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ABSTRACT

We prove that the Bochi–Mañé theorem is false, in general, for linear

cocycles over non-invertible maps: there are C0-open subsets of linear co-

cycles that are not uniformly hyperbolic and yet have Lyapunov exponents

bounded from zero.

1. Introduction

Bochi [4, 5] proved that every continuous SL(2)-cocycle over an aperiodic in-

vertible system can be approximated in the C0 topology by cocycles whose

Lyapunov exponents vanish, unless it is uniformly hyperbolic. The (harder)

version of the statement for derivative cocycles of area-preserving diffeomor-

phisms on surfaces had been claimed by Mañé [23] almost two decades before.
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Bochi [4, 5] also completed the proof of this harder claim, based on an outline

by Mañé. These results were then extended to arbitrary dimension by Bochi

and Viana [7] and Bochi [6].

In this paper, we prove that the Bochi–Mañé theorem does not hold, in gen-

eral, for cocycles over non-invertible systems: surprisingly, in the non-invertible

setting there exist C0-open sets of SL(2)-cocycles which are not uniformly hy-

perbolic and whose exponents are bounded away from zero. Indeed, we provide

two different constructions of such open sets.

The first one (Theorem A) applies to Hölder continuous cocycles satisfying a

bunching condition. The second one (Theorem B) has no bunching hypothesis

but requires the cocycle to be C1+ε and to be hyperbolic at some periodic point.

In either case, we assume some form of irreducibility. A suitable extension

of the Invariance Principle (Bonatti, Gómez-Mont and Viana [9], Avila and

Viana [2]) that we prove here gives that these cocycles have non-zero Lyapunov

exponents. We also prove that they are continuity points for the Lyapunov

exponents, relative to the C0 topology, and thus the claim follows.

The problem of continuity of Lyapunov exponents of linear cocycles was raised

explicitly by Knill [19], and has been the object of considerable recent inter-

est, especially with respective to finer topologies. See Viana [28, Chapter 10],

Duarte and Klein [13] and references therein. It was conjectured by Viana [28]

that Lyapunov exponents are always continuous among Hölder continuous fiber-

bunched SL(2)-cocycles, and this has just been proved by Backes, Brown and

Butler [3]. In fact, they prove a stronger conjecture also from Viana [28]: Lya-

punov exponents vary continuously on any family of SL(2)-cocycles with con-

tinuous invariant holonomies. Improving on a construction of Bocker and Viana

in [28, Chapter 9], Butler [12] also shows that the fiber-bunching condition is

sharp for continuity in some cases.

These and many other related results require the cocycles to have some fair

amount of regularity, starting from Hölder continuity. In view also of the Bochi–

Mañé theorem, continuity in the C0 topology (outside the uniformly hyperbolic

realm) as we exhibit here comes as a bit of a surprise. It seems that the ex-

planation should lie in the fact that existence of an invariant stable holonomy

comes for free in the non-invertible case, but this requires further investigation.

Acknowledgement. The authors are grateful to the anonymous referee for a

careful reading of the manuscript and several useful suggestions.
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2. Statement of results

Let f : M → M be a continuous uniformly expanding map on a compact

metric space. By this we mean that there are ρ > 0 and σ > 1 such that, for

any x ∈M ,

(i) d(f(x), f(y)) ≥ σd(x, y) for every y ∈ B(x, ρ), and

(ii) f(B(x, ρ)) contains the closure of B(f(x), ρ).

Take f to be topologically mixing and let μ be the equilibrium state of some

Hölder continuous potential (see [29, Chapter 11]). Then μ is f -invariant and

ergodic, and the support is the whole ofM .

Let M̂ be the space of sequences x̂ = (x−n)n such that f(x−n) = x−n+1 for

every n ≥ 1, and let π : M̂ →M denote the canonical map π(x̂) = x0. Consider

the distance d̂ defined on M̂ by

d̂(x̂, ŷ) =

∞∑
n=0

τnd(x−n, y−n),

where τ > 0 is a small constant. The natural extension of f is the map

f̂ : M̂ → M̂ defined by

f̂(. . . , x−n, . . . , x−1, x0) = (. . . , x−n, . . . , x−1, x0, f(x0));

f̂ is a hyperbolic homeomorphism ([27, Definition 1.3]) and satisfies π◦f̂ = f ◦π.
For any x̂ = (x−n)n in M̂ , define the local stable set and local unstable set by

W s
loc(x̂) = {ŷ ∈ M̂ : d̂(f̂n(x̂), f̂n(ŷ)) < ρ for every n ≥ 0},

Wu
loc(x̂) = {ŷ ∈ M̂ : d̂(f̂−n(x̂), f̂−n(ŷ)) < ρ for every n ≥ 0}.

Assuming τ is small enough, W s
loc(x̂) coincides with the fiber π−1(x0) and π

maps Wu
loc(x̂) homeomorphically to

Ux̂ = π(Wu
loc(x̂)),

with

B(x0, 9ρ/10) ⊂ Ux̂ ⊂ B(x0, ρ).

Moreover, each V̂x̂ = π−1(Ux̂) may be identified to the product

(1) Ux̂ × π−1(x0) ≈Wu
loc(x̂)×W s

loc(x̂)

through a homeomorphism, so that π becomes the projection to the first coor-

dinate.



464 M. VIANA AND J. YANG Isr. J. Math.

Let μ̂ be the lift of μ to M̂ , that is, the unique f̂ -invariant measure that

projects down to μ under π. Then μ̂ is ergodic and supported on the whole

of M̂ . Moreover, it has local product structure (see [10, Section 2.1]): the

restriction of μ̂ to each V̂x̂ may be written as

(2) μ̂ | V̂x̂ = φ(μ̂u × μ̂s),

where φ : V̂x̂ → (0,∞) is a continuous function, μ̂u = μ | Ux̂ and μ̂s is a

probability measure on W s
loc(x̂). This means that μ̂ | V̂x̂ is equivalent to a

product μ̂u × μ̂s, with φ as the Radon–Nikodym density.

The projective cocycle defined by a continuous map A : M → SL(2) over

the transformation f is the map FA :M × PR
2 →M × PR

2,

FA(x, v) = (f(x), A(x)v).

Denote An(x) = A(fn−1(x)) · · ·A(x) for every n ≥ 1. By [15, 18], there exists

λ(A) ≥ 0, called the Lyapunov exponent, such that

(3) lim
n

1

n
log ‖An(x)‖=lim

n

1

n
log ‖An(x)−1‖=λ(A) for μ-almost every x∈M .

We say that A is u-bunched if there exists θ > 0 such that A is θ-Hölder

continuous and

(4) ‖A(x)‖‖A(x)−1‖ σ−θ < 1 for every x ∈M.

See [9, Definitions 1.11 and 2.2] and [1, Definition 2.2 and Remark 2.3].

Let Â : M̂ → SL(2) be defined by Â = A ◦ π. It is clear that Â is θ-

Hölder continuous with respect to d̂ if A is θ-Hölder continuous with respect

to d, because d̂(x̂, ŷ) ≥ d(x0, y0) for any x̂, ŷ ∈ M̂ . Assuming that A is u-

bunched, the cocycle F̂A defined by Â over f̂ admits invariant u-holonomies

(see [9, Section 1.4] and [1, Section 3]), namely,

hux̂,ŷ = lim
n
Ân(f̂−n(ŷ))Ân(f̂−n(x̂))−1 for any ŷ ∈ Wu

loc(x̂).

