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ABSTRACT

In this paper we prove an analogue of the discrete spherical maximal the-

orem of Magyar, Stein and Wainger, an analogue which concerns maximal

functions associated to homogenous algebraic hypersurfaces. Let p be a

homogenous polynomial in n variables with integer coefficients of degree

d > 1. The maximal functions we consider are defined by

A∗f(y) = sup
N≥1

∣∣∣∣
1

r(N)

∑

p(x)=0; x∈[N]n

f(y − x)

∣∣∣∣

for functions f : Zn → C, where [N ] = {−N,−N + 1, . . . , N} and r(N)

represents the number of integral points on the surface defined by p(x) = 0

inside the n-cube [N ]n. It is shown here that the operators A∗ are bounded

on �p in the optimal range p > 1 under certain regularity assumptions on

the polynomial p.

1. Introduction

1.1. Results. In [7] Magyar, Stein and Wainger provided a number theo-

retic analogue to Stein’s well known spherical maximal theorem on Rn. Let

|x|2 = x2
1 + · · ·+ x2

n for x ∈ Zn and for a fixed integer λ > 0 define the opera-

tors

Sλf(y) =
1

r(λ)

∑
|x|2=λ

f(y − x)
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for f : Zn → C. Here r(λ) is simply the number of representations of λ as a

sum of n squares of integers. Of interest is the maximal function given by

S∗f(y) = sup
λ≥1

|Sλf(y)|.

For a function f defined on Zn we use the notation ‖f‖�p to denote the norm( ∑
x∈Zn

|f(x)|p
)1/p

.

Theorem A (Magyar, Stein, and Wainger [7]): Let p > 1 be a fixed real

number. There is a constant C such that

‖S∗f‖�p ≤ C‖f‖�p ,

for all f ∈ �p, i.e., S∗ is bounded on �p, if and only if n ≥ 5 and p > n/(n− 2).

An extension of this result to certain algebraic hypersurfaces of higher degree

is given by Magyar in [5]. Let p be an integral form, i.e., a homogenous poly-

nomial with integral coefficients, in n variables of degree d > 1. If p is positive,

then one can ask a similar question regarding averages over integral points on

the family of surfaces defined by p(x) = λ. Approaching this question requires

a knowledge of the set of integral points, and provided that the quantity

B(p) = codim{z ∈ Cn : ∂z1p(z) = · · · = ∂znp(z) = 0}

(known as the Birch rank) is strictly greater than (d − 1)2d, this information

is provided by Birch in [2]. In particular, one sees that there exists an infinite

arithmetic progression Γp and nonnegative constants C,C′ such that

r(λ) =
∑

p(x)=λ

1

satisfies Cλ(n/d)−1 ≤ r(λ) ≤ C ′λ(n/d)−1 for all λ ∈ Γp. One then defines the

operators

Tλf(y) =
1

r(λ)

∑
p(x)=λ

f(y − x)

for λ ∈ Γp, and the maximal function

T∗f(y) = sup
λ∈Γp

|Tλf(y)|.
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Theorem B (Magyar [5]): If p is a positive form of degree d > 1 with

B(p) > (d− 1)2d, then there is a constant C such that

‖T∗f‖�2 ≤ C‖f‖�2
for all f ∈ �2.

The range p > n/(n−2) can be obtained in this result for the case of positive-

definite quadratic forms in at least five variables. In general the expected sharp

range is p > n/(n− d), but for d > 2 this seems a difficult question.

In this paper we are interested in obtaining similar types of results for a

slightly different collection of discrete maximal operators. Let p again be an

integral form of degree d > 1 in n variables and define the convolution operators

ANf(y) =
1

r(N)

∑
x∈[N ]n; p(x)=0

f(y − x)

and the associated discrete maximal operators

A∗f(y) = sup
N≥1

|ANf(y)|.

Analogously the normalization factor is defined as

r(N) =
∑

x∈[N ]n; p(x)=0

1.

We work under a large rank condition on p which forces r(N) � Nn−d. One can

also guarantee that r(N) � Nn−d by assuming that p(x) = 0 has a nonsingular

solution in every p-adic completion of Q (including Q∞ = R). Forms of degree

d > 1 with such nonsingular solutions and B(p) > (d − 1)2d will be called

regular and we restrict our attention to such forms.

Our main result is the following.

Theorem 1: If p is a regular form of degree d > 1, then A∗ is bounded on �p

if and only if p > 1.

The reader should note that the condition on the nonsingular real solution in

our assumptions rules out positive polynomials, so this result is indeed disjoint

from Theorem B. The method of [5] does, however, extend to give a proof for

the �2 case of Theorem 1. Similarly, the methods of Magyar, Stein and Wainger

apply to give the result for indefinite quadratic forms of rank at least 5 in the

range p > n/(n− 2). Also note that the results of [9] and [8] cover special cases

of our main result in the full range p > 1.
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To see the ‘only if’ requirement in the statement of Theorem 1 we simply

need to show by example that the result fails when p = 1. For this we can

consider precisely the same example that is used to show that the range of p is

optimal in Theorem A, which is an insight attributed to A. Ionescu. Let f0 be

the function which is one at the origin and is otherwise zero. For f0 we have

A∗f0(y) ≈ 1V (y)‖y‖n−d
�∞

where 1V is the characteristic function of the set V = {x ∈ Zn : p(x) = 0} and

‖y‖�∞ = sup
i=1,...,n

|yi|.

For a surface with r(N) � Nn−d, as is the case for regular p, it is easy to see

that A∗f0 is not in �1.

1.2. Overview. A worthwhile exercise for us at this point is to identify the

key steps used in the proof of Theorem A. Several features of our approach are

similar, and this helps highlight some relevant differences between the operators

considered there and the ones treated below. The outline goes as follows.

(i): Approximate the Fourier multipliers of the Sλ with the circle method.

The multipliers are given by

σ̂λ(ξ) =
1

r(λ)

∑
|x|2=λ

e(x · ξ).

One gets a decomposition of the form

σ̂λ = mλ + eλ

where mλ takes the shape as a sum of ‘major arc’ terms,

(1.1)
∞∑
q=1

∑
a∈Uq

e(−λa/q)m
a/q
λ (ξ),

and |eλ| � λ−δ uniformly. The operators Mλ, M
a/q
λ and Eλ are then defined by

the multipliers mλ, m
a/q
λ , and eλ, respectively, giving a decomposition of the

spherical operator Sλ as

Sλ = Mλ + Eλ =

∞∑
q=1

∑
a∈Uq

e(−λa/q)M
a/q
λ + Eλ.

One in turn defines the maximal operators

M∗f = sup
λ

|Mλf |, M
a/q
∗ f = sup

λ
|Ma/q

λ f | and E∗f = sup
λ

|Eλf |.
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(ii): The associated maximal operators M
a/q
∗ satisfy the estimate

(1.2) ‖ sup
λ

|Ma/q
λ f | ‖�p � q−n(1−1/p)+ε‖f‖�p

for each q (uniformly in a). This involves a reduction to the spherical maximal

theorem on Rn. Then an application of the triangle inequality gives

‖M∗‖�p→�p ≤
∞∑
q=1

∑
a∈Uq

‖Ma/q
∗ ‖�p→�p � 1

when p > n/(n− 2).

