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ABSTRACT

We prove the equivalence of the determinacy of Σ0
3 (effectively Gδσ) games

with the existence of a β-model satisfying the axiom of Π1
2 monotone in-

duction, answering a question of Montalbán [8]. The proof is tripartite,

consisting of (i) a direct and natural proof of Σ0
3 determinacy using mono-

tone inductive operators, including an isolation of the minimal complexity

of winning strategies; (ii) an analysis of the convergence of such opera-

tors in levels of Gödel’s L, culminating in the result that the nonstandard

models isolated by Welch [18] satisfy Π1
2 monotone induction; and (iii)

a recasting of Welch’s [17] Friedman-style game to show that this deter-

minacy yields the existence of one of Welch’s nonstandard models. Our

analysis in (iii) furnishes a description of the degree of Π1
2-correctness of

the minimal β-model of Π1
2 monotone induction.

1. Introduction

In an infinite perfect information game, two players, Player I and Player

II, take turns choosing the digits x(i) of a real x ∈ ωω in sequence, as follows:

I x(0) x(2) . . . x(2n) . . .

II x(1) . . . x(2n+ 1) . . .
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A winning condition is simply a subset A ⊆ ωω; then Player I wins the play

x if x ∈ A, and Player II wins if x /∈ A. We call the game so defined G(A);

a game G(A) is determined if one of the players has a winning strategy in the

natural sense.

Axioms of determinacy assert that for all sets A of some fixed level of descrip-

tive complexity, the game G(A) is determined. These are well-studied in reverse

mathematics, in which the intrinsic strength of theorems are isolated by being

shown in a weak base theory to be equivalent to some “natural” mathematical

axiom (for a survey, see [19]). The results in this paper are a contribution to

this study: We show the statement that all games with Σ0
3 winning condition

are determined as equivalent to the existence of a standard model of the scheme

of Π1
2 monotone induction.

There is a great deal of precedent for calibrating determinacy strength in

low levels of the Borel hierarchy using axioms of inductive definition. In one

of the first studies in reverse mathematics, Steel [14] proved over RCA0 that

ATR0 is equivalent to both Δ0
1 -DET and Σ0

1 -DET. The relevance of monotone

inductive definitions was discovered by Tanaka [15], who showed over ACA0 that

Δ0
2 -DET is equivalent to Π1

1-TR, and [16] that over ATR0, Σ
0
2 -DET is equiva-

lent to Σ1
1-MI (see Definition 2.1 below). MedSalem and Tanaka [7] established

equivalences over ATR0 between k−Π0
2 -DET and [Σ1

1]
k-ID, an axiom allowing

inductive definitions using combinations of k-many Σ1
1 operators; furthermore,

they showed over Π1
3-TI that Δ

0
3 -DET is equivalent to [Σ1

1]
TR-ID, an axiom al-

lowing inductive definition by combinations of transfinitely many Σ1
1 operators.

Further results were given by Tanaka and Yoshii [20] characterizing the strength

of determinacy for pointclasses refining the difference hierarchy on Π0
2, again in

terms of axioms of inductive definition.

Beyond these pointclasses we have Σ0
3, where an exact characterization of

strength has been elusive (the precise proof-theoretic strength of this determi-

nacy is Question 28 of Montalbán’s [8]). The sharpest published bounds on this

strength were given by Welch [17], who showed that although Σ0
3 -DET (and

more) is provable in Π1
3-CA0, Δ

1
3-CA0 (even augmented by AQI, an axiom allow-

ing definition by arithmetical quasi-induction) cannot prove Σ0
3 -DET. On the

other hand, Montalbán and Shore [9] showed that Σ0
3 -DET (and indeed, any

true Σ1
4 sentence) cannot prove Δ1

2-CA0. This situation is further clarified by

the same authors in [10], where they show (among other things) that Σ0
3 -DET

implies the existence of a β-model of Δ1
3-CA0.
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Welch [18] went on to give a characterization of the ordinal stage at which

winning strategies in Σ0
3 games are constructed in L. There, the least ordinal γ

so that every Σ0
3 game is determined with a winning strategy definable over Lγ

is shown to be the least γ for which there exists an illfounded admissible model

M with an infinite descending sequence of nonstandard levels of L that fully Σ2-

reflect to standard levels below γ, and so that wfo(M) = γ (see Definition 4.1).

