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ABSTRACT

Let CDGcont be the category whose objects are pairs (A, ā), where A is

a commutative DG-algebra and ā ⊆ H0(A) is a finitely generated ideal,

and whose morphisms f : (A, ā) → (B, b̄) are morphisms of DG-algebras

A → B, such that (H0(f)(ā)) ⊆ b̄. Letting Ho(CDGcont ) be its homotopy

category, obtained by inverting adic quasi-isomorphisms, we construct a

functor LΛ : Ho(CDGcont ) → Ho(CDGcont ) which takes a pair (A, ā) into

its non-abelian derived ā-adic completion. We show that this operation

has, in a derived sense, the usual properties of adic completion of com-

mutative rings, and that if A = H0(A) is an ordinary noetherian ring,

this operation coincides with ordinary adic completion. As an applica-

tion, following a question of Buchweitz and Flenner, we show that if k is

a commutative ring, and A is a commutative k-algebra which is a-adically

complete with respect to a finitely generated ideal a ⊆ A, then the de-

rived Hochschild cohomology modules Extn
A⊗L

k
A
(A,A) and the derived

complete Hochschild cohomology modules Extn
Â⊗L

k
A
(A,A) coincide, with-

out assuming any finiteness or noetherian conditions on k, A or on the

map k → A.
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0. Introduction

All rings in this paper are commutative and unital. Adic completion is a fun-

damental operation in commutative algebra. In their paper [7], Buchweitz and

Flenner considered the Hochschild cohomology of adically complete noetherian

algebras. They observed that in the presence of an adic topology, there are

two versions of Hochschild cohomology: the classical Hochschild cohomology,

and the complete (analytic in their terminology) Hochschild cohomology, ob-

tained by performing the adic completion operation on the bar resolution (see

[7, Section 3] for details). Given a flat local homomorphism (A,m) → (B, n)

between noetherian local rings, such that the induced map A/m → B/n is an

isomorphism, they proved that the Hochschild cohomology of B over A is iso-

morphic to ExtnB⊗AB(B,B) (even if B is not projective over A), and asked if it

coincides with the completed Hochschild cohomology of B over A, which they

have shown, is isomorphic to

Extn
B̂⊗AB

(B,B).

Here, B⊗̂AB is the be-adic completion of B ⊗A B, where

be = b⊗A 1 + 1⊗A b ⊆ B ⊗A B.

In [27, Corollary 4.3], we answered this question positively, and, more gener-

ally, proved:
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Theorem: Let k be a commutative ring, let A be a commutative k-algebra, let

a ⊆ A be a finitely generated ideal, and suppose that A is a-adically complete.

Let M be an a-adically complete A-module. Assume the following:

(1) The map k→ A is flat.

(2) The ring A is noetherian.

(3) The composition k→ A→ A/a is essentially of finite type.

Then for any n ∈ Z, there is an A-linear isomorphism

(0.1) ExtnA⊗kA
(A,M) ∼= Extn

Â⊗kA
(A,M).

Our proof of this result in [27] depended on all 3 conditions above. One of the

main results of this paper is a generalization of this result, without assuming

any of the conditions (1)–(3). As a first step towards dropping this assumption,

we drop the flatness assumption on the map k → A. But then, for such a

homological statement to have any hope of remaining true, we must derive

the enveloping algebra A ⊗k A, and instead consider the derived enveloping

algebra A ⊗L
k
A. This is no longer a commutative ring, but instead, it is a

derived commutative ring. In this paper, we model derived commutative rings

using commutative DG-algebras. Using the derived enveloping algebra, the left-

hand side of (0.1) becomes ExtnA⊗L
k
A(A,M). These A-modules are called the

derived Hochschild cohomology (also known as Shukla cohomology) modules

of A with respect to M . Regarding the right-hand side of (0.1), we run into a

problem: it is not clear how to perform adic completion on A⊗L
k
A. The majority

of this paper is devoted to tackling this problem. Thus, we will explain how

to perform the adic completion operation on a non-positive commutative DG-

algebra B, with respect to a finitely generated ideal b̄ ⊆ H0(B) (the latter is

a commutative ring). We will then derive (in a homotopical sense) this non-

abelian operation, and obtain a functor we call the derived adic completion

functor. Applying it to the derived enveloping algebra, we will show:

Theorem 0.2: Let k be a commutative ring, let A be a commutative k-algebra,

let a ⊆ A be a finitely generated ideal, and suppose that A is a-adically complete.

Let M be an a-adically complete A-module. Then for any n ∈ Z, there is an

A-linear isomorphism

ExtnA⊗L
k
A(A,M) ∼= Extn

Â⊗L
k
A
(A,M).
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This is contained in Theorem 6.1 below. It is worth noting that even if A is

flat over k, so that

A⊗L
k
A = A⊗k A,

the statement of this theorem contains a non-trivial new construction. This is

because, in view of the fact that we make no finiteness assumptions on k, A,

the ordinary adic completion operation is ill-behaved from a homological per-

spective. Thus, even in the case where A ⊗L
k
A is an ordinary commutative

ring, we do not perform on it the usual adic completion operation, but instead

its non-abelian derived functor. In particular, the derived adic completion of a

non-noetherian commutative ring need not be a ring. Instead, it is a derived

ring which may have higher cohomologies. Theorem 0.2 suggests that this non

abelian derived functor might have better formal properties than the usual adic

completion operation. This might suggest that the fact that many results in the

commutative algebra of adic rings were only proven under a noetherian assump-

tion is due to the fact that in non-noetherian contexts, the derived completion

operation is the correct operation needed to be considered.

In Section 1 below we gather some preliminaries from homological and ho-

motopical algebra. In Section 2 we extend the theory of local cohomology and

derived completion to the derived category of DG-modules over a commutative

DG-ring. In addition to being an interesting theory on its own, this theory is

crucially used in the remaining of this paper. Section 3 introduces a non-abelian

functor called adic completion on the category of pairs (A, ā), where A is a com-

mutative DG-ring, and ā ⊆ H0(A) is a finitely generated ideal. In Section 4

we prove that this non-abelian functor has a non-abelian derived functor (in

the sense of homotopy theory), called the derived adic completion functor. We

study its basic properties, and show it coincides with the usual adic comple-

tion operation on noetherian rings and on maps between noetherian rings. The

short Section 5 studies some interactions between the constructions of Section 2

and Section 4. Finally, in Section 6 we prove Theorem 0.2 and discuss further

applications of the theory developed in this paper.

We end this introduction by discussing some related works. In [13, Section 9]

the authors describe a theory of local cohomology over a commutative, not nec-

essarily non-positive DG-ring. Under a noetherian assumption which holds in

the applications they have for that theory in their paper, their local cohomol-

ogy coincides with ours. The recent paper [6] describes a general framework
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to describe isomorphisms generalizing the Greenlees–May duality. Presumably,

our version of it for commutative DG-rings (Proposition 2.11) falls under this

framework. Other related papers in this context are [8, 9], which describes a

similar formal theory, which presumably could also be used to construct the

theory of Section 2, and the recent [23] which further extends the MGM equiv-

alence. Predecessors for the results of this section include [11] which was the

first serious investigation of derived completion in an abelian setting, and [1, 2]

which globalized these results and extended them to the framework of derived

categories on schemes and formal schemes.

Regarding Section 4, the only similar construction we are aware of is [17,

Section 4], where Lurie constructs derived completion in a spectral setting.

Lurie’s construction is easy to carry out, but it seems difficult to work with

it in commutative algebra, nor are any functorial properties of this construc-

tion discussed there. In contrast, our construction is quite difficult to carry

out (it takes the majority of Section 4), but it is very easy to work with in

commutative algebra: we work in a strictly (graded) commutative setting, and

to compute our derived completion, we identify a large class of commutative

DG-rings (called weakly proregular DG-rings) which serve as resolutions in this

context, on which derived completion is naturally isomorphic to ordinary adic

completion. Moreover, the fact that our construction is functorial is in some

sense the main point of this paper, as it shows that there are interesting natu-

ral morphisms between derived completions of DG-rings and ordinary adically

complete noetherian rings (see Section 6).

Finally, regarding the results of Sections 5 and 6, as far as we know they are

new, and never have been carried out before in any similar non-abelian derived

framework.

1. Preliminaries

We will freely use the language of derived categories over rings and DG-rings,

including resolutions of unbounded complexes ([34]) and unbounded DG-mo-

dules ([15]).

1.1. The category CDGk and its homotopy category. We begin by re-

calling some basic notions from the theory of commutative DG-rings. We follow

the definitions and notations of [38, 39] (this includes using the term “DG-ring”
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instead of the somewhat more common “DG-algebra”; see [39, Remark 1.4] for

a justification). A commutative DG-ring is a Z-graded ring

A =

∞⊕
n=−∞

An

and a Z-linear differential d : A→ A of degree +1, such that

d(a · b) = d(a) · b+ (−1)i · a · d(b),
for all a ∈ Ai, b ∈ Aj , and such that b · a = (−1)i·j · a · b, and a · a = 0 if i

is an odd integer. We shall further assume that A is non-positive, i.e, that

Ai = 0 for all i > 0. For a DG-ring A, following [38, Definition 1.3(2)], we will

sometimes denote H0(A) by Ā. Accordingly, ideals of the commutative ring Ā

will be denoted by ā. The natural map A → Ā will be denoted by πA. We

denote by DGMod(A) the category of (unbounded) DG-modules over A, and

by D(A) its derived category. In particular, if A = A0 is a ring, DGMod(A) is

simply the category of unbounded complexes of A-modules.

Fixing a commutative DG-ring k, we denote by CDGk the category of com-

mutative non-positive DG-rings over k. A map in CDGk is a morphism of

commutative DG-rings which is k-linear. If k = Z, the initial object of the cat-

egory of commutative DG-rings, we simply denote it by CDG. A map A → B

of commutative DG-rings is called semi-free if it induces an isomorphism

B ∼= A⊗Z Z[X ]

of graded commutative rings, where X is a graded set of variables. In this

case, B is K-projective over A. According to [39, Theorem 3.21], any map of

commutative DG-rings A → B can be factored as A → B̃ → B, such that

A→ B̃ is semi-free and B̃ → B is a surjective quasi-isomorphism.

If k is a ring, and moreover it contains Q, there is a model structure on CDGk

in which the weak equivalences are the quasi-isomorphisms, the fibrations are

the surjections, and the generating cofibrations are the semi-free maps. It is very

convenient to do homotopy theory with this model structure. Unfortunately,

if k does not contain Q, there is no such model structure on CDGk. In general,

according to [35, Theorem 9.7], for any commutative ring k, the category CDGk

has another model structure, with the expected weak equivalences and cofibra-

tions. However, it is not known what are the fibrations in this model structure.

In any case, since such a model structure exists, we deduce immediately that
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the category CDGk, with weak equivalences being quasi-isomorphisms, is a ho-

motopical category, in the sense of [10, Section 33]. In particular, we may

form its homotopy category Ho(CDGk), obtained by formally inverting quasi-

isomorphisms, and deduce that it is locally small.

Despite the fact that quasi-isomorphisms, surjections and semi-free maps do

not define a model structure on CDGk in general, we shall now show that many

features of model category theory remain true for these three classes of maps.

We begin by borrowing from Quillen’s model category theory the notion of a

left homotopy.

Definition 1.1: Let k be a commutative DG-ring, and let f, g : A → B be two

maps in CDGk. We say that f, g are left homotopic over k if:

(1) There is factorization A⊗k A
α−→ C

β−→ A in CDGk of the multiplication

map A⊗kA→ A, such that the map β : C → A is a quasi-isomorphism,

and

(2) Letting σ1, σ2 : A → A ⊗k A be the two natural maps A → A ⊗k A,

there is a map h : C → B in CDGk such that

h ◦ α ◦ σ1 = f and h ◦ α ◦ σ2 = g.

The following implication is standard in model category theory.

Proposition 1.2: Let k be a commutative DG-ring, denote by Qk the local-

ization functor CDGk → Ho(CDGk), and let f, g : A → B be left homotopic

maps over k. Then

Qk(f) = Qk(g).

Proof. Following the notation of Definition 1.1, we have that

Qk(1A) = Qk(β ◦ α ◦ σ1) = Qk(β ◦ α ◦ σ2).

But Qk(β) is invertible, so we deduce that

Qk(α ◦ σ1) = Qk(α ◦ σ2),

which implies that

Qk(f) = Qk(h ◦ α ◦ σ1) = Qk(h ◦ α ◦ σ2) = Qk(g).

The next result is an analogue of [12, Proposition 7.6.13] in this context.
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Proposition 1.3: Let k be a commutative DG-ring, and let

A ��

f

��

B

g

��
C �� D

be a commutative diagram in CDGk such that f is semi-free and g is a surjective

quasi-isomorphism.

(1) There is a map h1 : C → B in CDGk making the diagram

(1.4) A ��

f

��

B

g

��
C ��

h1

��

D

commutative.