(iii): From [6] we have the partial maximal function inequality

‖ sup
λ0≤λ<2λ0

|Sλf | ‖�p � ‖f‖�p

for all p > n/(n− 2).

(iv): With the uniform estimates in (i), the operators Eλ satisfy the estimate

‖ sup
λ0≤λ<2λ0

|Eλf | ‖�2 � λ−δ
0 ‖f‖�2.

This is turn implies, by interpolation, that there is some δ > 0 (possibly depen-

dent on p) such that

‖ sup
λ0≤λ<2λ0

|Eλf | ‖�p � λ−δ
0 ‖f‖�p

holds for all p > n/(n − 2). The observation here is that Eλ = Sλ − Mλ so

that one may apply the estimates obtained for S∗ and M∗ in parts (ii) and (iii).

Finally

‖ sup
λ

|Eλf | ‖�p ≤
∞∑
j=0

‖ sup
2j≤λ<2j+1

|Eλf | ‖�p �
∞∑
j=0

2−δj‖f‖�p � ‖f‖�p

when p > n/(n− 2).

Ideally we would like to follow this outline also, but we run into a problem

with the estimate in (1.2). In our situation the analogous M
a/q
∗ are morally

identical, and hence there is no real hope that the estimates can be strengthened

to the point where we can simply sum the individual �p → �p norms over q.

This means, for example, in the case of quadratic forms this outline can never

achieve inequalities for p below n/(n− 2).

On the positive side for us, though, is that the analogue of (1.1) doesn’t

contain the character e(−λa/q). This translates to the fact that we are not

obliged to apply the triangle inequality when obtaining the �p → �p estimate
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for M∗. In turn this opens up the possibility of dealing directly with ‖M∗f‖�p
without partitioning M∗ into its ‘major arc’ constituents. At this point we can

take inspiration from Bourgain, as the difficulties he conquers in [3] are similar

in nature.

The overall argument presented for Theorem 1 is indeed an amalgamation

of the methods used in the works of Bourgain [3], Magyar [5], and Magyar,

Stein and Wainger [7]. The model employed here shares similarities with the

outline above, the main differences being that there are further modifications

to the main terms obtained in step (i) and steps (ii) and (iv) are run more

concurrently. The generality of their works allows us to modify certain aspects in

a relatively straightforward manner (for example, obtaining the relevant partial

maximal function inequality), and in some cases (for example, obtaining initial

approximations for the multipliers) we can borrow results directly. That being

said, carrying this out is not a straightforward application of what is done

previously. Here the new insight boils down to a finer analysis of exponential

sums, as we require a class of sums which is more general than those used in [5],

something which is motivated by [1].

The paper is formatted as follows. In section 2 we formulate several auxil-

iary results needed in the proof of the main result, and the proof subject to

these results is given in section 3. The remainder of the paper is comprised of

sections dedicated to proving the auxiliary results formulated in section 2, as

well as handling a few other necessary items that we shall need. In section 4

we devote ourselves to results concerning exponential sums, and in section 5

we reconsider the initial approximation for the Fourier multipliers of the op-

erators AN . Sections 6 and 7 respectively contain certain results related to �p

estimates (p < 2) estimates and �2 estimates. Finally, section 8 gives a proof of

the partial maximal operators estimate that is needed.

2. Preliminary results

There is a somewhat lengthy list of results presented here which are organized

into subsections: one for exponential sum results, one on Fourier multiplier

approximations, one on a continuous maximal function estimate, and a further

subsection on results related to the approximations. The one thing missing in

this breakdown is the partial maximal function estimate which we present now.
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Lemma 1: For fixed p > 1 we have that

‖ sup
N0≤N≤N2

0

AN‖�p→�p = O(log log(N0))

whenever p is a regular form.

2.1. Exponential sums. The exponential sums we are working with are de-

fined as

F (a, q, a,q) = Q−n
∑
s∈Zn

Q

e(p(s)a/q + s · a/q),

where q = (q1, . . . , qn), a/q = (a1/q1, . . . , an/qn), and Q = lcm(q, q1, . . . , qn)

is the least common multiple. For a given positive integer q the notation Zq

is used for the cyclic group Z/qZ, and Uq denotes the multiplicative group Z∗
q .

We set U1 = Z1 the group consisting of the single element 0. When necessary,

the group Zq (Uq) should be identified as (in) the set {0, 1, . . . , q − 1} ⊂ Z.

An important observation is that in several cases there is sufficient cancella-

tion to give F (a, q, a,q) = 0.

Lemma 2: Let q ≥ 1 be a given integer. If qi 	 | q for some 1 ≤ i ≤ n, then for

any fixed a ∈ Uq and ai ∈ Uqi , i = 1, . . . , n, we have

F (a, q, a,q) = 0.

The exponential sums that appear in [5] present themselves as a special case

of the F (a, q, a,q). This is the case when q = q1 = · · · = qn, and hence Q = q.

In this situation we use a slightly different notation for convenience:

Fq(a, a) = q−n
∑
s∈Zn

q

e(p(s)a/q + s · a/q).

From [2] we inherit the following estimate.

Lemma 3: For q ≥ 1 we have

Fq(a, a) = O(q−c)

for all a ∈ Uq. Here

c = B(p)(d− 1)−121−d.

This estimate is uniform for a ∈ Zn
q .
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The O notation is used in the normal way, and we also use the alternate

notation f � g frequently to replace f = O(g). The implied constants through-

out are allowed to depend on any parameter which is not q or one associated

directly to N (such as our later use of k).

One final thing we wish to note is a simple but useful observation based on

the identity ∑
a∈Zq

g(a/q) =
∑
d|q

∑
a∈Ud

g(a/d),

where the sum in d is overall all divisors of q.

Lemma 4: For q ≥ 1 given we have∑
q1|q

· · ·
∑
qn|q

∑
a1∈Uq1

· · ·
∑

an∈Uqn

F (a, q, a,q)g(a/q) =
∑
a∈Zn

q

Fq(a, a)g(a/q)

for any function g which is defined on the set

{(a1/q, . . . , an/q) : 0 ≤ a1, . . . , an ≤ q − 1}.

2.2. Approximations I. Here we consider some initial approximations for the

associated Fourier multipliers. The multipliers are given by the normalized

discrete Fourier transforms

ω̂N (ξ) =
1

r(N)

∑
x∈[N ]n; p(x)=0

e(x · ξ),

where e(z) = e2πiz and the notation f̂ denotes the Fourier transform for func-

tions on Zn:

f̂(ξ) =
∑
x∈Zn

f(x)e(x · ξ).