The work of Welch and Montalbán–Shore suggests that Σ0
3 -DET should be

equivalent to the existence of a β-model of some natural theory in second order

arithmetic, with the minimal such β-model being Lγ , where γ is as above. This

is what we show: Lγ is the minimal wellfounded model satisfying the axiom of

Π1
2 monotone induction, and indeed, Σ0

3 -DET is equivalent over Π1
1-CA0 to the

existence of such a model.

In Section 3, we show that winning strategies in Σ0
3 games are definable over

any β-model of Π1
2-MI. In Section 4, we prove that Welch’s infinite depth Σ2-

nestings furnish us with such β-models. We complete this circle of implications

in Section 5 by reproducing Welch’s lower bound argument in the base theory

Π1
1-CA0 to show that Σ0

3 determinacy implies the existence of an infinite depth

Σ2-nesting. We conclude with an analysis of theΠ1
2 relations which are correctly

computed in Lγ : these are precisely the relations ¬�Σ0
3 in parameters from Lγ .

Acknowledgments. We thank Itay Neeman for encouragement during the

preparation of this work, and Donald A. Martin for referring us to his paper

[6], which inspired the proofs in Section 4. The results here appear as Chapter

2 of the author’s Ph.D. dissertation.

2. Preliminaries: Games and operators

In what follows, we denote subsets of ω by capital Roman letters X,Y, Z, ele-

ments of ω by lowercase Roman letters from i up to n, ordinals by lowercase

Greek α, β, γ, . . . and reals (elements of Baire space ωω) by w, x, y, z. Back-

ground on the pointclasses Π1
n, Σ

0
n, the difference between bold- and lightface,

relativizations Σ0
n(z), etc., may be found in [11].

We restrict our attention to games with moves in ω. A tree on ω is a non-

empty set T ⊆ ω<ω that is closed under initial segment; [T ] denotes the set of

infinite branches of T , and for p ∈ T , Tp denotes the subtree of T with stem p,

that is, Tp = {q ∈ T | q ⊆ p ∨ p ⊆ q}. For a set A ⊆ [T ], the game on T with
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payoff A, denoted G(A;T ), is defined as the infinite perfect information game

in which two players, I and II, alternate choosing successive nodes of a branch

x of T ; we call such an infinite branch a play. Player I wins the play if x ∈ A;

otherwise, Player II wins. We write G(A) for G(A;ω<ω).

A strategy for I in a game on T is a partial function σ : T ⇀ ω that assigns

to an even-length position s ∈ T a legal move σ(s) for I at s, that is, σ(s) ∈ ω

so that s�〈σ(s)〉 ∈ T . We require the domain of σ to be closed under legal

moves by II as well as moves by σ; note then that if T contains terminal nodes,

it may be the case that no strategy for I exists (though nothing will be lost if we

restrict our attention here to trees without terminal nodes). Strategies for II are

defined analogously. If an infinite play x can be obtained by playing against a

strategy σ, we say x is according to or compatible with σ. We say a strategy

σ is winning for Player I (Player II) in G(A;T ) if every play according to σ

belongs to A ([T ] \ A, respectively). A game G(A;T ) is determined if one

of the players has a winning strategy. For a pointclass Γ, Γ-DET denotes the

statement that G(A;ω<ω) is determined for all A ⊆ ωω in Γ.

We furthermore define a quasistrategy for Player II in T to be a subtree

W ⊆ T , again with no terminal nodes, that does not restrict Player I’s moves,

in the sense that whenever p ∈W has even length, then every 1-step extension

p�〈s〉 ∈ T belongs to W . A quasistrategy may then be thought of as a multi-

valued strategy. (Similar definitions of course can be made for Player I, but at

no point will we need to refer to quasistrategies for Player I.)

Quasistrategies are typically obtained in the following fashion: if Player I does

not have a winning strategy in G(A;T ), then setting W to be the collection of

p ∈ T so that I doesn’t have a winning strategy in G(A;Tp), we have that W

is a quasistrategy for II in T . This W is called II’s nonlosing quasistrategy

in G(A;T ).

We recall the definition of the game quantifier � (see [11] 6D): for a set

B ⊆ R× ωω, R a Polish space, define

�B = {x ∈ R | Player I has a winning strategy in G(Rx;ω
ω)},

where Rx is the x-slice of R,

Rx = {y ∈ ωω | 〈x, y〉 ∈ R}.
Then for pointclasses Γ, �Γ is the pointclass of sets �B with B ∈ Γ. In our

context, R will be either ω or ω×P (ω<ω), and Γ will typically be Σ0
3 or one of

its relativizations.
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The language L2 of second order arithmetic and the various comprehension

schemes Γ-CA0 and choice schemes Γ-AC0 are defined as usual; a comprehensive

resource is [13]. We recall that an L2-model is an ω-model if its set of type 0

objects is isomorphic to (ω,<). WhenM is a countable ω-model of a sufficiently

strong theory, we typically conflate M with the transitive countable set whose

elements are coded by reals in M.

