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ABSTRACT

In this short note, we completely describe a parabolically induced repre-

sentation Ind
˜Sp(2n,F )

P (σ), in particular, its length and multiplicities. Here,

˜Sp(2n, F ) is a p-adic metaplectic group, and σ is a discrete series repre-

sentation of a Levi subgroup of P. A multiplicity one result follows.

1. Introduction

A knowledge of R-groups (in all their variants—classical, Arthur, etc.) is

very important in understanding the representation theory of reductive p-adic

groups, especially their unitary duals. Let G be a reductive p-adic group with

a parabolic subgroup P = MN where M is a Levi subgroup. Assume σ is a

discrete series (complex) representation of M. Then, it is important to under-

stand how the representation IndGP (σ) reduces: whether it is reducible, and if it

is reducible, whether all the irreducible subquotients appear with multiplicity

one. These questions are answered by knowing the structure of the commuting

algebra C(σ), i.e., the intertwining algebra of IndGP (σ). It is already known from

the work of Casselman that the dimension of C(σ) is bounded by the cardinality

of W (σ), the subgroup of the Weyl group of G fixing the representation σ. The

precise structure of C(σ) is given by a certain subgroup of W (σ), called the R-

group of σ. This approach to understanding the structure of IndGP (σ) goes back
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to the work of Knapp and Stein on real groups and principal series represen-

tations. In various situations in the p-adic case, the R-groups were computed

by Keys ([17], [16]), Winarsky ([30]), Herb ([13]), and, especially important for

us, for the classical split groups, by Goldberg ([9], Theorems 4.9, 4.18 and 6.5).

This calculation was generalized to hermitian quaternionic groups by this au-

thor ([10]).

The metaplectic groups over global fields are extremely important in number

theory. Over local fields, besides their obvious importance to the global pic-

ture, they give us further information on the representations of classical groups

through theta correspondence. The p-adic metaplectic groups, in which we are

interested, are not linear algebraic groups. However, over a p-adic field F, they

are l-groups, just as the groups of points in F of the classical p-adic groups.

The p-adic metaplectic groups share a number of common properties with the

(F -points of) reductive group: we can define tori, parabolic subgroups, etc.,

so that parabolic induction, Jacquet modules and so on are defined. We can

define square-integrable and tempered representations, and the algebraic crite-

ria of Casselman for representations to be square-integrable or tempered ([5],

Theorem 4.4.6 and [27], Section 6) are quite similar between metaplectic and

classical groups (cf. [3], Theorem 3.4). We also have the Langlands classification

of irreducible representations which is analogous to the one for the reductive

algebraic groups (cf. [3], Theorem 1.1).

Now, we could develop the theory of R-groups for metaplectic groups from

scratch, i.e., by directly studying the structure of the commuting algebra of

IndGP (σ) through its relation with the Weyl group, or we can use theta cor-

respondence with the representations of the odd orthogonal groups, for which

we know the R-groups (i.e., the structure of IndGP (σ)) by the work of Gold-

berg ([9]). We use the second approach to completely describe the R-groups

for metaplectic groups. This is enabled by recent results of Gan and Savin on

theta correspondence ([6]), which are very precise in handling tempered rep-

resentations. We use their results, coupled with a more thorough analysis of

the isotypic components in Kudla’s filtration ([18], Theorem 2.8). This analysis

is similar to that of Muić ([23], Section 3), and given in the notation of [2],

Section 5. To do that, we also use knowledge about L-packets, now available

for metaplectic groups, to extract some information about Jacquet modules of

the representations in question.
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Our result completely describes the reducibility of IndGP (σ), where G is a

metaplectic group and P any parabolic subgroup, in terms of the representations

induced from the maximal parabolic subgroups. The representation IndGP (σ) is

multiplicity free (for all the unexplained notation we refer to the Preliminaries

section):

Theorem: Let δ1, . . . , δk be (unitarizable) discrete series representations of

GL(mi, F ), i = 1, 2, . . . , k. Let σ be an irreducible discrete series representation

of ˜Sp(2n, F ). Then,

χψδ1 × χψδ2 × · · · × χψδk � σ

is a direct sum of 2m mutually inequivalent, irreducible, tempered representa-

tions. Here, m is the number of mutually inequivalent δi’s such that χψδi � σ

reduces.

In other words, the R-group for the representation above is isomorphic

to (Z/2Z)m.

In this way, we have completed some basic results about representation the-

ory of p-adic metaplectic groups, which we started in [12]. All the results

from [12] and this result about R-groups confirm the similarities between the

classical groups and the metaplectic ones, but the similarities go only so far:

e.g., the standard module conjecture and the generalized injectivity conjecture

which hold for classical groups ([22], [11]) do not hold for metaplectic groups

(cf. Remark after Corollary 9.3. of [6]).

In the Preliminaries section we collect notation and results we need for our

computation in the third section: we introduce the orthogonal and symplectic

groups over a p-adic field F , and then introduce the metaplectic groups. In the

third section we briefly recall theta correspondence and isotypic components.

We recall Kudla’s filtration of a Jacquet module of the Weil representation, and

we give a basic technical result about some isotypic components in this filtra-

tion (Lemma 3.3). Then, the basic result is Proposition 3.4, which completely

describes the R-group, i.e., the reducibility of IndGP (σ) for G metaplectic and

P maximal (and a little more than that). After that, the general result easily

follows and is given in Theorem 3.5.

Acknowledgment. This work is partially supported by Croatian Science

Foundation grant no. 9364.
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2. Preliminaries

Let F be a non-archimedean field of characteristic zero. All the representations

of all the groups in this paper are assumed to be smooth, i.e., each vector in

the representation space is fixed by some open compact subgroup. We now

introduce the Zelevinsky notation for parabolic induction for general linear and

classical p-adic groups (cf. [31]). Let π1, . . . , πk be representations of GL(ni, F ),

i = 1, . . . , k. We fix a Borel subgroup consisting of upper triangular matrices

in a matrix realization of GL(n, F ). The group GL(n1 + n2 + · · ·+ nk, F ) has

a standard parabolic subgroup, say P, whose Levi subgroupM is isomorphic to

GL(n1, F )×GL(n2, F )× · · · ×GL(nk, F ).

