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ABSTRACT

Let Z be a quadratic harmonic cone in R3. We consider the family H(Z)

of all harmonic functions vanishing on Z. Is H(Z) finite or infinite di-

mensional? Some aspects of this question go back to as early as the 19th

century. To the best of our knowledge, no nondegenerate quadratic har-

monic cone exists for which the answer to this question is known. In this

paper we study the right circular harmonic cone and give evidence that the

family of harmonic functions vanishing on it is, maybe surprisingly, finite

dimensional. We introduce an arithmetic method to handle this question

which extends ideas of Holt and Ille and is reminiscent of Hensel’s Lemma.

1. Introduction

1.1. Background. Consider the family H(Z) of harmonic functions in the

unit ball B ⊂ Rn vanishing on a given set Z ⊆ B. It was conjectured in [9] and

was completely proved by Logunov and Malinnikova in [7] and [8] that H(Z)

possesses compactness properties. More precisely, one can prove a Harnack type

inequality for the quotient of two functions in H(Z). In R2 the family H(Z)

is locally infinite dimensional (see [9] for examples). In higher dimensions few

examples of infinite dimensional H(Z) are known. In fact, all known examples

stem from two dimensional ones (see [7, §4.2]). In particular, in dimension

n = 3 it is not even known whether there exists an infinite dimensional family

H(Z) where Z is a nondegenerate quadratic harmonic cone (it may be worth
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mentioning that in dimension n = 4 there exists such an example, see [7, §4.2]).
It turns out that this question and similar ones attracted the attention of several

mathematicians.

Maybe the oldest closely related problem is a classical conjecture by Stieltjes

(in a letter to Hermite [11]), which concerns arithmetic properties of harmonic

functions in R3 which are invariant under rotations around some axis. The

present work considers the rotationally equivariant cases (see details in §1.2).
Second, an analogous question was raised and solved in the context of Bessel

functions. Siegel [10] proved Bourget’s hypothesis that no two distinct Bessel

functions have common zeros (see also [12, pp. 484–485]). To make the re-

semblance clear we note that the problem we treat here can be formulated

as whether an associated Legendre function Pm
l has a common root with the

Legendre polynomial P2 (see §8).
Third, as a possible application to the wave equation, Agranovsky and Kras-

nov raised in [1] the conjecture that there exists a quadratic harmonic cone

Z ⊂ R3 such that H(Z) is finite dimensional.

Last, a spectral theory point of view of the same problem was given recently

by Bourgain and Rudnick in [3]. That work shows that given a curve of positive

curvature on the standard two-dimensional flat torus there exist only a finite

number of Laplace eigenfunctions vanishing on that curve. In the case of the

sphere, an analogous question would be: Let γ ⊂ S2 be a curve of constant

latitude which is not the equator. Do there exist only a finite number of eigen-

functions vanishing on γ? This question is still open, and the current work can

be considered as treating a special case of it.

The aim of the present paper is to study the family H(Z) where Z is the right

circular harmonic cone in R3. In some sense, this is the simplest nondegenerate

harmonic zero set in R3. We give evidence that this family is finite dimensional,

while introducing a new method for handling this question.

1.2. Results and Methods.

1.2.1. Main result. Let us formulate the following Conjecture.

Conjecture 1: Let Z = {x2 + y2 − 2z2 = 0} ∩B1 where B1 ⊂ R3 is the unit

ball. Consider the family

H(Z) = {u : B1 → R|Δu = 0 and u|Z = 0}.
Then H(Z) is finite dimensional.
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Using standard tools of harmonic analysis (see [2] and §8) it is not difficult

to show that Conjecture 1 is equivalent to the following one, which concerns

the associated Legendre functions Pm
l . The Legendre polynomials (m = 0) will

simply be denoted by Pl.

Conjecture 1
′
: The number of pairs (l,m) such that P2|Pm

l is finite.

Here, for odd m, P2|Pm
l means that P2 divides the polynomial

Pm
l√

1− x2
.

The case m = 0 of the preceding conjecture would follow from a conjecture of

Stieltjes [11] concerning the irreducibility of the Legendre polynomials over Q.

As such, it aroused the interest of several authors and, in fact, was proved by

Holt [5] and Ille [6]. The main new contribution of the current work comes in

the cases where m �= 0. We prove the following theorem (where we include the

case m = 0 for completeness).