As Â is constant on local stable sets, F̂A also admits trivial invariant s-holo-

nomies:

hsx̂,ŷ = id for any ŷ ∈W s
loc(x̂).

A probability measure m̂ on M̂ ×PR
2 is said to be u-invariant if it admits a

disintegration {m̂x̂ : x̂ ∈ M̂} along the fibers {x̂} × PR
2 such that

(5) (hux̂,ŷ)∗m̂x̂ = m̂ŷ for any ŷ ∈Wu
loc(x̂).
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Similarly, we say that m̂ is s-invariant if it admits a disintegration {m̂x̂ : x̂∈M̂}
along the fibers {x̂} × PR

2 such that

(6) m̂x̂ = m̂ŷ for any ŷ ∈W s
loc(x̂),

up to identifying {x̂} × PR
2 with {ŷ} × PR

2 in the natural way. A u-invariant

(respectively s-invariant) probability measure m̂ is called a u-state (respec-

tively, an s-state) if it is also invariant under F̂A. We call m̂ an su-state (see

[2, Section 4]) if it is both a u-state and an s-state.

Theorem A: If A is u-bunched and has no su-states, then λ(A) > 0 and A is

a continuity point for the function B 
→ λ(B) in the space of continuous maps

B : M → SL(2) equipped with the C0 topology. In particular, the Lyapunov

exponent λ(·) is bounded away from zero in a C0-neighborhood of A.

Example 2.1: Let M = R/Z and f : M → M , f(x) = kx mod Z, for some

integer k ≥ 2. Note that the natural extension f̂ : M̂ → M̂ is the usual (k-fold)

solenoid. Let μ be the Lebesgue measure onM . Let A :M → SL(2) be given by

A(x) = A0Rx, where A0 ∈ SL(2) is a hyperbolic matrix and Rx is the rotation

by angle 2πx; A is 1-Hölder continuous and, in view of the definition (4), it is

u-bunched provided k > ‖A0‖‖A−1
0 ‖.

We claim that A has no su-states if k is large enough. Indeed, suppose

that F̂A has some su-state m̂. Then, by [2, Proposition 4.8], m̂ admits a

continuous disintegration {m̂x̂ : x̂ ∈ M̂} which is simultaneously s-invariant,

u-invariant and F̂A-invariant. By s-invariance, we may write the disintegration

as {m̂x : x ∈ M} instead. Continuity and invariance under the dynamics im-

ply that (A0)∗m̂0 = m̂0. Since A0 is hyperbolic, this means that m0 is either

a Dirac mass or a convex combination of two Dirac masses. Thus, by holo-

nomy invariance, either every m̂x is a Dirac mass or every m̂x is supported on

exactly 2 points.

In the first case, ξ(x) = supp m̂x defines a map ξ : M → PR
2 which is

continuous and invariant under the cocycle:

ξ(f(x)) = A0Rxξ(x) for every x ∈M .

It follows that the degree deg ξ satisfies k deg ξ = deg ξ + 2 (the term 2 comes

from the fact that M → PR
2, x 
→ Rxv has degree 2 for any v). This is impos-

sible when k ≥ 4, and so this first case can be disposed of. This argument goes

back to Herman [16]. In the second case, ξ(x) = supp m̂x defines a continuous
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invariant section with values in the space PR
2,2 of pairs of distinct points in

PR
2. This can be reduced to the previous case by considering the 2-to-1 cov-

ering map M → M , z 
→ 2z mod Z (notice that f is its own lift under this

covering map). Thus, this second case can also be disposed of. This proves our

claim that A has no su-states.

By Theorem A, it follows that λ(B) > 0 for every continuous B :M → SL(2)

in a C0-neighborhood of A. Incidentally, this shows that [8, Corollary 12.34]

is not correct: indeed, the “proof” assumes the Bochi–Mañé theorem in the

non-invertible case.

Now let f :M →M be a C1+ε (that is, C1 with Hölder continuous derivative)

expanding map on a compact manifold M and A : M → SL(2) be a C1+ε

function. All the other objects, μ, FA, π, M̂ , f̂ , μ̂, π, Â and F̂A are as before.

An invariant section is a continuous map ξ̂ :M̂→PR
2 or ξ̂ :M̂→PR

2,2 such

that

Â(x̂)ξ̂(x̂) = ξ̂(f̂(x̂)) for every x̂ ∈ M̂ .

Theorem B: If A admits no invariant section in PR
2 or PR

2,2, then it is a

continuity point for the function B 
→ λ(B) in the space of continuous maps

B :M → SL(2) equipped with the C0 topology. Moreover, λ(A) > 0 if and only

if there exists some periodic point p ∈ M such that Aper(p)(p) is a hyperbolic

matrix. In that case, λ(·) is bounded from zero for all continuous cocycles in a

C0-neighborhood of A.

This applies, in particular, in the setting of Young [31] and thus Theorem B

contains a much stronger version of a main result in there: the Lyapunov ex-

ponent is C0-continuous at every C2 cocycle in the isotopy class; moreover, it

is non-zero if and only if the cocycle is hyperbolic on some periodic orbit. It

is clear that the latter condition is open, and the arguments in [10, Section 9]

show that it is also dense.

All the cocycles we consider are of the form

F̂B(x̂, v) = (f̂(x̂), B ◦ π(x̂)v)
for some continuous B : M → SL(2) and so they all have (trivial) s-holonomy.

Thus the notion of s-invariant measure, as defined in (6), makes sense for such

cocycles. In Section 3 we study certain properties of such measures. We do

not assume the cocycle to be u-bunched, and so the conclusions apply for both

theorems. In Section 4 we deduce Theorem A.
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The key point to keep in mind is that, even though A is taken to be u-

bunched—and so exhibits unstable holonomies—that need not be the case for

C0-nearby cocycles. Instead, we argue with s-states, taking advantage of the

fact that (trivial) stable holonomies are always defined. The assumption that A

has no su-states—which makes sense because A itself has unstable holonomies—

implies that its s-state is unique, and thus continuity follows.

The proof of Theorem B is similar but necessarily more delicate: since we

do not assume u-bunching at all, unstable holonomies may not exist for A, and

thus the notion of su-state may not make sense. Indeed, most of the proof

consists in bypassing this difficulty.

The first step is to explain what we mean by a u-invariant measure and a

u-state. See Section 5. Next, we introduce a suitable version of the Invariance

Principle of [2, 9, 21], where a Pesin unstable lamination is used to define an

unstable holonomy on some full-measure subset. This is done in Section 6 and

uses ideas of Tahzibi and Yang [26]. In Section 7, we check that the assumptions

ensure that there are no su-states for A. This is rather subtle, since the Pesin

lamination is only measurable. In Section 8 we wrap up the proof.

3. s-invariant measures

As before, let f : M → M be a topologically mixing uniformly expanding map

on a compact metric space, and μ be the equilibrium state of some Hölder

continuous potential. Let f̂ : M̂ → M̂ be the natural extension of f and μ̂ be

the lift of μ to M̂ . Let FA : M × PR
2 → M × PR

2 be the projective cocycle

defined by a continuous map A :M → SL(2). Moreover, let Â : M̂ → SL(2) and

F̂A : M̂×PR
2 → M̂ ×PR

2 be given by Â = A◦π and F̂A(x̂, v) = (f̂(x̂), Â(x̂)v))

respectively. Here we do not assume A to be u-bunched.