An ω-model M is a β-model if it is Σ1
1-correct; equivalently, if whenever

T ⊆ ω<ω is a tree (coded by a real) in M, and [T ] is non-empty (in V ), then

there is a branch x ∈ [T ] (coded) in M. Notice that, given a strategy σ, tree T ,

and Borel set A, the statement that “σ is winning for I in the game G(A;T )”

is Π1
1 in A, T, σ (it asserts the inexistence of a branch in [σ] ∩A), and therefore

is absolute for β-models containing these parameters.

Definition 2.1: Let Γ be a pointclass. We say an operator Φ : P(ω) → P(ω) is

a Γ operator if

{〈n,X〉 | n ∈ Φ(X)} ∈ Γ;

Φ is monotone if it is ⊆-increasing, that is,

(∀X,Y )X ⊆ Y → Φ(X) ⊆ Φ(Y ).

The axiom scheme of Γ monotone induction, denoted Γ-MI, asserts for

each Γ operator Φ : P(ω) → P(ω) that if Γ is monotone, then there exists an

ordinal o(Φ) and sequence 〈Φξ〉ξ≤o(Φ) such that, setting

Φ<ξ =
⋃

ζ<ξ

Φζ ,

we have

• for all ξ ≤ o(Φ), Φξ = Φ(Φ<ξ) ∪ Φ<ξ,

• Φo(Φ) = Φ<o(Φ), and

• o(Φ) is the least ordinal with this property.

Φo(Φ) is the least fixed point of Φ, denoted Φ∞.

This definition is clearly equivalent to one with an arbitrary countable discrete

space in place of ω; in our application, this space will be ω<ω.

There is a prewellorder ≺Φ with field Φ∞ ⊆ ω naturally associated with the

sequence 〈Φξ〉ξ≤o(Φ). Namely, set m ≺Φ n if and only if the least ξ with m ∈ Φξ

is less than the least ζ with n ∈ Φζ .
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We are interested in the case where Γ is either Π1
2 or Π1

2(z) for some fixed

real z. The formalization of Π1
2(z)-MI in L2 is the schema asserting the existence

of (a real coding) the prewellorder ≺Φ, for each Π1
2(z) monotone operator Φ.

Note for such Φ, the relation “X =≺Φ”, as a relation holding of X ∈ P(ω×ω),

is arithmetical in Σ1
2(z), i.e. is obtained from Σ1

2(z) conditions via Boolean

combinations and natural number quantification.

3. Proving determinacy

In this section we prove the following theorem.

Theorem 3.1: Let M be a β-model of Π1
2-MI. Then for any real z ∈ M and

Σ0
3(z) set A, either

(1) Player I wins G(A) with a strategy σ ∈ M; or

(2) Player II wins G(A) with a strategy Δ1
3(z)-definable over M.

It will be shown in Section 5 that the degree of definability in the second

item is sharp: If for some real z ∈ M, M is the minimal β-model of Π1
2-MI

containing z, then there will be Σ0
3(z) games which Player II wins but no winning

strategy for II belongs to M. Since any model of Π1
2-MI is trivially a model

of Π1
2-CA0, no strategy as in (2) can be definable by Boolean combinations of

Σ1
2(z) conditions over M.

We sketch the idea of the proof, which traces back to Morton Davis’s original

proof of Σ0
3 determinacy [2]. Let A ⊆ ωω be a Σ0

3 set, so that

A =
⋃

k∈ω
Bk

for some recursively presented sequence 〈Bk〉k∈ω of Π0
2 sets. The idea behind

the proof that the game G(A) is determined is a simple one: if Player I does not

have a winning strategy, then Player II refines to a quasistrategy W0 so that

no infinite plays in W0 belong to B0, and so that W0 doesn’t forfeit the game

for Player II (in the sense that I has no winning strategy in G(A;W0)). Having

done this, Player II plays inside W0 and at all positions of length 1, refines

further to a W1 which avoids B1 without forfeiting the game. Then refine to

W2 at positions of length 2, and so on. The ultimate refinement of the sequence

W0,W1,W2, . . . of quasistrategies gives a winning quasistrategy for Player II in

G(A), since every infinite play must eventually stay in each Wn, and so avoid

each Bn.
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The key claim that makes this proof work is Lemma 3.2 below, which asserts

that whenever Player I does not have a winning strategy in G(A;T ), then for

all k, there is such a quasistrategy Wk for II.