Then we denote Ind
GL(n1+n2+···+nk,F )
P (π1⊗π2⊗· · ·⊗πk) (the normalized induc-

tion) by π1 × π2 × · · · × πk. Analogously, if G is a classical group we fix a Borel

subgroup consisting of upper triangular matrices inside the usual matrix realiza-

tion of G (e.g., [27], Section 3). If a Levi subgroup M (of a standard parabolic

subgroup P ) of G is isomorphic to GL(n1, F )×GL(n2, F )×· · ·×GL(nk, F )×G′,
where G′ is a classical group of the same type and smaller rank, and if π1, . . . , πk

are representations of GL(ni, F ), i = 1, . . . , k and σ a representation of G′, we
denote IndGP (π1 ⊗ π2 ⊗ · · · ⊗ πk ⊗ σ) by π1 × π2 × · · · × πk � σ. We denote by ν,

a character of GL(n, F ) obtained by composing the determinant character of

GL(n, F ) with the absolute value on F ∗.
Let ρ be an irreducible unitary cuspidal representation of GL(m,F ) and

k ∈ N. Then, the induced representation ρν
k−1
2 × ρν k−1

2 −1 × · · · × ρν− k−1
2 has

a unique irreducible subrepresentation which we denote by δ(ρν−
k−1
2 , ρν

k−1
2 ).

This representation of GL(mk,F ) is square-integrable (mod center) and any

square integrable (mod center) representation of a general linear group is ob-

tained in this way (cf. [31], Theorem 9.3).

2.1. Symplectic and orthogonal groups. For n ∈ Z≥0, let W2n be a

symplectic vector space over F of dimension 2n. We fix a complete polarization

as follows

W2n =W ′
n ⊕W ′′

n , W ′
n = spanF {e1, . . . en}, W ′′

n = spanF {e′1, . . . e′n},
where ei, e

′
i, i = 1, . . . , n are basis vectors of W2n and the skew-symmetric form

on W2n is described by the relations

〈ei, ej〉 = 0, i, j = 1, 2, . . . , n, 〈ei, e′j〉 = δij .
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The group Sp(W2n) fixes this form. Let Pj denote the maximal parabolic sub-

group of Sp(W2n) stabilizing the isotropic space W ′j
n = spanF {e1, . . . ej}; then

there is a Levi decomposition Pj =MjNj where Mj = GL(W ′j
n ). By adding, in

each step, a hyperbolic plane to the previous symplectic vector space, we obtain

a tower of symplectic spaces and corresponding symplectic groups. We also use

Sp(2n, F ) to denote Sp(W2n).

Now we describe the orthogonal groups we consider. Let V0 be an anisotropic

quadratic space over F of odd dimension; then dimV0 ∈ {1, 3}. We fix such V0.

For the description of the invariants of this quadratic space, including the qua-

dratic character χV0 describing the quadratic form on V0, we refer to Chapter V

of [19]. In each step, as for the symplectic situation, we add a hyperbolic plane

and obtain a symmetric bilinear space, i.e., (since we are in the characteristic

zero) a quadratic space. We choose a basis for this space analogously as for

the symplectic spaces above. Consequently, we get a tower of quadratic spaces

and a tower of corresponding orthogonal groups. Each of these groups has the

same character χV0 attached to it, so this character is, in fact, attached to

the whole tower. In the case in which r hyperbolic planes are added to the

anisotropic space, the corresponding orthogonal group will be denoted O(Vm),

where Vm = V ′
r + V0 + V ′′

r and V ′
r and V ′′

r are maximal isotropic subspaces de-

fined analogously as for the symplectic space. Here m = dimVm = 2r+dim V0.

Again, Pj will be the maximal parabolic subgroup stabilizing spanF {e1, . . . ej}.
We will also use O(m,F ) to denote O(Vm). We need to consider simultaneously

two towers of quadratic spaces—one with the dimension of the anisotropic bot-

tom space V0 equal to 1, and the other with this dimension equal to 3—both

anisotropic bottom spaces should have the same quadratic character attached

to them. These two towers are referred to as “a pair of the orthogonal Witt

towers” in Chapter V of [19].

Now we recall Goldberg’s results on R-groups for odd orthogonal groups.

These results ([9], Theorems 4.9, 4.18 and 6.5) are presented in the setting of

special orthogonal group SO(2n+1,F ), the connected component of O(2n+1, F ).

We note that an analogous version holds for O(2n + 1, F ). This follows easily

from the following fact: since O(2n + 1, F ) ∼= SO(2n + 1, F ) × {±I}, for each

irreducible representation π of O(2n + 1, F ), the representation π| SO(2n+1,F )

is irreducible (also cf. [21], Chapter 3, II. 5). Here, {±I} is the center of

O(2n+ 1, F ).
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Theorem 2.1: Let δ1, . . . , δk be (unitarizable) discrete series representations of

GL(mi, F ), i = 1, 2, . . . , k. Let σ be an irreducible discrete series representation

of SO(2n+ 1, F ) (resp., O(2n+ 1, F )). Then,

δ1 × δ2 × · · · × δk � σ

is a direct sum of 2m mutually inequivalent, irreducible, tempered representa-

tions of SO(2n+1, F ) (resp., O(2n+1, F )). Here m is the number of mutually

inequivalent δi’s such that δi � σ reduces.

In other words, the R-group for the representation above is isomorphic

to (Z/2Z)m.

Remark: The results in [9] are formulated for the split orthogonal groups, but

it is easily checked that they hold in the same form in the non-split case.

The following is an immediate corollary of Theorem 2.1.

