defectless. As

defectless Henselian fields are algebraically maximal [25, Theorem 11.31], the

corollary follows.

To finish the proof of Theorem 2 we need to show that in every strongly

dependent Henselian field the value group is stably embedded as an ordered

abelian group and the residue field is stably embedded as a pure field. In a

different paper, we show that every strongly dependent Henselian field admits

elimination of field quantifiers; the result follows (see [13]).

Remark: Theorem 5.14 can also be deduced from elimination of field quantifiers

and [32, Claim 1.17(2)]; see [13].

We end with the following consequence of some of the results discussed in

this paper. Note that it answers [22, Question 9.9.3] in the affirmative.
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Proposition 5.16: Let K be a dp-minimal field and v a Henselian valuation

on K. Then (K, v) is also dp-minimal.

Proof. We use Johnson’s classification of dp-minimal valued fields [22, Theorem

9.8.1]. If Kv is not algebraically closed then, by [17, Theorem A], v is definable

in Ksh and, as Ksh is dp-minimal, so is (K, v). We may thus assume that Kv

is algebraically closed and hence dp-minimal. Since

|P∞(vK)| ≤ |P∞(K×)|

and K× is a dp-minimal abelian group, vK is also dp-minimal (see [21, Propo-

sition 5.1]). By Corollary 5.15, (K, v) is defectless.

If char(K) = p then Kv is p-divisible by Lemma 5.12.

Finally, assume that char(K) = 0 and char(Kv) = p and let Δ, Δ0, K1, K2,

v0, v1 and v2 be as in the proof of Theorem 5.14. Since Kv is infinite, so is K1v1

and, by Claim 1 of the proof of Theorem 4.20, Δ/Δ0 is p-divisible. Since Δ0 is

p-divisible by Lemma 5.12, then Δ, and hence [0, v(p)], is p-divisible. Now we

may apply [22, Theorem 9.8.1].
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[14] Y. Halevi and D. Palaćın, The dp-rank of abelian groups, Journal of Symbolic Logic, to

appear, https://doi.org/10.1017/jsl.2018.89.

[15] W. Hodges, Model Theory, Encyclopedia of Mathematics and its Applications, Vol. 42,

Cambridge University Press, Cambridge, 1993.

[16] J. Hong, Definable non-divisible Henselian valuations, Bulletin of the London Mathemat-

ical Society 46 (2014), 14–18.

[17] F. Jahnke, When does NIP transfer from fields to Henselian expansions?, preprint,

https://arxiv.org/abs/1607.02953.

[18] F. Jahnke and P. Simon, NIP Henselian valued fields, preprint,

https://arxiv.org/abs/1606.08472.

[19] F. Jahnke and J. Koenigsmann, Definable Henselian valuations, Journal of Symbolic

Logic 80 (2015), 85–99.

[20] F. Jahnke and J. Koenigsmann, Defining coarsenings of valuations, Proceedings of the

Edinburgh Mathematical Society 60 (2017), 665–687.

[21] F. Jahnke, P. Simon and E. Walsberg, DP-minimal valued fields, Journal of Symbolic

Logic 82 (2017), 151–165.

[22] W. A. Johnson, Fun with fields, Ph.D. thesis, University of California, Berkeley, 2016.

[23] I. Kaplan, T. Scanlon and F. O. Wagner, Artin–Schreier extensions in NIP and simple

fields, Israel Journal of Mathematics 185 (2011), 141–153.

[24] I. Kaplan and S. Shelah, Chain conditions in dependent groups, Annals of Pure and

Applied Logic 164 (2013), 1322–1337.

[25] F.-V. Kuhlmann, Valuation Theory, available at

http://math.usask.ca/~fvk/Fvkbook.htm.

[26] F.-V. Kuhlmann, Quantifier elimination for Henselian fields relative to additive and mul-

tiplicative congruences, Israel Journal of Mathematics 85 (1994), 277–306.

[27] A. Pillay, Geometric Stability Theory, Oxford Logic Guides, Vol. 32, The Clarendon

Press, Oxford University Press, New York, 1996.

[28] A. Prestel and M. Ziegler, Model-theoretic methods in the theory of topological fields,

Journal für die Reine und Angewandte Mathematik 299(300) (1978), 318–341.

[29] P. H. Schmitt, Model theory of ordered abelian groups, Habilitationsschrif, 1982.

[30] P. H. Schmitt, Model- and substructure-complete theories of ordered abelian groups, in

Models and Sets (Aachen, 1983), Lecture Notes in Mathematics, Vol. 1103, Springer,

Berlin, 1984, pp. 389–418.

[31] S. Shelah, Dependent first order theories, continued, Israel Journal of Mathematics 173

(2009), 1–60.



758 Y. HALEVI AND A. HASSON Isr. J. Math.

[32] S. Shelah, Strongly dependent theories, Israel Journal of Mathematics 204 (2014), 1–83.

[33] L. van den Dries, Lectures on the model theory of valued fields, in Model Theory in

Algebra, Analysis and Arithmetic, Lecture Notes in Mathematics, Vol. 2111, Springer,

Heidelberg, 2014, pp. 55–157.

[34] F. O. Wagner, Stable Groups, London Mathematical Society Lecture Note Series,

Vol. 240, Cambridge University Press, Cambridge, 1997.