The notation [N ] is shorthand for {−N,−N+1, . . . , N}. We ultimately borrow

an initial approximation for the functions ω̂N from [5], although one should

note that in this work ω̂N is viewed as a function on the n-torus

Πn = (R/Z)n,

where the torus Π is identified with the real interval [−1/2, 1/2] (with endpoints

identified) and is equipped with the Lebesgue measure.

The next result is essentially [5, Lemma 1], the proof being identical. In the

statement (and always) δ represents a small positive number, not necessarily the
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same at each occurrence, and ζ is a fixed smooth bump function equal to one

on [−1/10, 1/10]n and supported on [−1/5, 1/5]n. The term d̃σN represents the

Fourier transform of a measure supported on the real surface given by p(x) = 0,

something which is discussed in more detail in the next subsection.

Lemma 5: Let p be a regular form. There exists a constant κ > 0 and a δ > 0

such that

ω̂N(ξ) = κNd−n
∞∑
q=1

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)ζ(q(ξ − a/q))d̃σN (ξ − a/q) +O(N−δ).

The form of the approximation in Lemma 5 requires modifications. Our next

lemma, the first of the changes, follows from applications of Lemma 3 and

Lemma 8 (which is a Fourier decay estimate for d̃σ stated below in section 2.3).

Denote the dyadic interval of integers [2l, 2l+1) by Il for l ≥ 0. For a fixed l we

define

MN,l(ξ) = κNd−n
∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)ζ(10
l(ξ − a/q))d̃σN (ξ − a/q).

We now let M denote a multiplier as opposed to the associated operator in

contrast to the discussion in section 1.2.

Lemma 6: If p is a regular form, then there is a δ > 0 such that

ω̂N(ξ) =
∞∑
l=0

MN,l(ξ) +O(N−δ)

uniformly in ξ.

We next have a maximal function estimate for the MN,l, the particular phras-

ing of which is useful later on. The notation F−1 is used for the inverse Fourier

transform.

Lemma 7: Let j ≥ 1. Then

‖ sup
N=2k; k≥4j−1

|F−1(MN,jf̂)| ‖�2 � 2−δj‖f‖�2

for regular forms p.

2.3. A continuous maximal function estimate. We begin with a dis-

cussion of the terms d̃σN appearing in the previous subsection. For a func-

tion f ∈ L1(Rn) we use the notation f̃ to denote the Fourier transform of f
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over Rn, by which we mean the unique function satisfying

f(x) =

∫
Rn

f̃(ξ)e(−x · ξ)dξ.

Define the measure σN by

dσN (x) = φ(x/N)
dμ(x)

|∇p(x)| ,

where φ is a smooth bump function supported on [−2, 2]n and identically one on

[−1, 1]n, and dμ is the Euclidean surface measure on the surface in Rn defined

by p(x) = 0. Birch [2, Section 6] gives a thorough treatment of related integrals

which, in particular, shows that φ(x/N)|∇p(x)|−1 is an L1(dμ) function when p

is a regular form. Thus σN is a measure supported on the surface patch

VN = {x ∈ Rn : x ∈ [−2N, 2N ]n, p(x) = 0},

which is absolutely continuous with respect to μ. Moreover, under the assump-

tion that p has a nonsingular real solution in V1 it follows that these measures

are positive.

These types of measures are treated in [5, Section 1], where the main analysis

there is based on exponential sum estimates from [2]. From here we gain an

important insight, namely that we have the representation

d̃σN (ξ) =

∫
R

∫
Rn

φ(x/N)e(p(x)t + x · ξ) dx dt.

Basic manipulations give the scaling property

d̃σ1(Nξ) = Nd−nd̃σN (ξ),

which motivates us to define dσ = κ dσ1 where κ is the constant introduced in

Lemma 5.

We have the following decay estimate for d̃σ, which is proven in [5, Section 1].

Lemma 8: Assume that p(x) = 0 has a nonsingular real solution in V1. Then

d̃σ(ξ) = O
( 1

(1 + |ξ|)c
)

in Rn, where c = B(p)(d− 1)−121−d − 1.

An important point to observe at the moment is that c in both Lemma 3 and

Lemma 8 is strictly greater than 2 when dealing with regular forms.
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As in the proof of Theorem A, part of the argument relies on a comparison

with a real variable maximal function analogue. For our purposes we define the

continuous convolution operators by

RNf(y) =

∫
Rn

f̃(ξ)d̃σ(Nξ)e(−y · ξ) dξ,

for suitable functions f defined on Rn, and the associated maximal operators

R∗f(y) = sup
N≥1

|RNf(y)|.

As an application of Lemma 8 we achieve Lp(Rn) → Lp(Rn) estimates for R∗.
Indeed, as we may write

RNf(y) = Nd−n

∫
f(y − x) dσN (x)

up to constants, it is easy to see that we only need to consider the supremum

over the set of dyadic integers. This is something which is of course true for A∗
as well, which is discussed below. A direct application of [4, Theorem A] gives

a continuous maximal function inequality.

Lemma 9: If p is a regular form, then R∗ is bounded on Lp(Rn) for all p > 1.

2.4. Approximations II. Here we look at some further modifications to the

approximations of the ω̂N that are going to be needed. Define the terms

ΩN,q(ξ) =
∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)ζ(q
2(ξ − a/q))d̃σ(N(ξ − a/q)).

The purpose for introducing these terms is somewhat twofold. The first obser-

vation is that these terms are better suited for �p results when p < 2, something

which manifests itself in the next result.

Lemma 10: For q fixed and p > 1 we have

‖ sup
N≥1

|F−1(ΩN,qf̂)| ‖�p � ‖f‖�p .

The implied constant is independent of q.
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The other observation about the ΩN,q is as follows. Set Qj = 2j ! and notice

that

ΩN,Qj(ξ) =
∑

a∈ZQj

∑
a∈Zn

Qj

FQj (a, a)ζ(Q
2
j (ξ − a/Qj))d̃σ(N(ξ − a/Qj))

=
∑
q|Qj

∑
a∈Uq

∑
q1,...,qn|Qj

∑
a∈Uq

F (a, q, a,q)ζ(Q2
j (ξ − a/q))d̃σ(N(ξ − a/q))

=
∑
q|Qj

∑
a∈Uq

∑
q1,...,qn|q

∑
a∈Uq

F (a, q, a,q)ζ(Q2
j (ξ − a/q))d̃σ(N(ξ − a/q))

=
∑
q|Qj

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)ζ(Q
2
j (ξ − a/q))d̃σ(N(ξ − a/q)),

where we have made use of Lemma 2 and the observation of Lemma 4 while

using the notation Uq to denote Uq1 × · · · × Uqn . The last line is equal to

j−1∑
l=0

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)ζ(Q
2
j (ξ − a/q))d̃σ(N(ξ − a/q))

+
∑

q|Qj ; q≥2j

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)ζ(Q
2
j (ξ − a/q))d̃σ(N(ξ − a/q)).