Lemma 3.2: Let z be a real and work in Π1
2(z)-MI+Π1

2-CA0. Suppose T ⊆ ω<ω

is a tree, recursive in z, with no terminal nodes, and fix B ⊆ A ⊆ [T ] with

B ∈ Π0
2(z) and A ∈ Δ1

1(z). If p ∈ T is such that I does not have a winning

strategy in G(A;Tp), then there is a quasistrategy W for II in Tp so that

• [W ] ∩B = ∅, and
• I does not have a winning strategy in G(A;W ).

In keeping with terminology first established in [2], we say a position p for

which such a quasistrategy W exists is good and that W is a goodness-

witnessing quasistrategy for p (relative to T,B,A).

To motivate the proof of Lemma 3.2, we describe a general template for prov-

ing the determinacy of a game G(A;T ) using iteration of a monotone operator

Φ : P (T ) → P (T ).

Speaking vaguely, one defines Φ(X) for X ⊆ ω<ω to consist of positions from

which it is “easy” for I to either enter the set X , or to win the game G(A)

outright. Iterating application of Φ to the empty set of positions, we obtain an

increasing sequence

∅ ⊆ Φ(∅) ⊆ Φ(Φ(∅)) · · · ,
with least fixed point Φ∞. If the initial position ∅ = 〈〉 belongs to Φ∞, then one

argues by induction that I has a winning strategy (I plays to “decrease rank”

by aiming to enter positions in Φα for smaller α); if on the other hand ∅ /∈ Φ∞,

one uses the fact that Φ∞ is a fixed point to argue that it is so “difficult”

for I to enter Φ∞ (and hence to win G(A)) that Player II must have a winning

strategy. An accessible example in this family of arguments is Wolfe’s proof of

Σ0
2 determinacy (see Theorem 6A.3 in [11]).

In the present case, we modify Davis’s original proof of Lemma 3.2 so that

Wk is obtained by iteration of a certain monotone operator. The complexity of

this operator is ¬�Σ0
3 in the parameter T , and so in particular Π1

2(T ).

We remark that Π1
2-CA0 implies Δ1

2-CA0, which is equivalent to Σ1
2-AC0 (see

VII.6.9 in [13]); this choice principle will be used several times in the course of

the proof.
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Proof of Lemma 3.2. Letting B be as in the statement of the lemma, fix a set

U ⊆ ω × T recursive in z so that, setting

Un = {p ∈ T | (n, p) ∈ U} and Dn = {x ∈ [T ] | (∃k)x�k ∈ Un},
we have B =

⋂
n∈ωDn. For convenience, we may further assume that each Un

is closed under end-extension in T (i.e., if p ⊆ q ∈ T and p ∈ Un, then q ∈ Un),

and that |p| > n whenever p ∈ Un.

We define an operator Φ : P(T ) → P(T ) by setting, for X ⊆ T ,

p ∈ Φ(X) ⇐⇒ (∃n)(∀σ) if σ is a strategy for I in T , then

(∃x)x is compatible with σ, x /∈ A, and(∀k)x�k /∈ Un \X.
The operator Φ is clearly monotone on P(T ), and the relation p ∈ Φ(X) is Π1

2(z)

because (by Σ1
2-AC0) this pointclass is closed under existential quantification

over ω (see [13], Theorem VII.6.9.1). We can write this more compactly by

introducing an auxiliary game where Player I tries either to force the play to

belong to A, or to at some finite stage enter the set Un \X : Define for X ⊆ T

and n ∈ ω,

EXn = A ∪ {x ∈ [T ] | (∃k)x�k ∈ Un \X}.
Then

p ∈ Φ(X) ⇐⇒ (∃n) I doesn’t have a winning strategy in G(EXn ;Tp).

Now by Π1
2(z)-MI let 〈Φα〉α≤o(Φ) be the iteration of the operator Φ with least

fixed point Φ∞. (Note this is our sole use of the main strength assumption of the

lemma, Π1
2(z)-MI.) Let ≺Φ be the associated prewellorder of Φ∞ ⊆ ω; formally,

we regard definitions and proofs in terms of 〈Φα〉α≤o(Φ) as being carried out in

the theoryΠ1
2-CA0 of second order arithmetic, using the real≺Φ as a parameter.

Claim 3.3: If p ∈ T \ Φ∞, then I has a winning strategy in G(A;Tp).