Corollary 2.2: (1) Let π be an irreducible tempered representation of

SO(2n+ 1, F ), (resp., O(2n+ 1, F )) satisfying

π ↪→ δ1 × δ2 × · · · × δk � σ,

where δ1, . . . , δk are the discrete series representations of GL(mi, F ),

i = 1, 2, . . . , k and σ an irreducible discrete series representation of

SO(2n+ 1, F ) (resp., O(2n+ 1, F )). Then, the representation

δi � π

is irreducible, for each i = 1, 2, . . . , k.

(2) Let π be an irreducible tempered representation of SO(2n+1, F ), (resp.,

O(2n + 1, F )) and δ a discrete series representation of GL(m,F ) such

that δ� π reduces. Then, it is a sum of two non-equivalent, irreducible

tempered representations.

Proof. Let π be as in the first part of the proof. We have

δ1 × δ2 × · · · × δk � σ = π ⊕ π2 ⊕ π3 ⊕ · · · ⊕ π2m ,
for some other irreducible, tempered representations of SO(2n + 1, F ) (resp.,

O(2n+ 1, F )), as in Theorem 2.1. Then, for each i = 1, 2 . . . , k

δi × δ1 × δ2 × · · · × δk � σ = δi � π ⊕ δi � π2 ⊕ δi � π3 ⊕ · · · ⊕ δi � π2m .
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Again, by Theorem 2.1, the length of δ1 × δ2 × · · · × δk � σ is the same as

the length of δi × δ1 × δ2 × · · · × δk � σ. Thus, the right-hand sides of the two

displayed equations above are of the same length, so δi�π is irreducible (as are

all other representations on the right-hand side of the last displayed equation)

and the first part of the Corollary is proved.

Now we prove the second part. For each irreducible tempered π, there exist

irreducible discrete series representations δ1, . . . , δk of general linear groups, and

a discrete series representation σ of a smaller (special) orthogonal group, such

that

π ↪→ δ1 × δ2 × · · · × δk � σ.

Moreover, let

δ1 × δ2 × · · · × δk � σ = π ⊕ π2 ⊕ π3 ⊕ · · · ⊕ π2m ,
as in the first part of the proof. Then,

δ × δ1 × δ2 × · · · × δk � σ = δ � π ⊕ δ � π2 ⊕ δ � π3 ⊕ · · · ⊕ δ � π2m .

Since δ � π is reducible,

δ × δ1 × δ2 × · · · × δk � σ and δ1 × δ2 × · · · × δk � σ

do not have the same length, i.e., by Theorem 2.1, the length of the former

is 2m+1. Now, if we want to employ the whole power of Arthur’s results ([1]), we

can argue that π, π2, . . . , π2m belong to the same L-packet, so we have the equal-

ity of Langlands–Shahidi L-functions L(s, δ×π) = L(s, δ×πi), i = 2, 3, . . . , 2m.

The meromorphic properties of this function (together with L(s, δ, Sym2)) gov-

ern the reducibility of δ � πi, i = 2, 3, . . . , 2m, so we get that all the represen-

tations δ � πi, i = 2, 3, . . . , 2m, are simultaneously reducible, thus each has to

be of length two. We can skip this argument which is short, but relies on some

very deep results and proceed as follows. As we saw in the Introduction, the

structure of the induced representation in which we are interested is governed by

the intertwining algebra. Goldberg actually proved in [9] that the intertwining

algebra

Hom(δ1 × δ2 × · · · × δk � σ, δ1 × δ2 × · · · × δk � σ)

is generated by the operators {Ri : i ∈ S}. Here Ri is induced from the opera-

tor δi � σ → δi � σ, where S is the set of all mutually non-isomorphic δi such

that δi � σ reduces. But this means that the intertwining algebra

Hom(δ × δ1 × δ2 × · · · × δk � σ, δ × δ1 × δ2 × · · · × δk � σ)
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is generated by the images of {Ri : i ∈ S} under induction and by the image

of the (long) intertwining operator A : δ � σ → δ � σ under induction. For

each irreducible constituent π′ ∈ {π, π2, . . . , π2m} the images of {Ri : i ∈ S} act
on δ�π′ as scalars, so Hom(δ�π′, δ�π′) is generated by the image of A. Since

A has just two eigenspaces, this means that the length of δ � π′ is at most 2.

Since the length of δ × δ1 × δ2 × · · · × δk � σ is 2m+1, the length of δ � π′ is
equal to two for each π′ ∈ {π, π2, . . . , π2m}.

2.2. The metaplectic group. Let W2n be the symplectic space as above.

The metaplectic group ˜Sp(2n, F ) is given as a central extension

(1) 1→ μ2 → ˜Sp(2n, F )→ Sp(2n, F )→ 1

where μ2 = {1,−1} and the cocyle involved is Rao’s cocycle ([24]). For a more

thorough description of the structure theory of the metaplectic group we refer

to [19], [24], [8], [12]. Specifically, for every subgroup G of Sp(2n, F ) we denote

by G̃ its preimage in ˜Sp(2n, F ). In this way, the standard parabolic subgroups

of ˜Sp(2n, F ) are defined. Then, we have P̃j = M̃jN
′
j , where N

′
j is the image in

˜Sp(2n, F ) of the unique monomorphism from Nj (the unipotent radical of Pj)

to ˜Sp(2n, F ). We emphasize that M̃j is not a product of GL factors and a

metaplectic group of smaller rank, but there is an epimorphism (this is the case

of maximal parabolic subgroup, cf. [26])

(2) φ : ˜GL(j, F )× ˜Sp(2n− 2j, F )→ M̃j .

Here, we can view ˜GL(j, F ) as a two-fold cover of GL(j, F ) in its own right.

In this way, an irreducible representation π of M̃j can be considered as a rep-

resentation ρ ⊗ σ of ˜GL(j, F ) × ˜Sp(2n, F ), where ρ and σ are irreducible rep-

resentations, provided they are both trivial or both non-trivial when restricted

to μ2. We are concerned with the case where both of these representations are

genuine, i.e., non-trivial on μ2. Moreover, all the representations of ˜Sp(2n, F )

we are concerned with will be genuine. The epimorphism (2) justifies the use

of the Zelevinsky notation in the metaplectic case.