(2) If h2 : C → B is another map in CDGk making the diagram (1.4)

commutative, then h1, h2 are left homotopic over A.

Proof. The existence (1) is [39, Theorem 3.22(i)]. Assume h1, h2 : C → B are

two such maps. Let C ⊗A C
i−→ E

j−→ C be a factorization of the multiplication

map C⊗AC → C such that i is semi-free and j is a surjective quasi-isomorphism.

Because h1◦f = h2◦f , the two maps h1, h2 induce a map h1⊗h2 : C⊗AC → B.

We obtain a commutative diagram

C ⊗A C

i

��

h1⊗h2 �� B

g

��
E

j
�� C �� D

in CDGA, in which i is semi-free and g is a surjective quasi-isomorphism. Hence,

by (1), there is a map φ : E → B making the diagram

C ⊗A C

i

��

h1⊗h2 �� B

g

��
E

j
��

φ

���������������������������� C �� D
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commutative, so we get a diagram

C �� �� C ⊗A C
i �� E

j ��

φ

��

C

B

proving the claim.

We record some immediate corollaries of this proposition that will be used in

the sequel.

Corollary 1.5: Let k be a commutative DG-ring.

(1) Let X ∈ CDGk, and let a : A → X and b : B → X be two quasi-

isomorphisms in CDGk such that A,B are semi-free over k and such

that b is surjective. Then there is a k-linear quasi-isomorphism h :A→B,

unique up to a left homotopy over k, making the diagram

A

a ���
��

��
��

h �� B

b����
��
��
��

X

commutative.

(2) Let f : X → Y , a : A → X and b : B → Y be maps in CDGk, and

assume that a, b are quasi-isomorphisms, that A,B are semi-free over k,

and that b is surjective. Then there is a map f̃ : A→ B in CDGk, unique

up to a left homotopy over k, making the diagram

A
f̃ ��

a

��

B

b
��

X
f

�� Y

commutative.
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Proof. These follow from applying the proposition to the commutative diagrams

k ��

��

B

b
��

k ��

��

B

b
��

A
a

�� X A
f◦a

�� Y

1.2. Standard functors over Ho(CDG). For the next constructions, we first

make some set theoretic remarks. Fix a Grothendieck universe V , and assume

that CDG ∈ V , and that for any A ∈ CDG we have that DGMod(A),D(A) ∈ V .
Let Cat be the category of V-small categories, and fix a Grothendieck universe U
such that V ⊆ U and such that Cat ∈ U . We give Cat the canonical model

structure (see [24]). Recall that the weak equivalences in this structure are

exactly the equivalences of categories. The homotopy category Ho(Cat) has the

same objects, but its morphisms are natural equivalence classes of morphisms.

Any map f : A→ B of commutative DG-rings gives rise to these functors:

−⊗L
A B, RHomA(B,−) : D(A)→ D(B)

and the forgetful functor D(B) → D(A). As is well known, if f is a quasi-

isomorphism then each of these three functors is an equivalence of categories.

We now use this fact to extend them to Ho(CDG).

Define functors

(1.6)

L(−)∗ : CDG→ Ho(Cat),

R(−)∗ : CDGop → Ho(Cat),

R(−)� : CDG→ Ho(Cat)

as follows: on objects, each of L(−)∗, R(−)∗ and R(−)� maps A ∈ CDG to the

category D(A) ∈ Ho(Cat). Given f : A → B in CDG, Lf∗ : D(A)→ D(B) is

given by

−⊗L
A B,

Rf∗ : D(B)→ D(A) is the forgetful functor, and R(−)� : D(A)→ D(B) is given

by

RHomA(B,−).
Since Ho(Cat) identifies naturally equivalent functors, it is clear that L(−)∗,
R(−)∗ and R(−)� are functors. Moreover, they all map quasi-isomorphisms to
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isomorphisms, so they induce functors

L(−)∗ : Ho(CDG)→ Ho(Cat),

R(−)∗ : Ho(CDG)op → Ho(Cat),

and

R(−)� : Ho(CDG)→ Ho(Cat).

In particular, using either of these functors, we see that the operation

Ho(CDG)→ Ho(Cat), A �→ D(A)

is well defined, so that we may speak about the derived category of an object

of Ho(CDG).

1.3. Derived tensor products. Fix a commutative DG-ring k. There is a

functor

CDGk×CDGk → CDGk

given by (A,B) �→ A ⊗k B. In this section we will construct its non-abelian

derived functor. We begin by constructing an analogue of the fibrant cofibrant

replacement functor in this context.

Proposition 1.7: Let k be a commutative DG-ring, and let

Qk : CDGk → Ho(CDGk)

be the localization functor. There is a functor

SFk : CDGk → Ho(CDGk),

and a natural transformation SFk → Qk such that for any A ∈ CDGk, SFk(A)

is semi-free over k, and the map SFk(A)→ A is equal to Qk(iA), where

iA : SFk(A)→ A

is a surjective quasi-isomorphism.

Proof. For any A ∈ CDGk, factor k → A as k → Ã
iA−→ A, with k → Ã

being semi-free and Ã→ A being a surjective quasi-isomorphism. Given a map

f : A→ B in CDGk, by Proposition 1.3(1), there is a map if : Ã→ B̃ in CDGk



542 L. SHAUL Isr. J. Math.

such that f ◦ iA = iB ◦ if . Let SF(A) := Ã and SF(f) := Qk(if ). If g : B → C

is another map, then there are two commutative diagrams

k ��

��

C̃

��

k ��

��

C̃

��
Ã

SF(g◦f)

��������������������
�� C Ã

ig◦if

��������������������
�� C

in which the left vertical map is semi-free and the right vertical map is a sur-

jective quasi-isomorphism, so by Proposition 1.3(2) we see that

SF(g ◦ f) = SF(g) ◦ SF(f),
which implies that indeed SF is a functor, and the collection of maps iA is a

natural transformation.

Using this functor, we may define the derived tensor product functor

−⊗L
k
− : Ho(CDGk×CDGk) = Ho(CDGk)×Ho(CDGk)→ Ho(CDGk)

by letting

−⊗L
k
− := SFk(−)⊗k SFk(−).

This is well defined since SFk preserves quasi-isomorphisms, and since for any

A ∈ CDGk we have that SFk(A) is K-flat over k. K-flatness also ensures that

there is a derived tensor product functor

D(A)× D(B)→ D(A⊗L
k
B).

In the special case where A = B, we can say more: We may consider the functor

Δ : CDGk → CDGk, A �→ A⊗k A.

This functor comes equipped with a natural transformation Δ → 1CDGk
, given

by the multiplication map A⊗kA→ A. Again, we may form the derived functor

LΔ : Ho(CDGk)→ Ho(CDGk)

and deduce that there is a natural transformation LΔ→ 1Ho(CDGk). Hence, for

any A ∈ CDGk, there is a natural map

(1.8) ΔA : A⊗L
k
A→ A
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in Ho(CDGk) given by the composition

A⊗L
k
A = SFk(A)⊗k SFk(A)→ SFk(A)→ A.

The functor (ΔA)
� : D(A⊗L

k
A)→ D(A) is called Shukla cohomology, or derived

Hochschild cohomology. See [5, 33, 39] for a study of this functor.

1.4. Completion and torsion over commutative rings, and weakly

proregular ideals. Given a commutative ring A and a finitely generated

ideal a ⊆ A, the a-torsion and a-adic completion functors are given by

Γa(−) := lim−→
n

HomA(A/a
n,−), Λa(−) := lim←−

n

A/an ⊗A −.

These are both additive functors

Mod(A)→ Mod(A),

so they have derived functors

RΓa,LΛa : D(A)→ D(A).

It is clear that the functor Γa is idempotent. By [37, Corollary 3.6], Λa is also

idempotent. We denote by
√
a the radical of the ideal a. It is also an ideal, but

it need not be finitely generated in general. There are equalities

(1.9) Γa(−) = Γ√
a(−), Λa(−) = Λ√

a(−)
of functors

Mod(A)→ Mod(A).

Given an element a ∈ A, the infinite dual Koszul complex associated to it,

K∨
∞(A; a) is the complex

0→ A→ A[a−1]→ 0

concentrated in degrees 0, 1. Given a finite sequence a = (a1, . . . , an) in A, we

let

K∨
∞(A; a) := K∨

∞(A; a1)⊗A · · · ⊗A K∨
∞(A; an).

This is a bounded complex of flat A-modules, so in particular it is K-flat. By

[1, 20, 26], the sequence a is called weakly proregular if for any injective

A-module I and any k > 0, we have that

Hk(K∨
∞(A; a) ⊗A I) = 0.
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As shown in [26, Proposition 1.2], this notion depends only on the ideal gener-

ated by a. Hence, we say that a finitely generated ideal is weakly proregular if

some (equivalently, any) finite sequence that generates it is weakly proregular.

It follows ([1, Lemma 3.1.1], [26, Theorem 1.1], [20, Corollary 4.26]) that a

and a are weakly proregular if and only if there is an isomorphism

RΓa(−) ∼= −⊗A K∨
∞(A; a)

of functors D(A)→ D(A). According to [20, Section 5], the complex K∨
∞(A; a)

has an explicit bounded free resolution Tel(A; a), called the telescope complex.

In particular, Tel(A; a) is K-projective. By [26, Theorem 1.1], [20, Corollary

5.25], a and a are weakly proregular if and only if there is an isomorphism

LΛa(−) ∼= HomA(Tel(A; a),−)
of functors D(A) → D(A). The telescope compelx satisfies the following base

change property: given a ring homomorphism f : A → B, letting b := f(a),

there is an isomorphism

(1.10) Tel(A; a)⊗A B ∼= Tel(B;b)

of complexes of B-modules.

The A-module Λa(A) has the structure of a commutative ring, sometimes

denoted by Â. The map A → Â is a map of commutative rings, and if A is

noetherian, it is flat.

If A is non-noetherian, this map can fail to be flat (even if a is weakly proreg-

ular). For any M ∈Mod(A), the A-modules Γa(M),Λa(M) have the structure

of Â-modules, so one obtains additive functors

Γ̂a, Λ̂a : Mod(A)→ Mod(Â)

and hence derived functors

RΓ̂a,LΛ̂a : D(A)→ D(Â).

If Q : D(Â)→ D(A) is the forgetful functor, there are natural isomorphisms

Q ◦ RΓ̂a
∼= RΓa, Q ◦ LΛ̂a

∼= LΛa.

According to [27, Theorems 3.2, 3.6], if a and a are weakly proregular then

there are isomorphisms

RΓ̂a(M) ∼= (M ⊗A K∨
∞(A; a)) ⊗L

A Â
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and

LΛ̂a(M) ∼= RHomA(Tel(A; a) ⊗A Â,M)

of functors D(A)→ D(Â). See [32, 27, 29, 25] for more information about these

functors.

Let A,B be commutative rings, and let a ⊆ A, b ⊆ B be finitely generated

ideals. Given a map f : A → B, if f(a) ⊆ b then f is continuous with respect

to the adic topologies generated by these ideals. Of particular importance are

the continuous maps f such that f(a) · B = b. Such a map f is called an adic

map.

1.5. The category CDGcont and its homotopy category. Fix a commu-

tative ring k. By an ideal of definition for an adic topology on a commutative

DG-ring A, we shall simply mean a finitely generated ideal ā ⊆ Ā = H0(A).

We define the category CDGcont /k as follows: objects of this category are pairs

(A, ā), where A is a commutative DG-ring over k and ā is an ideal of definition

for an adic topology on A. A morphism f : (A, ā) → (B, b̄) in CDGcont /k is

a k-linear morphism of commutative DG-rings f :A→B such that H0(f)(ā) ⊆ b̄.

We do not know if CDGcont /k has a natural model structure. However, it does

carry the structure of a homotopical category, in the sense of [10, Section 33].

Weak equivalences in CDGcont /k are by definition morphisms f : (A, ā)→ (B, b̄),

such that f : A → B is a quasi-isomorphism, and H0(f) maps ā bijectively

into b̄. In other words, a weak equivalence is a quasi-isomorphism whose H0

is an adic map. Since quasi-isomorphisms are the weak equivalences of the

homotopical category CDGk, it is clear that weak equivalences in CDGcont /k

satisfy the two out of three property and the two out of six property (in the

sense of [10, Section 33.1]). Hence, CDGcont /k is a homotopical category.

Every homotopical category has a homotopy category ([10, Section 33.8]). We

denote the homotopy category of CDGcont /k by Ho(CDGcont /k). It is obtained

from CDGcont /k by formally inverting the weak equivalences. As the forgetful

functor

CDGcont /k → CDGk, (A, ā) �→ A

clearly preserves weak equivalences, it induces a forgetful functor

Ho(CDGcont /k)→ Ho(CDGk).