Theorem 2: • For m = 0, P2|Pl if and only if l = 2.

• For m = 2, P2|P 2
l if and only if l = 5.

• If m is even, then there exists at most one l ∈ N such that P2|Pm
l .

• If m is odd, then P2 � Pm
l for all l ∈ N.

In fact, we prove a stronger statement in the case where m is even. We show

that in some sense there exists a unique dyadic integer l such that P2|Pm
l . For

the precise meaning of this please see §1.2.2 and Theorems 13 and 21.

1.2.2. Method. The method we use in this paper consists of two steps. In the

first step, following an idea of Holt for the case m = 0, we transform Pm
l to

a polynomial Hm
l whose coefficients are dyadic integers. As such, this poly-

nomial can be studied using modular arithmetic. The question is whether

this polynomial vanishes at the point z = −2. In the second step we con-

sider Hm
l (−2) = Hm(l) as a (non-polynomial) function of l. We ask whether

Hm(l) ≡ 0 (mod 2N ). Our analysis shows that, if m is even, Hm is well de-

fined on Z/2NZ and that a solution modulus 2N can be lifted uniquely to a

solution modulus 2N+1. In this way we get a unique dyadic integer l such that

Hm(l) = 0 (Propositions 12 and 20; Theorems 13 and 21). This idea is remi-

niscent of Hensel’s Lemma. However, we cannot apply Hensel’s Lemma in our

case since the nature of the coefficients in Taylor’s expansion of Hm is unclear.
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1.2.3. Secondary results. We describe a second approach to Conjecture 1, under

significant additional assumptions. We prove

Theorem 3: Let f : R3 → R be a harmonic function. Then the product

(x2 + y2 − 2z2) · f(x, y, z) is harmonic if and only if

f(x, y, z) = α+ βxyz + γ(x2 − y2)z

for some α, β, γ ∈ R.

Under the same assumption we can also break the rotational symmetry of

the quadratic cone and get

Theorem 4: Let f : R3 → R be a harmonic function and b > 1. Then the

product (x2 + by2 − (b + 1)z2) · f(x, y, z) is harmonic if and only if

f(x, y, z) = α+ βxyz

for some α, β ∈ R.

The additional assumption on the harmonicity of f lets us give a proof of

Theorems 3 and 4 without arithmetic considerations. Perhaps our assumptions

on f can be weakened.

Acknowledgments. We are grateful to Charles Fefferman from whose dis-

cussions with the first author the work on this topic originated. We thank

Zeev Rudnick for his interest in the present work and for helpful comments.

We thank Eran Asaf, Nir Avni, Alexander Logunov, Eugenia Malinnikova and

Amit Ophir for interesting discussions. This paper is part of the second author’s

research towards a Ph.D. dissertation, conducted at the Hebrew University of

Jerusalem. The cases of m = 2 and odd m in Theorem 2 together with The-

orems 3 and 4 were proved in [13]. We gratefully acknowledge the support of

ISF grant no. 753/14.

2. Step 1: Holt–Ille Transformation

In this section we transform the associated Legendre function Pm
l to a poly-

nomial Hm
l of degree 
 l−m

2 �. The main property of Hm
l is that its coefficients

are dyadic integers, making it useful in analyzing whether P2 and Pm
l share

a common root. This idea was developed by Holt [5] and Ille [6] for the case

m = 0 and we extend it here to the cases where m �= 0.
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We recall the following integral representation of the associated Legendre

functions:

(1) Pm
l (x) = im

(l +m)!

l!

1

π

∫ π

0

(x+ y cosϕ)l cos(mϕ)dϕ

for x ∈ [−1, 1], where

y = i
√
1− x2

[4, Ch. VII, p. 505]. By Lemma 25 the integral on the right-hand side is of the

form xδymQ(x2, y2) where δ ∈ {0, 1} with δ ≡ (l−m) (mod 2) and Q is a real

homogeneous polynomial of degree 
 l−m
2 �. If we define

z =
4x2

x2 − 1
,

then we can express x2 and y2 by

(2) x2 =
z

z − 4
, y2 =

4

z − 4
.

Substituting the preceding expressions in Q gives

(3) Pm
l (x) = xδym

Cm
l

(z − 4)�
l−m

2 �H
m
l (z),

where Hm
l (z) is a polynomial of degree 
 l−m

2 � normalized so that Hm
l (0) = 1

and the constant Cm
l depends on l and m (for details see proof of Lemma 7 in

§9). We note

Proposition 5: P2|Pm
l if and only if Hm

l (−2) = 0.