The pair (Sp(2n, F ),O(Vm)) constitutes a dual pair in Sp(2n, F ·m) ([19], [18]).

Since m is odd, the group Sp(2n, F ) does not split in ˜Sp(2nm,F ), so the theta

correspondence relates the representations of ˜Sp(2n, F ) and of O(Vm). More on

the theta correspondence will be recalled in Section 3 below.
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From now on, we fix an additive, non-trivial character ψ of F related to

the theta correspondence ([18] and [19], Chapter II), and the character χψ

on ˜GL(n, F ) given by

(3) χψ(g, ε) = εγ
(
detg,

1

2
ψ
)−1

.

Here, for a ∈ F ∗ and a non-trivial additive character η of F, γ(a, η) is defined

as the normalized Weil index of the character of the second degree given by

x 	→ ηa(x
2),

where ηa(x) = η(ax) (cf. [19], p. 17). Note that each representation δ of

GL(k, F ) can be considered to be a non-genuine representation of ˜GL(k, F ), and,

when tensored with χψ (cf. (3)), becomes a genuine representation of ˜GL(k, F ).

3. Isotypic components and the main result

Let ωVm,W2n,ψ be the Weil representation of a reductive dual pair

( ˜Sp(2n, F ),O(m,F ))

with respect to a character ψ. Here ˜Sp(2n, F ) and O(m,F ) are groups described

in the second section. We actually consider two orthogonal groups O(m,F )

corresponding to a pair of orthogonal towers as explained in Section 2.1. We

are primarily interested in the representation theory of metaplectic groups, and

theta correspondence is a tool we use for this analysis. So we choose to study

the theta correspondence between metaplectic groups and orthogonal groups in

a pair of towers attached to the trivial quadratic character, i.e., using notation

from Section 2.1, χV0 is trivial. We make this choice because the classification of

the representations of metaplectic groups in [6], which we use, is given through

the theta correspondence with the pair of orthogonal towers attached to the

trivial quadratic character. To distinguish between the orthogonal groups in

the two towers, we denote by O(m,F )+ the orthogonal group of the quadratic

space of dimension m in a tower where the anisotropic space at the bottom is

one-dimensional, and by O(m,F )− the orthogonal group of the quadratic space

of dimension m in a tower where the anisotropic space at the bottom is three-

dimensional; SO(m,F )+ and SO(m,F )− denote their connected components,

respectively.
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Let P̃k denote a maximal standard parabolic subgroup of ˜Sp(2n, F ) defined

above. Then, by R
˜Pk
(ωVm,W2n,ψ) we denote the normalized Jacquet module of

ωVm,W2n,ψ with respect to P̃k; it is an ˜GL(k, F )× ˜Sp(2n− 2k, F )×O(Vm)-module

(cf. (2)). We use Kudla’s filtration (cf. [19], Theorem 8.1.) of R
˜Pk
(ωVm,W2n,ψ)

in the form given in [2], Lemma 5.1.

We need some notation: Assume that Π is a smooth representation of a

product of l-groups G1 × G2. Let ξ be an irreducible smooth representation

of G1; by Θ(ξ,Π) we denote the isotypic component of ξ in Π. More explicitly,

with

W :=
⋂

f :Π→ξ
G1 intertwining

Kerf

we have Θ(ξ,Π) = Π/W. The representation Θ(ξ,Π) has a natural structure of

G2-module and

(4) HomG1(Π, ξ)∞ ∼= Θ(ξ,Π)∨;

here, HomG1(Π, ξ)∞ denotes the smooth part of HomG1(Π, ξ) and ∨ denotes

the contragredient.

Now, we return to the theta correspondence. Let π be an irreducible smooth

representation of ˜Sp(2n, F ).We say that the theta lift on the dimension level m

(in one of the orthogonal towers) is non-zero if Θ(π, ωVm,W2n,ψ) �= 0. We then

call

Θ(π, ωVm,W2n,ψ)

the full theta lift of π on Vm and, to simplify the notation, we denote it by

Θ(π,m). This is, as observed above, a representation of O(m,F ). Note that

in this notation, the dependence on ψ is suppressed; also it is assumed that

we know to which tower this lift refers (i.e., whether it is a representation of

O(m,F )+ or O(m,F )−).
By the Howe duality conjecture (cf. [14], [15]), proved by Waldspurger when

the residual characteristic is different from 2 ([29]), and in the general case

by Gan and Takeda ([7]), the representation Θ(π,m) has a unique irreducible

quotient which we call the small theta lift and denote by θ(π,m). Moreover,

the correspondence

π ↔ θ(π,m)

is a bijection between representations of ˜Sp(2n, F ) and O(Vm) participating in

the theta correspondence (i.e., having non-zero lifts).



Vol. 231, 2019 R-GROUPS FOR METAPLECTIC GROUPS 477

It is known that there is exactly one odd orthogonal tower (in a pair, as above)

such that the theta lift of π to that tower on the dimension level 2n+1 is non-

zero. This follows from the conservation conjecture, originally conjectured by

Kudla and Rallis ([20]), and finally proved (in the general case) by Sun and

Zhu ([25]). In [6] (cf. Introduction there) the following parameterization of the

irreducible representations of ˜Sp(2n, F ) is given:

(5) Irr ˜Sp(2n, F )←→ Irr SO(2n+ 1, F )+ ∪ Irr SO(2n+ 1, F )−.