This motivates the decomposition

ΩN,Qj =

j−1∑
l=0

MN,l + E
(1)
N,j + E

(2)
N,j

where

E
(1)
N,j=

j−1∑
l=0

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)(ζ(Q
2
j (ξ−a/q))−ζ(10l(ξ−a/q)))d̃σ(N(ξ−a/q))

and

E
(2)
N,j =

∑
q|Qj ; q≥2j

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)ζ(Q
2
j (ξ − a/q))d̃σ(N(ξ − a/q)).

Lemma 10 can now be viewed as a method of providing an estimate which

simultaneously controls a large collection of the ‘major arc’ terms. This, of

course, relies on our ability to adequately control the E
(i)
N,j, forming our second

observation about the Ω terms. That this is the case for the error terms forms

the content of the next two results.
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Lemma 11: If p a is regular form, then

‖ sup
N=2k; k≥4j−1

|F−1(E
(1)
N,j f̂)| ‖�2 � 2−δj

for all j ≥ 1.

Lemma 12: We have

‖ sup
N=2k; k≥4j−1

|F−1(E
(2)
N,j f̂)| ‖�2 � 2−δj

for regular forms p when j ≥ 1.

The final result presented here is another �2 estimate.

Lemma 13: We have the estimate∥∥∥∥ sup
k≥4j−1

∣∣∣∣ω2k ∗ f − F−1

( j−1∑
l=0

M2k,lf̂

)∣∣∣∣
∥∥∥∥
�2

� 2−δj

when p is a regular form.

3. Proof of Theorem 1

A basic observation is that we only need to consider the supremum over N of

the form 2k, k ≥ 1, as when f ≥ 0 we see that

sup
2k≤N<2k+1

ANf ≤ 1

r(2k)

∑
x∈[2k+1]n; p(x)=0

f(y − x)

=
r(2k+1)

r(2k)
A2Nf

and

r(2k+1)/r(2k) � 1

independent of k. This is a byproduct of the fact that the sets

VN = {x ∈ [N ]n : p(x) = 0}

are nested in the sense that VN ⊂ VN ′ whenever N ≤ N ′. Such inequalities

cannot be expected to hold when considering averages related to a disjoint

collection of surfaces as is done in Theorems A and B.
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To proceed, we let

Qj = 2j !

as above and set

Hj = [4j−1, 4j)

for j ≥ 1. We slightly alter previous notations for simplicity:

Ωk,j(ξ) := Ω2k,Qj
(ξ) =

∑
a∈ZQj

∑
a∈Zn

Qj

FQj (a, a)ζ(Q
2
j (ξ − a/Qj))d̃σk(ξ − a/Qj)

for j ≤ j0, k ∈ Hj0 , where d̃σk(ξ) is used to denote d̃σ(2kξ). Also let Kk be

the convolution kernel for A2k , i.e., Kk = ω2k and A2kf = ω2f f is the operator

appearing in Theorem 1.

When k ∈ Hj0 we can write

Kk ∗ f = F−1(Ωk,1f̂) + F−1((Ωk,2 − Ωk,1)f̂) + · · ·+ (Kk ∗ f − F−1(Ωk,j0 f̂))

which gives

(3.1)

sup
k≥1

|Kk ∗ f | ≤
∞∑
j=1

sup
k≥4j−1

|F−1((Ωk,j − Ωk,j−1)f̂))|

+

∞∑
j0=1

sup
k∈Hj0

|Kk ∗ f − F−1(Ωk,j0 f̂)|,

where it is to be understood that Ωk,0 = 0. Take the �p norm of (3.1) and apply

the triangle inequality. Then, for all p > 1, we need to obtain estimates for

‖ sup
k≥4j−1

|F−1(Ωk,j − Ωk,j−1)f̂)|‖�p

and for

‖ sup
k∈Hj0

|Kk ∗ f − F−1(Ωk,j0 f̂)| ‖�p .

For the former, we see that

(3.2) ‖ sup
k≥4j−1

|F−1(Ωk,j − Ωk,j−1)f̂)|‖�p � ‖f‖�p

for all j > 0 by the triangle inequality and Lemma 10. For the latter we have

that

(3.3) ‖ sup
k∈Hj0

|Kk ∗ f − F−1(Ωk,j0 f̂)| ‖�p � j0‖f‖�p
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for all p > 1. This estimate follows by the triangle inequality, Lemma 10, and

two applications of Lemma 1, as

‖ sup
24

j0−1≤N<24
j0

|ANf | ‖�p

≤‖ sup
24

j0−1≤N<22·4j0−1

|ANf | ‖�p + ‖ sup
22·4j0−1≤N<24

j0

|ANf | ‖�p � j0.

Now (3.2) and (3.3) need to be interpolated against stronger �2 estimates.

Provided the estimates at �2 are of the form 2−δj and 2−δj0 (resp.), it follows

that interpolation between the �2 estimates and the �p0 estimates, for any fixed

p0 > 1, on the left hand sides of (3.2) and (3.3) yield terms that are summable

in j and j0 (resp.) and thus proving Theorem 1.

We consider

(3.4) ‖ sup
k≥4j−1

|Kk ∗ f − F−1(Ωk,j f̂)| ‖�2 .

This can be estimated by∥∥∥∥ sup
k≥4j−1

∣∣∣∣Kk∗f−F−1

( j−1∑
l=0

M2k,lf̂

)∣∣∣∣
∥∥∥∥
�2
+

∥∥∥∥ sup
k≥4j−1

∣∣∣∣F−1

(( j−1∑
l=0

M2k,l − Ωk,j

)
f̂

)∣∣∣∣
∥∥∥∥
�2

=

∥∥∥∥ sup
k≥4j−1

∣∣∣∣Kk ∗ f − F−1

( j−1∑
l=0

M2k,lf̂

)∣∣∣∣
∥∥∥∥
�2

+ ‖ sup
k≥4j−1

|F−1(E
(1)
k,j f̂)| ‖�2 + ‖ sup

k≥4j−1

|F−1(E
(2)
k,j )f̂)| ‖�2 .

Each of these terms is O(2−δj) by Lemmas 11, 12, and 13.

To finish the argument we estimate

‖ sup
k≥4j−1

|F−1((Ωk,j − Ωk,j−1)f̂)| ‖�2

by observing that

Ωk,j − Ωk,j−1 = M2k,j−1 + E
(1)
k,j − E

(1)
k,j−1 + E

(2)
k,j − E

(2)
k,j−1.

The terms arising from the E
(i)
k,j can be treated by applying Lemmas 11 and 12.

The remaining term arising from M2k,j is treated by Lemma 7. Summing these

estimates gives a bound of the form O(2−δj). Finally notice that

‖ sup
k∈Hj0

|Kk ∗ f − F−1(Ωk,j0 f̂)| ‖�p ≤ ‖ sup
k≥4j0−1

|Kk ∗ f − F−1(Ωk,j0 f̂)| ‖�p ,

so the bounds stated above for (3.4) complete the proof.



226 B. COOK Isr. J. Math.

4. Exponential sums

In this section we provide proofs of the results related to exponential sum state-

ments presented in section 2.1. First we consider the observation of Lemma 4,

and then proceed to the proof of Lemma 2. There is also another previously

unstated result treated here that is needed in the proof of Lemma 10.