Proof. P2(x) =
1
2 (3x

2 − 1). Hence P2|Pm
l if and only if

Pm
l

( 1√
3

)
= 0.

The proposition now follows from (2) and (3).

Notation 6: We denote by σm
l (k) coefficients such that the following holds

Hm
l (z) =

� l−m2 �∑
k=0

(−z
2
)kσm

l (k).

The formulas for σm
l (k) are recorded in the following lemma.



568 D. MANGOUBI AND A. WELLER WEISER Isr. J. Math.

Lemma 7: If l+m is even, then

(4) σm
l (k) =

(−2)k
(� l−m2 �

k

)(� l+m2 �
k

)(
2k
k

) ,

and if l +m is odd, then

(5) σm
l (k) =

(−2)k
(� l−m2 �

k

)(� l+m2 �
k

)(
2k
k

)
(2k + 1)

.

In both cases

(6) σm
l (0) = 1.

A proof for these formulas is included in §9.

3. Proof of Theorem 2: The case of odd m

It will be convenient to use the following

Notation: We denote

(7) s =
⌊ l
2

⌋
, t =

⌊m
2

⌋
.

We first assume that l is odd. We rewrite formula (4) as follows:

σ2t+1
2s+1(k) = (−1)k

(
s− t

k

)
(s+ t+ 1)(s+ t) · · · (s+ t− k + 2)

1 · 3 · · · (2k − 1)
.

The term σm
l (1) is even, since either (s− t) or (s+ t+ 1) is even.

For k ≥ 2 we have that σm
l (k) is even, since there are at least two consecutive

numbers at the nominator of the second factor, and no even numbers in the

denominator.

Combined with (6), it follows that

Hm
l (−2) =

∑
k

σm
l (k) ≡ 1 (mod 2).

From Proposition 5 we get that P2 � Pm
l .

If l is even, essentially the same argument holds replacing formula (4) by

formula (5). We leave the details to the reader.
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4. Proof of Theorem 2: The case of m ≡ 0 (mod 4)

4.1. Recovering the lowest three bits of l.

Proposition 8: If Hm
l (−2)≡0 (mod 8) and m≡0 (mod 4), then

l≡2 (mod 8).

The proof is by ruling out the other possibilities one by one.

Lemma 9: If m ≡ 0 (mod 4) and either l ≡ 0 (mod 4) or l ≡ 1 (mod 4), then

Hm
l (−2) ≡ 1 (mod 2).

Proof. In these cases both s and t (see (7)) are even. Rewriting formulas (4)

and (5) modulus 2, we get

σm
l (k) ≡

(
s− t

k

)
(s+ t)(s+ t− 1) · · · (s+ t− k + 1) (mod 2).

For every k ≥ 1 we have that σm
l (k) is even, since it has the even factor (s+ t).

Summing over k ≥ 0 we get Hm
l (−2) ≡ 1 (mod 2).

Lemma 10: If m ≡ 0 (mod 4) and l ≡ 3 (mod 4), then

Hm
l (−2) ≡ 2 (mod 4).

Proof. Here s is odd and t is even. We calculate H2t
2s+1(−2) (mod 4) using

formula (5).

σ2t
2s+1(1) =− (s− t)(s+ t)

3
= −s

2 − t2

3
≡ −1− 0

−1
≡ 1 (mod 4)

and

σ2t
2s+1(3) =− σ2t

2s+1(2)
(s− t− 2)(s+ t− 2)

3 · 7 ≡ −σ2t
2s+1(2) (mod 4).

From basic divisibility properties (Lemma 27) we also have

∀k ≥ 4, σm
l (k) ≡ 0 (mod 4).

Summing over k ≥ 0 we get H2t
2s+1(−2) ≡ 2 (mod 4).