We will frequently apply this forgetful functor implicitly.
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Note that because of the definition of weak equivalences in CDGcont /k, the

functor SFk and the natural transformation SFk → Qk from Proposition 1.7

may be lifted to a functor

(1.11) SFk : CDGcont /k → Ho(CDGcont /k)

and a natural transformation SFk → Qk, where now Qk is the localization

functor of CDGcont /k. The lifted functor is given by

SFk(A, ā) = (SFk(A), ā
′),

where ā′ is the preimage of ā under the isomorphism H0(SFk(A))→ H0(A).

2. Derived completion and derived torsion of DG-modules

Let A be a commutative DG-ring and let ā ⊆ Ā = H0(A) be a finitely generated

ideal. In this section we will associate to (A, ā) a pair of functors

RΓā,LΛā : D(A)→ D(A)

which, in case A is a noetherian ring (or a bit more generally, A is a ring and ā

is a weakly proregular ideal), will coincide with the ordinary derived ā-torsion

and derived ā-adic completion functors. This section is a chapter in ordinary

homological algebra and no homotopical methods will be used in it.

There is a short abstract approach to define these functors: denote by

Dā−tor(A) the full subcategory of D(A) whose objects are DG A-modules M ,

such that for all n ∈ Z, the Ā-module Hn(M) is ā-torsion. Since the subcategory

of Mod(H0(A)) consisting of ā-torsion modules is a thick abelian subcategory of

Mod(H0(A)), it follows that Dā−tor(A) is a triangulated subcategory of D(A).

Elements of this category are called cohomologically ā-torsion DG-modules. By

[19, Theorem 8.4.4], the inclusion functor

Q : Dā−tor(A)→ D(A)

has a right adjoint

G : D(A)→ Dā−tor(A),

which is also triangulated. One may set RΓā := Q ◦ G. Then, similarly, the

functor RΓā has a left adjoint, denoted by LΛā. Below, we will take a different

approach to define these functors which will allow us to explicitly compute

them. The approach is based on the following, the key technical definition of

this paper:
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Definition 2.1:

(1) A weakly proregular DG-ring is a pair (A, a), such that A is a DG-ring

which is K-flat over A0, and a is a finite sequence of elements in A0

which is weakly proregular.

(2) Given a commutative DG-ringA and a finitely generated ideal ā⊆H0(A),

a weakly proregular resolution of (A, ā) is a triple (f,B,b), such

that (B,b) is a weakly proregular DG-ring, f : B → A is a quasi-

isomorphism of DG-rings, and such that

πA(f(b)) ·H0(A) = ā.

(3) Given a weakly proregular DG-ring (A, a), we define its completion Â

to be the (a)-adic completion of A.

Proposition 2.2: Let A be a commutative DG-ring, and let ā ⊆ Ā be a finitely

generated ideal. Then (A, ā) has a weakly proregular resolution (f,B,b). More-

over, for any finite sequence of elements a = (a1, . . . , an) in A0, whose image

in Ā generates ā, the pair (A, ā) has a weakly proregular resolution (f,B,b)

such that f(b) = a.

Proof. Let a = (a1, . . . , an) be a finite sequence of elements in A0 such that

a · Ā = ā. Let Z[x1, . . . , xn]→ A be the map xi �→ ai, and let

Z[x1, . . . , xn]→ B
f−→ A

be a semi-free resolution of this map. Letting b be the image of (x1, . . . , xn)

in B0, it is clear that f(b) = a, and one may verify (see Lemma 4.2 below) that

(f,B,b) is a weakly proregular resolution of (A, ā).

We will now associate to a weakly proregular resolution P of (A, ā) derived

torsion and derived completion functors, which we will temporarily denote by

RΓP
ā (−),LΛP

ā (−). This notation is temporary, as it will be shown below that

these functors are independent of the chosen weakly proregular resolution, and

are in fact naturally isomorphic to the functors RΓā and LΛā introduced above.

Definition 2.3: Let A be a commutative DG-ring, let ā ⊆ Ā = H0(A) be a

finitely generated ideal, and let P = (f,B,b) be a weakly proregular resolution

of (A, ā). Let b be the ideal in B0 generated by b. We define the derived torsion
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and derived completion functors associated to P as follows: the operations

Γb(−) := lim−→
n

HomB0(B0/bn,−), Λb(−) := lim←−
n

B0/bn ⊗B0 −

define additive functors DGMod(B)→ DGMod(B). Let

RΓb,LΛb : D(B)→ D(B)

be their derived functors, and set

RΓP
ā (−) := Lf∗(RΓb(Rf∗(−))) LΛP

ā (−) := Rf �(LΛb(Rf∗(−))).
These are triangulated functors D(A)→ D(A).

The next proposition provides explicit formulas for computing RΓP
ā , LΛ

P
ā .

Proposition 2.4: Let A be a commutative DG-ring, let ā ⊆ Ā be a finitely

generated ideal, and let P = (f,B,b) be a weakly proregular resolution of

(A, ā). Let b be the ideal in B0 generated by b. Then there are isomorphisms

RΓb(−) ∼= Tel(B0;b)⊗B0 −
and

LΛb(−) ∼= HomB0(Tel(B0;b),−)
of functors D(B)→ D(B). Hence, letting a = f(b), there are isomorphisms

RΓP
ā (−) ∼= Tel(A0; a)⊗A0 −

and

LΛP
ā (−) ∼= HomA0(Tel(A0; a),−)

of functors D(A)→ D(A).

Proof. Let M ∈ D(B), let M
	−→ I be a K-injective resolution over B, and let

P
	−→M be a K-projective resolution over B. By definition, we have that

RΓb(M) = Γb(I)

and

LΛb(M) = Λb(P ).

Let RestB/B0 : D(B) → D(B0) be the forgetful functor. Because the map

B0 → B is K-flat, it follows that RestB/B0(I) is K-injective over B0 and that

RestB/B0(P ) is K-flat over B0.
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According to [20, Equation (4.19)], there is a functorial B0-linear homomor-

phism

vb,RestB/B0(I) : Γb(RestB/B0(I))→ K∨
∞(B0;b)⊗B0 RestB/B0(I),

and since I has a B-linear structure, it is easy to check that this map is B-linear,

that is, there is a B-linear map

(2.5) vb,I : Γb(I)→ K∨
∞(B0;b)⊗B0 I

such that

RestB/B0(vb,I) = vb,RestB/B0(I).

Hence, to check that vb,I is a quasi-isomorphism, it is enough to show

that vb,RestB/B0(I) is a quasi-isomorphism, and this follows from [20, Corollary

4.25]. Thus, there are functorial isomorphisms

RΓb(M) ∼= K∨
∞(B0;b)⊗B0 I ∼= K∨

∞(B0;b)⊗B0 M ∼= Tel(B0;b)⊗B0 M,

proving the first claim. The second statement is proved similarly, using [20,

Definition 5.16] and [20, Corollary 5.23]. In particular, for any K-flat DG-

module P , there is a functorial B-linear isomorphism

(2.6) telb,P : HomB0(Tel(B0;b), P )→ Λb(P ).

The statements on RΓP
ā and LΛP

ā now follow from this and from the base

change property of the telescope complex (1.10).

Proposition 2.7: Let A be a commutative DG-ring, let ā ⊆ Ā be a finitely

generated ideal, and let P = (f,B,b) be a weakly proregular resolution of

(A, ā). Then there is an isomorphism

LΛP
ā (RΓ

P
ā (−)) ∼= LΛP

ā (−)
of functors D(A)→ D(A).

Proof. Let M ∈ D(A), and let b be the ideal in B0 generated by b. By defini-

tion, we have natural isomorphisms

LΛP
ā (RΓ

P
ā (M)) =Rf � ◦ LΛb ◦ Rf∗ ◦ Lf∗ ◦ RΓb ◦ Rf∗(M)

∼=Rf � ◦ LΛb ◦ RΓb ◦ Rf∗(M),

and using Proposition 2.4, we have an isomorphism of functors

Rf � ◦LΛb ◦RΓb ◦Rf∗(M) ∼= Rf � ◦HomB0(Tel(B0;b),Tel(B0;b)⊗B0 Rf∗(M)).
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According to [20, Equation (5.6)], there is a B0-linear homomorphism

ub : Tel(B0;b)→ B0.

Setting T := Tel(B0;b) and N := Rf∗(M), this map gives rise to a B-linear

homomorphism

Hom(1T ,Hom(ub, 1N)) : HomB0(T,N)→ HomB0(T,HomB0(T,N)).

According to [21, Lemma 7], Hom(1T ,Hom(ub, 1N)) is a quasi-isomorphism,

so we deduce that there is a natural isomorphism LΛb(RΓb(M)) ∼= LΛb(M)

in D(B), and clearly this is enough to establish the claim.

Remark 2.8: Let A be a commutative DG-ring, let ā ⊆ Ā be a finitely generated

ideal, and let P = (f,B,b) be a weakly proregular resolution of (A, ā). For any

M ∈ D(A), there is a natural map

σP
M : RΓP

ā (M)→M

in D(A) defined as follows: Let N := Rf∗(M) ∈ D(B), and let N
	−→ I be a

K-injective resolution over B. We have a sequence of natural morphisms:

RΓb(N) = Γb(I)→ I ∼= N

in D(B). Let σb
N be the composition of these maps, and define σP

M to be the

composition of Lf∗(σb
N ) with the natural isomorphism Lf∗(N) ∼=M .

Proposition 2.9: Let A be a commutative DG-ring, let ā ⊆ Ā be a finitely

generated ideal, and let P = (f,B,b) be a weakly proregular resolution of

(A, ā). Then the following hold:

(1) For any M ∈ D(A), we have that

RΓP
ā (M) ∈ Dā−tor(A).

(2) For any N ∈ Dā−tor(A), the map

σP
N : RΓP

ā (N)→ N

is an isomorphism in D(A).

(3) For any M ∈ D(A), the map

σP
RΓP

ā (M) : RΓ
P
ā (RΓ

P
ā (M))→ RΓP

ā (M)

is an isomorphism in D(A).
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Proof. Let b = b · B0, and let b̄ be the ideal in H0(B) generated by the image

of b. It is clear that the equivalence of categories

Rf∗ : D(A)→ D(B)

restricts to an equivalence of categories

Rf∗ : Dā−tor(A)→ Db̄−tor(B)

with a quasi-inverse

Lf∗ : Db̄−tor(B)→ Dā−tor(A).

It follows that in order to prove (1), (2), we may assume without loss of gener-

ality that A = B. Under this assumption, let us set a = b. Let M ∈ D(A), and

let M
	−→ I be a K-injective resolution over A. Then

RΓP
ā (M) = Γa(I).

It follows that for all n, the A0-module Hn(Γa(I)) is a-torsion. But the A0-

action on Hn(Γa(I)) factors through Ā, and a · Ā = ā, so we deduce that

RΓP
ā (M) ∈ Dā−tor(A).

This proves (1). Now, let N ∈ Dā−tor(A), and let N
	−→ I be a K-injective

resolution over A. Note that

RestA/A0(I) ∈ Da−tor(A
0).

It follows from [20, Corollary 4.32] that the natural A0-linear map

Γa(RestA/A0(I)) ↪→ RestA/A0(I)

is a quasi-isomorphism, so the A-linear map Γa(I) ↪→ I is also a quasi-isomor-

phism, and this implies that σP
N is an isomorphism in D(A). This establishes (2).

Now (3) clearly follows from (1), (2).

Dually to the above, there is a natural map τPM :M → LΛP
ā (M). We denote

by D(A)Pā-com the full subcategory of D(A) on which τPM is an isomorphism. The

next result is proven similarly to Proposition 2.9.

Proposition 2.10: Let A be a commutative DG-ring, let ā ⊆ Ā be a finitely

generated ideal, and let P = (f,B,b) be a weakly proregular resolution of

(A, ā). Then for any M ∈ D(A), we have that

LΛP
ā (M) ∈ D(A)Pā-com.
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The next result generalizes the Greenlees–May duality:

Proposition 2.11: Let A be a commutative DG-ring, let ā ⊆ Ā be a finitely

generated ideal, and let P = (f,B,b) be a weakly proregular resolution of

(A, ā). Then for any M,N ∈ D(A), there are bifunctorial isomorphisms

RHomA(RΓ
P
ā (M), N) ∼= RHomA(M,LΛP

ā (N)) ∼= RHomA(RΓ
P
ā (M),RΓP

ā (N))

in D(A).

Proof. Let M ′ = Rf∗(M), let N ′ = Rf∗(N), and let b := b ·B0. By definition,

we have that

RHomA(RΓ
P
ā (M), N) ∼= RHomA(Lf

∗(RΓb(M
′)),Lf∗(N ′))

By [28, Proposition 2.5], there is a bifunctorial isomorphism

RHomA(Lf
∗(RΓb(M

′)),Lf∗(N ′)) ∼= Lf∗RHomB(RΓb(M
′), N ′).