This bijection is given by the theta correspondence: for a given representa-

tion π of ˜Sp(2n, F ) we obtain a representation θ(π, 2n + 1) �= 0 in one of the

towers, say ε ∈ {+,−} (the lift to the other tower is zero), and then restrict it

to a representation of SO(2n + 1, F )ε. This restriction remains irreducible, as

we noted before. On the other hand, for a given irreducible representation σ of

SO(2n+1, F )ε, exactly one of the two possible extensions of this representation

to O(2n+ 1, F )ε participates in the theta correspondence with the metaplectic

group ˜Sp(2n, F ).We denote this (cf. (5)) slightly modified theta correspondence

by GSψ(·). That is, if π is an irreducible representation of ˜Sp(2n, F ), then

(6) GSψ(π, 2n+ 1) = θ(π, 2n+ 1)|SO(2n+1,F )ε ;

if σ is a representation of SO(2n+ 1, F )ε, then

(7) GSψ(σ, 2n) = θ(σδ, 2n),

where σδ is the unique extension of σ to O(2n+ 1, F )ε whose lift to ˜Sp(2n, F )

is non-zero. Here δ ∈ {1,−1} denotes the value of the extended representation

on −I ∈ O(2n+ 1, F )ε \ SO(2n+ 1, F )ε.

Now we give two results which we use later; although parts of this were known

earlier in some form (e.g., [23], Theorem 6.2), we are taking them in the form

given in [6]. In the formulations we take into account the fact that the Howe

duality conjecture was meanwhile proved (cf. [7]).

Proposition 3.1 (cf. Theorem 8.1.(i) and (ii) of [6]): For an irreducible tem-

pered representation π of ˜Sp(2n, F ), Θ(π, 2n+ 1) (the non-zero full lift on the

appropriate tower) is irreducible and tempered. Moreover, if π is a discrete

series representation, Θ(π, 2n + 1) is a discrete series representation (and, of

course, irreducible). An analogous claim holds for irreducible tempered repre-

sentations of orthogonal groups O(2n+ 1, F )ε.
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Proposition 3.2 (cf. Theorem 8.1 (ii) and Theorem 1.3. (ii) of [6]): Let π be

an irreducible tempered representation of ˜Sp(2n, F ) such that

π ↪→ χψτ1 × χψτ2 × · · · × χψτr � π0,

where χψτ1, . . . , χψτr are irreducible discrete series representations of

˜GL(n1, F ), . . . , ˜GL(nr, F ) and π0 is an irreducible discrete series of ˜Sp(2n, F0).

Then

Θ(π, 2n+ 1) ↪→ τ1 × τ2 × · · · × τr �Θ(π0, 2n0 + 1).

The analogous claim holds if we exchange Θ(π, 2n+1) and Θ(π0, 2n0+1) with

GSψ(π, 2n+1) andGSψ(π0, 2n0+1) (note that by Proposition 3.1, Θ(π0, 2n0 +1)

is an irreducible discrete series representation).

To proceed, we need to calculate certain isotypic components for the subquo-

tients of Kudla’s filtration of R
˜Pk
(ωV2n+1+2k,W2n+2k,ψ) (cf. [18], Theorem 2.8).

This is a representation of

G̃Lk(F )× ˜Sp(2n, F )×O(V2n+1+2k).

Let π be an irreducible representation of ˜Sp(2n, F ), and δ be an irreducible

representation of GL(k, F ). Recall from Section 2.2 that χψδ is a representation

of G̃Lk(F ).We concentrate on the odd dimensional tower for which Θ(π, 2n+1)

is non-zero. We have

R
˜Pk
(ωV2n+1+2k,W2n+2k,ψ) = R0 ⊃ R1 ⊃ · · · ⊃ Rk ⊃ Rk+1 = 0,

where the successive quotients

Ja = Ra/Ra+1

are G̃Lk(F ) × ˜Sp(2n, F )×O(V2n+1+2k)-invariant and described in Lemma 5.1

of [2]. In a manner very similar to what Muić has done in [23] (cf. Lemmas

3.1, 3.2 and 3.3 there) for the symplectic-even orthogonal pairs, we obtain an

analogous result for the metaplectic-odd orthogonal pairs by using Kudla’s fil-

tration as given in Lemma 5.1 of [2]. These results of Muić were obtained by

a very careful analysis of the successive subquotients Ja of Kudla filtration,

primarily using the second Frobenius isomorphism, i.e., the second adjointness

of Bernstein (cf. Chapter 3, Section 3 of [4]). The first part of the following

lemma (dealing with the bottom part of Kudla’s filtration) and, especially, the

third part (dealing with the top part of the filtration), are much easier to prove;
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the second part (dealing with the intermediate parts of the filtration) is more

technical. The proof of all of them boils down to the use of the second adjoint-

ness which addresses the space of certain intertwinings and precisely gives (by

(4)) the isotypic components in question.

Lemma 3.3: • Θ(χψδ ⊗ π, Jk) �= 0 only if Θ(π, 2n+ 1) �= 0 and then

Θ(χψδ ⊗ π, Jk) ∼= δ∨ �Θ(π, 2n+ 1).

• Assume 0 < a < k. Let Pka be the standard parabolic subgroup of

GL(k, F ) isomorphic to GL(k − a, F )×GL(a, F ), and let RPka
(δ∨)Ψ−1

ka

denote the maximal quotient of the Jacquet module RPka
(δ∨) on which

GL(k − a, F ) acts as the character (Ψka)
−1 = (|det| k−a

2 )−1 (so that

RPka
(δ∨)Ψ−1

ka
is GL(a, F )-module). Assume that RPka

(δ∨)Ψ−1
ka

is irre-

ducible if non-zero. Then, Θ(χψδ ⊗ π, Ja) is non-zero only if

RPka
(δ∨)Ψ−1

ka
�= 0 and Θ(π, 2n+ 1− 2a+ 2k) �= 0.

In that case

Θ(χψδ ⊗ π, Ja) ∼= RPka
(δ∨)Ψ−1

ka
�Θ(π, 2n+ 1− 2a+ 2k).

• Θ(χψδ⊗ π, J0) �= 0 if and only if δ ∼= | det |
k
2

k and Θ(π, 2n+1+2k) �= 0

and then

Θ(χψδ ⊗ π, J0) ∼= Θ(π, 2n+ 1 + 2k).

Remark: We will also use the analogous claim involving the filtration of the

Jacquet module RPk
(ωV2n+1+2k,W2n+2k,ψ), where Pk is a maximal parabolic sub-

group of O(2n+ 1 + 2k)ε with Levi subgroup isomorphic to

GL(k, F )×O(2n+ 1, F )ε.