Lemma 11: If m ≡ 0 (mod 4) and l ≡ 6 (mod 8), then

Hm
l (−2) ≡ 4 (mod 8).
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Proof. We let l = 8q + 6. By formula (4)

σm
l (1) =− (4q + 3− t)(4q + 3 + t) ≡ t2 − 1 (mod 8),

σm
l (2) =− σm

l (1)
(4q + 2− t)(4q + 2 + t)

2 · 3 ≡ −σm
l (1)

4− t2

2 · 3 (mod 8)

and

σm
l (3) =− σm

l (2)
(4q + 1)2 − t2

3 · 5 ≡ σm
l (2) (mod 8),

where in the last calculation we used the fact that σm
l (2) ≡ 0 (mod 2) (Lemma

27). From basic divisibility properties (Lemma 27) we have σm
l (k) ≡ 0 (mod 8)

for all k ≥ 4. Summing over k ≥ 0 we get Hm
l (−2) ≡ 4 (mod 8).

To be complete we verify the remaining case l ≡ 2 (mod 8).

Proposition 12: If m ≡ 0 (mod 4) and l ≡ 2 (mod 8), then

Hm
l (−2) ≡ 0 (mod 8).

Proof. We let l = 8q + 2. By formula (4)

σm
l (1) =− (4q + 1− t)(4q + 1 + t) ≡ t2 − 1 (mod 8),

σm
l (2) =− σm

l (1)
(4q − t)(4q + t)

2 · 3 ≡ σm
l (1)

t2

2 · 3 (mod 8)

and

σm
l (3) =− σm

l (2)
(4q − 1)2 − t2

3 · 5 ≡ σm
l (2) (mod 8).

From basic divisibility properties (Lemma 27) we have σm
l (k) ≡ 0 (mod 8) for

all k ≥ 4. Summing over k ≥ 0 we get Hm
l (−2) ≡ 0 (mod 8).

4.2. Recovering the high bits of l. In this section we introduce an idea in

the spirit of Hensel’s Lemma to recover the high bits of l.

Theorem 13: Let m ≡ 0 (mod 4) and suppose that Hm
l (−2) ≡ 0 (mod 2N ).

Then there exists a unique l ≤ l̃ < l+2N+1 such thatHm
l̃
(−2) ≡ 0 (mod 2N+1).

Moreover, l̃ ≡ l (mod 2N).

Using Proposition 8, Theorem 13 is an immediate corollary of

Proposition 14: Let m ≡ 0 (mod 4) and l ≡ 2 (mod 8). Fix N ≥ 3 and

write l = r + 2Nq with 0 ≤ r < 2N . Then

Hm
l (−2) ≡ Hm

r (−2) + 2Nq (mod 2N+1).
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Remark: In particular, it follows that if l ≡ l̃ (mod 2N ) then

Hm
l (−2) ≡ Hm

l̃
(−2) (mod 2N ).

To prove Proposition 14 we first observe

Lemma 15: Let m ≡ 0 (mod 4), l ≡ 0 (mod 2) and k ≥ 6. If l̃ ≡ l (mod 2N ),

then
σm
l̃
(k) ≡ σm

l (k) (mod 2N+1).

We postpone the proof of this Lemma to the end of the section.

Proof of Proposition 14. By Lemma 15, for all k ≥ 6 we have that

σm
l (k) ≡ σm

r (k) (mod 2N+1).

For 0 ≤ k ≤ 5 we calculate σm
l (k) explicitly.

From (6) we have

σm
l (0) = σm

r (0) = 1.

Let s̃ = r
2 . From the assumptions we have s̃ ≡ 1 (mod 4). Using this and

the assumptions that N ≥ 3 and t is even, we get the following expressions for

the next terms:

σm
l (1) =− (2N−1q + s̃− t)(2N−1q + s̃+ t) ≡ 2Nq + σm

r (1) (mod 2N+1),

σm
l (2) =− σm

l (1)
(2N−1q + s̃− t− 1)(2N−1q + s̃+ t− 1)

2 · 3 .

Noticing that s̃ ≡ 1 (mod 4), N ≥ 3, s̃ + t − 1 is even and that σm
r (1) is odd,

elementary manipulations of this expression give

σm
l (2) ≡ 22N−3q + σm

r (2) (mod 2N+1).