LetMs be the space of probability measures on M̂×PR
2 that project down to

μ̂ and are s-invariant. Let M be the space of probability measures onM ×PR
2

that project down to μ. Both spaces are equipped with the weak∗ topology.

Consider the map Ψ : M → Ms defined as follows: given any m ∈ M and

a disintegration {mx : x ∈ M} along the fibers {x} × PR
2, let m̂ = Ψ(m)

be the measure on M̂ × PR
2 that projects down to μ̂ and whose conditional

probabilities m̂x̂ along the fibers {x̂} × PR
2 are given by (up to the canonical

identification of the fibers)

(7) m̂x̂ = mπ(x̂).
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It is clear from the definition that m̂ ∈ Ms. Moreover, if {m′
x : x ∈ M} is

another disintegration of m then, by essential uniqueness of the disintegration,

mx = m′
x for μ-almost every x. Recalling that μ̂ is the lift of μ, this implies that

mπ(x̂) = m′
π(x̂) for μ̂-almost every x̂. Thus m̂ does not depend on the choice of

the disintegration. This shows that Ψ is well-defined. We are going to prove:

Proposition 3.1: Ψ : M → Ms is an affine homeomorphism.

Proof. It is clear from (7) that Ψ is affine. To prove that it is a homeomorphism,

we use the fact that μ̂ has local product structure, as follows.

For each p̂ ∈ M̂ , let p = π(p̂) and consider the neighborhoods Up̂ = π(Wu
loc(p̂))

of p in M and V̂p̂ = π−1(Up̂) of p̂ in M̂ . Recall (1)–(2). By local product

structure,

μ̂ | V̂p̂ = φ(μ̂u × μ̂s),

where φ : V̂p̂ → (0,∞) is a continuous function, μ̂u = μ | Up̂ and μ̂s is a

probability measure on W s
loc(p̂) = π−1(p̂).

Lemma 3.2: For any m ∈ M, the measure m̂ = Ψ(m) satisfies

m̂ | V̂p̂ × PR
2 = φ̃(m | Up̂ × PR

2)× μ̂s for any p̂ ∈ M̂,

where φ̃ : V̂p̂ → R is defined by φ̃(x, ξ, v) = φ(x, ξ).

Proof. Given any bounded measurable function g : V̂p̂ × PR
2 → R,

∫
V̂p̂×PR2

g dm̂ =

∫
V̂p̂

∫
PR2

g(x̂, v) dm̂x̂(v) dμ̂(x̂)

=

∫
W s

loc(p̂)

∫
Wu

loc(p̂)

∫
PR2

g(x, ξ, v) dm̂(x,ξ)(v)φ(x, ξ) dμ̂
u(x) dμ̂s(ξ).

Since m̂(x,ξ) = mx for every x ∈M , by definition, it follows that

∫
V̂p̂×PR2

g dm̂ =

∫
W s

loc(p̂)

∫
Wu

loc(p̂)

∫
PR2

g(x, ξ, v)φ(x, ξ) dmx(v) dμ̂
u(x) dμ̂s(ξ)

=

∫
W s

loc(p̂)

∫
Wu

loc(p̂)×PR2

g(x, ξ, v)φ(x, ξ) dm(x, v) dμ̂s(ξ).

This proves the claim.
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Let us prove that Ψ is continuous, that is, that given any sequence (mn)n

converging to some m in M, we have

(8)

∫
M̂×PR2

g dΨ(mn) →
∫
M̂×PR2

g dΨ(m)

for every continuous function g : M̂ × PR
2 → R. It is no restriction to suppose

that the support of g is contained in V̂p̂ for some p̂ ∈ M̂ , for every continuous

function is a finite sum of such functions. Then, by Lemma 3.2,∫
M̂×PR2

g dΨ(mn) =

∫
Wu

loc(p̂)×PR2

∫
W s

loc(p̂)

g(x, ξ, v)φ(x, ξ) dμ̂s(ξ) dmn(x, v).

Our hypotheses ensure that

G(x, v) =

∫
W s

loc(p̂)

g(x, ξ, v)φ(x, ξ) dμ̂s(ξ)

defines a continuous function. Hence, the assumption that (mn) → m implies

that∫
M̂×PR2

g dΨ(mn) =

∫
Wu

loc(p̂)×PR2

G(x, v) dmn(x, v)

→
∫
Wu

loc(p̂)×PR2

G(x, v) dm(x, v) =

∫
M̂×PR2

g dΨ(m),

as claimed. Since M is compact, we are left to proving that Ψ is a bijection.

Surjectivity is clear: given m̂ ∈ Ms, take m to be the probability measure on

M ×PR
2 that projects down to μ and whose conditional probabilities along the

vertical fibers {x}×PR
2 are given by mx = m̂x̂ for any x̂ ∈ π−1(x). This is well

defined, by (6), and it is clear from the definition that Ψ(m) = m̂. Injectivity

is a consequence of Lemma 3.2. Indeed, if Ψ(m1) = Ψ(m2) then∫
X×V

∫
W s

loc(p̂)

φ(x, ξ) dμ̂s(ξ) dm1(x, v) =

∫
X×V

∫
W s

loc(p̂)

φ(x, ξ) dμ̂s(ξ) dm2(x, v)

for any p̂ ∈ M̂ and any X × V ⊂ Up̂ × PR
2. This implies that

Hm1 | Up̂ = Hm2 | Up̂, where H(x) =

∫
W s

loc(p̂)

φ(x, ξ) dμ̂s(ξ).

Noting that H is positive, it follows that the restrictions of m1 and m2 to Up̂

coincide, for every p̂ ∈ M̂ . Thus m1 = m2.

Corollary 3.3: Ms is non-empty, convex and compact. Moreover, it contains

some s-state.
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Proof. The first part follows directly from Proposition 3.1, since M is non-

empty, convex and compact.

If m̂ projects down to μ̂, then so does (F̂−1
A )∗m̂, because F̂−1

A is given by

f̂−1 in the first coordinate, and f̂−1 preserves μ̂. It is also clear that if m̂ is

s-invariant, then so is F̂−1
A,∗m̂: its conditional measures are given by

(F̂−1
A,∗m̂)x̂ = Â(x̂)−1

∗ m̂f̂(x̂) = A(π(x̂))−1
∗ m̂f̂(x̂),

and, keeping in mind that π(f̂(x̂)) = f(π(x̂)), the assumption ensures that

the right hand side depends only on π(x̂). This proves that Ms is invariant

under F̂−1
A .

Now let m̂0 be an arbitrary element of Ms. By invariance and compactness,

the sequence n−1
∑n−1

j=0 F̂
−j
A,∗m̂0 has some accumulation point in Ms. It is

straightforward to see that every accumulation point is F̂A-invariant and, thus,

an s-state.

Let (Bn)n be a sequence of maps converging uniformly to some B in the space

of continuous maps M → SL(2), and (m̂n)n be a sequence of probability mea-

sures on M̂ converging in the weak∗ topology to some probability measure m.

Corollary 3.4: If m̂n is an s-state of Bn for every n, then m̂ is an s-state of B.

Proof. It follows from Corollary 3.3 that m̂ ∈ Ms. It is clear that m̂ is F̂B-

invariant, because mn is F̂Bn -invariant for every n and F̂Bn converges uniformly

to F̂B.