Using Proposition 2.4, we have that

RHomB(RΓb(M
′), N ′) ∼= RHomB(Tel(B

0;b)⊗B0 M ′, N ′),

and using adjunction and Proposition 2.4 again we see that

RHomB(Tel(B
0;b)⊗B0 M ′, N ′) ∼=RHomB(M

′,HomB0(Tel(B0;b), N ′))
∼=RHomB(M

′,LΛb(N
′)).

Combining this chain of natural isomorphisms with an application of [28, Propo-

sition 2.5] again, we see that

RHomA(RΓ
P
ā (M), N) ∼= RHomA(M,LΛP

ā (N)).

For the second claim, note that by Proposition 2.7 we have that

RHomB(M
′,LΛb(N

′)) ∼= RHomB(M
′,LΛb(RΓb(N

′))).

Using Proposition 2.4 and adjunction, we see that

RHomB(M
′,LΛb(RΓb(N

′))) ∼=RHomB(M
′,HomB0(Tel(B0;b),RΓb(N

′)))

∼=RHomB(M
′ ⊗B0 Tel(B0;b),RΓb(N

′))
∼=RHomB(RΓb(M

′),RΓb(N
′)),

so the second result also follows from an application of [28, Proposition 2.5].
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Using Proposition 2.9(1), we see that RΓP
ā defines a functor

D(A)→ Dā−tor(A).

Here is the main result of this section.

Theorem 2.12: Let A be a commutative DG-ring and let ā ⊆ Ā be a finitely

generated ideal.

(1) For any weakly proregular resolution P = (f,B,b) of (A, ā), the functor

RΓP
ā : D(A)→ Dā−tor(A)

is right adjoint to the inclusion functor Dā−tor(A) ↪→ D(A).

(2) For any weakly proregular resolution P = (f,B, b) of (A, ā), the functor

RΓP
ā : D(A)→ D(A)

is left adjoint to the functor

LΛP
ā : D(A)→ D(A).

Proof. Denote by F (−) the inclusion functor Dā−tor(A) ↪→ D(A). Let

M ∈ Dā−tor(A) and let N ∈ D(A). By Proposition 2.9(2) we have a natu-

ral isomorphism

HomD(A)(F (M), N) ∼= HomD(A)(RΓ
P
ā (M), N) = H0RHomA(RΓ

P
ā (M), N),

and by Proposition 2.11 there is a natural isomorphism

H0RHomA(RΓ
P
ā (M), N) ∼= H0RHomA(RΓ

P
ā (M),RΓP

ā (N)).

Using Proposition 2.9(2) again, we see that there is a natural isomorphism

H0(RHomA(RΓ
P
ā (M),RΓP

ā (N))) ∼=H0(RHomA(M,RΓP
ā (N)))

= HomD(A)(M,RΓP
ā (N)).

SinceM,RΓP
ā (N)∈Dā−tor(A), and since Dā−tor(A) is a full subcategory ofD(A),

we have that

HomD(A)(M,RΓP
ā (N)) = HomDā−tor(A)(M,RΓP

ā (N)).

Thus, we see that there is a natural isomorphism

HomD(A)(F (M), N) ∼= HomDā−tor(A)(M,RΓP
ā (N)),

and this proves (1). The second statement follows immediately from Proposi-

tion 2.11.
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Corollary 2.13: Let A be a commutative DG-ring and let ā ⊆ Ā be a finitely

generated ideal. Let P,Q be weakly proregular resolutions of (A, ā).

(1) Let

ϕP : HomD(A)(M,N)
	−→ HomDā−tor(A)(M,RΓP

ā (N))

and

ϕQ : HomD(A)(M,N)
	−→ HomDā−tor(A)(M,RΓQ

ā (N))

be the adjunctions constructed in Theorem 2.12(1).

Then there is a unique isomorphism of functors αP,Q : RΓP
ā

	−→ RΓQ
ā

such that

ϕQ = HomD(A)(1, αP,Q) ◦ ϕP .

(2) Let

ψP : HomD(A)(RΓ
P
ā (M), N)

	−→ HomD(A)(M,LΛP
ā (N))

and

ψQ : HomD(A)(RΓ
Q
ā (M), N)

	−→ HomD(A)(M,LΛQ
ā (N))

be be the adjunctions constructed in Theorem 2.12(2).

Then there is a unique isomorphism of functors βP,Q : LΛP
ā

	−→ LΛQ
ā

such that

ψQ = HomD(A)(1, βP,Q) ◦ ψP ◦HomD(A)(αP,Q, 1).

Proof. Both statements follow from Theorem 2.12 and the uniqueness of adjoint

functors ([14, Theorem 3.2]).

Remark 2.14: Let A be a commutative DG-ring and let ā ⊆ Ā be a finitely

generated ideal. By Proposition 2.2, any such pair (A, ā) has a weakly proregular

resolution. We associate to (A, ā) functors

RΓā,LΛā : D(A)→ D(A)

defined by choosing some weakly proregular resolution P of (A, ā), and declaring

RΓā := RΓP
ā , LΛā := LΛP

ā .

By Corollary 2.13 up to a unique natural isomorphism respecting the struc-

ture, these are independent of the chosen weakly proregular resolution, so this
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notation makes sense. Similarly, we let

D(A)ā-com := D(A)Pā-com.

It follows from the above that the functor D(A) → Dā−tor(A) which is right

adjoint to the inclusion functor is a (right) Bousfield localization. See [16, Sec-

tion 4.9] for details about this notion in the context of triangulated categories.

Corollary 2.15: Let A be a commutative DG-ring, and let ā, b̄ ⊆ Ā be finitely

generated ideals such that
√
ā =
√
b̄. Then there are isomorphisms

RΓā(−) ∼= RΓb̄(−)

and

LΛā(−) ∼= LΛb̄(−)
of functors D(A)→ D(A).

Proof. The second claim follows from the first, and the first claim follows from

the fact that

Dā−tor(A) = D√
ā−tor(A) = Db̄−tor(A)

since a H0(A)-module is ā-torsion if and only if it is
√
ā-torsion.

Proposition 2.16: Let f : (A, ā)→ (B, b̄) be a map in CDGcont such that

H0(f)(ā) ·H0(B) = b̄.

Then there is an isomorphism

LΛb̄(f
�(−)) ∼= f �(LΛā(−))

of functors D(A)→ D(B).

Proof. Choose weakly proregular resolutions P = (g, PA, a) and Q = (h,Q,b)

of (A, ā) and (B, b̄) respectively, such that there is a commutative diagram

A
f �� B

P

g

		

α
�� Q

h
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in CDG, and such that α(a) = b. Then, by definition, we have

LΛb̄(f
�(M)) =LΛQ

b̄
(RHomA(B,M))

∼=RHomQ(B,LΛ(b)(Rh∗(RHomA(B,M))).

Note that

Rh∗(RHomA(B,M)) ∼= RHomP (Q,M)

and that

LΛ(b)(RHomP (Q,M)) ∼= HomQ0(Tel(Q0;b),RHomP (Q,M)).

Since there is an isomorphism Tel(Q0;b) ∼= Tel(P 0; a)⊗P 0Q0, using adjunction

we have a natural isomorphism

HomQ0(Tel(Q0;b),RHomP (Q,M)) ∼=RHomP (Q,HomP 0(Tel(P 0; a),M))

∼=RHomP (Q,LΛ(a)(M)).

Hence

LΛb̄(f
�(M)) ∼=RHomQ(B,RHomP (Q,LΛ(a)(M)))

∼=RHomP (B,LΛ(a)(M))

∼=RHomA(B,LΛā(M)).

3. The adic completion functor over commutative DG-rings

The aim of this section is to extend the adic completion functor from the cat-

egory of commutative rings to the category of commutative non-positive DG-

rings. We will restrict attention only to finitely generated ideals, although

everything in this section holds also for arbitrary ideals. The reason for the

restriction is that in the next section we will derive this functor, and that con-

struction only works under the finitely generated assumption.

Fix a commutative noetherian ring k. We wish to associate to a commutative

DG-ring A over k and a finitely generated ideal ā ⊆ H0(A) a commutative DG-

ring over k which will be called the ā-adic completion of A. To do this, we

will lift ā to an ideal a ⊆ A0 such that a · H0(A) = ā, and then take the a-

adic completion of A. This can always be done. However, there is no way to

make a canonical choice of such a lift under the assumption that the lift is a

finitely generated ideal (since it is possible that the biggest lift, π−1
A (ā) is not

a finitely generated ideal). Instead of making a choice of a lift, we consider
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all liftings, show that completions with respect to all liftings form a directed

system, and take its colimit. We will then prove that this operation forms a

functor Λ : CDGcont /k → CDGcont /k.

Before performing the construction, we discuss some basic facts about adic

completion.

3.1: Let A be a commutative ring, let a ⊆ A be a finitely generated ideal, let B

be a commutative DG-ring, and let A→ B be a map of DG-rings. For every n,

the tensor product A/an ⊗A B is a commutative DG-ring, and moreover, these

form an inverse system of commutative DG-rings. Hence, the inverse limit

lim←−A/a
n ⊗A B, which is simply Λa(B), is also a commutative DG-ring. If C is

another commutative DG-ring, and B → C is an A-linear map, the fact that

the maps A/an⊗AB → A/an⊗AC are maps of commutative DG-rings implies

that the map

(3.2) Λa(B)→ Λa(C)

is also a map of commutative DG-rings.

3.3: Given a commutative ring A, and given finitely generated ideals a ⊆ b ⊆ A,
note that there is a morphism of functors

(3.4) Λa,b : Λa(−)→ Λb(−)
which is induced by the maps A/an → A/bn. Since for each n, the diagram

A ��

��

A/an



��
��
��
��

A/bn

is commutative, the diagram

(3.5) A ��

��

Λa(A)

Λa,b�����
��
���

�

Λb(A)

is also commutative. If c ⊆ A is another finitely generated ideal, and b ⊆ c,

there is an equality

(3.6) Λa,c = Λb,c ◦ Λa,b.
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3.7: If f : A → B is a map of commutative DG-rings, a ⊆ b ⊆ A0 are finitely

generated ideals, and c = a · B0 ⊆ d = b · B0 ⊆ B0, then the fact that for each

n ∈ N the diagram

A0/an ��

��

A0/bn

��
A0/an ⊗A0 B0 �� A0/bn ⊗A0 B0

is commutative implies that the diagram

Λa(A)
Λa,b ��

Λa(f)

��

Λb(A)

Λb(f)

��
Λc(B)

Λb,d

�� Λd(B)

of commutative DG-rings is commutative.

3.8: For any (A, ā) ∈ CDGcont /k, let Lift(A, ā) be the set of finitely generated

ideals a ⊆ A0 such that a · H0(A) = ā. The inclusion relation makes Lift(A, ā)

into a partially ordered set. Moreover, it is clear that this partially ordered

set is a directed set. If x,y ∈ Lift(A, ā) and y contains x, we write x ≤ y. If

f : (A, ā) → (B, b̄) is a morphism in CDGcont /k and x ∈ Lift(A, ā), we denote

by f(x) the ideal f(x) · B0. Hence

f(x) ∈ Lift(B,H0(f)(ā) ·H0(B)).

3.9: Given (A, ā)∈CDGcont/k, we define Λ(A, ā) as follows: for any x∈Lift(A, ā),
denote by Λx(A) the x-adic completion of A. By (3.1), this is a commutative

DG-ring. Given x ≤ y ∈ Lift(A, ā), by (3.3) we have a DG-ring homomorphism

Λx,y : Λx(A) → Λy(A). Given x ≤ y ≤ z ∈ Lift(A, ā), by (3.6) we have that

Λy,z ◦ Λx,y = Λx,z. It follows that

{Λx(A)}x∈Lift(A,ā)

is a directed system of commutative DG-rings. Let us denote its colimit by

Λ(A, ā) and the canonical morphism Λx(A)→ Λ(A, ā) by αx.
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3.10: For any (A, ā) ∈ CDGcont /k and any x ∈ Lift(A, ā), there is a natural

map τx : A→ Λx(A). If x ≤ y ∈ Lift(A, ā), by (3.5), the diagram

A
τx ��

τy

��

Λx(A)

Λx,y�����
��
��
��

Λy(A)

is commutative. Hence, there is a unique map of DG-rings τā : A → Λ(A, ā)

such that for any x ∈ Lift(A, ā) the diagram

A
τx ��

τā

��

Λx(A)

αx�����
��
��
��

Λ(A, ā)

is commutative. Using the map τā, we give Λ(A, ā) the structure of an element

of CDGcont /k by declaring its ideal of definition to be the finitely generated ideal

(3.11) H0(τā)(ā) ·H0(Λ(A, ā)) ⊆ H0(Λ(A, ā)).