For Lemma 4 we take a function g as stated and then

∑
a∈Zn

q

Fq(a, a)g(a/q)

=q−n
∑
s∈Zq

e(p(s)a/q)
∑
a∈Zn

q

e(a · s/q)g(a/q)

=q−n
∑
s∈Zn

q

e(p(s)a/q)
∑
q1|q

· · ·
∑
qn|q

×
∑

a1∈Uq1

· · ·
∑

an∈Uqn

e(a1 · s1/q1) · · · e(an · sn/qn)g(aq/q1, . . . , an/qn)

=q−n
∑
s∈Zn

q

e(p(s)a/q)
∑
q1|q

· · ·
∑
qn|q

∑
a∈Uq

e(s · a/q)g(a/q)

=
∑
q1|q

· · ·
∑
qn|q

∑
a∈Uq

q−n
∑
s∈Zn

q

e(p(s)a/q + s · a/q)g(a/q)

=
∑
q1|q

· · ·
∑
qn|q

∑
a∈Uq

F (a, q, a,q)g(a/q),

noting that lcm(q, q1, . . . , qn) is always q here.

Now we continue with the proof of Lemma 2.

Proof of Lemma 2. Fix q, q, a ∈ Uq, and a ∈ Uq. Assume, without loss of

generality, that q1 does not divide q. Then we can write q = pd and q1 = p1d

where the greatest common divisor of p and p1, denoted (p, p1), is 1 and p1 > 1.

Now

∑
s∈Zn

Q

e(p(s)a/q + s · a/q)

=
∑

s2,...,sn∈ZQ

( ∑
s1∈ZQ

e(p(s1, . . . , sn)a/q + s1a1/q1)

)
e(a2s2/q2 + · · ·+ ansn/qn).
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Let Q1 be the least common multiple of q and q1, so that Q1 = pp1d. The inner

sum is a multiple of ∑
s1∈ZQ1

e(p(s1, . . . , sn)a/q + s1a1/q1)

as Q1|Q and the phase is periodic modulo Q1. The sum over s1 ∈ ZQ1 can be

written as a sum of r + qt over r ∈ Zq and t ∈ Zp1 , giving∑
s1∈ZQ1

e(p(s1, . . . , sn)a/q + s1a1/q1)

=
∑
r∈Zq

∑
t∈Zp1

e(p(r + qt, . . . , sn)a/q + (r + q1t)a1/q1)

=
∑
r∈Zq

e(p(r, s2, . . . , sn)a/q)e(ra1/q1)

( ∑
t∈Zp1

e(qta1/q1)

)
.

The result follows as∑
t∈Zp1

e(qta1/q1) =
∑

t∈Zp1

e(pta1/p1) = 0

as (a1p, p1) = 1.

The other result we are interested in is an application of Lemma 3 which

concerns the number of solutions to the equation p(x) = 0 over the cyclic

groups Zq.

Lemma 14: Let q ≥ 1 be an integer and B(p) > (d− 1)2d. Then

q1−n
∑
s∈Zn

q

1p(s)≡0 mod q � 1.

Proof. Define

Wa,q =
∑
s∈Zn

q

e(p(s)a/q)

so that

(4.1)
∑
s∈Zn

q

1p(s)≡0 mod q = q−1
∑
a∈Zq

Wa,q.

For general q we have the estimate

|Wa,q| = O(qn−c+ε)

for some c > 2 whenever a ∈ Uq, which is Lemma 3 when q1 = · · · = qn = 1.
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Consider first q of the form pt for some prime p. For each a ∈ Zq we can write

a = pra′ where a′ ∈ Upt−r and r ∈ {0, 1, . . . , t}, the case r = t corresponding to

a = 0. Then we have

Wa,q =
∑

s∈Zn
pt

e(p(s)a/pt) =
∑

s∈Zn
pt

e(p(s)a′/pt−r) = pnt/pn(t−r)Wa′,pt−r

which implies

|Wa,q| = O(prnpn(t−r)−(c−ε)(t−r)) = O(pnt−(c−ε)(t−r)).

The collection of all such a where r is fixed is naturally equivalent to Upt−r .

Then the contribution from these terms to the sum in (4.1) is∑
a′∈Upt−r

Wa′,pt−r � pt−rpnt−(c−ε)(t−r) = pnt−(c−1−ε)(t−r).

Summing over all r = 0, . . . , t then gives

q−1
∑
a∈Zq

Wa,q = O(qn−1(1 + p(1+ε−c) + p2(1+ε−c) + · · ·+ pt(1+ε−c))),

where it is clear that the pε is not necessary when r = t as this corresponds to

the single element a = 0 ∈ Zq.

With the assumption that c > 2 we have that

p(1+ε−c) + p2(1+ε−c) + · · ·+ pt(1+ε−c)≤p(1+ε−c)(1 + 2(1+ε−c) + 22(1+ε−c) + · · · )
�p1+ε−c.

Then
q−1

∑
a∈Zq

Wa,q = qn−1(1 +O(p1+ε−c))

for q a prime power.

For composite q we write q = pt11 · · · ptmm , where the p1, . . . , pm are distinct,

and use the well known fact that

|{s ∈ Zn
q : p(s) ≡ 0 mod q}| =

m∏
i=1

|{s ∈ Zn
p
ti
i

: p(s) ≡ 0 mod ptii }|

to get the bound

q1−n
∑
s∈Zn

q

1p(s)≡0 mod q =
∏
p|q

(1 +O(p1+ε−c)).

This is O(1) as ∏
p

(1 +O(p1+ε−c))

is absolutely convergent when c > 2.
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5. On the approximation

Our goal in this section is to deduce Lemmas 6 and 7. We handle the former

first, which is an application of both Lemma 5 and Lemma 8.

Proof of Lemma 6. Let l ≥ 0 be a given integer and consider∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)(ζ(q(ξ − a/q)− ζ(10l(ξ − a/q)))d̃σ(N(ξ − a/q))

for some q ∈ Il. For each ξ there is at most one a for which

ζ(q(ξ − a/q)− ζ(10l(ξ − a/q))

is nonzero, and on the support of these terms we have that |ξ − a/q| ≥ 10−l.

From Lemma 8 we have the estimate

|d̃σ(N(ξ − a/q))| � (N/10l)−c

when l is small in terms of N . More precisely, if l < δ log N we have an estimate

of the form

|d̃σ(N(ξ − a/q))| � N−δ.

In turn one has∣∣∣∣ ∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)(ζ(q(ξ − a/q)− ζ(10l(ξ − a/q)))d̃σ(N(ξ − a/q))

∣∣∣∣ � q1−cN−δ

uniformly in ξ by applying the exponential sum bound from Lemma 3. This is

summable in q since c > 2. Hence one has the bound∑
l<δ log N

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)(ζ(q(ξ − a/q)− ζ(10l(ξ − a/q)))d̃σ(N(ξ − a/q))

=O(N−δ).