4. Proof of Theorem A

If λ(A) = 0 then, by the Invariance Principle ([2, Theorem D], [9, Théorème 1]),

every F̂A-invariant probability measure m̂ that projects down to μ̂ is an su-state.

Thus, the hypothesis that A has no su-states implies that λ(A) > 0.

We are left to proving that A is a continuity point for the Lyapunov expo-

nent. Define (here v denotes both a direction and any non-zero vector in that

direction)

φB : M̂ × PR
2 → R, φB(x̂, v) = log

‖B̂(x̂)v‖
‖v‖ .

The next statement stems from a classical observation of Furstenberg [14]; see,

for instance, [28, Section 6.1].
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Proposition 4.1: Every continuous B : M → SL(2) admits some s-state m̂B

such that

−λ(B) =

∫
M̂×PR2

φB dm̂.

Proof. First, suppose that λ(B) = 0. For every (x̂, v) ∈ M̂ × PR
2 and n ≥ 1,

n−1∑
j=0

φB(F̂
j
B(x̂, v)) = log

‖B̂n(x̂)v‖
‖v‖ ∈ [− log ‖B̂n(x̂)−1‖, log ‖B̂n(x̂)‖].

We also have that, for μ̂-almost every x̂ ∈M ,

lim
n

1

n
log ‖B̂n(x̂)‖ = lim

n

1

n
log ‖B̂n(x̂)−1‖ = λ(B).

Thus, for any F̂B-invariant measure m̂ that projects down to μ̂,

lim
n

1

n

n−1∑
j=0

φB(F̂
j
B(x̂, v)) = 0 for m̂-almost every (x̂, v).

By the ergodic theorem, this implies that∫
M̂×PR2

φB dm̂ = 0 = λ(B).

By Corollary 3.3, we may choose m̂ to be an s-state, in which case it satisfies

the conclusion of the lemma.

Now suppose that λ(B) > 0. By the theorem of Oseledets [24], there exists

an F̂B-invariant splitting R
2 = Eu

x̂ ⊕ Es
x̂ defined at μ̂-almost every point x̂ and

such that

(9)

lim
n→±∞

1

n
log ‖B̂n(x̂)v‖ =λ(B) for non-zero v ∈ Eu

x̂ and

lim
n→±∞

1

n
log ‖B̂n(x̂)v‖ =− λ(B) for non-zero v ∈ Es

x̂.

Let m̂ be the probability measure on M̂ × PR
2 that projects down to μ̂ and

whose conditional probabilities along the fibers {x̂} × PR
2 are given by the

Dirac masses at Es
x̂. Then m̂ is an s-state: it is clear that it is F̂B-invariant;

to check that it is s-invariant, just note that the subspace Es
x̂ depends only on

the forward iterates, and so it is constant on each π−1(x). Moreover, by the
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ergodic theorem and (9),∫
M̂×PR2

φB dm̂ =

∫
M̂×PR2

lim
n

1

n

n−1∑
j=0

φB ◦ F̂ j
B dm̂

=

∫
M̂

∫
PR2

lim
n

1

n
log

‖B̂n(x̂)v‖
‖v‖ dδEs

x̂
(v) dμ̂(x̂)

=

∫
M̂

−λ(B) dμ̂(x̂) = −λ(B).

This completes the proof.

Lemma 4.2: If A has no su-states, then it has exactly one s-state.

Proof. Existence is contained in Proposition 4.1. To prove uniqueness, we argue

as follows. Let m̂ be any s-state. As observed before, the hypothesis implies

that λ(A) > 0. Let R2 = Eu
x̂ ⊕ Es

x̂ be the Oseledets invariant splitting, defined

at μ̂-almost every point x̂. Let m̂u and m̂s be the probability measures on

M̂ × PR
2 that project down to μ̂ and whose conditional probabilities along the

fibers {x̂} × PR
2 are the Dirac masses at Eu

x̂ and Es
x̂, respectively. Then m̂u

is a u-state, m̂s is an s-state and every F̂A-invariant probability measure is a

convex combination of m̂u and m̂s (compare [2, Lemma 6.1]). Then, keeping in

mind that μ̂ is ergodic, there is α ∈ [0, 1] such that m̂ = αm̂u + (1 − α)m̂s. If

α > 0, we may write

m̂u =
1

α
m̂+

(
1− 1

α

)
m̂s

and, as m̂ and m̂s are s-states, it follows that m̂u is an s-state. Since m̂u is also

a u-state, this contradicts the hypothesis. Thus α = 0, that is, m = ms.

Theorem A is an easy consequence. Indeed, we already know that λ(A) > 0.

Consider any sequence Ak : M → SL(2), k ∈ N converging to A in the C0

topology. By Proposition 4.1, for each k one can find some s-state m̂k for Ak

such that

−λ(Ak) =

∫
M̂×PR2

φAk
dm̂k.

Up to restricting to a subsequence, we may suppose that (m̂k)k converges to

some probability measure m̂ in the weak∗ topology. By Corollary 3.4, m̂ is an

s-state for A. Moreover, since φAk
converges uniformly to φA,

(10) lim
k

−λ(Ak) =

∫
M̂×PR2

φA dm̂.



Vol. 229, 2019 CONTINUITY OF LYAPUNOV EXPONENTS 473

By Proposition 4.1 and Lemma 4.2, the right-hand side is equal to λ(A). This

proves continuity of the Lyapunov exponent in the C0 topology.

Remark 4.3: The converse to Lemma 4.2 is true when λ(A) > 0.

5. u-states without u-bunching

Next we prove Theorem B. Initially, suppose that 0 ≤ λ(A) < log σ. Then the

cocycle is “nonuniformly u-bunched,” in a sense that was exploited before, in

[27, Sections 2.1 and 2.2]. Using those methods, one gets that (compare [27,

Proposition 2.5]) unstable holonomy maps

hux̂,ŷ : {x̂} × PR
2 → {ŷ} × PR

2, hux̂,ŷ = lim
n
Ân(f̂−n(ŷ))Ân(f̂−n(x̂))−1

exist for μ̂-almost every x̂ and any ŷ ∈ Wu
loc(x̂). Then we define a probabil-

ity measure m̂ on M̂ × PR
2 to be u-invariant if it admits a disintegration

{m̂x̂ : x̂ ∈ M̂} along the fibers {x̂} × PR
2 such that

(11) (hux̂,ŷ)∗m̂x̂ = m̂ŷ for μ̂-almost every x̂ and any ŷ ∈ Wu
loc(x̂).

As before, a u-state is an F̂A-invariant probability measure which is u-invariant.

When λ(A) ≥ log σ we have to restrict ourselves to the subclass of F̂A-

invariant probability measures whose center Lyapunov exponent is strictly less

than σ. More precisely, we consider only F̂A-invariant probability measures m̂

such that

(12) lim
n

1

n
log ‖DÂn(x̂)v‖ ≤ c < log σ for m̂-almost every (x̂, v)∈M̂×PR

2,

where DÂ(x̂)v denotes the derivative of the projective map Â(x̂) : PR2 → PR
2.

Remark 5.1: The following elementary bound will be useful:

‖Â(x̂)‖−1‖Â(x̂)−1‖−1 ≤ ‖DÂ(x̂)v‖
‖v‖ ≤ ‖Â(x̂)‖‖Â(x̂)−1‖ for every x̂.