3.12: Given a map f : (A, ā) → (B, b̄) ∈ CDGcont /k, we wish to define a

map Λ(f) : Λ(A, ā) → Λ(B, b̄). In order to do this, we first define for any

x ∈ Lift(A, ā) a map

βf
x : Λx(A)→ Λ(B, b̄)

as follows: denote by c̄ the finitely generated ideal

H0(f)(ā) ·H0(B) ⊆ H0(B).

Then it is clear that f(x) ∈ Lift(B, c̄). Choose some y ∈ Lift(B, b̄) such that

f(x) ≤ y, and let βf
x be the composition

Λx(A)→ Λf(x)(B)→ Λy(B)→ Λ(B, b̄).

Here, the first map is of the form (3.2), the second map is of the form (3.4),

and the third map is αy.

Lemma 3.13: The map βf
x : Λx(A)→ Λ(B, b̄) defined above is independent of

the chosen y ∈ Lift(B, b̄).
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Proof. Let z ∈ Lift(B, b̄) such that f(x) ≤ z. We must show that the compo-

sition of

Λf(x)(B)→ Λy(B)→ Λ(B, b̄)

is equal to the composition of

Λf(x)(B)→ Λz(B)→ Λ(B, b̄).

To see this, choose some w ∈ Lift(B, b̄) such that y ≤ w and z ≤ w. Then, on

the one hand, by (3.6) we have a commutative diagram

Λf(x)(B) ��

��

Λy(B)

��
Λz(B) �� Λw(B)

while on the other hand, by definition of Λ(B, b̄), we have a commutative dia-

gram

Λy(B) ��

��		
			

			
	

Λw(B)

��

Λz(B)

�����
���

���

Λ(B, b̄)

Hence, both compositions are equal to the composition

Λf(x)(B)→ Λw(B)→ Λ(B, b̄)

so in particular they are equal to each other.

Lemma 3.14: Given a map

f : (A, ā)→ (B, b̄) ∈ CDGcont /k

and given x ≤ y ∈ Lift(A, ā), the diagram

Λx(A)

βf
x

��

Λx,y �� Λy(A)

βf
y�����

���
���

Λ(B, b̄)

is commutative.
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Proof. Choose some z ∈ Lift(B, b̄) such that f(x) ≤ z and some w ∈ Lift(B, b̄)

such that f(y) ≤ w and moreover z ≤ w. Then it follows from (3.6) and (3.7)

that there is a commutative diagram

Λx(A) ��

Λx,y

��

Λf(x)(B) ��

��

Λz(B)

��

��










Λ(B, b̄)

Λy(A) �� Λf(y)(B) �� Λw(B)

��������

By Lemma 3.13, the top horizontal composition is equal to βf
x , while the bottom

horizontal composition is equal to βf
y . Hence, commutativity of this diagram

implies the result.

3.15: Given a map f : (A, ā)→ (B, b̄) ∈ CDGcont /k, continuing (3.12), we now

define a map Λ(f) : Λ(A, ā) → Λ(B, b̄) as follows: for any x ∈ Lift(A, ā), we

have a map βf
x : Λx(A)→ Λ(B, b̄). By Lemma 3.14, these maps are compatible

with the transition maps Λx,y. Hence, by the universal property of colimits,

there is a unique map of commutative DG-rings Λ(f) : Λ(A, ā)→ Λ(B, b̄) such

that for each x ∈ Lift(A, ā), the diagram

(3.16) Λx(A)
αx ��

βf
x

��

Λ(A, ā)

Λ(f)
�����

��
��
��
��
��

Λ(B, b̄)

is commutative.

Proposition 3.17: Given a map f : (A, ā)→ (B, b̄) ∈ CDGcont /k, the diagram

A
τā ��

f

��

Λ(A, ā)

Λ(f)

��
B

τb̄
�� Λ(B, b̄)

is commutative.
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Proof. Take some x ∈ Lift(A, ā). The fact that the map from a complex to its

adic completion is natural implies that the diagram

A
τx ��

f

��

Λx(A)

Λx(f)

��
B

τf(x)

�� Λf(x)(B)

is commutative. Take some y ∈ Lift(B, b̄) such that f(x) ≤ y. By definition

of βf
x and of Λ(f), the rightmost vertical map in the above diagram fits into the

commutative diagram

Λx(A)

Λx(f)

��

αx ��

βf
x

�����
����

����
����

����
����

����
�� Λ(A, ā)

Λ(f)

��
Λf(x)(B) �� Λy(B) �� Λ(B, b̄)

The result now follows from combining these two commutative diagrams.

Proposition 3.18: Given a map f : (A, ā) → (B, b̄) ∈ CDGcont /k, denoting

by ̂̄a (respectively ̂̄b) the ideal of definition of Λ(A, ā) (resp. Λ(A, b̄)) defined

in (3.11), the map Λ(f) : Λ(A, ā)→ Λ(B, b̄) satisfies

H0(Λ(f))(̂̄a) ⊆ ̂̄b.
Hence, Λ(f) defines a morphism (Λ(A, ā), ̂̄a)→ (Λ(B, b̄), ̂̄b) in CDGcont /k.

Proof. Since f : (A, ā) → (B, b̄) is a morphism in CDGcont /k, by definition we

have that H0(f)(ā) ⊆ b̄. Applying the functor H0 to the commutative diagram

of Proposition 3.17, we see that the diagram

H0(A)
H0(τā) ��

H0(f)

��

H0(Λ(A, ā))

H0(Λ(f))

��
H0(B)

H0(τb̄)

�� H0(Λ(B, b̄))

is commutative, and this implies the result.
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Proposition 3.19: Let f : (A, ā) → (B, b̄) and g : (B, b̄) → (C, c̄) be two

maps in CDGcont /k. Then one has

Λ(g ◦ f) = Λ(g) ◦ Λ(f).
Proof. Because the domain of these two maps is Λ(A, ā) by the universal prop-

erty of colimits, to show they are equal it is enough to show that for any

x ∈ Lift(A, ā) there is an equality

Λ(g) ◦ Λ(f) ◦ αx = Λ(g ◦ f) ◦ αx.

Take some y ∈ Lift(B, b̄) such that f(x) ≤ y. Then g(f(x)) ≤ g(y). Choose

some z ∈ Lift(C, c̄) such that g(y) ≤ z.

By (3.16), the left-hand side is equal to Λ(g) ◦ βf
x , while the right-hand side

is equal to βg◦f
x . By the definition of βf

x , the map Λ(g) ◦ βf
x is equal to the

composition

Λx(A)→ Λf(x)(B)→ Λy(B)
αy−−→ Λ(B, b̄)

Λ(g)−−−→ Λ(C, c̄).

However, by (3.16), Λ(g) ◦ αy is equal to βg
y, so Λ(g) ◦ βf

x is also equal to the

composition

(3.20) Λx(A)→ Λf(x)(B)→ Λy(B)→ Λg(y)(C)→ Λz(C)→ Λ(C, c̄).

Consider the following diagram:

Λx(A) ��

��





Λg(f(x))(C) �� Λg(y)(C)

Λf(x)(B)

		

�� Λy(B)

		

The left triangle in this diagram is commutative because the (x)-adic completion

is a functor. The right square in this diagram is commutative by (3.7). Thus,

this entire diagram is commutative, which implies that the composition of (3.20)

is equal to the composition of

Λx(A)→ Λg(f(x))(C)→ Λg(y)(C)→ Λz(C)→ Λ(C, c̄).

By (3.6), this is the same as the composition

Λx(A)→ Λg(f(x))(C)→ Λz(C)→ Λ(C, c̄)

which by definition is equal to βg◦f
x . This proves the result.

To summarize the results of this section, we have proved:
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Theorem 3.21: Let k be a commutative noetherian ring. Then the operation

(A, ā) �→ (Λ(A, ā), ̂̄a)
defines a functor

Λ : CDGcont /k → CDGcont /k,

and the collection of maps τā : A→ Λ(A, ā) defines a natural transformation

τ : 1CDGcont/k
→ Λ.

If (A, a) ∈ CDGcont /k is an ordinary commutative k-algebra, then Λ(A, a) is the

ordinary a-adic completion of A, â is its ideal of definition, and τa : A→ Λ(A, a)

is the canonical map from the ring A to its a-adic completion.

4. The non-abelian derived functor of adic completion

In this section we perform the main construction of this paper: a non-abelian

derived adic completion functor. By a non-abelian derived functor we mean

a derived functor in the sense of homotopy theory, defined over a category

which is not abelian, namely, the category CDGcont /k. We shall freely use the

homotopical methods introduced in Section 1.

Proposition 4.1: Let k be a commutative noetherian ring, and let A=k[Xi]i∈I

be a polynomial ring in possibly infinitely many variables over k. Let a ⊆ A be

a finitely generated ideal. Then a is weakly proregular.

Proof. Let a1, . . . , an be a finite sequence of elements in A which generates

the ideal a. Each of these elements is a polynomial over k in finitely many

variables. Hence, there is a finite set of variables J ⊆ I such that for each

1 ≤ i ≤ n, ai ∈ k[Xi]i∈J . The ring B = k[Xi]i∈J , being a polynomial ring

in finitely many variables over the noetherian ring k, is noetherian. Hence,

the ideal (a1, . . . , an) · B ⊆ B is weakly proregular. Since the inclusion map

B → A is flat, we deduce from [1, Example 3.0(B)] that the ideal a is also

weakly proregular.

Lemma 4.2: Let k be a commutative noetherian ring, let (A, ā) ∈ CDGcont /k,

and suppose that A is semi-free over k. Then for any x ∈ Lift(A, ā), given a

finite sequence a of elements of A0 that generates the ideal x, we have that

(1A, A, a) is a weakly proregular resolution of (A, ā).
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Proof. The fact that A is semi-free over k implies that A0 is a polynomial ring

(in possibly infinitely many variables) over k, and that A is K-flat over A0.

By Proposition 4.1, the ideal x is weakly proregular. Hence, the pair (A, a)

is a weakly proregular DG-ring, and hence (1A, A, a) is a weakly proregular

resolution of (A, ā)

Lemma 4.3: Let A be a commutative DG-ring, let a,b be two finite sequences

of elements of A0, and suppose that (A, a) and (A,b) are weakly proregular

DG-rings. Assume that
√
a · H0(A) =

√
b · H0(A).

Then for any M ∈ DGMod(A), the natural map

M → HomA0(Tel(A0; a),M)

in DGMod(A) is a quasi-isomorphism if and only if the natural map

M → HomA0(Tel(A0;b),M)

in DGMod(A) is a quasi-isomorphism.

Proof. We may apply the forgetful functor DGMod(A)→ DGMod(A0), and it

is enough to check this assertion in DGMod(A0). Letting a := a·A0, b := b ·A0,

by [20, Corollary 5.25], the above assertion is equivalent to showing that M

is cohomologically a-adically complete if and only if M is cohomologically b-

adically complete. Since LΛa and LΛb are idempotent ([20, Proposition 7.10]),

this is equivalent to showing that there is some isomorphism

HomA0(Tel(A0; a),M) ∼= HomA0(Tel(A0;b),M)

in D(A0), and this follows from Proposition 2.4 and Corollary 2.15, since

(1A, A, a) is a weakly proregular resolution of (A, a · H0(A)), and (1A, A,b)

is a weakly proregular resolution of (A,b · H0(A)).

Lemma 4.4: Let k be a commutative noetherian ring, let A be a commutative

DG-ring which is semi-free over k, let ā, b̄ ⊆ H0(A) be finitely generated ideals,

and let a ∈ Lift(A, ā) and b ∈ Lift(A, b̄). Assume that there is an inclusion

a ⊆ b and that there is an equality
√
ā =
√
b̄. Then the morphism

Λa(A)
Λa,b−−−→ Λb(A)

is a quasi-isomorphism.
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Proof. Let us choose a finite sequence a of elements of A0 that generate a, and

then extend it to a finite sequence b of elements of A0 that generate b. The

construction of the natural morphisms

HomA0(Tel(A0; a), A)→ Λa(A), HomA0(Tel(A0;b), A)→ Λb(A)

in [20, Definition 5.16] shows that the diagram

HomA0(Tel(A0; a), A) ��

ϕ

��

Λa(A)

Λa,b

��
HomA0(Tel(A0;b), A) �� Λb(A)

is commutative. Here, the map ϕ is induced from the map

Tel(A0; a)→ Tel(A0;b),

and that map is in turn induced from the inclusion a ⊆ b, and the map

Tel(A0; a)→ A0 from [20, Equation (5.6)]. Since by Lemma 4.2, the sequences

a and b are weakly proregular, and since A is K-flat over A0, it follows from [20,

Theorem 5.21] that the two horizontal maps in the above diagram are quasi-

isomorphisms. It is thus enough to show that the map ϕ is a quasi-isomorphism.