Moving on to the next term, using again that N ≥ 3 and noticing that σm
l (2)

is even, we get

σm
l (3) =− σm

l (2)
(2N−1q + s̃− t− 2)(2N−1q + s̃+ t− 2)

3 · 5
≡22N−3q + σm

r (3) (mod 2N+1).
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At this point we observe that σm
l (2) + σm

l (3) ≡ σm
r (2) + σm

r (3) (mod 2N+1)

(since N ≥ 3). A similar circumstance occurs in the next two terms:

σm
l (4) =− σm

l (3)
(2N−1q + s̃− t− 3)(2N−1q + s̃+ t− 3)

4 · 7
≡22N−5q(4− t2) + σm

r (3)[22N−4q + 2N−1q] + σm
r (4)

≡22N−3q + 2N−1tq + σm
r (4) (mod 2N+1)

and

σm
l (5) ≡− σm

l (4)
(2N−1q + s̃− t− 4)(2N−1q + s̃+ t− 4)

5 · 9
≡22N−3q + 2N−1tq + σm

r (5) (mod 2N+1)

Summing over k≥0 we get that Hm
l (−2)≡2Nq+Hm

r (−2) (mod 2N+1).

It remains to prove Lemma 15.

Proof of Lemma 15. For any x ∈ Q let v2(x) be the dyadic valuation of x (see

Notation 26). For k such that v2(k!) ≥ N + 1 we have that

σm
l (k) ≡ 0 (mod 2N+1)

for all l (see Lemma 27). Hence we may assume that

(8) v2(k!) ≤ N.

In particular, since k ≥ 6 it follows that

(9) N ≥ 4.

Let s = 
 l
2� = 2N−1q + s̃ with 0 ≤ s̃ < 2N−1. Collecting terms in (4)

according to the powers of q we see that

σm
l (k) =

k∑
i=0

k∑
j=0

1

k!(2k − 1)!!
2(N−1)(i+j)Pk−i,k(s̃− t)Pk−j,k(s̃+ t)︸ ︷︷ ︸

ai,j,k,l,m

qi+j

where Pi,k(x) is the elementary symmetric polynomial of degree i in the k

variables {x, x− 1, . . . , x− k + 1}.
We now show that all the coefficients ai,j,k,l,m with i + j > 0 vanish modu-

lus 2N+1. This is enough since s̃ is determined by l modulus 2N .

Case (i): i+ j ≥ 4. We use (8) and (9) to get

v2(ai,j,k,l,m) ≥ 4(N − 1)− v2(k!) ≥ 3N − 4 > N + 1.
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Case (ii): i+ j = 1. We may assume i = 0, j = 1. Here

v2(Pk−i,k(s̃− t)) = v2(Pk,k(s̃− t)) ≥ v2(k!)

(see proof of Lemma 27). Since k ≥ 6 we also have

v2(Pk−j,k(s̃+ t)) = v2(Pk−1,k(s̃+ t)) ≥ 2.

So v2(ai,j,k,l,m) ≥ N − 1 + v2(k!) + 2− v2(k!) ≥ N + 1.

Case (iii): 3 ≥ i + j ≥ 2. Here a direct examination of the few possibilities,

taking into account that k ≥ 6, shows that

v2(Pk−i,k(s̃− t)) + v2(Pk−j,k(s̃+ t)) ≥ 3.

We use (8) and get

v2(ai,j,k,l,m) ≥ 2(N − 1) + 3− v2(k!) ≥ 2N + 1−N = N + 1.

5. Proof of Theorem 2: The case of m ≡ 2 (mod 4)

The arguments in this section are similar to those in §4.

5.1. Recovering the lowest three bits of l.

Proposition 16: If Hm
l (−2) ≡ 0 (mod 8) and m ≡ 2 (mod 4), then

l ≡ 5 (mod 8).

The proof is by ruling out the other possibilities one by one.

Lemma 17: If m ≡ 2 (mod 4) and either l ≡ 2 (mod 4) or l ≡ 3 (mod 4), then

Hm
l (−2) ≡ 1 (mod 2).

Proof. In these cases both s and t are odd. Repeating the proof of Lemma 9,

rewriting formulas (4) and (5) modulus 2, we get

σm
l (k) ≡

(
s− t

k

)
(s+ t)(s+ t− 1) · · · (s+ t− k + 1) (mod 2).

For every k ≥ 1 we have that σm
l (k) is even, since it has the even factor (s+ t).

So Hm
l (−2) ≡ 1 (mod 2).

Lemma 18: If m ≡ 2 (mod 4) and l ≡ 0 (mod 4), then

Hm
l (−2) ≡ 2 (mod 4).
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Proof. Here s is even and t is odd. We calculate H2t
2s(−2) (mod 4) using for-

mula (4):

σ2t
2s(1) =− (s− t)(s+ t) = t2 − s2 ≡ 1 (mod 4)

and

σ2t
2s(3) =− σ2t

2s(2)
(s− t− 2)(s+ t− 2)

3 · 5 ≡ −σ2t
2s(2) (mod 4).