In the next result we use the fact that the natural extension of f admits a

C1+ε realization: there exist a C1+ε embedding g : U → U defined on some open

subset U of an Euclidean space, and a topological embedding ι : M̂ → U with

g(ι(M̂)) = ι(M̂ ) and g ◦ ι = ι ◦ f̂ . A proof is given in Appendix A. Identifying

M̂ with ι(M̂) we may view f̂ as a restriction of g, and so we may apply Pesin

theory to it.
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Proposition 5.2: If m̂ satisfies (12), then for (x̂, v) in a full m̂-measure subset

Λ of M̂ × PR
2 there exists a C1 function ψx̂,v : Wu

loc(x̂) → PR
2 depending

measurably on (x̂, v) such that ψx̂,v(x̂) = v and the graphs

Wu
loc(x̂, v) = {(ŷ, ψx̂,v(ŷ)) : ŷ ∈ Wu

loc(x̂)}
satisfy

(a) F̂−1(Wu
loc(x̂, v)) ⊂ Wu

loc(F̂
−1(x̂, v)) for every (x̂, v) ∈ Λ;

(b) d(F̂−n(x̂, v), F̂−n(ŷ,w))→0 exponentially fast for any (ŷ,w)∈Wu
loc(x̂, v).

Proof. The assumption ensures that there exists m̂-almost everywhere an Os-

eledets strong-unstable subspace Êu
x̂,v ⊂ Tx̂U ×R

2 that is a graph over the un-

stable direction Ex̂ ⊂ Tx̂U of g. Then, by Pesin theory, there exists m̂-almost

everywhere a C1 embedded disk W̃u
loc(x̂, v) tangent to Ê

u
x̂,v and such that

F̂−n(ŷ, w) ∈ W̃u
loc(F̂

−n(x̂, v)) and d(F̂−n(x̂, v), F̂−n(ŷ, w)) ≤ σ−n

for every n ≥ 0 and (ŷ, w) ∈ W̃u
loc(x̂, v). This also implies that W̃u

loc(x̂, v) is a

C1 graph over a neighborhood of x̂ inside Wu(x̂). While the radius r(x̂) of this

neighborhood need not be bounded from zero, in principle, Pesin theory also

gives that it decreases sub-exponentially along orbits:

lim
n

1

n
log r(f̂−n(x̂)) = 0.

On the other hand, the size of f̂−n(Wu
loc(x̂)) decreases exponentially fast (faster

than σ−n). Thus, the projection of W̃u
loc(F̂

−n(x̂, v)) contains f̂−n(Wu
loc(x̂)) for

any large n. Then F̂n(W̃u
loc(F̂

−n(x̂, v))) is a C1 graph whose projection contains

Wu
loc(x̂). Take Wu

loc(x̂, v) to be the part of that graph that lies over Wu
loc(x̂). It

is clear from the construction that conditions (a) and (b) in the statement are

satisfied.

This means that unstable holonomy maps are still defined on suitable full

measure subsets of the fibers, namely hux̂,ŷ : Λx̂ → {ŷ} × PR
2 where

Λx̂ = Λ ∩ ({x̂} × PR
2).

Note that m̂x̂(Λx̂) = 1 for μ̂-almost every x̂, because m̂(Λ) = 1. Then we

can extend the definition of u-invariance to this setting: we say that m̂ is u-

invariant if it admits a disintegration {m̂x̂ : x̂ ∈ M̂} along the fibers {x̂}×PR
2

satisfying (11). We can also extend the notion of u-state: in the present setting

it means that m̂ is F̂A-invariant, satisfies (12) and is u-invariant.
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6. A new u-invariance principle

Here we prove the following form of the Invariance Principle (Ledrappier [21],

Bonatti, Gómez-Mont and Viana [9], Avila and Viana [2]) where the main

novelty is that no u-bunching is assumed:

Theorem 6.1: Every F̂A-invariant probability measure m̂ satisfying

(13) lim
n

1

n
log ‖DÂn(x̂)v‖ ≤ 0 for m̂-almost every (x̂, v) ∈ M̂ × PR

2,

is a u-state.

We are going to extend to our setting an approach introduced by Tahzibi and

Yang [26] for bunched cocycles. This is based on the notion of partial entropy,

which may be defined as follows (see [20, 30] for more information).

Let R be a Markov partition of f̂ , in the sense of Bowen [11, Section 3.C],

with diameter small enough that the element R(x̂) that contains x̂ is a subset of

V̂x̂ for every x̂ ∈ M̂ . (Actually, elements of R may intersect along their bound-

aries but, since the boundaries are nowhere dense and have zero μ̂-measure, we

may ignore the trajectories through them.) Let ξu(x̂) ⊂ M̂ be the connected

component of R(x̂) ∩Wu
loc(x̂) that contains x̂. Take Λ as in Proposition 5.2.

For v ∈ PR
2 such that (x̂, v) ∈ Λ, let Ξu(x̂, v) be the connected component of

(R(x) × PR
2) ∩Wu

loc(x̂, v) that contains (x̂, v).

It follows directly from the Markov property of R that the family ξu is an

adapted partition for (f̂ , μ̂): its elements are pairwise disjoint and, for μ̂-

almost every x̂,

• f̂−1(ξu(x̂)) ⊂ ξu(f̂−1(x̂)) (thus ξu ≺ f̂−1ξu), and

• ξu(x̂) contains a neighborhood of x̂ inside Wu(x̂).

Analogously, Ξu is an adapted partition for (F̂ , m̂). The corresponding partial

entropies are defined by

(14) hμ̂(f̂ ,W
u) = Hμ̂(f̂

−1ξu | ξu) and hm̂(F̂A,Wu) = Hm̂(F̂−1
A Ξu | Ξu).

Recall (from Rokhlin [25]) that if ξ and η are measurable partitions of a Lebesgue

space (Z, ζ) satisfying ξ ≺ η, then

Hζ(η) =

∫
− log ζ(η(x)) dζ(x) and Hζ(η | ξ) =

∫
Hζz (η) dζ(z)

where {ζz : z ∈ Z} is a disintegration of ζ with respect to ξ.
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6.1. c-invariant measures. Let {μ̂u
x̂ : x̂ ∈ M̂} and {m̂u

x̂,v : (x̂, v) ∈ M̂×PR
2}

be disintegrations of, respectively, μ̂ relative to ξu and m̂ relative to Ξu. Let

p : M̂ × PR
2 → M̂ be the canonical projection. We call m̂ c-invariant if

(15) (hcx̂,v,w)∗m̂
u
x̂,v = m̂u

x̂,w for m̂-almost every (x̂, v) and (x̂, w),

where hcx̂,v,w : Ξu(x̂, v) → Ξu(x̂, w) is the bijection defined by

p ◦ hcx̂,v,w = p.

Equivalently, the measure m̂ is c-invariant if

(16) p∗(m̂u
x̂,v) = μ̂u

x̂ for m̂-almost every (x̂, v).

Proposition 6.2: The measure m̂ is u-invariant if and only if it is c-invariant.

Proof. Let us start with a model: let ν be a probability measure on a product

X × Y of two separable metric spaces, and let {ν1y : y ∈ Y } and {ν2x : x ∈ X}
be disintegrations of ν relative to the partition into horizontals X × {y} and

the partition into verticals {x} × Y , respectively. We call ν v-invariant (re-

spectively, h-invariant) if the disintegrations may be chosen such that ν1y is

independent of y (respectively, ν2x is independent of x).