Let us denote by c the finite sequence of elements of A0 such that b is obtained

from concatenating c at the end of a. Since A is semi-free over k, c is also

weakly proregular. Setting X = HomA0(Tel(A0; a), A), we thus need to show

that the map X → HomA0(Tel(A0; c), X) is a quasi-isomorphism. This map

fits into the commutative diagram

X ��

��

HomA0(Tel(A0; c), X)

������
����

����
����

HomA0(Tel(A0;b), X)

Since X is cohomologically ā-adically complete, by Lemma 4.3, X is also co-

homologically b̄-adically complete, and the the vertical map in this diagram is

commutative. By adjunction,

HomA0(Tel(A0; c), X) = HomA0(Tel(A0;b), A),

and the latter is cohomologically b̄-adically complete. Hence, all maps in the

above diagram are quasi-isomorphisms, which proves the claim.
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Lemma 4.5: Let k be a commutative noetherian ring, let f : (A, ā)→ (B, b̄) be a

weak equivalence in CDGcont /k, let a∈Lift(A, ā), and let b=f(x)·B0∈Lift(B, b̄).
Let a be a finite sequence of elements of A0 that generates a, and let b = f(a).

Suppose (A, a) and (B,b) are weakly proregular DG-rings. Then the morphism

Λa(A)
Λa(f)−−−−→ Λb(B)

is a quasi-isomorphism.

Proof. By [20, Definition 5.16], there is a commutative diagram in DGMod(A0):

HomA0(Tel(A0; a), A) ��

��

Λa(A)

Λa(f)

��
HomA0(Tel(A0; a), B)

α
�� Λa(B) = Λb(B)

Moreover, since A is K-flat over A0, by [20, Corollary 5.23], the top horizontal

map is a quasi-isomorphism. Since A → B is a quasi-isomorphism, and since

Tel(A0; a) is K-projective over A0, the left vertical map is a quasi-isomorphism.

Similarly, there is a quasi-isomorphism

β : HomB0(Tel(B0;b), B)→ Λb(B)

in DGMod(B0). Letting Restf0 : DGMod(B0)→ DGMod(A0) be the forgetful

functor along the map f0 :A0→B0, the fact that Tel(A0; a)⊗A0 B0=Tel(B0;b)

and the construction of β in [20] implies that Restf0(β) = α, so that α is also

a quasi-isomorphism. Hence, Λa(f) is a quasi-isomorphism.

The next lemma is the key to deriving the functor Λ.

Lemma 4.6: Let k be a commutative noetherian ring, let f : (C1, ā)→ (C2, b̄)

be a weak equivalence in CDGcont /k, and suppose that C1, C2 are semi-free

over k. Then the morphism

Λ(f) : Λ(C1, ā)→ Λ(C2, b̄)

is also a weak equivalence in CDGcont /k,

Proof. Given any x ≤ y ∈ Lift(C1, ā), it follows from Lemma 4.2 and Lemma 4.4

that the map Λx,y : Λx(C1)→ Λy(C1) is a quasi-isomorphism. In other words,

in the directed system

{H(Λx(C1))}x∈Lift(C1,ā)
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all the transition maps are isomorphisms. Hence, for each x ∈ Lift(C1, ā), the

map

(4.7) H(αx) : H(Λx(C1))→ H(Λa(C1))

is an isomorphism. In other words, the map αx is a quasi-isomorphism. Simi-

larly, for any x ≤ y ∈ Lift(C2, b̄), the maps

Λx,y : Λx(C2)→ Λy(C2) and αy : Λy(C2)→ Λ(C2, b̄)

are quasi-isomorphisms.

Choose some x ∈ Lift(C1, ā), and let y ∈ Lift(C2, b̄) be such that f(x) ≤ y.

By definition, the map Λ(f) fits into the commutative diagram

Λx(C1)

Λx(f)

��

αx �� Λ(C1, ā)

Λ(f)

��
Λf(x)(C2)

Λf(x),y

�� Λy(C2) αy

�� Λ(C2, b̄)

We have seen that αx and αy are quasi-isomorphisms. The map Λx(f) is a

quasi-isomorphism by Lemma 4.5, and the map Λf(x),y is a quasi-isomorphism

by Lemma 4.4. Hence, the map Λ(f) is also a quasi-isomorphism.

Theorem 4.8: Let k be a commutative noetherian ring and let

Qk : CDGcont /k → Ho(CDGcont /k)

be the localization functor. There is a functor

LΛ : Ho(CDGcont /k)→ Ho(CDGcont /k),

a natural transformation

τττ : 1Ho(CDGcont /k) → LΛ,

and a natural transformation

η : LΛ ◦Qk → Qk ◦ Λ
which satisfy the following properties:

(1) For any (A, ā) ∈ CDGcont /k and any weakly proregular resolution

P = (g, PA, a)
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of (A, ā), there is an isomorphism

ϕP : Λa(P )→ LΛ(A, ā)

in Ho(CDGcont /k) making the diagram

PA

g ��

τa

��

A

τττA

��
Λa(PA) ϕP

�� LΛ(A, ā)

in Ho(CDGcont /k) commutative.

(2) Given a morphism f : (A, ā)→ (B, b̄) in CDGcont /k, and weakly proreg-

ular resolutions P = (g, PA, a), P
′ = (h, PB,b) of (A, ā) and (B, b̄)

respectively, for any map Pf : PA → PB in CDGk such that Pf (a) ⊆ b,

and such that the diagram

PA

Pf ��

g

��

PB

h

��
A

f
�� B

is commutative, the diagram

(4.9) Λa(PA)
Λ(Pf ) ��

ϕP

��

Λb(PB)

ϕP ′
��

LΛ(A, ā)
LΛ(f)

�� LΛ(B, b̄)

in Ho(CDGcont /k) is also commutative.

Proof. Given (A, ā) ∈ CDGcont /k, define

LΛ(A, ā) := Λ(SFk(A, ā)).

Here SFk is the functor from (1.11). Given a morphism f : (A, ā) → (B, b̄) in

CDGcont /k, let LΛ(f) := Λ(SFk(f)). These definitions give rise to a functor

LΛ : CDGcont /k → Ho(CDGcont /k).



570 L. SHAUL Isr. J. Math.

If f : (A, ā) → (B, b̄) is a weak equivalence, it follows from Lemma 4.6 that

LΛ(f) is also a weak equivalence. Hence, there is an induced functor

Ho(CDGcont /k)→ Ho(CDGcont /k),

which we also denote by LΛ.

Applying the functor Λ to the natural transformation SFk → Qk induces the

natural transformation η : LΛ ◦Qk → Qk ◦ Λ.
To define τττ , note first that since SFk preserves weak equivalences, it can

be lifted to a functor SFk : Ho(CDGcont /k) → Ho(CDGcont /k) and a natural

isomorphism ι : SFk → 1Ho(CDGcont /k). The arrow τττ (A,ā) : A → LΛ(A, ā) is now

the unique dotted map making the diagram

SF(A, ā)
ι(A,ā)

∼= ��

τ

��

(A, ā)

��� � � � � � �

LΛ(A, ā) = Λ(SF(A, ā))

in Ho(CDGcont /k) commutative. Since ι−1 and τ are natural morphisms, we

deduce that τττ : 1Ho(CDGcont /k) → LΛ is also a natural morphism. It remains to

verify that LΛ and τττ satisfy the properties (1) and (2) above:

(1) Given (A, ā) ∈ CDGcont /k, and given a weakly proregular resolution

P = (g, PA, a) of (A, ā), the semi-free resolution functor induces a commutative

diagram in Ho(CDGcont /k):

(PA, ā)
g �� (A, ā)

SFk(PA, ā)

		

SFk(g)

�� SFk(A, ā)

		

in which all maps are isomorphisms, and the vertical maps are surjective. In

particular, since the map

(4.10) SF k(PA)
0 → P 0

A

is surjective, we can choose a finite sequence of elements a′ of SF k(PA)
0 such

that its image under the map (4.10) is equal to a ⊆ P 0
A. As (SFk(PA), a

′) and
(PA, a) are both weakly proregular DG-rings and the map SFk(PA)→ PA is a
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quasi-isomorphism, it follows from Lemma 4.5 that the map

Λa′(SFk(PA))→ Λa(PA)

is a quasi-isomorphism. Let x be the ideal in SF k(PA)
0 generated by a′. Then

x ∈ Lift(SF k(PA), ā). By definition,

Λa′(SFk(PA)) = Λx(SFk(PA)).

It follows from (4.7) that the canonical map

Λx(SFk(PA))→ Λ(SFk(PA), ā) = LΛ(PA, ā)

is an isomorphism. We thus have isomorphisms

Λa(PA)← Λx(SFk(PA))→ LΛ(PA, ā)
LΛ(g)−−−−→ LΛ(A, ā).

So we obtain an isomorphism ϕP : Λa(P )→ LΛ(A, ā) in Ho(CDGcont /k). Since τ

and τττ are natural transformations, it is clear that the diagram

PA

g ��

τa

��

A

τττA

��
Λa(PA) ϕP

�� LΛ(A, ā)

commutes.

(2) Consider a morphism f : (A, ā)→ (B, b̄) in CDGcont /k, and weakly proreg-

ular resolutions P = (g, PA, a), P
′ = (h, PB,b) of (A, ā) and (B, b̄) respectively

as in (2) in the statement of the theorem. Let x be an ideal in SFk(PA)
0 and a′

a sequence of elements of SFk(PA)
0 that generates it, as in the proof of (1). We

know that there is a map SFk(Pf ) making the diagram

(4.11) PA

Pf �� PB

SFk(PA)

		

SFk(Pf )
�� SFk(PB)

		

A-priori, the map SFk(Pf ) is only defined in the homotopy category

Ho(CDGcont /k). However, the construction of this map shows that it is (the

image under the localization map of) an honest map of commutative DG-rings.

In particular, it makes sense to look at the sequence b′ = SFk(Pf )(a
′), and
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the ideal y in SFk(PB)
0 generated by it. Commutativity of (4.11) implies that

h(b′) = b.

Functoriality of Λ now implies that there is a commutative diagram

Λa(PA)

Λ(Pf )

��

Λx(SFk(PA)) ��

Λ(SFk(Pf ))

��

LΛ(PA, ā)
LΛ(g) ��

LΛ(Pf )

��

LΛ(A, ā)

LΛ(f)

��
Λb(PB) Λy(SFk(PB)) �� LΛ(PB , b̄)

LΛ(h) �� LΛ(B, b̄)

in which all horizontal maps are isomorphisms. Since the horizontal com-

positions are by definition ϕP and ϕP ′ , this establishes the commutativity

of (4.9).

Corollary 4.12: Let A be a commutative ring and let a ⊆ A be a weakly

proregular ideal.

(1) There is a commutative diagram

A
τA
a

����
��
��
�� τττ(A,a)

���
��

��
��

��

Λa(A) �� LΛ(A, a)

in Ho(CDG), in which the horizontal map is an isomorphism.

(2) If B is another commutative ring, b ⊆ B is a weakly proregular ideal,

f : A→ B is a ring map, and f(a) ⊆ B = b, then there is a commutative

diagram

Λa(A)
̂f ��

��

Λb(B)

��
LΛ(A, a)

LΛ(f)

�� LΛ(B, b)

in Ho(CDG), in which the vertical maps are isomorphisms.

Proof. This is because (A, a) (respectively (B, b)) is a weakly proregular reso-

lution of itself.
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Definition 4.13: Let k be a noetherian ring. Given a commutative DG-ring A

over k and a finitely generated ideal ā ⊆ H0(A), we say that A is cohomologically

ā-adically complete (or derived ā-adically complete) if the map

τττ (A,ā) : A→ LΛ(A, ā)

in Ho(CDGcont /k) is an isomorphism.

Proposition 4.14: For any (A, ā) in CDGcont /k, the morphism τττLΛ(A,ā) is an

isomorphism.

Proof. Choose some a1, . . . , an ∈ A0 such that (a1, . . . , an) · H0(A) = ā, and

consider A as a DG-ring over k[x1, . . . , xn] by setting xi �→ ai. Factor the

structure map k[x1, . . . , xn] → A as k[x1, . . . , xn] → P → A such that P → A

is a surjective quasi-isomorphism and P a semi-free commutative DG-ring over

k[x1, . . . , xn]. Similarly, factor the structure map

k[x1, . . . , xn]→ P̂ := Λ(x1,...,xn)(P ),

as k[x1, . . . , xn] → Q → P̂ , where Q is a semi-free commutative DG-ring over

k[x1, . . . , xn] and Q → P̂ is a surjective quasi-isomorphism. By Theorem 4.8,

the map τττLΛ(A,ā) is an isomorphism if and only if the map

Q→ Λ(x1,...,xn)(Q)

is a quasi-isomorphism. By Corollary 1.5, there is a map α : P → Q making

the diagram

P

α

����
��
��
��

��
Q �� P̂

in D(k[x1, . . . , xn]) commutative. Let b be the ideal in P 0 generated by the

image of (x1, . . . , xn). Using the map α, we see that Q ∼= Λb(P ) in D(P 0),

and since P is K-flat over P 0, we deduce that Q is cohomologically b-adically

complete. Let c be the ideal in Q0 generated by the image of (x1, . . . , xn),

and noting that c = α(b) · Q0, we deduce by [20, Theorem 6.5] that Q is

cohomologically c-adically complete. Since Q is K-flat over Q0, this implies that

the completion map Q→ Λc(Q) is a quasi-isomorphism, and this completes the

proof.
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Proposition 4.15: Let A be a commutative ring, let a ⊆ A be a finitely gener-

ated ideal, and assume that A is a-adically complete. Then A is cohomologically

a-adically complete.