Thus

RPk
(ωV2n+1+2k,W2n+2k,ψ) = L0 ⊃ L1 ⊃ · · · ⊃ Lk ⊃ Lk+1 = 0,

with Ia = La/La+1. So, if δ is an irreducible representation of GL(k, F ) and σ

an irreducible representation of O(2n + 1, F )ε, there is a description of the

isotypic components Θ(δ ⊗ σ, Ia) analogous to the one in Lemma 3.3.

The following proposition is the key proposition in this article, from which

our main result readily follows. Recall that we have defined GSψ in (6) and (7).
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Proposition 3.4: Let δ be an irreducible, square integrable (unitarizable)

representation of GLk(F ) and π be an irreducible tempered representation of
˜Sp(2n, F ). Then, the representation χψδ � π reduces if and only if

δ �GSψ(π, 2n+ 1)

does. If χψδ � π reduces, then it is a sum of two non-equivalent tempered

representations. Moreover, assume that

δ �Θ(π, 2n+ 1) = T1 ⊕ T2,

where T1 and T2 are irreducible and non-equivalent (cf. Corollary 2.2(2)). Then

χψδ � π = Θ(T1, 2n+ 2k)⊕Θ(T2, 2n+ 2k).

Here Θ(π, 2n + 1) denotes the full non-zero lift on the appropriate tower and

Θ(T1, 2n+ 2k) and Θ(T2, 2n+ 2k) are non-zero and irreducible.

Proof. First, assume that δ � GSψ(π, 2n + 1) is irreducible. Recall that an

irreducible representation of O(2n + 1, F )ε is irreducible when restricted to

SO(2n+ 1, F )ε ([21], Chapter 3, II. 5); by Proposition 3.1, δ � Θ(π, 2n+ 1) is

also irreducible. We prove that then χψδ � π is irreducible.

We apply Lemma 3.3 with δ and π as in this Proposition. Since δ is a unitary

representation, the third possibility in the above Lemma cannot happen. Now

we discuss the second possibility. Having in mind what the Jacquet module with

respect to a maximal parabolic subgroup Pka for a discrete series representation

of a general linear group looks like (cf. [31], Section 3), if GL(k − a, F ) acts as
a character, we must have k − a = 1. But then δ = δ(χν−

k−1
2 , χν

k−1
2 ) for some

unitary character χ.Moreover, RPk,k−1
(δ∨) = χ∨ν

k−1
2 ⊗δ(χ∨ν−

k−1
2 , χ∨ν

k−1
2 −1).

But k−1
2 �= − 1

2 , so the second possibility cannot happen.

We conclude that Θ(χψδ⊗ π, Ja) �= 0 only if a = k. This guarantees that the

restriction map

Hom
˜GL(k,F )× ˜Sp(W2n)

(R
˜Pk
(ωV2n+1+2k,W2n+2k,ψ), χψδ ⊗ π)∞

→ Hom
˜GL(k,F )× ˜Sp(W2n)

(Rk, χψδ ⊗ π)∞

is injective. Thus, using (4) and Lemma 3.3, we get

Hom ˜GL(k,F )× ˜Sp(W2n)
(R

˜Pk
(ωV2n+1+2k,W2n+2k,ψ), χψδ⊗ π)∞ ↪→ δ�Θ(π, 2n+1)∨.
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Note that Θ(π, 2n + 1) is an irreducible (tempered) representation of an odd

orthogonal group, thus Θ(π, 2n+ 1)∨ ∼= Θ(π, 2n+ 1) (cf. [21], Chapter 4, II.1).

The Frobenius reciprocity then gives

Hom
˜Sp(W2n+2k)

(ωV2n+1+2k,W2n+2k,ψ, χψδ � π)∞ ↪→ δ �Θ(π, 2n+ 1).

On the other hand, let χψδ � π = T1 ⊕ T2 ⊕ · · · ⊕ Tl, where Ti is irreducible

tempered. Note that Θ(Ti, 2n+2k+1) �= 0 (we examine the lift on the same or-

thogonal tower for which we have Θ(π, 2n+1) �= 0). Indeed, the Ti’s and π share

the same discrete series support on the smaller metaplectic group and the tower

of the non-zero lift is determined by this discrete series (cf. Proposition 3.2).

Thus

0 �=
l⊕
i=1

Hom
˜Sp(W2n+2k)

(ωV2n+1+2k,W2n+2k,ψ, Ti)∞

↪→Hom
˜Sp(W2n+2k)

(ωV2n+1+2k,W2n+2k,ψ, χψδ � π)∞

↪→δ �Θ(π, 2n+ 1);

note that we assumed that δ � Θ(π, 2n+ 1) is irreducible. Thus l = 1 and the

representation χψδ � π is irreducible.

Totally analogously, we prove that if χψδ � π is irreducible, so is

δ �GSψ(π, 2n+ 1).

We just emphasize the following subtlety. Assume that

δ �Θ(π, 2n+ 1) = T1 ⊕ · · · ⊕ Tl.
As above, we get

(8)

l⊕
i=1

HomO(V2n+1+2k)(ωV2n+1+2k,W2n+2k,ψ, Ti)∞

↪→ HomO(V2n+1+2k)(ωV2n+1+2k,W2n+2k,ψ, δ �Θ(π, 2n+ 1))∞

↪→ χψδ � π∨.

We have to see if HomO(V2n+1+2k)(ωV2n+1+2k,W2n+2k,ψ, Ti)∞ �= 0, i.e., is Ti the

extension of Ti|SO(2n+1+2k)ε which participates in the theta correspondence with

˜Sp(2n+ 2k, F )? (We know that Θ(π, 2n + 1) is!) This follows immediately

from (8). Indeed, assume that Ti ⊗ detε0 , where ε0 ∈ {0, 1}, is such that

Θ(Ti ⊗
ε0
det, 2n+ 2k) �= 0.
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Then, we can repeat the same reasoning as in (8), but for Ti ⊗ detε0 and

δ � (Θ(π, 2n+ 1)⊗ detε0), and we get

0 �= HomO(V2n+1+2k)(ωV2n+1+2k,W2n+2k,ψ, Ti ⊗
ε0
det)∞

↪→ χψδ �Θ(Θ(π, 2n+ 1)⊗
ε0
det, 2n).