Proof. For each q ∈ T \ Φ∞ and n ∈ ω, we let σq,n be a winning strategy for

I in G(EΦ∞
n ;Tq), as is guaranteed to exist by the above remarks and the fact

that q /∈ Φ(Φ∞) = Φ∞. By Σ1
2-AC0, we may fix a real 
σ coding a sequence of

such, so that (
σ)〈q,n〉 = σq,n for all such pairs q, n.

Supposing now that p ∈ T \ Φ∞, we describe a strategy σ for Player I in

Tp from the parameter 
σ as follows. Set p0 = p. Let n0 be the least n so

that p0 /∈ Un (such exists by our simplifying assumption that |q| > n whenever

q ∈ Un); note also that no initial segment of p0 can belong to Un.
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Suppose inductively that we have reached some position pi /∈ Φ∞ and have

fixed ni such that pi /∈ Uni . Play according to σpi,ni until, if ever, we reach

a position q ∈ Uni \ Φ∞. Then set pi+1 = q, and let ni+1 be least such that

pi+1 /∈ Uni+1 .

Note the strategy just described is arithmetical in the parameters z, 
σ, and

so exists; call it σ. We claim σ is winning for I in G(A;Tp).

Let x ∈ [Tp] be a play compatible with σ. Then n0, p0 are defined. If ni+1 is

undefined for some i, then fixing the least such i, we must have that x is com-

patible with the strategy σpi,ni ; since this strategy is winning in G(EΦ∞
ni

;Tpi),

we have x ∈ EΦ∞
ni

. Now since ni+1 was undefined, we never reached a position

in Uni \ Φ∞, and so x ∈ A, by definition of the set EΦ∞
ni

.

On the other hand, if ni is defined for all i, then by definition of the strategy σ,

we have pi ⊆ x for all i, and for each i, pi ∈
⋂
n<ni

Un (by definition of ni, and

because the sets Un are closed under end-extension in T ). So

x ∈
⋂

n∈ω
Dn = B ⊆ A.

We have shown σ is winning for Player I in G(A;Tp).

Claim 3.4: If p ∈ Φ∞, then p is good.

Proof. The construction of a quasistrategy W p witnessing goodness of p pro-

ceeds inductively on the ≺Φ-rank of p ∈ Φ∞, that is, on the least ordinal α

so that p ∈ Φα. Given such p, α, fix the least n so that I does not have a

winning strategy in the game G(EΦ<α

n ;Tp). In W p, have II play according to

II’s non-losing quasistrategy in G(EΦ<α

n ;Tp) until, if ever, a position q in Un is

reached. Since this non-losing quasistrategy must avoid Un \Φ<α by definition

of EΦ<α

n , we must have q ∈ Φ<α; inductively, we have some goodness-witnessing

quasistrategyW q for q, so have II switch to play according to this quasistrategy.

Here is a more formal definition of the quasistrategy W p just described. For

p ∈ Φ∞, define W p to be the set of positions q ∈ Tp for which there exists some

sequence 〈(αi, ni)〉|p|≤i≤|q| so that, whenever |p| ≤ i ≤ |q|,
• if i = |p|, or i > |p| and q�i ∈ Uni−1 , then

– αi is the least α so that q�i ∈ Φα;

– ni is the least n so that I has no winning strategy in G(EΦ<αi

n ;Tq�i);
• if i > |p| and q�i /∈ Uni−1 , then αi = αi−1, ni = ni−1; and

• if i < |q|, q�(i+ 1) is in II’s non-losing quasistrategy in G(EΦ<αi

ni
;Tq�i).
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Here quantification over ordinals α < o(Φ) is tantamount to quantification over

natural number codes for such as furnished by the prewellorder ≺Φ. The most

complicated clauses in the above definition are those involving assertions of the

form “I has no winning strategy in the game G(EΦ<αi

n ;Tq�i)” (equivalently, “q�i
belongs to II’s non-losing quasistrategy” in this game), and these are Π1

2 in the

parameter ≺Φ. So the criterion for membership inW p is arithmetical in Σ1
2(≺Φ)

conditions, and therefore by Π1
2-CA0 the set W p is guaranteed to exist.

We need to verifyW p is a quasistrategy for Player II in Tp. An easy induction

shows that for each q ∈W p, there is a unique witnessing sequence

〈(αi, ni)〉|p|≤i≤|q|

and this sequence depends continuously on q; that the αi are non-increasing;

and that I has no winning strategy in G(EΦ<αi

ni
;Tq�i) whenever |p| ≤ i ≤ |q|.