It remains to consider∑
l≥δ log N

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)(ζ(q(ξ − a/q)− ζ(10l(ξ − a/q)))d̃σ(N(ξ − a/q)).

For this we note that

Fq(a, a)(ζ(q(ξ − a/q)− ζ(10l(ξ − a/q)))d̃σ(N(ξ − a/q)) � q−c

uniformly in a ∈ Zn
q and ξ ∈ Πn when q ∈ Il. Then∑

l≥δ log N

∑
q∈Il

∑
a∈Uq

q−c ≤
∑

q≥2δ log N

q1−c = O(N−δ)

as c > 2 by assumption.
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Proof of Lemma 7. Fix j ≥ 1 and consider

‖ sup
k≥4j−1

|F−1(M2k,j f̂)| ‖�2

for a given function f ∈ �2. This is at most

(5.1)
∑
q∈Ij

∑
a∈Uq

∥∥∥∥ sup
k≥4j−1

∣∣∣∣F−1

( ∑
a∈Zn

q

Fq(a, a)ζ(10
j(·−a/q))d̃σk(·−a/q)f̂

)∣∣∣∣
∥∥∥∥
�2

We use that ζ(10j(ξ − a/q))ζ((10j/2)(ξ − a/q)) = ζ(10j(ξ − a/q)) to write∑
a∈Zn

q

Fq(a, a)ζ(10
j(ξ − a/q))d̃σk(ξ − a/q)

=

( ∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)ζ(10
j(ξ−a/q))

)( ∑
a∈Zn

q

ζ((10j/2)(ξ−a/q))d̃σk(ξ−a/q)

)
.

Because the support of ζ((10j/2)ξ) is contained in the cube

[−2/(5 · 10j), 2/(5 · 10j)]n,

which is in turn contained in [−1/q, 1/q]n for all q ∈ Ij , we can apply [7,

corollary 2.1] with our continuous maximal function inequality (Lemma 9) to

get that (5.1) is bounded by

∑
q∈Ij

∑
a∈Uq

∥∥∥∥F−1

( ∑
a∈Zn

q

Fq(a, a)ζ(10
j(· − a/q))f̂

)∥∥∥∥
�2
,

noting that the result of [7] has an implied constant independent of q. In turn

this is at most

∑
q∈Ij

∑
a∈Uq

(∫
Πn

∣∣∣∣ ∑
a∈Zn

q

Fq(a, a)ζ(10
j(ξ − a/q))f̂(ξ)

∣∣∣∣2 dξ
)1/2

≤
∑
q∈Ij

∑
a∈Uq

sup
a∈Zn

q

|Fq(a, a)| ‖f‖�2 .

The proof is completed by an application of Lemma 3, as we have

∑
q∈Ij

q1−c ≤
∞∑

q=2j

q1−c = O(2−δj)

because of the assumption c > 2.
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6. An �p inequality

This section is devoted to the proof of Lemma 10. The argument is another

reduction to Lemma 9 following the method of [7]. The main ingredient that

we need is a result about �p → �p estimates involving the multipliers

Wq(ξ) =
∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)ζ(q
2(ξ − a/q)).

These estimates are achieved by an interpolation argument involving a result

at �1 and a result at �2. At �1 we have the following lemma.

Lemma 15: We have

‖F−1(f̂Wq)‖�1 = O(‖f‖�1)

uniformly in q.

The �2 estimate is stated next.

Lemma 16: Uniformly in q we have

(6.1) ‖F−1(f̂Wq)‖�2 = O(‖f‖�2).

The reduction of these estimates to the result of [7] is essentially the same as

in the previous section. Write

ΩN,q(ξ) =
∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)ζ(q
2(ξ − a/q))d̃σ(N(ξ − a/q))

as( ∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)ζ(q
2(ξ − a/q))

)( ∑
a∈Zn

q

ζ(q(ξ − a/q))d̃σ(N(ξ − a/q))

)
.

This assumes that q ≥ 2, as then 1/(5q2) ≤ 1/(10q) so that

ζ(q2(ξ − a/q))ζ(q(ξ − a/q)) = ζ(q2(ξ − a/q)).

When q = 1 we are simply dealing with

ΩN,1(ξ) = ζ(ξ)d̃σ(Nξ)

and the result follows from the above-mentioned result of [7] and Lemma 9.

Then the estimate

‖ sup
N≥1

|F−1(ΩN,qf̂)| ‖�p � ‖f‖�p
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is reduced to showing that

‖F−1(f̂Wq)‖�p = O(‖f‖�p),

provided of course that p > 1 so that Lemma 9 applies. The latter estimate

holds by interpolating Lemmas 15 and 16.

The proof of Lemma 10 is concluded once we have established Lemma 15 and

Lemma 16.

Proof of Lemma 15. Take f ∈ L1(Zn), and we can assume that f is supported

on qZn + t for some t ∈ Zn
q (identifying Zq with {0, 1, . . . , q − 1}) by noticing

that ∥∥∥∥F−1

(( ∑
t∈Zn

q

f̂t

)
Wq

)∥∥∥∥
�1

≤
∑
t∈Zn

t

‖F−1(f̂tWq)‖�1

and ∑
t∈Zq

‖ft‖�1 = ‖f‖�1,

where ft denotes the restriction of f to the set qZn + t.

Consider∫
Πn

f̂(ξ)

( ∑
a∈Zq

∑
a∈Zn

q

ζ(ξ − a/q)Fq(a, a)

)
e(−y · ξ)dξ

=
∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)e(−y · a/q)
∫
Πn

f̂(ξ + a/q)ζ(ξ)e(−y · ξ)dξ.

Expand out f̂ by its Fourier series to get

∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)e(−y·a/q)e(t · a/q)
∑
l∈Zn

f(l)

∫
Πn

ζ(ξ)e((l − y) · ξ)dξ

=
∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)e((t − y) · a/q)(f ∗ F−1(ζ))(y),

where we have used our assumption that the support of f is in the set qZn + t.

Now take the �1 norm of this expression and split the resulting sum into residue
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classes modulo q:∑
y∈Zn

∣∣∣∣ ∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)e((t− y) · a/q)(f ∗ F−1(ζ))(y)

∣∣∣∣
=

∑
r∈Zn

q

∑
z∈Zn

∣∣∣∣ ∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)e((t−(qz+r)) · a/q)(f ∗ F−1(ζ))(qz+r)

∣∣∣∣
=

∑
r∈Zn

q

( ∑
z∈Zn

|(f ∗ F−1(ζ))(qz+r)|
)(∣∣∣∣ ∑

a∈Zq

∑
a∈Zn

q

Fq(a, a)e((t−r) · a/q)
∣∣∣∣
)
.

For a fixed r the sum ∑
z∈Zn

|(f ∗ F−1(ζ))(qz + r)|

is at most

(6.2)

∑
z∈Zn

∑
l∈Zn

|f(l)| |F−1(ζ)((qz + r) − l)|

=
∑
l∈Zn

|f(l)|
( ∑

z∈Zn

|F−1(ζ)((qz + r)− l)|
)
.