This means that Θ(Θ(π, 2n + 1) ⊗ detε0 , 2n) �= 0, so ε0 = 0. Thus we indeed

have

HomO(V2n+1+2k)(ωV2n+1+2k,W2n+2k,ψ, Ti)∞ �= 0.

Now assume that δ�GSψ(π, 2n+1) is reducible (so is δ�Θ(π, 2n+1)). This

forces δ∨ ∼= δ. Then

δ �Θ(π, 2n+ 1) = T1 ⊕ T2,
where T1 and T2 are non-equivalent and tempered (cf. Corollary 2.2(2)). By

previous reasoning, χψδ�π is reducible. By the remark just above, T1 and T2 do

participate in the theta correspondence with ˜Sp(2n, F + 2k). We further have

ωV2n+1+2k,W2n+2k,ψ �T1 ⊗Θ(T1, 2n+ 2k),

RPk
(ωV2n+1+2k,W2n+2k,ψ) �δ ⊗Θ(π, 2n+ 1)⊗Θ(T1, 2n+ 2k),

where, in the second line, we have a GLk(F ) × O(2n + 1, F ) × ˜Sp(2n, F )-

intertwining. We have calculated above that (recall that Ia are subquotients in

the filtrations, cf. Remark after Lemma 3.3)

HomGL(k,F )×O(2n+1,F )(RPk
(ωV2n+1+2k,W2n+2k,ψ), δ ⊗Θ(π, 2n+ 1))∞

↪→ HomGL(k,F )×O(2n+1,F )(I
k, δ ⊗Θ(π, 2n+ 1))∞ ∼= χψδ � π∨.

Thus

Θ(T1, 2n+ 2k) ≤ χψδ∨ � π.

The same calculation holds for T2, so that

Θ(T1, 2n+ 2k) + Θ(T2, 2n+ 2k) ≤ χψδ � π.

We will prove that we actually have equality. Recall that Θ(Ti, 2n+2k), i = 1, 2

is irreducible (cf. Proposition 3.1) and, by the Howe duality conjecture,

Θ(T1, 2n+ 2k) � Θ(T2, 2n+ 2k).
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Now we calculate the multiplicity of χψδ ⊗ π in the Jacquet module

R
˜Pk
(χψδ � π). Let

δ = δ(ρν−
t−1
2 , ρν

t−1
2 ),

where ρ ∼= ρ∨ is a cuspidal representation of GL(mρ, F ) with mρt = k. Using

Tadić’s formula (cf. [28]) checked for the metaplectic groups in [12] (cf. Section 3

and Proposition 4.5), we count the multiplicity with which χψδ ⊗ π appears in

∑
δ′,σ1

t∑
i=0

i∑
j=0

χψ(δ(ρν
i− t−1

2 , ρν
t−1
2 )× δ(ρν t+1

2 −j , ρν
t−1
2 ))

× δ′ ⊗ δ(ρν t+1
2 −i, ρν

t−1
2 −j)� σ1.

Here the first sum goes over all δ′ ⊗ σ1 which are in the Jacquet module of π

with respect to any maximal parabolic subgroup of ˜Sp(2n, F ). We easily get

that the multiplicity is two (for i = j = t and δ′⊗σ1 = 1⊗π and i = j = 0 and

δ′ ⊗ σ1 = 1⊗ π) plus the multiplicity of all the pieces of the form

χψδ(ρν
− t−1

2 , ρν
t−1
2 )⊗ σ1

appearing in the appropriate Jacquet module of π, with the additional property

that

π ≤ χψδ(ρν− t−1
2 , ρν

t−1
2 )� σ1.

We now prove that the latter multiplicities are zero, i.e., that the multiplicity

of χψδ ⊗ π in the Jacquet module R
˜Pk
(χψδ � π) equals two.

Assume that

χψδ(ρν
− t−1

2 , ρν
t−1
2 )⊗ σ1 ≤ μ∗(π).

Using transitivity of Jacquet modules and projectivity of cuspidal representa-

tions in the category of smooth representations, we get that there exists an

irreducible representation σ2 of ˜Sp(2n− 2k, F ) such that

π ↪→ χψ(ρν
t−1
2 × ρν t−1

2 −1 × · · · × ρν− t−1
2 )� σ2.

Now, the Casselman temperedness criterion for π (Theorem 3.4 of [3]) forces σ2

to be tempered, too. On the other hand,

Π(t1, t2, . . . , tl−1, tl)

:=δ(ρνtl−1+1, ρν
t−1
2 )× δ(ρνtl−2+1, ρνtl−1)× · · · × δ(ρν− t−1

2 , ρνt1)
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is a subrepresentation of

(9) ρν
t−1
2 × ρν t−1

2 −1 × · · · × ρν− t−1
2

for any choice of

− t− 1

2
≤ t1 < t2 < · · · < tl−1 < tl =

t− 1

2
,

where ti− t−1
2 ∈ Z. Note that if l = t, we get that Π(t1, t2, . . . , tl−1, tl) is exactly

the representation (9), so there are choices of t1, . . . , tl such that

(10) π ↪→ χψΠ(t1, t2, . . . , tl)� σ2.

Let l be the smallest integer such that (10) holds. Assume that l ≥ 2. Then,

the minimality of l guarantees that π can be embedded in the representation

induced by any essentially discrete series attached to any permutation of l in-

tervals in Π(t1, t2, . . . , tl) (indeed, one can examine the kernel of the attached

“permutation” GL-induced intertwining operators). Thus

π ↪→ χψ(δ(ρν
− t−1

2 , ρνt1)× δ(ρνtl−1+1, ρν
t−1
2 )× δ(ρνtl−2+1, ρνtl−1)

...