For q ∈W p, we let αq, nq denote the final pair (indexed by |q|) in the sequence

witnessing this membership. By the above remarks, I has no winning strategy

in G(EΦ<αq

nq ;Tq), and by the final condition for membership inW p, the one-step

extensions q�〈l〉 inW p are exactly the one-step extensions of q in II’s non-losing

quasistrategy in this game. It follows that W p is a quasistrategy for II in Tp.

We claim W p witnesses goodness of p. We first show

[W p] ∩B = ∅.
Given any play x ∈ [W p], we have some least i so that αj = αi for all j ≥ i;

then for all j > i, we have x�j belongs to II’s non-losing quasistrategy in

G(EΦ<αi

ni
;Tx�i).

In particular, for no k do we have x�k ∈ Uni . Then x /∈ Dni , so x /∈ B as

needed.

We just need to show I has no winning strategy in G(A;W p). We show

something stronger, namely that I has no winning strategy in G(A;W p
q ) for

each q ⊇ p in W p. This argument is by induction on αq. So assume that there

is no winning strategy for I in G(A;W p
r ) whenever α

r < αq.

Suppose towards a contradiction that σ is a winning strategy for Player I

in G(A;W p
q ). Let j be least so that αq = αj . Then q is in II’s non-losing

quasistrategy in G(EΦ<αj

nj
;Tq�j). We claim no r ⊇ q compatible with σ is in

Unj . For otherwise, we have r ∈ Φ<αj , so that αr < αj = αq, and σ is a winning

strategy for I in G(A;W p
r ). This contradicts our inductive hypothesis.
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So σ cannot reach any position in Unj . By our definition of W p, we have that

the strategy σ stays inside II’s non-losing quasistrategy for G(EΦ<αj

nj
;Tq�j). But

since σ is winning for I in G(A;Tq�j) and A ⊆ EΦ<αj

nj
, this is a contradiction.

We conclude that I has no winning strategy in G(A;W p
q ); inductively, the

claim follows for all q ∈ W p extending p, so that in particular, W p witnesses

goodness of p.

The last two claims show that every p ∈ T is either a winning position for I

in G(A;T ), or is good. This proves the lemma.

For future reference, let us refer to theW p defined in the proof as the canon-

ical goodness-witnessing quasistrategy for p (relative to T,B,A). We have the

following remark, which will be important in computing the complexity of win-

ning strategies for Player II:

Remark 3.5: Since “≺Φ witnesses the instance of Π1
2(z)-MI at Φ” is Δ1

3(z), the

statement “W is the canonical goodness-witnessing quasistrategy for p relative

to T,B,A” is likewise Δ1
3(z) as a relation on pairs 〈W, p〉.

Proof of Theorem 3.1. The proof proceeds from Lemma 3.2 as usual (see [2],

[5]); we give a detailed account here, in order to isolate the degree of definability

of II’s winning strategy.

Fix a β-model M of Π1
2-MI. Suppose A is Σ0

3(z) for some z ∈ M; say

A =
⋃

k∈ω
Bk

with the Bk uniformly Π0
2(z). By the previous lemma, whenever T ∈ M is a

tree in M, and p ∈ T is a position so that in M, there is no winning strategy

for I in G(A;Tp), then p is good relative to T,Bk, A, for all k; that is, for each

k there is Wk a quasistrategy for II in Tp so that

• [Wk] ∩B = ∅;
• I does not have a winning strategy in G(A;Wk).

The idea of the proof is to repeatedly apply the lemma inside M. At positions

p of length k, II refines her present working quasistrategy Wk−1 to one Wk

witnessing goodness of p relative to Wk−1, Bk, A, so “dodging” each of the

Π0
2(z) sets Bk, one at a time.

More precisely: Suppose I does not win G(A), where A is Σ0
3(z) for some

z ∈ M. Then since M is a β-model, the same must hold in M (see the remark

preceding Definition 2.1). So work in M.
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Let W ∅ be the canonical goodness-witnessing quasistrategy for ∅ relative to

ω<ω, B0, A as constructed in the proof of Lemma 3.2. Then let H∅ be II’s non-

losing quasistrategy in G(A;W ∅) (so that for no p ∈ H∅ do we have that I wins

G(A;W ∅
p )).

Suppose inductively that for some k, we have subtrees Hp of T , defined for a

subset of p ∈ T with length ≤ k, so that

(1) each Hp is a quasistrategy for II in Tp and belongs to M;

(2) [Hp] ∩B|p| = ∅;
(3) for no q ∈ Hp does I have a winning strategy in G(A;Hp

q );

(4) if p ⊆ q, then Hq ⊆ Hp whenever both are defined;

(5) if |p| < k and p�〈l〉 ∈ Hp, then Hp�〈l〉 is defined.