From basic divisibility properties (Lemma 27) we also have

∀k ≥ 4, σm
l (k) ≡ 0 (mod 4).

Summing over k ≥ 0 we get H2t
2s(−2) ≡ 2 (mod 4).

Lemma 19: If m ≡ 2 (mod 4) and l ≡ 1 (mod 8), then

Hm
l (−2) ≡ 4 (mod 8).

Proof. We denote l = 8q + 1 and look at the terms of Hm
l (−2) (mod 8) indi-

vidually using formula (5). Using the assumption that t is odd we get

σm
l (1) = − (4q − t)(4q + t)

3
≡ 3 (mod 8),

and by Lemma 28

σm
l (3) = −σm

l (2)
(4q − 2)2 − t2

3 · 7 ≡ −σm
l (2) (mod 8).

From basic divisibility properties (Lemma 27) we have σm
l (k) ≡ 0 (mod 8)

for all k ≥ 4. Summing over k ≥ 0 we get Hm
l (−2) ≡ 4 (mod 8).

To be complete we verify the remaining case for l ≡ 5 (mod 8).

Proposition 20: If m ≡ 2 (mod 4) and l ≡ 5 (mod 8), then

Hm
l (−2) ≡ 0 (mod 8).

Proof. We let l = 8q + 5. By formula (5)

σm
l (1) = − (4q + 2− t)(4q + 2 + t)

3
≡ −1 (mod 8),

and by Lemma 28

σm
l (3) = −σm

l (2)
(4q)2 − t2

3 · 7 ≡ −σm
l (2) (mod 8).

From basic divisibility properties (Lemma 27) we have σm
l (k) ≡ 0 (mod 8)

for all k ≥ 4. Summing over k ≥ 0 we get Hm
l (−2) ≡ 0 (mod 8).



Vol. 230, 2019 HARMONIC FUNCTIONS VANISHING ON A CONE 575

5.2. Recovering the high bits of l.

Theorem 21: Let m ≡ 2 (mod 4) and suppose that Hm
l (−2) ≡ 0 (mod 2N ).

Then there exists a unique l ≤ l̃ < l+2N+1 such thatHm
l̃
(−2) ≡ 0 (mod 2N+1).

Moreover, l̃ ≡ l (mod 2N).

Using Proposition 16, Theorem 21 is an immediate corollary of

Proposition 22: Let m ≡ 2 (mod 4) and l ≡ 5 (mod 8). Fix N ≥ 3 and

write l = r + 2Nq with 0 ≤ r < 2N . Then

Hm
l (−2) ≡ Hm

r (−2) + 2Nq (mod 2N+1).

To prove Proposition 22 we first observe

Lemma 23: Let m ≡ 2 (mod 4), l ≡ 1 (mod 2) and k ≥ 6. If l̃ ≡ l (mod 2N ),

then

σm
l̃
(k) ≡ σm

l (k) (mod 2N+1).

Proof. The only difference from the proof of Lemma 15 is a division by an odd

number which does not influence the calculations.

Now we move on to the proof of the main proposition of this section.

Proof of Proposition 22. By Lemma 23, for all k ≥ 6 we have that

σm
l (k) ≡ σm

r (k) (mod 2N+1).

For 0 ≤ k ≤ 5 we calculate σm
l (k) explicitly.

From (6) we have σm
l (0) = σm

r (0) = 1.

Denote s̃ = 
 r
2�; from the assumptions we get that s̃ ≡ 2 (mod 4). Using this

and the assumption N ≥ 3 we get

σm
l (1) = −1

3
(2N−1q + s̃− t)(2N−1q + s̃+ t) ≡ σm

r (1) (mod 2N+1).

The next term is

σm
l (2) = −σm

l (1)
(2N−1q + s̃− t− 1)(2N−1q + s̃+ t− 1)

2 · 5 .

Noticing that N ≥ 3, s̃ − 1 ≡ 1 (mod 4) and that σm
r (1) ≡ −1 (mod 4) (since

t is odd), elementary manipulations of this expression give

σm
l (2) ≡ 22N−3q + 2N−1q + σm

r (2) (mod 2N+1).