× δ(ρνt1+1, ρνt2))� σ2.

Since t1 <
t−1
2 , this violates the temperedness criterion for π. This means l = 1,

i.e.,

π ↪→ χψδ(ρν
− t−1

2 , ρν
t−1
2 )� σ2.

But, by Proposition 3.2, then

Θ(π, 2n+ 1) ↪→ δ(ρν−
t−1
2 , ρν

t−1
2 )� T

for some tempered representation T. According to Corollary 2.2(1) this means

that δ(ρν−
t−1
2 , ρν

t−1
2 ) � Θ(π, 2n + 1) is irreducible, and this contradicts our

assumption. Thus, there is no piece of the form δ(ρν−
t−1
2 , ρν

t−1
2 )⊗ σ1 appear-

ing in the appropriate Jacquet module of π, with the additional property that

π ≤ δ(ρν− t−1
2 , ρν

t−1
2 )� σ1. This means that the multiplicity of χψδ ⊗ π in the

appropriate Jacquet module of χψδ�π is two. Therefore, χψδ� π cannot have

other summands except Θ(T1, 2n+ 2k) and Θ(T2, 2n+ 2k).

From this proposition, the theorem about R-groups for metaplectic groups

readily follows.
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Theorem 3.5: Let δ1, . . . , δk be (unitarizable) discrete series representations of

GL(mi, F ), i = 1, 2, . . . , k. Let σ be an irreducible discrete series representation

of ˜Sp(2n, F ). Then

χψδ1 × χψδ2 × · · · × χψδk � σ

is a direct sum of 2m mutually inequivalent, irreducible tempered representa-

tions. Here m is the number of mutually inequivalent δi’s such that χψδi � σ

reduces.

Proof. We denote 2(m1 + · · ·+mk) = 2s. We prove this Theorem by induction

over k. Here we include in the induction the following claim:

Claim: If χψδ1×χψδ2×· · ·×χψδk�σ = T1⊕· · ·⊕Tr, where Ti, i = 1, 2, . . . , r

is an irreducible tempered representation, then

(11)
δ1 × δ2 × · · · × δk �Θ(σ, 2n+ 1)

=Θ(T1, 2n+ 1 + 2s)⊕ · · · ⊕Θ(Tr, 2n+ 1 + 2s).

Here, as before, Θ(σ, 2n+1) denotes the full non-zero lift on the appropriate

tower; note that, by Proposition 3.1, Θ(σ, 2n+1) is an irreducible discrete series,

so we can apply Theorem 2.1 to the left-hand side of (11). As discussed above,

all the lifts Θ(Ti, 2n+1+2s) (appearing on the right-hand side of (11)) on the

same tower are non-zero (and irreducible by Proposition 3.1).

For k = 1 (for both the Theorem and the Claim) we get a special case of

Proposition 3.4. Assume that the Theorem and the Claim are valid for each

k ≤ l − 1. We introduce some notation: let

Πl−1 =δ2 × · · · × δl �Θ(σ, 2n+ 1),

Πl =δ1 × δ2 × · · · × δl �Θ(σ, 2n+ 1)

=δ1 �Πl−1,

Πψ,l−1 =χψδ2 × · · · × χψδl � σ,

Πψ,l =χψδ1 × χψδ2 × · · · × χψδl � σ

=χψδ1 �Πψ,l−1.

Then let

(12) Πψ,l−1 = T1 ⊕ T2 ⊕ · · · ⊕ T2m ,
where the 2m irreducible representations Ti are non-isomorphic tempered rep-

resentations.
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Now we examine

(13) Πψ,l = χψδ1 � T1 ⊕ · · · ⊕ χψδ1 � T2m .

By our induction assumption (of the Claim) applied to (12),

(14)

Πl−1 =Θ(T1, 2n+ 1+ 2m2 + · · ·+ 2ml)

...

⊕Θ(T2m , 2n+ 1 + 2m2 + · · ·+ 2ml),

so that

(15)

Πl =δ1 � Θ(T1, 2n+ 1 + 2m2 + · · ·+ 2ml)

...

⊕ δ1 �Θ(T2m , 2n+ 1 + 2m2 + · · ·+ 2ml).

• Assume that χψδ1 � σ is irreducible. By Proposition 3.4, this means that

δ1 � Θ(σ, 2n + 1) is irreducible. Then, by Theorem 2.1, the length of Πl−1

equals the length of Πl. This also means that the lengths of the right-hand

sides of (14) and (15) are the same, so δ1 �Θ(Ti, 2n+ 1 + 2m2 + · · ·+ 2ml) is

irreducible for each Ti, i = 1, 2, . . . , 2m. According to Proposition 3.4, χψδ1�Ti
is irreducible for each i = 1, 2, . . . , 2m. Thus, by (13), the length of Πψ,l equals

the length of Πψ,l−1, i.e., it is equal to 2m.

• Assume that χψδ1 � σ is reducible. By Proposition 3.4, this means that

δ1�Θ(σ, 2n+1) is reducible. Assume that there exists δi, i ∈ {2, 3, . . . , l} such
that δ1 ∼= δi; by Theorem 2.1, the length of Πl is equal to the length of Πl−1.

Now again using the arguments like those in the previous case, we have that

the length of Πψ,l equals the length of Πψ,l−1, i.e., 2
m.

• Assume that χψδ1 � σ is reducible and δ1 � δi, i ∈ {2, 3, . . . , l}. Then
δ1 �Θ(σ, 2n+ 1) is reducible and, according to Theorem 2.1, the length of Πl

is 2m+1. Thus, by (14), (15) and the proof of Corollary 2.2(2),

δ1 �Θ(Ti, 2n+ 1 + 2m2 + · · ·+ 2ml)

is reducible for each i. By Proposition 3.4, every χψδ1 � Ti is reducible of

length two, so by (12) and (13) the length of Πψ,l is 2
m+1. We have proved the

theorem.
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