In order to continue the construction, we need to define quasistrategies Hp�〈l〉,
whenever |p| = k, Hp is defined, and p�〈l〉 ∈ Hp. Given such p and l, we have

that I has no winning strategy in G(A;Hp
p�〈l〉) by (3). So applying Lemma 3.2

inside M, let W p�〈l〉 be the canonical goodness-witnessing strategy for p�〈l〉
relative to Hp, Bk+1, A. Then let Hp�〈l〉 be II’s non-losing quasistrategy in

G(A;W p�〈l〉). It is easy to see that this quasistrategy satisfies the properties

(1)–(4), so we have the desired system of quasistrategies Hq satisfying (5), for

|q| = k + 1.

Now set p ∈ H if and only if for all i < |p|, Hp�i is defined and p ∈ Hp�i. It

follows from (1) and (5) that H is a quasistrategy for II in T , and by (4) we

have Hp ⊆ Hp for each p ∈ H . By (2) then, [H ]∩Bk = ∅ for all k ∈ ω, so that

[H ] ∩A = ∅.
Now, step outsideM. Observe that for each p ∈ H , we have that the sequence

〈Hp�i〉i<|p| exists in M, since it is obtained by a finite number of applications

of Π1
2-MI and Π1

2-CA0. Since M is a β-model, it really is the case (in V ) that

[H ] ∩ Bk = ∅ for all k ∈ ω (by item (2) of our construction, M satisfies this

condition, which is Π1
1 in parameters in M). Though H need not belong to M,

we claim it is nonetheless a Δ1
3(z)-definable class over M. For p ∈ H if and

only if there exists a sequence 〈Wi, Hi〉i<|p|, so that for all i < |p|,
• Wi is II’s canonical goodness-witnessing strategy for p�i, relative to

Hi−1, Bi, A (where we set H−1 = ω<ω);

• Hi is II’s non-losing quasistrategy in G(A;Wi) at p�i;
• for all i < |p|, p ∈ Hi.
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This is a Σ1
3(z) condition, by Remark 3.5. And note that p /∈ H if and only

if there is a sequence 〈Hi,Wi〉i≤l, for some l < |p|, satisfying the first two

conditions for i ≤ l, but so that p /∈ Hl. This is likewise Σ1
3(z), so that H is

Δ1
3(z)-definable in M.

Given a Δ1
3(z) definition of the quasistrategy H , it is easy to see that the

strategy τ for II obtained by taking τ(p) to be the least l so that p�〈l〉 ∈ H

is likewise Δ1
3(z) and winning for II in G(A;T ). This completes the proof of

Theorem 3.1.

4. Π1
2 monotone induction from infinite depth Σ2-nestings

In this section, the theories of KP and Σ1-Comprehension are defined in the

language of set theory as usual (see, e.g., [1]). We will furthermore make use of

the theories KPI0, which asserts that every set is contained in some admissible

set (that is, some transitive model of KP), and KPI, which is the union of KP and

KPI0. KPI0 is relevant largely because it is a weak theory that is strong enough

to prove Shoenfield absoluteness; in particular, Π1
2 expressions are equivalent

over KPI0 to Π1 statements in the language of set theory.

We remark that all consequences of KPI0 in second order arithmetic are prov-

able in Π1
1-CA0 (cf. [13], VII.3.36). Since we primarily work with models in the

language of set theory in this section, it is convenient to take KPI0 as our base

theory, but all of the results proved here can be appropriately reformulated as

statements about countably coded β-models in second order arithmetic (as in

Chapter VII of [13]).

The wellfounded part of a model M = (M, ε) in the language of set theory

is the largest downward ε-closed subset W of M so that ε�W is wellfounded.

For M an illfounded model of KP, we identify the wellfounded part of M with

its transitive collapse, denote this wfp(M), and set

wfo(M) = wfp(M) ∩ON

(the wellfounded ordinal of M). Recall we say M is an ω-model if

ω < wfo(M).

The following definition is due to Welch [18].
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Definition 4.1: ForM an illfounded ω-model of KP in the language of set theory,

an infinite depth Σ2-nesting based on M is a sequence 〈ζn, sn〉n∈ω of pairs

so that for all n ∈ ω,

(1) ζn ≤ ζn+1 < wfo(M),

(2) sn ∈ ONM \wfo(M),

(3) M |= sn+1 < sn,

(4) (Lζn ≺Σ2 Lsn)
M.