Proof. Assume a = (a1, . . . , an), and use these elements to give A the structure

of a k[x1, . . . , xn]-algebra. Let

k[x1, . . . , xn]→ C → A

be a factorization of the structure map such that C is a semi-free over

k[x1, . . . , xn] and the map C → A is a quasi-isomorphism. By Theorem 4.8,

it is enough to show that the map C → Λ(x1,...,xn)(C) is a quasi-isomorphism.

Since C is K-flat over k[x1, . . . , xn], this is the case if and only if C is coho-

mologically (x1, . . . , xn)-adically complete in D(k[x1, . . . , xn]) if and only if A

is cohomologically (x1, . . . , xn)-adically complete in D(k[x1, . . . , xn]). The fact

that A is a-adically complete implies that it is (x1, . . . , xn)-adically complete,

and since k[x1, . . . , xn] is a noetherian ring, by [22, Theorem 1.21], A is coho-

mologically (x1, . . . , xn)-adically complete, proving the claim.

Proposition 4.16: Let k be a noetherian ring and let (A, ā) ∈ CDGcont /k.

Assume that as an ideal of the ring H0(A), the ideal ā is weakly proregular.

Then there is a k-algebra isomorphism

H0(LΛ(A, ā)) ∼= Λā(H
0(A)).

Proof. Let ā = (ā1, . . . , ān) be a finite set of elements of H0(A) that generates ā,

and let a = (a1, . . . , an) be some lifts of these elements to A0. Using these sets

of elements, we give A and H0(A) a k[x1, . . . , xn] structure. It follows that the

map A→ H0(A) is k[x1, . . . , xn]-linear. Let

CA → A and CĀ → H0(A)

be k[x1, . . . , xn]-linear surjective quasi-isomorphisms such that CA, CĀ are semi-

free over k[x1, . . . , xn], and such that there is a commutative diagram

(4.17) A �� H0(A)

CA

		

f
�� CĀ
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in CDGk[x1,...,xn]. By Theorem 4.8, there is a commutative diagram

ĈA

̂f ��

��

ĈĀ

��
LΛ(A, ā) �� LΛ(H0(A), ā)

in Ho(CDG) such that the vertical maps are isomorphisms. Since ā ⊆ H0(A) is

weakly proregular, we have that

LΛ(H0(A), ā) ∼= Λā(H
0(A)).

Hence

(4.18) H0(ĈĀ)
∼= Λā(H

0(A)).

We may extract the following commutative diagramwith exact rows from (4.17):

C−1
A

��

��

C0
A

��

��

H0(A)

��

�� 0

C−1
Ā

�� C0
Ā

�� H0(A) �� 0

Considered over the noetherian ring k[x1, . . . , xn], we see that

C−1
A

��

��

C0
A

��

��

0

C−1
Ā

�� C0
Ā

�� 0

are both truncations of projective resolutions of the k[x1, . . . , xn]-module H0(A).

Hence, applying the functor Λ(x1,...,xn) to this diagram and taking cohomology,

at both rows we must obtain the classical 0-th derived functor L0Λ(x1,...,xn)(Ā),

which by (4.18) is isomorphic to Λā(H
0(A)). Thus, we deduce that

H0(ĈA) ∼= Λā(H
0(A)),

so the isomorphism

ĈA → LΛ(A, ā)

implies the required result.

The functor R(−)∗ was defined in (1.6).
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Remark 4.19: Given a commutative ring A and a finitely generated ideal a ⊆ A,
the canonical map A → Λa(A) induces a forgetful functor D(Λa(A)) → D(A).

Similarly, for (A, ā) ∈ Ho(CDGcont ), we have seen that there is a map

τττA : (A, ā)→ LΛ(A, ā).

Using it, we obtain an analogue “forgetful functor”

R(τττA)∗ : D(LΛ(A, ā))→ D(A).

Given a DG-ring A, we finish this section with the next proposition, which

describes the structure of its derived completion as a DG-module over A.

Proposition 4.20: For any (A, ā) ∈ Ho(CDGcont ), there is an isomorphism

R(τττA)∗(LΛ(A, ā)) ∼= LΛā(A)

in D(A).

Proof. Let P = (f, PA, a) be a weakly proregular resolution of (A, ā). Then

R(τττA)∗(LΛ(A, ā)) ∼= P̂A ⊗L
PA

A ∼= LΛP
ā (A)

∼= LΛā(A).

5. The functors RΓ̂ā, LΛ̂ā

Given a commutative ring A, a finitely generated ideal a ⊆ A, and an A-module

M , recall that the modules Γa(M), Λa(M) carry naturally the structure of

Λa(A)-modules. We denote these Λa(A)-modules by Γ̂a(M) and Λ̂a(M). These

are additive functors

Γ̂a(−), Λ̂a(−) : Mod(A)→ Mod(Λa(A)).

They have derived functors

RΓ̂a(−),LΛ̂a(−) : D(A)→ D(Λa(A)).

If F : D(Λa(A))→ D(A) is the forgetful functor, it is clear that

(5.1) F ◦ RΓ̂a(−) ∼= RΓa(−), F ◦ LΛ̂a(−) ∼= LΛa(−).
We now define analogue functors in Ho(CDGcont ). We will make use of the

functors R(−)∗,L(−)∗ and R(−)� which were defined in (1.6). We begin by

imitating Definition 2.3.
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Definition 5.2: Let (A, ā) ∈ CDGcont , and let P = (f,B,b) be a weakly proreg-

ular resolution of (A, ā). Let b be the ideal in B0 generated by b, and let

ϕP :Λb(P )
	−→LΛ(A, ā) be the isomorphism from Theorem 4.8. The operations

Γ̂b(−) := lim−→
n

HomB0(B0/bn,−), Λ̂b(−) := lim←−
n

B0/bn ⊗B0 −

define additive functors DGMod(B)→ DGMod(Λb(B)). Let

RΓ̂b,LΛ̂b : D(B)→ D(Λb(B))

be their derived functors, and set

RΓ̂P
ā (−) := L(ϕP )

∗RΓ̂b(Rf∗(−))
and

LΛ̂P
ā (−) := R(ϕP )

�LΛ̂b(Rf∗(−)).
These are functors D(A)→ D(LΛ(A, ā)).

Lemma 5.3: Let (B,b) be a weakly proregular DG-ring. Then there are iso-

morphisms

RΓ̂b(−) ∼= Λb(B)⊗L
B RΓb(−)

and

LΛ̂b(−) ∼= RHomB(Λb(B),LΛb(−))
of functors

D(B)→ D(Λb(B)).

Proof. Identical to the proof of [27, Theorems 3.2, 3.6], using (2.5) and (2.6).

Proposition 5.4: Let (A, ā) ∈ CDGcont , and let P = (f,B,b) be a weakly

proregular resolution of (A, ā). Then there are isomorphisms

RΓ̂P
ā (−) ∼= L(τττA)

∗(RΓP
ā (−))

and

LΛ̂P
ā (−) ∼= R(τττA)

�(LΛP
ā (−))

of functors D(A) → D(LΛ(A, ā)). In particular, if Q is another weakly proreg-

ular resolution of (A, ā), there are natural isomorphisms

RΓ̂P
ā (−) ∼= RΓ̂Q

ā (−)
and

LΛ̂P
ā (−) ∼= LΛ̂Q

ā (−).
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Proof. The first claim follows from Lemma 5.3 and functoriality of L(−)∗ and

R(−)�. The second claim now follows from Corollary 2.13.

In view of this result, we denote these functors simply by

RΓ̂ā,LΛ̂ā : D(A)→ D(LΛ(A, ā)).

The next result is a version of (5.1) in this context.

Proposition 5.5: For any (A, ā) ∈ CDGcont , there are isomorphisms

R(τττA)
∗RΓ̂ā

∼= RΓā

and

R(τττA)
∗LΛ̂ā

∼= LΛā

of functors D(A)→ D(A).

Proof. Let P = (f,B,b) be a weakly proregular resolution of (A, ā). By Theo-

rem 4.8, we have a commutative diagram

P
f ��

τP

��

A

τττA

��
Λb(P ) ϕP

�� Λ(A, ā)

in Ho(CDG) in which the horizontal maps are isomorphisms. Hence, by functo-

riality of R(−)∗, we have natural isomorphisms

R(τττA)
∗RΓ̂P

ā
∼= R(τP ◦ f−1)∗R(ϕP )∗L(ϕP )

∗RΓ̂b(Rf∗(−)).
Since φP is an isomorphism, we have an isomorphism of functors

R(φP )∗L(φP )∗(−) ∼= 1Λb(P ),

so that

R(τττA)
∗RΓ̂P

ā
∼=R(f−1)∗R(τP )∗RΓ̂b(Rf∗(−))∼=R(f−1)∗RΓb(Rf∗(−))∼=RΓā(−).

The second claim is proven similarly.

Proposition 5.6: Let f : (A, ā) → (B, b̄) be a map in CDGcont such that

H0(f)(ā) ·H0(B) = b̄. Then there is an isomorphism

LΛ̂b̄(Rf
�(−)) ∼= R(τττB ◦ f)�(LΛā(−))

of functors D(A)→ D(LΛ(B, b̄)).
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Proof. Using Proposition 5.4, we may write

LΛ̂b̄Rf
�(−) ∼= R(τττB)

�(LΛb̄(Rf
�(−))).

By Proposition 2.16, we have that

LΛb̄(Rf
�(−)) ∼= Rf �(LΛā(−)).

Hence

LΛ̂b̄Rf
�(−) ∼= R(τττB)

� ◦ Rf �(LΛā(−)) = R(τττB ◦ f)�(LΛā(−)).
Remark 5.7: In less cryptic language, if all these morphisms in the homotopy

category were honest morphisms of DG-rings, the above result says that there

is an isomorphism

LΛ̂b̄RHomA(B,−) ∼= RHomA(B̂,LΛā(−)).
Proposition 5.8: Let (A, ā) ∈ CDGcont , and let f : LΛ(A, ā) → B be a map

in CDG. Then there is an isomorphism

R(f)�(LΛ̂ā(−)) ∼= R(τττA ◦ f)�(LΛā(−))
of functors D(A)→ D(B).

Proof. This follows immediately from Proposition 5.4.

Remark 5.9: Again, in less cryptic language, this result essentially says that

there is a natural isomorphism

RHom
̂A(B,LΛ̂ā(−)) ∼= RHomA(B,LΛā(−)),

and thus allows one to compare certain Ext-modules over A and Â.

The next results are dual to Propositions 5.6, 5.8. We omit the similar proofs.

Proposition 5.10: Let f : (A, ā) → (B, b̄) be a map in CDGcont , such that

H0(f)(ā) ·H0(B) = b̄. Then there is an isomorphism

RΓ̂b̄(Lf
∗(−)) ∼= L(τττB ◦ f)∗(RΓā(−))

of functors D(A)→ D(LΛ(B, b̄)).

Proposition 5.11: Let (A, ā) ∈ CDGcont , and let f : LΛ(A, ā)→ B be a map

in CDG. Then there is an isomorphism

L(f)∗(RΓ̂ā(−)) ∼= L(τττA ◦ f)∗(RΓā(−))
of functors D(A)→ D(B).
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Remark 5.12: In case A and B are commutative rings, and all ideals in ques-

tion are weakly proregular, Propositions 5.6, 5.8, 5.10 and 5.11 were essentially

proved in [27, Corollary 3.11], [27, Corollary 3.12], [27, Corollary 3.13], [27,

Corollary 3.14]. The above results show that with our notion of derived com-

pletion of DG-rings, the weakly proregular hypothesis can be removed from the

results of [27]. See Section 6.1 below for more details.

Given a commutative DG-ring A such that H0(A) is a noetherian ring, we

denote by Df(A) the full triangulated subcategory of D(A) consisting of DG-

modulesM such that Hn(M) is a finitely generated H0(A)-module for all n ∈ Z.

Proposition 5.13: Let A be a commutative DG-ring such that H0(A) is a

noetherian ring, and let ā ⊆ H0(A) be an ideal. Then for any M ∈ Df(A) we

have that

LΛ̂ā(M) ∈ Df(LΛ(A, ā)).

Proof. Since H0(A) is a noetherian ring, the ideal ā is weakly proregular. Hence,

by Proposition 4.16, we have that

H0(LΛ(A, ā)) ∼= Λā(H
0(A)).