576 D. MANGOUBI AND A. WELLER WEISER Isr. J. Math.

Moving on to the next term, using again N ≥ 3 and s̃ ≡ 2 (mod 4), we get

σm
l (3) =− σm

l (2)
(2N−1q + s̃− t− 2)(2N−1q + s̃+ t− 2)

3 · 7
≡22N−3q + 2N−1q + σm

r (3) (mod 2N+1).

At this point we observe that

σm
l (2) + σm

l (3) ≡ 2Nq + σm
r (2) + σm

r (3) (mod 2N+1)

(since N ≥ 3). A similar circumstance occurs in the next two terms.

By Lemma 28, σm
r (2) ≡ 0 (mod 4) so also σm

r (3) ≡ 0 (mod 4). Hence,

σm
l (4) =− σm

l (3)
(2N−1q + s̃− t− 3)(2N−1q + s̃+ t− 3)

4 · 9
≡22N−3q + 2N−3q(1− t2) + 2N−2qσm

r (3) + σm
r (4)

≡22N−3q + σm
r (4) (mod 2N+1)

and

σm
l (5) ≡− σm

l (4)
(2N−1q + s̃− t− 4)(2N−1q + s̃+ t− 4)

5 · 11
≡22N−3q + σm

r (5) (mod 2N+1).

Summing over k≥0 we get that Hm
l (−2)≡2Nq+Hm

r (−2) (mod 2N+1).

6. Proof of Theorem 2: The special cases m = 0 and m = 2

In these cases we trivially see that P2|P2 and we can easily check that P2|P 2
5 .

The general statement for even m shows that these are the only solutions. Note

that P 2
5 corresponds to the harmonic polynomials

(x2 + y2 − 2z2)xyz and (x2 + y2 − 2z2)(x2 − y2)z.

7. Harmonic products of two harmonic polynomials

We prove Theorem 3, giving evidence to the validity of Conjecture 1.

Proof of Theorem 3. We let

p(x, y, z) = x2 + y2 − 2z2

and let

h = p · f.
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We assume that both h and f are harmonic. Harmonic functions are analytic,

so they can be represented as infinite sums of homogeneous polynomials. If

f is harmonic and Δ(pf) = 0, then every homogeneous component of f , de-

noted fd, is also harmonic and has to give Δ(pfd) = 0. So we can assume f is

a homogeneous harmonic polynomial of degree d.

Let

f(x, y, z) =
∑

i+j+k=d

aijkx
iyjzk.

The Laplacian of h is

Δh = 2
∑

α∈{x,y,z}
∂αp∂αf = 4

∑
i+j+k=d

(i+ j − 2k)aijkx
iyjzk.

Since the product h is harmonic every coefficient of every monomial of the

above expression has to vanish. If aijk �= 0 then i + j = 2k. Combining this

with i+ j + k = d we get 3k = d. Hence f can only be of the form

f(x, y, z) =

2
3d∑
i=0

aix
iy

2
3d−iz

d
3 .

Since f is harmonic,

0 = Δf = g(x, y)z
d
3 +

2
3d∑
i=0

ai
d

3

(d
3
− 1
)
xiy

2
3d−iz

d
3−2

where g(x, y) is a polynomial in x, y.

We assume f �= 0 so ∃i such that ai �= 0 and we have

d

3

(d
3
− 1
)
= 0 =⇒ d ∈ {0, 3}.

A straightforward calculation gives that the only harmonic homogeneous

polynomials f of degree 3 such that the product pf is harmonic are linear

combinations of xyz and x2z − y2z, so the harmonic functions f such that pf

is harmonic are of the form

α+ βxyz + γ(x2z − y2z)

with α, β, γ ∈ R.

Proof of Theorem 4. The proof is in the same spirit of the proof of Theorem 3;

for details see [13].
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8. The equivalence of Conjectures 1 and 1′

In this section we explain why Conjectures 1 and 1′ are equivalent. We note

that this equivalence was already observed by Armitage [2].

Let

p(x, y, z) = x2 + y2 − 2z2 and Z = {p = 0}.
It is known from [7] that h ∈ H(Z) if and only if there exists an analytic function

f such that h = pf . In view of this, the equivalence of Conjectures 1 and 1′

follows from the following theorem.