Notice that the sum ∑
z∈Zn

|F−1(ζ)((qz + r) − l)|

is simply the L1 norm of F−1(ζ) restricted to a residue class of Zn
q , and in

particular is periodic in l with respect to elements of qZn. For each l on the

right hand side of (6.2) we now have the bound

|f(l)| sup
t∈Zn

q

∑
z∈Zn

|F−1(ζ)(qz + t)|.

This is bounded by a constant multiple of |f(l)|/qn due to the assumption that ζ

is smooth. Thus we have∑
z∈Zn

|(f ∗ F−1(ζ))(qz + r)| � ‖f‖�1
qn

uniformly in r.

Now we need to consider

1

qn

∑
r∈Zn

q

∣∣∣∣ ∑
a∈Zq

∑
a∈Zn

q

Fq(a, a)e((t − r) · a/q)
∣∣∣∣.
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Proceed by expanding F by its definition to get

1

qn

∑
r∈Zn

q

∣∣∣∣ 1qn
∑
a∈Zq

∑
a∈Zn

q

∑
s∈Zn

q

e(p(s)a/q + s · a/q)e((t− r) · a/q)
∣∣∣∣.

We can sum now in a and a to arrive at

1

qn

∑
r∈Zn

q

∣∣∣∣qn+1

qn

∑
s∈Zn

q

1p(s)≡0 mod q 1s≡(r−t) mod q

∣∣∣∣
and hence we have the bound

q1−n
∑
s∈Zn

q

1p(s)≡0 mod q

by summing in r. This is O(1) by Lemma 14.

Proof of Lemma 16. By the disjointness of the supports of the terms involving

the function ζ it follows as in the proof of Lemma 7, that we have the bound∑
a∈Uq

sup
a∈Zn

q

|Fq(a, a)| ‖f‖�2

for (6.1), and Lemma 3 then gives the bound q1−c. This is clearly O(1) inde-

pendent of q under the assumption that c > 2.

7. �2 estimates

Here we prove the error term estimates in Lemma 11, Lemma 12 and Lemma 13.

The proofs are given in order. Again we use d̃σk(ξ) to mean d̃σ(2kξ).

Proof of Lemma 11. Recall that

E
(1)

2k,j
(ξ)

=

j−1∑
l=0

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)(ζ(Q
2
j (ξ−a/q))−ζ(10l(ξ−a/q))d̃σk((ξ−a/q)).

With f ∈ �2 we have that

‖ sup
N=2k; k≥4j−1

|F−1(E
(1)
N,j f̂)| ‖�2

is bounded by∑
N=2k; k≥4j−1

‖F−1(E
(1)
N,j f̂)| ‖�2 ≤

∑
N=2k; k≥4j−1

‖(E(1)
N,j‖L∞(Πn)‖f‖�2
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using Plancherel’s Theorem. In turn this is at most

‖f‖�2
∑

N=2k;

k≥4j−1

j−1∑
l=0

∑
q∈Il

∑
a∈Uq

(sup
a∈Zn

q

|Fq(a, a)|)

×‖(ζ(Q2
j(ξ−a/q))−ζ(10l(ξ−a/q)))d̃σk(ξ−a/q)‖L∞(Πn).

On the support of ζ(Q2
j(ξ−a/q))−ζ(10l(ξ−a/q) we have that d̃σk is bounded

above in terms of Q2c
j /2ck by Lemma 8. Notice that trivially Qj ≤ 2j2

j

. Then

the sum in k has summands which are crudely bounded as

j−1∑
l=0

∑
q∈Il

∑
a∈Uq

Q2c
j /2ck ≤ 22j2cj2

j+1

2−ck.

Summing in k ≥ 4j−1 gives a bound of O(2−δj).

Proof of Lemma 12. Write

E
(2)
N,j(ξ) =

∑
q|Qj ; q≥2j

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)ζ(Q
2
j (ξ − a/q))d̃σ(N(ξ − a/q))

=
∑

q|Qj ; q≥2j

∑
a∈Uq

Ta,q(ξ).

Applying [7, §2, Corollary 2.1] again gives that

‖ sup
N=2k; k≥4j−1

|F−1(Ta,q f̂)| ‖�2

is bounded by the L2(Πn) norm of∑
a∈Zn

q

Fq(a, a)ζ(Q
2
j (ξ − a/q))f̂(ξ),

which is at most

( sup
a∈Zn

q

|Fq(a, a)|)‖f‖�2 � q−c‖f‖�2

by Lemma 3. Finally we have∑
q|Qj ; q≥2j

∑
a∈Uq

q−c =
∑

q|Qj ; q≥2j

q1−c = O(2−δj)

when c > 2.
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Proof of Lemma 13. We have that∥∥∥∥ sup
k≥4j−1

∣∣∣∣Kk ∗ f − F−1

( j−1∑
l=0

M2k,lf̂

)∣∣∣∣
∥∥∥∥
�2

is bounded above by∥∥∥∥ sup
k≥4j−1

∣∣∣∣Kk ∗ f − F−1

( ∞∑
l=0

M2k,lf̂

)∣∣∣∣
∥∥∥∥
�2
+

∥∥∥∥ sup
k≥4j−1

∣∣∣∣F−1

( ∞∑
l=j

M2k,lf̂

)∣∣∣∣
∥∥∥∥
�2
.

The first of these terms is bounded by

∑
k≥4j−1

sup
ξ

∣∣∣∣ω̂2k(ξ)−
∞∑
l=0

M2k,l(ξ)

∣∣∣∣‖f‖�2
and the desired bound follows from Lemma 6, as∑

k≥4j−1

2−δk = O(2−δj).

For the remaining term we have∥∥∥∥ sup
k≥4j−1

∣∣∣∣F−1

( ∞∑
l=j

M2k,lf̂

)∣∣∣∣
∥∥∥∥
�2

≤
∞∑
l=j

‖ sup
k≥4j−1

|F−1(M2k,lf̂)| ‖�2

=
∞∑
l=j

O(2−δl) = O(2−δj)

by appealing to the method of Lemma 7. This completes the proof.

8. The partial maximal inequality

The proof of Lemma 1 follows the outline given by Bourgain for proving partial

maximal function estimates. The argument appears in [3, section 7]. This is

also carried out in [10, section 10] with more detail and a further treatment is

given in [8, section 3.4].

Let G = Zn
J for some large integer J and endow G with the normalized

counting measure. Identify G with the set {0, 1, . . . , J − 1}n. Because ωN is a

positive kernel, Lemma 1 follows from the estimate

(8.1) ‖ sup
k0≤k≤2k0

|f ∗Kk| ‖Lp(G) � log(k0)‖f‖Lp(G).
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The reason for the formulation with the compact group G is to apply a result

from [11] which implies that (8.1) holds true if we can show the weaker inequality

‖ sup
k0≤k≤2k0

|f ∗Kk| ‖L1(G) � log(k0)‖f‖Lp(G).