Lemma 6.3: ν is v-invariant if and only if it is h-invariant.

Proof. Suppose that ν is v-invariant and let ν1 be such that ν1y = ν1 for every y.

Let ν2 be the quotient of ν relative to the horizontal partition or, equivalently,

the projection of ν to the second coordinate. Then, by the definition of disin-

tegration,

ν = ν1 × ν2.

This implies that ν1 is the projection of ν to the first coordinate and ν2x = ν2

defines a disintegration of ν relative to the vertical partition. In particular, ν is

h-invariant. The proof that h-invariance implies v-invariance is identical.

To deduce the proposition we only have to reduce its setting to that of

Lemma 6.3. Consider the partitions Ξc and Ξcu of M̂ × PR
2 defined by

Ξc(x̂, v) = p−1(x̂) and Ξcu(x̂, v) = p−1(ξu(x̂)).

Let {m̂c
x̂,v : (x̂, v) ∈ M̂×PR

2} and {m̂cu
x̂,v : (x̂, v) ∈ M̂×PR

2} be disintegrations

of m̂ relative to Ξc and Ξcu, respectively. Both Ξc and Ξu refine Ξcu. So, by

essential uniqueness of the disintegration,
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(i) {m̂u
ŷ,w : (ŷ, w) ∈ Ξcu(x̂, v)} is a disintegration of m̂cu

x̂,v with respect to

the partition Ξu | Ξcu(x̂, v), and

(ii) {m̂c
ŷ,w : (ŷ, w) ∈ Ξcu(x̂, v)} is a disintegration of m̂cu

x̂,v with respect to

the partition Ξc | Ξcu(x̂, v),

for m̂-almost every (x̂, v). This will be used a few times in the following.

Now consider the map

Ψx̂,v : Ξcu(x̂, v) → ξu(x̂)× PR
2, Φx̂(ŷ, w) = (ŷ, z)

where z is such that (x̂, z) is the point where Ξu(ŷ, w) intersects Ξc(x̂, v).

Since Λ has full m̂-measure, Ψx̂,v is defined m̂cu
x̂,v-almost everywhere for m̂-

almost every (x̂, v). Clearly, it is an invertible measurable map sending atoms

of Ξu | Ξcu(x̂, v) to horizontals ξu(x̂) × {z} and atoms of Ξc | Ξcu(x̂, v) to

verticals {ŷ} × PR
2.

Identifying Ξcu(x̂, v) to ξu(x̂) × PR
2 through Ψx̂,v, (i) and (ii) above cor-

respond to disintegrations of m̂x̂,v relative to the horizontal partition and the

vertical partition, respectively. Moreover, s-invariance and u-invariance trans-

late to v-invariance and h-invariance, respectively. Thus the claim follows from

Lemma 6.3.

6.2. A criterion for c-invariance. Note that hμ̂(f̂) ≤ hm̂(F̂A), because

(f̂ , μ̂) is a factor of (F̂A, m̂). For the partial entropies the inequality goes in the

opposite direction:

Proposition 6.4: hm̂(F̂A,Wu) ≤ hμ̂(f̂ ,W
u) and the equality holds if and only

if m̂ is c-invariant.

Proof. Keep in mind that ξu ≺ f̂−1ξu and Ξu ≺ F̂−1
A Ξu. By definition,

(17)

hμ̂(f̂ ,W
u) = Hμ̂(f̂

−1ξu | ξu) =
∫
Hμ̂u

x̂
(f̂−1ξu) dμ̂(x̂) where

Hμ̂u
x̂
(f̂−1ξu) =

∫
− log μ̂u

x̂((f̂
−1ξu)(ŷ)) dμ̂u

x̂(ŷ),

and similarly for hm̂(F̂A,Wu) and Ξu.

Lemma 6.5: For m̂-almost every (x̂, v) ∈ M̂ × PR
2,

(a) Hm̂cu
x̂,v

(F̂−1
A Ξu | Ξu) ≤ Hμ̂u

x̂
(f̂−1ξu), and

(b) the equality holds if and only if m̂u
x̂,v((F̂

−1
A Ξu)(ŷ, w)) = μ̂u

x̂((f̂
−1ξu)(ŷ))

for m̂cu
x̂,v-almost every (ŷ, w) ∈ Ξcu(x̂, v).
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Proof. Since Ξcu(x̂, v) = p−1(ξu(x̂)), (F̂−1
A Ξcu)(x̂, v) = p−1((f̂−1ξu)(x̂)) and

μ̂ = p∗m̂, essential uniqueness of disintegrations gives that μ̂u
x̂ = p∗(m̂cu

x̂,v) for

m̂-almost every (x̂, v). Thus

Hμ̂u
x̂
(f̂−1ξu) =

∫
− log μ̂u

x̂((f̂
−1ξu)(ŷ)) dμ̂u

x̂(ŷ)

=

∫
− log m̂cu

x̂,v((F̂
−1
A Ξcu)(ŷ, w)) dm̂cu

x̂,v(ŷ, w) = Hm̂cu
x̂,v

(F̂−1
A Ξcu)

for m̂-almost every (x̂, v). Moreover, using the relation F̂−1
A Ξcu ∨Ξu = F̂−1

A Ξu,

Hm̂cu
x̂,v

(F̂−1
A Ξcu) ≥ Hm̂cu

x̂,v
(F̂−1

A Ξcu | Ξu) = Hm̂cu
x̂,v

(F̂−1
A Ξu | Ξu).

This proves claim (a). Moreover, the equality holds if and only if the partitions

F̂−1
A Ξcu and Ξu are independent relative to m̂cu

x̂,v, that is,

m̂u
x̂,v((F̂

−1
A Ξcu)(ŷ, w)) = m̂cu

x̂,v((F̂
−1
A Ξcu)(ŷ, w)) for m̂cu

x̂,v-almost every (ŷ, w).

By the previous observations, this is equivalent to

m̂u
x̂,v((F̂

−1
A Ξu)(ŷ, w)) = μ̂u

x̂((f̂
−1ξu)(ŷ)) for m̂cu

x̂,v-almost every (ŷ, w),

as claimed in (b).

Similarly to (17), we haveHm̂cu
x̂,v

(F̂−1
A Ξu | Ξu)=

∫
Hm̂u

ŷ,w
(F̂−1

A Ξu) dm̂cu
x̂,v(ŷ, w).

So, integrating the inequality in part (a) of the lemma,

Hm̂(F̂−1
A Ξu | Ξu)=

∫
Hm̂u

x̂,v
(F̂−1

A Ξu) dm̂(x̂, v)=

∫
Hm̂cu

x̂,v
(F̂−1

A Ξu | Ξu) dm̂(x̂, v)

≤
∫
Hμu

x̂
(f̂−1ξu) dμ̂(x̂) = Hμ̂(f̂

−1ξ | ξu).

This proves the inequality stated in Proposition 6.4. Moreover, the equality

holds if and only if m̂u
x̂,v((F̂

−1
A Ξu)(x̂, v)) = μ̂u

x̂((f̂
−1ξu)(x̂)) for m̂-almost every

(x̂, v). In other words, the equality holds if and only if p∗m̂u
x̂,v = μ̂u

x̂ restricted

to the σ-algebra generated by F̂−1
A Ξu.