In particular, the ring H0(LΛ(A, ā)) is noetherian, so the notation Df(LΛ(A, ā))

makes sense. Since the functor LΛ̂ā(−) has finite cohomological dimension, it

is enough to prove the claim in the case where M ∈ Db
f (A). By induction on

amp(M) and using truncations, we may further assume that amp(M) = 0. In

that case, M is isomorphic to a finitely generated H0(A)-module, in which case

the assertion is clear. Hence the result.

A commutative DG-ring A is called noetherian if H0(A) is a noetherian ring,

and for each i < 0 the H0(A)-module Hi(A) is finitely generated (the termi-

nology in [38] is cohomologically pseudo-noetherian). If moreover H0(A) is a

local noetherian ring and m̄ is its maximal ideal, one says that (A, m̄) is a local

noetehrian DG-ring. Proposition 5.13 now implies:

Corollary 5.14: Let A be a commutative noetherian DG-ring and let

ā ⊆ H0(A) be an ideal. Then LΛ(A, ā) is a commutative noetherian DG-ring.

If (A, m̄) is a local noetherian DG-ring, then (LΛ(A, m̄), ̂̄m) is a local noetherian

DG-ring.
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6. Applications

In the previous sections, a very general theory of completion and torsion was

developed. In this final section we discuss some applications of this theory.

6.1. Derived Hochschild cohomology and complete derived

Hochschild cohomology. Given a commutative ring k and a commutative

k-algebra A, we constructed in Section 1.3 the commutative DG-ring A ⊗L
k
A

and the natural derived multiplication map ΔA : A ⊗L
k
A → A. Suppose now

that a ⊆ A is a finitely generated ideal and that A is a-adically complete, and

let

ae := a⊗k A+A⊗k a ⊆ A⊗k A = H0(A⊗L
k
A).

Applying the derived completion functor LΛ to the map

ΔA : (A⊗L
k
A, ae)→ (A, a),

and using the fact that A is a-adically complete (and hence, by Proposition 4.15,

derived a-adically complete), we obtain the derived complete multiplication

map:

Δ̂A : LΛ(A⊗L
k
A, ae)→ A.

Let us denote LΛ(A ⊗L
k
A, ae) by A⊗̂L

k
A. Thus, it makes sense to denote the

functor

Δ̂�
A : D(A⊗̂L

k
A)→ D(A)

by

RHom
Â⊗L

k
A
(A,−),

and call this functor the derived complete Hochschild cohomology functor (or

derived complete Shukla cohomology).

Theorem 6.1: Let k be a commutative ring, let A be a commutative k-algebra,

let a ⊆ A be a finitely generated ideal, and suppose that A is a-adically complete.

Let M be an a-adically complete A-module. Then there is an isomorphism

RHomA⊗L
k
A(A,M) ∼= RHom

Â⊗L
k
A
(A,M)

in D(A).

Before proving this result, we shall need the next lemma which generalizes

[27, Lemma 4.2]:
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Lemma 6.2: Let A be a commutative DG-ring, let ā ⊆ H0(A) be a finitely

generated ideal, let B be a commutative ring, and let ϕ : LΛ(A, ā) → B be

a map in Ho(CDG). Let b ⊆ B be the finitely generated ideal generated by

the image of ̂̄a in B, let M be a B-module, and suppose that M is b-adically

complete. Then there is an isomorphism

LΛ̂ā(R(τττ ā)∗(Rϕ∗(M))) ∼= Rϕ∗(M)

in D(LΛ(A, ā)), and an isomorphism

LΛā(R(τττ ā)∗(Rϕ∗(M))) ∼= R(τττ ā)∗(Rϕ∗(M))

in D(A).

Proof. By replacing A by a quasi-isomorphic DG-ring if necessary, we may

assume that there is a noetherian ring k, an ideal a ⊆ k, and a flat map

k → A0, such that a · H0(A) = ā, and that moreover A is K-flat over A0. In

particular, a ·A0 is a weakly proregular ideal. It follows that LΛ(A, ā) ∼= Λa(A).

Let N = Rϕ∗(M) ∈ D(LΛ(A, ā)) and let K = R(τττ ā)∗(N) ∈ D(A). These are

both DG-modules that are concentrated in degree 0. Let P → K be a K-flat

resolution over A. Then by definition,

LΛ̂ā(R(τττ ā)∗(Rϕ∗(M))) = Λ̂a(P ).

Since P is K-flat over A, A is K-flat over A0, and A0 is flat over k, we see that,

as also as a complex of k-modules, P is a K-flat resolution of the k-module

M . Then it follows from [22, Theorem 1.21] that, at least as a complex of k-

modules, Λ̂a(P ) is concentrated in degree 0, and there it is isomorphic to M . It

follows that the A-linear natural map P → Λa(P ) is an isomorphism in D(A).

Thus, considered as H0(A)-modules, the modules H0(N) and

H0(LΛ̂ā(R(τττ ā)∗(Rϕ∗(M))))

are isomorphic. Since both of these modules are ā-adically complete, we deduce

that they are also isomorphic over Λā(H
0(A)), and hence also over H0(Λa(A))

(which in general may be different, but surjects to the ring Λā(H
0(A))). In

particular, there is an isomorphism

LΛ̂ā(R(τττ ā)∗(Rϕ∗(M))) ∼= Rϕ∗(M)

in D(LΛ(A, ā)), as claimed. We omit the proof of the second claim, as it is

similar, but easier.
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We now prove Theorem 6.1:

Proof. By definition, we have

RHom
Â⊗L

k
A
(A,M) = R(Δ̂A)

�(R(Δ̂A)∗(M)).

By the first claim of Lemma 6.2, we have an isomorphism

R(Δ̂A)
�(R(Δ̂A)∗(M)) ∼= R(Δ̂A)

�(LΛ̂ae(R(τττ ae)∗(R(Δ̂A)∗(M))))

in D(A). Using Lemma 5.3, we have that

R(Δ̂A)
�(LΛ̂ae(R(τττae)∗(R(Δ̂A)∗(M))))

∼=R(Δ̂A))
�(R(τττae)�(LΛae(R(τττae)∗(R(Δ̂A)∗(M))))).

By the second claim of Lemma 6.2,

R(Δ̂A))
�(R(τττae)�(LΛae(R(τττae)∗(R(Δ̂A)∗(M)))))

∼=R(Δ̂A))
�(R(τττ ae)�(R(τττ ae)∗(R(Δ̂A)∗(M))))

The hom-tensor adjunction

RHom
Â⊗L

k
A
(A,RHomA⊗L

k
A(A⊗̂L

k
A,−)) ∼= RHomA⊗L

k
A(A,−)

implies that

R(Δ̂A))
�(R(τττ ae)�(−)) ∼= R(ΔA)

�(−).
Similarly, as the composition of the forgetful functors

D(A)→ D(A⊗̂L

k
A)→ D(A⊗L

k
A)

is equal to the forgetful functor D(A)→ D(A⊗L
k
A), we see that

R(τττae)∗(R(Δ̂A)∗(−)) ∼= RΔ∗
A(−).

These two facts imply that

R(Δ̂A))
�(R(τττae)�(R(τττae)∗(R(Δ̂A)∗(M))))

∼=R(ΔA)
�(RΔ∗

A(M)),

and the latter is exactly

RHomA⊗L
k
A(A,M),

which proves the claim.

As an application of this result, we now deduce the finiteness of the derived

Hochschild cohomology modules of affine formal schemes:
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Corollary 6.3: Let k be a commutative noetherian ring, let A be a noetherian

k-algebra, and let a ⊆ A be an ideal such that A is a-adically complete and such

that A/a is a finitely generated k-algebra.1 Let M be a finitely generated A-

module. Then the derived Hochschild cohomology A-modules

ExtnA⊗L
k
A(A,M)

are finitely generated for all n ∈ Z.

Proof. Using Theorem 6.1, and because of [38, Theorem 2.13], it is enough to

show that the commutative DG-ring A⊗̂L
k
A is noetherian. As explained in the

proof of [36, Proposition 1.4], it follows from [36, Proposition 1.1] that the map

k → A factors as k → k[x1, . . . , xm][[y1, . . . , yk]] → A, for some m, k ∈ N, such

that the map

k[x1, . . . , xm][[y1, . . . , yk]]→ A

is surjective, and moreover, (y1, . . . , yk) · A = a. Let us set

B := k[x1, . . . , xm][[y1, . . . , yk]].

Of course, B is a noetherian ring, and moreover, it is flat over k. By [4,

Proposition 2.1.10], the map B → A factors as B → Ã → A, where Ã is

a commutative DG-ring, Ã → A is a quasi-isomorphism, Ã0 = B, and for

each i < 0, Ãi is a finitely generated free Ã0-module. In particular, Ã is

K-flat over B, and hence also over k. Hence A ⊗L
k
A ∼= Ã ⊗k Ã. Letting

be = (y1 ⊗k 1, . . . yk ⊗k 1, 1 ⊗k y1, . . . , 1 ⊗k yk), we see that (Ã ⊗k Ã,b
e) is a

weakly proregular DG-ring, and it follows that

A⊗̂L

k
A ∼= Λbe(Ã⊗k Ã).

The latter is easy to compute, as

(Λbe(Ã⊗k Ã))
0 = k[x1, . . . , x2m][[y1, . . . , y2k]],

and for each i < 0, (Λbe(Ã⊗kÃ))
i is a finitely generated free (Λbe(Ã⊗kÃ))

0-mo-

dule. Since (Λbe(Ã⊗k Ã))
0 is noetherian, it follows that A⊗̂L

k
A is a noetherian

DG-ring, proving the claim.

1 This finiteness condition is an analogue of the finite type condition in the theory of formal

schemes. Such a map is called formally of finite type in [36], and of pseudo finite type

in [3].
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6.2. Further applications. Since local cohomology and adic completion are

fundamental operations in commutative algebra, we expect that, similarly, local

cohomology and derived completion will have a deep theory and many applica-

tions in derived commutative algebra. Here, we give some examples of appli-

cations of this paper that we obtained since the first version of this paper was

written.

6.2.1. Endomorphism rings of indecomposable injectives. If A is a commuta-

tive noetherian ring, the Matlis classification ([18]) of injective modules over A

implies that isomorphism classes of indecomposable injective A-modules corre-

spond bijectively with Spec(A). Given p ∈ Spec(A), letting Ip be the injective

hull of A/p, Matlis proved that its endomorphism ring HomA(Ip, Ip) is isomor-

phic to Λp(Ap). In [31], using the results of this paper, we generalized this

result to derived commutative algebra: given a commutative noetherian DG-

ring A, for any p̄ ∈ Spec(H0(A)), we constructed a DG-module Ip̄ which is a

generalization of Ip. Then, in [31, Theorem 7.22], we proved that its derived

endomorphism DG-ring

RHomA(Ip̄, Ip̄)

is isomorphic to the derived completion LΛ(Ap̄, p̄).

6.2.2. Injective dimension of torsion and flat dimension of completion. It is a

basic corollary of the Matlis structure theory of injectives that if A is a com-

mutative noetherian ring, a ⊆ A is an ideal, and I is an injective A-module,

then Γa(I) is also an injective A-module. More generally, if M is a complex of

A-modules with inj dimA(M) <∞, then

inj dimA(RΓa(M)) ≤ inj dimA(M).

In [30, Theorem 3.5], we generalized this fact to commutative noetherian DG-

rings A, and ideals ā ⊆ H0(A). A similar result ([30, Theorem 4.3]) was shown

there about the flat dimension of derived completion. From it, we deducd that if

A is a commutative noetherian DG-ring, with H(A) bounded, then the derived

completion map τττ ā : A → LΛ(A, ā) has flat dimension 0, an analogue of the

classical fact that the adic completion of a commutative noetherian ring is flat

over it.
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6.2.3. Local duality. Grothendieck’s local duality theorem is a fundamental re-

sult in the theory of local cohomology over local rings. In [31, Theorem 7.26],

using the results of this paper, we showed that the local duality theorem gen-

eralizes to commutative noetherian local DG-rings (A, m̄), with respect to the

functor RΓm̄ from Section 2.

6.2.4. Existence of dualizing DG-modules over complete local DG-rings. A basic

technique in commutative algebra employed in the study of local rings (A,m)

is to pass to their completion Λm(A), which is faithfully flat over A, and then

use the Cohen structure theorem for complete local rings, which says that they

are quotients of complete regular local rings. In particular, complete local

rings possess dualizing complexes, and this fact is of great importance in their

study. Given a commutative noetherian DG-ring A, and given p̄ ∈ Spec(H0(A)),

one can localize A at p̄ and obtain a commutative noetherian local DG-ring

(Ap̄, p̄). Its derived completion (LΛ(Ap̄, p̄), ̂̄p) is a complete local DG-ring. In

[31, Proposition 7.21], we proved that complete local DG-rings have dualizing

DG-modules.
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