Written in the dual form this becomes∥∥∥∥
2k0∑
k=k0

gk ∗Kk

∥∥∥∥
�u

� log(k0),

where u = p/(p− 1) and gk is any collection of nonnegative functions with∑
k

gk ≤ 1.

Also, as (8.1) weakens as p increases, we can assume that u is an integer.

The argument of Bourgain for dealing with partial maximal functions men-

tioned above is a very general reduction by Fourier analytic methods to an L2

result, and it is only in this result where we need to make modifications of

that argument. Set Lk = Kmk for some m = C1 log k0, C1 to be chosen later.

Lemma 1 follows once we have established our last result, which in turn com-

pletes the proof of Theorem 1.

Lemma 17: Let k0 ≤ k1 < · · · < ku < 2k0. Then we have the estimate

(8.2) ‖[gk2 ∗ Lk2) · · · (gku ∗ Lku)] ∗ (Lk1 − Lk0)]‖L2(G) ≤ k−u
0

for any functions gk2 , . . . , gku ≥ 0 satisfying∑
i

gki ≤ 1.

Proof. Set gki = gi, and Ni = 2mki for each i. For each i we select integers

li = αi log(k0) below for an increasing sequence αi, and also fixD withD = kC2
0 ,

C2 also to be chosen below.

Define

Ωi(ξ) =
∑
l≤li

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)d̃σ(Ni(ξ − a/q))

× ζ(10l(ξ − a/q))ζ(Ni/D(ξ − a/q)).
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Estimate this by removing the ζ term with D, and extending the sum in l to ∞:

(8.3)

ω̂Ni(ξ)−Ωi(ξ)

=ω̂Ni(ξ)−
∞∑
l=1

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)d̃σ(Ni(ξ−a/q))ζ(10l(ξ−a/q))

−
∑
l≤li

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)d̃σ(Ni(ξ − a/q))

× ζ(10l(ξ − a/q))(1 − ζ(Ni/D(ξ − a/q)))

+
∑
l>li

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)d̃σ(Ni(ξ − a/q))ζ(10l(ξ − a/q))|

�N−δ
i +D−c + 2−liδ,

as

ω̂Ni(ξ)−
∞∑
l=1

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)d̃σ(Ni(ξ − a/q))ζ(10l(ξ − a/q)) = O(N−δ
i )

by Lemma 6;∑
l≤li

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)d̃σ(Ni(ξ−a/q))ζ(10l(ξ−a/q))(1−ζ(Ni/D(ξ−a/q)))

≤
∑
l≤li

∑
q∈Il

sup
a∈Un

q

q|Fq(a, a)|O((NiD/Ni)
−c)=O(D−c)

by Lemmas 3 and 8; and∑
l>li

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)d̃σ(Ni(ξ − a/q))ζ(10l(ξ − a/q)) = O(2−δli)

holds uniformly in ξ.

We have

‖F−1(Ωi)‖�1 � 2(n+2)li

by treating the summands independently. In turn we have that

|F−1(Ωiĝi)| � 2(n+2)li

holds uniformly. We also get

‖(gi ∗ Lki)− F−1[Ωiĝi]‖L2(G) � N−δ
i + 2−liδ +D−c

as a consequence of (8.5).
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The left-hand side of (8.2) is estimated in the following manner. Begin by

writing

‖[(g2 ∗ Lk2) · · · (gu ∗ Lku)] ∗ (Lk1 − Lk0)‖L2(G)

≤‖[(g2 ∗ Lk2 − F−1(Ω2ĝ2)) · · · (gu ∗ Lku)] ∗ (Lk1 − Lk0)‖L2(G)

+ ‖F−1(Ω2ĝ2) · · · (gu ∗ Lku)] ∗ (Lk1 − Lk0)‖L2(G).

The first term is at most

‖(g2 ∗ Lk2 − F−1(Ω2ĝ2)‖L2(G).

Now repeat this process for the remaining term leading to an overall bound of

the form

‖(g2 ∗ Lk2)−F−1[Ω2ĝ2]‖L2(G)

+‖F−1[Ω2ĝ2]‖L∞(G)‖(g3∗Lk3)−F−1[Ω3ĝ3‖L2(G)

...

+‖F−1[Ω2ĝ2]‖L∞(G)· · ·‖F−1[Ωu−1ĝu−1]‖L∞(G)‖(gu∗Lku)−F−1[Ωuĝu‖L2(G)

+‖[F−1(ĝ2Ω2)· · ·F−1(ĝuΩu)]∗(Lk1−Lk0)‖L2(G).

In turn this is bounded above by

u∑
i=2

(2n+2)l2+···+li−1(N−δ
i + 2−liδ +D−c)

+ ‖[F−1(ĝ2Ω2) · · ·F−1(ĝqΩq)] ∗ (Lk1 − Lk0)‖L2(G).

Iteratively choosing the αi gives that the first term, the sum, is bounded above

by

(8.4) k−u
0 /10 + kC0 (N

−δ
i +D−c).

Now

‖[F−1(ĝ2Ω2) · · ·F−1(ĝuΩu)] ∗ (Lk1 − Lk0)‖L2(G)

is at most

(8.5) ‖[F−1(ĝ2Ω2) · · ·F−1(ĝuΩu)]‖L2(G) sup
ξ∈Γ

|L̂k1(ξ)− L̂k0(ξ)|.

Here Γ is the sumset of the sets Γi ⊂ Πn which are D/(5Ni)-neighborhoods of

the sets

{a/q : a ∈ Uq; q ≤ 2li}.
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Thus Γ is comparable to a D/N2-neighborhood of the set

{a/q : a ∈ Uq; q ≤ 2u lu}.

This of course follows by considering the support of the Fourier transform of

F−1(ĝ2Ω2) · · ·F−1(ĝuΩu).

Now estimate

L̂k1(ξ)− L̂k0(ξ)

by
∞∑
l=1

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)ζ(10
l(ξ − a/q))d̃σ(N1(ξ − a/q))

−
∞∑
l=1

∑
q∈Il

∑
a∈Uq

∑
a∈Zn

q

Fq(a, a)ζ(10
l(ξ − a/q))d̃σ(N0(ξ − a/q)) +O(N−δ

0 ).

Use that |1− d̃σ(ξ)| � |ξ| to get that

|d̃σ(N1(ξ − a/q))− d̃σ(N0(ξ − a/q))| � N1D/N2

on Γ, and then we have the estimate

|L̂k1(ξ)− L̂k0(ξ)| �
∞∑
q=1

q1−cN1D/N2 +N−δ
0 � N1D/N2 +N−δ

0 .

We have that (8.5) is bounded by

kC0 (D(N1/N2) +N−δ
0 ),

which is at most

(8.6) kC0 (D2−m + 2−δmk0).

Then (8.4) and (8.6) add to at most

k−u
0 /10 + kC0 (N

−δ
i +D−c) + kC0 (D2−m + 2−δmk0).

Choose C2 so that kC0 D
−c is at most k−u

0 /10, and then we choose C1 so that

kC0 (D2−m + 2−δmk0) ≤ k−u
0 /10

and the lemma is proven.
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