Theorem 24: Let l ∈ N. The following statements are equivalent:

(1) Let p(x, y, z) = x2 + y2 − 2z2. There exists a harmonic polynomial hl

of degree l such that p|hl.
(2) ∃m ∈ N such that P2(x)|Pm

l (x).

Proof. Assume statement 2. Notice that p = r2P2(cos θ). If P2|Pm
l let

hl = rlPm
l (cos θ)eimϕ.

Conversely, assume hl is a harmonic polynomial of degree l such that p|hl.
Since hl is harmonic it can be written in spherical coordinates in the form

l∑
k=0

k∑
m=−k

ak,mr
kPm

k (cos θ)eimϕ

with some ak,m ∈ R. The polynomial hl vanishes on θ±, where cos(θ±) = ± 1√
3
.

Since {eimϕ} and {rk} are each a linearly independent set of functions, we get

that

Pm
l (cos θ±) = 0

for some m.

9. Auxiliary lemmas and special notation

Lemma 25: For non-negative integers m,n:

1

π

∫ π

0

cosn ϕ cos(mϕ)dϕ =

⎧⎨
⎩

1
2n

(
n

n+m
2

)
, m ≤ n and m ≡ n (mod 2),

0 otherwise.
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Proof. This becomes easy to check by writing cosψ = eiψ+e−iψ
2 and noting that

�
(
1

π

∫ π

0

eilϕdϕ

)
= δ0,l.

Proof of Lemma 7. We use formula (1) and set δ ∈ {0, 1} such that (l−m) ≡ δ

(mod 2):

m!

(l +m)!
Pm
l (x) =im

1

π

∫ π

0

(x+ y cosϕ)l cos(mϕ)dϕ

=
Lemma 25

im
� l−m2 �∑
j=0

(
l

m+ 2j

)
1

2m+2j

(
m+ 2j

j

)
xl−m−2jym+2j

=
(2)
xδ(iy)m

� l−m2 �∑
j=0

(
l

m+ 2j

)
1

2m+2j

(
m+ 2j

j

)

×
( z

z − 4

)� l−m2 �−j( 4

z − 4

)j

=
xδ(iy)m

2m(z − 4)�
l−m

2 �

� l−m2 �∑
j=0

(
l

m+ 2j

)(
m+ 2j

j

)
z�

l−m
2 �−j

=
xδ(iy)m

2m(z − 4)�
l−m

2 �

� l−m2 �∑
k=0

(
l

l− 2k − δ

)(
l − 2k − δ


 l−m
2 � − k

)
zk

=
xδ(iy)m

2m(z − 4)�
l−m

2 �

� l−m2 �∑
k=0

l!

(2k + δ)!(
 l−m
2 � − k)!(
 l+m

2 � − k)!
zk

=
xδ(iy)m

2m(z − 4)�
l−m

2 �
l!

(
 l−m
2 �)!(
 l+m

2 �)!

×
� l−m2 �∑
k=0

(
 l−m
2 �)!(
 l+m

2 �)!
(2k + δ)!(
 l−m

2 � − k)!(
 l+m
2 � − k)!

zk

=
Am

l x
δym

(z − 4)�
l−m

2 �

� l−m2 �∑
k=0

(−2)kk!k!

(2k + δ)!

(
 l−m
2 �
k

)(
 l+m
2 �
k

)(
− z

2

)k
.

Recalling relation (3), the normalization Hm
l (0) = 1 and Notation 6, we obtain

the desired formulas.
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Notation 26: The dyadic valuation. For an integer n, denote

v2(n) =

⎧⎨
⎩max{λ ∈ N ∪ {0} : 2λ|n}, n �= 0,

∞, n = 0.

For a rational number m
n denote

v2

(m
n

)
= v2(m)− v2(n).

Lemma 27: v2(σ
m
l (k)) ≥ v2(k!).

Proof. σm
l (k) can also be written in the form

σm
l (k) =

(
x

y

)
z(z − 1) · · · (z − k + 1)

1 · 3 · 5 · · · (2k ± 1)

so there are k consecutive numbers in the nominator and no even numbers in

the denominator.

Lemma 28: For m ≡ 2 (mod 4) and l ≡ 1 (mod 4), σm
l (2) ≡ 0 (mod 4).

Proof. Here s is even and t is odd. The only factors with powers of two in this

term are the following

(s− t− 1)(s+ t− 1)

2
≡ 0 (mod 4).
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