Replacing F̂A by any iterate F̂n
A , and noting that

hm̂(F̂n
A ,Wu) = nhm̂(F̂A,Wu) and hμ̂(f̂

n,Wu) = nhμ̂(f̂ ,W
u),

we get that the equality holds if and only if p∗m̂u
x̂,v = μ̂u

x̂ restricted to the σ-

algebra generated by F̂−n
A Ξu. Since

⋃
n F̂

−n
A Ξu generates the Borel σ-algebra of

every Ξu(x̂, v), this is the same as saying that p∗m̂u
x̂,v = μ̂u

x̂ for m̂-almost every

(x̂, v), that is, that m̂ is c-invariant.
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6.3. Proof of Theorem 6.1. The hypothesis (13) ensures that the Lyapunov

exponents of m̂ along the center fibers {x̂} × PR
2 are non-positive. Then

hm̂(F̂A) = hm̂(F̂A,Wu)

(see [22, Corollary 5.3]). Similarly, hμ̂(f̂) = hμ̂(f̂ ,W
u). Since hm̂(F̂A) ≥ hμ̂(f̂),

because (f̂ , μ̂) is a factor of (F̂A, m̂), it follows that

hm̂(F̂A,Wu) ≥ hμ̂(f̂ ,W
u).

In view of Proposition 6.4, this implies that

hm̂(F̂A,Wu) = hμ̂(f̂ ,W
u).

Then, by Propositions 6.2 and 6.4, the measure m̂ is u-invariant, as claimed.

7. Invariant sections and su-states

We say that an F̂A-invariant probability measure m̂ is an su-state if it is both

an s-state and a u-state. Here we prove:

Theorem 7.1: Assume that A admits no invariant section in PR
2 or PR

2,2,

and there exists some periodic point p of f such that Aper(p)(p) is hyperbolic.

Then A has no su-states.

Assume, by contradiction, that F̂A does admit some su-state m̂. Suppose

for a while that m̂ admits a continuous disintegration {m̂x̂ : x̂ ∈ M̂} along the

vertical fibers {x̂} × PR
2. The fact that m̂ is F̂A-invariant means that

A(x̂)∗m̂x̂ = m̂f̂(x̂)

for m̂-almost every x̂. Then, by continuity, this must hold for every x̂.

Let p̂ be the fixed point of f̂ in π−1(p) and κ = per(p) be its period. Then

Âκ(p̂) = Aκ(p) is hyperbolic. The fact that Âκ(p̂)∗m̂p̂ = m̂p̂ implies that m̂p̂

is a convex combination of not more than two Dirac masses. Then, by su-

invariance, the same is true about m̂x̂ for every x̂. Thus ξ(x̂) = supp m̂x̂ defines

an invariant section for F̂A, which is in contradiction with the hypotheses.

In general, disintegrations are only measurable. In what follows we explain

how to bypass that and turn the previous outline into an actual proof of Theo-

rem 7.1.
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7.1. Dirac disintegrations. By the definition of su-state, there are disinte-

grations {m̂1
x̂ : x̂ ∈ M̂} and {m̂2

x̂ : x̂ ∈ M̂} of m̂ and there exists a full μ̂-measure

subset Up̂ of the neighborhood V̂p̂ ≈Wu
loc(p̂)×W s

loc(p̂) such that

(i) (hux̂,ŷ)∗m̂
1
x̂ = m̂1

ŷ for every x̂, ŷ ∈ Up̂ with ŷ ∈ Wu
loc(x̂) (u-invariance of

m̂1);

(ii) m̂2
ŷ = m̂2

ẑ for every ŷ, ẑ ∈ Up̂ with ẑ ∈ W s
loc(ŷ) (s-invariance of m̂2);

(iii) m̂1
x̂ = m̂2

x̂ for every x̂ ∈ Up̂ (essential uniqueness of disintegrations).

Also, we may choose Up̂ so that m̂1
x̂(Λx̂) = 1 (recall that Λx̂ = Λ∩ ({x̂}×PR

2))

for every x̂ ∈ Up̂.

Since the Pesin unstable manifolds Wu(ẑ, u) vary measurably with the point,

we may find compact sets Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λ such that m̂(Λj) → 1 and

Wu(ẑ, u) varies continuously on every Λj . We may choose these compact sets

in such a way that F̂A(Λj) ⊂ Λj+1 for every j ≥ 1. Up to reducing Up̂ if

necessary, m̂1(Λj,x̂) → 1 for every x̂ ∈ Up̂.

Fix any x̂ ∈ Up̂ such that μ̂u
x̂(ξ

u(x̂) \ Up̂) = 0. Then define m̂x̂ = m̂1
x̂ and

(a) m̂ŷ = (hux̂,ŷ)∗m̂x̂ for every ŷ ∈ ξu(x̂);

(b) m̂ẑ = m̂ŷ for every ẑ ∈ W s
loc(ŷ) ∩ V̂p̂ with ŷ ∈ ξu(x̂).

By (i)–(iii), we have that m̂ŷ = m̂1
ŷ = m̂2

ŷ for every ŷ ∈ ξu(x̂)∩Up̂ and m̂ẑ = m̂2
ẑ

for every ẑ ∈W s
loc(ŷ)∩ V̂p̂ with ŷ ∈ ξu(x̂)∩Up̂. By the choice of x̂ and the fact

that μ̂ has local product structure, the latter corresponds to a full μ̂-measure

subset of points ẑ ∈ V̂p̂. In particular, {m̂x̂ : x̂ ∈ V̂p̂} is a disintegration of m̂

on V̂p̂.

Let us collect some immediate consequences of the definition of the mea-

sures m̂ẑ. For x̂, ŷ, ẑ as in (a)–(b) above, denote hsux̂,ẑ = hsŷ,ẑ ◦ hux̂,ŷ with

hsŷ,ẑ : {ŷ} × PR
2 → {ẑ} × PR

2 given by the identity. For j ≥ 1, denote

αj = m̂x̂(Λj,x̂);

keep in mind that αj → 1.

Lemma 7.2: For each j ≥ 1,

(a) Λ̃j,ẑ = hsux̂,ẑ(Λj,x̂) is compact and varies continuously with ẑ ∈ V̂p̂ in the

Hausdorff topology;

(b) the measure m̂z | Λ̃j,ẑ varies continuously with ẑ ∈ V̂p̂ in the weak∗

topology;

(c) m̂ẑ(Λ̃j,ẑ) = αj for every ẑ ∈ V̂p̂.
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Since the matrix Âκ(p̂) is hyperbolic, its action on the projective space PR
2

is a North pole–South pole map, that is, a Morse–Smale diffeomorphism with

one attractor a and one repeller r. We are going to prove:

Proposition 7.3: The support of m̂p̂ is contained in {a, r}.
Proof. Since {m̂ẑ : ẑ ∈ V̂p̂} is a disintegration and m̂ is F̂A-invariant,

(18) (F̂ κ
A)∗m̂ẑ = m̂f̂κ(ẑ) for μ̂-almost every ẑ ∈ V̂p̂ ∩ f̂−κ(V̂p̂).

The identity may not hold for ẑ = p̂, but we are going to show that m̂p̂ is at

least “almost F̂A-invariant,” in a suitable sense:

Lemma 7.4: m̂p̂(F̂
−lκ
A (K)) ≥ m̂p̂(K) for any compact set K ⊂ Λ̃j,p̂ and every

l ≥ 1 and j ≥ 1.

Proof. Fix K, l and j. For any q̂ close to p̂, define

hq̂ = hs
ẑ,F̂ lκ

A (q̂)
◦ huŷ,ẑ ◦ hsp̂,ŷ

where ŷ and ẑ are the points whereWu
loc(x̂) intersectsW

s
loc(p̂) andW

s
loc(f̂

lκ(q̂)),

respectively. Keep in mind that the two s-holonomies are given by the iden-

tity. Also, K ⊂ Λ̃j,p̂ ensures that hq̂ is continuous restricted to K. Define

Kq̂ = hq̂(K). Then Kq̂ is a compact subset of {f̂ lκ(q̂)} × PR
2 such that

m̂f̂ lκ(q̂)(Kq̂) = m̂p̂(K).

The point q̂ may be chosen arbitrarily close to p̂ because μ̂ has full support.

Making q̂ → p̂, the point f̂ lκ(q̂) also goes to p̂, and then ŷ converges to ẑ (which

is fixed). Thus Kq̂ → K as q̂ → p̂.

Using (18), we may choose q̂ such that (F̂ lκ
A )∗m̂q̂ = m̂f̂ lκ(q̂) and q̂ is close

enough to p̂ that f̂nκ(q̂) ∈ V̂p̂ for 0 ≤ n ≤ l. It follows that

m̂q̂(F̂
−lκ
A (Kq̂)) = m̂f̂ lκ(q̂)(Kq̂) = m̂p̂(K).

Lemma 7.2(c) gives that m̂q̂(Λ̃k,q̂) = αk for every k ≥ 1. Thus

(19) (m̂q̂ | Λ̃k,q̂)(F̂
−lκ
A (Kq̂)) = m̂q̂(Λ̃k,q̂ ∩ F̂−lκ

A (Kq̂)) ≥ m̂p̂(K) + αk − 1.

By parts (a) and (b) of Lemma 7.2 the compact set Λ̃k,q̂ and the measure

m̂ẑ | Λ̃k,q̂ depend continuously on q̂. We know that the same is true for the sets

F̂−lκ
A (Kq̂). Thus, making q̂ → p̂ in (19), we get that

(20) (m̂p̂ | Λ̃k,p̂)(F̂
−lκ
A (K)) ≥ m̂p̂(K) + αk − 1
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(use the general fact that if νi → ν in the weak∗ topology and Ci → C in the

Hausdorff topology, then ν(C) ≥ lim supi νi(Ci)). Clearly, the left-hand side

of (20) is less than or equal to m̂p̂(F̂
−lκ
A (K)). So, making k → ∞ we get the

claim.

We are ready to complete the proof of Proposition 7.3. Suppose that m̂p̂

is not supported inside {a, r}. Then, since the Λ̃k,p̂ are a non-decreasing se-

quence whose union has full m̂p̂-measure, for every large k ≥ 1 the measure

m̂p̂ | Λ̃k,p̂ is not supported on {a, r}. Then we can find a compact set K ⊂ Λ̃k,p̂

contained in a fundamental domain of Âκ(p̂) with positive m̂p̂-measure. By

Lemma 7.4, it follows that m̂p̂(F̂
−lκ
A (K)) ≥ m̂p̂(K) > 0 for every l ≥ 0. Since

these sets are pairwise disjoint, it follows that m̂p̂ is an infinite measure, which

is a contradiction.

7.2. Proof of Theorem 7.1. By Proposition 7.3, m̂p̂ is a convex combination

of not more than two Dirac masses. Then, in view of the definition of this

disintegration, the same is true about m̂ẑ for every ẑ ∈ V̂p̂. Then ξ̂(ẑ) = supp m̂ẑ

defines a continuous map on V̂p̂ with values on PR
2 or PR

2,2 and such that

Â(ẑ)ξ̂(ẑ) = ξ̂(f̂(ẑ)) for every ẑ ∈ V̂p̂ ∩ f̂−1(V̂p̂).

The same argument shows that for any point ŷ ∈ M̂ there exists a continuous

disintegration {m̂ŷ,ẑ : ẑ ∈ V̂ŷ} of the su-state restricted to V̂ŷ. Since disinte-

grations are essentially unique and the neighborhoods V̂ŷ overlap on positive

μ̂-measure subsets, all these conditional measures m̂ŷ,ẑ must be supported on

the same number, 1 or 2, of points. Thus, the map ξ in the previous paragraph

extends to a continuous invariant section on the whole M̂ , which contradicts

the assumptions of Theorem B.

8. Proof of Theorem B

If λ(A) = 0 then, trivially, A is a continuity point. Now assume that λ(A) > 0.

Then (see Kalinin [17, Theorem 1.4]) there exists some periodic point p of f such

that Aper(p)(p) is hyperbolic. Thus we may use Theorem 7.1 to conclude that

there are no su-states. Now the proof of continuity of the Lyapunov exponents

is entirely analogous to Section 4.

The same arguments also prove the converse: if the cocycle is hyperbolic at

some periodic point then, again by Theorem 7.1, there are no su-states and

thus the exponent cannot vanish. The proof of Theorem B is complete.
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Appendix A. Smooth natural extensions

We show that the natural extension of any Ck local diffeomorphism f :M →M

on a compact manifold admits a Ck realization.

SinceM is compact and f is locally injective, we may find families of open sets

{Ui, Vi : i = 1, . . . , N} such that: {U1, . . . , UN} coversM ; every Vi contains the

closure of Ui; and every f | Vi is injective. Take smooth functions hi : M → [0, 1]

such that hi | Ui ≡ 1 and hi | V c
i ≡ 0. Define

h(x) = (h1(x), . . . , hN (x))

for x ∈ M . Then h : M → [0, 1]N is such that h(x) �= h(y) for any pair (x, y)

with x �= y and f(x) = f(y). Since f is locally injective, the set of such pairs is

a compact subset of M2. Hence, there is δ > 0 such that ‖h(x)− h(y)‖ ≥ δ for

any (x, y) with x �= y and f(x) = f(y).

Let φ : M → R
m be a Whitney embedding of M into some Euclidean space,

and ψ : M × D → R
m be a tubular neighborhood: D denotes the open unit

ball in R
m−dimM and ψ is a smooth embedding with ψ(x, 0) = φ(x). Identify

M ×D with its image U = ψ(M ×D) through ψ. Fix λ < δ/4N and define

g :M ×D →M ×D, g(x, v) = (f(x), h(x)/2N + λv).

It is clear that g is well defined and a Ck local diffeomorphism, and the image

g(M ×D) is relatively compact in M ×D.

Suppose that g(x, v) = g(y, w). Then f(x) = f(y) and

h(x) − h(y) = 2Nλ(w − v).

In particular, ‖h(x) − h(y)‖ ≤ 4Nλ < δ. By the definition of δ, this implies

that x = y. Then the previous identities imply that v = w. This proves that g

is injective and, consequently, an embedding.

For each x̂ = (x−n)n ∈ M̂ and n ≥ 1 the set gn({x−n}×D) is a disk Dn(x̂) of

radius λn inside {x0}×D. These disks are nested and eachDn+1(x̂) is relatively

compact in Dn(x̂). Thus, the intersection consists of exactly one point, which

we denote as ι(x̂). By construction, the map ι : M̂ →M×D defined in this way

satisfies g ◦ ι = ι ◦ f̂ . Moreover, the image ι(M) coincides with
⋂

n g
n(M ×D)

and so it satisfies

g(ι(M̂)) = ι(M̂).
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