We say that a level Lα of L Σω-projects to ρ ≤ α if ρ is least so that there

is a subset of ρ that is definable over Lα which does not belong to Lα. If

this subset is Σ1 definable in some parameter, we say Lα projects to ρ and

denote this ordinal ρ1. If Lα Σω-projects to ρ, then there is a partial function

f : ρ ⇀ Lα, definable over Lα, that surjects onto Lα (see [4]).

Lemma 4.2: Suppose γ1 ≤ γ2 < δ2 < δ1 are ordinals so that

(1) Lγ1 ≺Σ1 Lδ1 ;

(2) Lγ2 ≺Σ2 Lδ2 ;

(3) δ1 is the least admissible ordinal above δ2;

(4) for all α ≤ δ2, Lα Σω-projects to ω.

Then Lγ2 satisfies Π1
2(z)-MI, for all reals z ∈ Lγ1 .

Note that the hypothesis (2) implies Lγ2 is a model of Σ2-Collection, i.e. for

all Σ2 relations R we have

Lγ2 |= (∀a)[(∀x ∈ a)(∃y)R(x, y)] → (∃b)(∀x ∈ a)(∃y ∈ b)R(x, y).

The elementarity then implies each of γ1, γ2, δ2 is a limit of Σ2-admissible ordi-

nals.

Item (4) serves as a simplifying assumption to ensure that every Lα is count-

able, as witnessed by a surjection f : ω → Lα with f ∈ Lα+1. Note the least

level of L that does not Σω-project to ω is a model of ZF−; since this is far

beyond the strength of the theories considered here, we don’t lose anything by

assuming (4).

Proof. Let Φ : P(ω) → P(ω) be a Π1
2(z) monotone operator in Lγ2 , in the sense

that there is a Π0
1(z) condition T so that

n ∈ Φ(X) ⇐⇒ Lγ2 |= (∀x)(∃y)T (n,X, x, y, z)
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whenever n ∈ ω and X ∈ P(ω)∩Lγ2 , and whenever X ⊆ Y ⊆ ω belong to Lγ2 ,

we have Φ(X) ⊆ Φ(Y ). Notice that for such X

n ∈ Φ(X) ⇐⇒ (∀x ∈ Lγ2)(∃y)T (n,X, x, y, z),
by Mostowski absoluteness (see I.8 in [1]) and because γ2 is a limit of admissible

ordinals as remarked above. We therefore regard the operator as defined in this

way, so that “n ∈ Φ(X)” makes sense even for sets X /∈ Lγ2 (though this

extended Φ may fail to be monotone).

For each ordinal η, we define the approximation Φη as the operator Φ rela-

tivized to Lη,

n ∈ Φη(X) ⇐⇒ (∀x ∈ Lη)(∃y)T (n,X, x, y, z).
The point is that the operator Φη is then Σ1

1 in any real parameter coding the

countable set R ∩ Lη (for example, Th(Lη), the characteristic function of the

theory of Lη under some standard coding), and so each Φη will be correctly

computed in, e.g., Lα for α a limit of admissibles above η.

Obviously Φ = Φγ2 , so is monotone in Lγ2 . But for η �= γ2 we may not even

have that the operators Φη are monotone on P(ω) ∩ Lη. So we instead work

with the obvious “monotonizations”,

n ∈ Ψη(X) ⇐⇒ (∃X ′ ⊆ X)n ∈ Φη(X
′)

⇐⇒ (∃X ′ ⊆ X)(∀x ∈ Lη)(∃y)T (n,X ′, x, y, z).

This relation is again Σ1
1(Th(Lη), z), and

Ψγ2(X) = Φγ2(X) = Φ(X)

for X ∈ Lγ2 .

Let 〈Ψξη〉ξ≤o(Ψη) be the sequence obtained via iterated application of the oper-

ator Ψη, as in Definition 2.1. The most important properties of these sequences

are captured in the following two claims.

Claim 4.3: If η < η′, then (∀X)Ψη(X) ⊇ Ψη′(X).

Proof. Suppose n ∈ Ψη′(X); then

(∃X ′ ⊆ X)(∀x ∈ Lη′)(∃y)T (n,X ′, x, y, z),

and any such X ′ will likewise be a witness to n ∈ Ψη(X), since the latter is

defined the same way but with the universal quantifier bounded by the smaller

set Lη.
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Claim 4.4: Suppose ξ < ξ′ and η < η′. Then

(1) Ψξη ⊆ Ψξ
′
η ;

(2) Ψξη ⊇ Ψξη′ .

Proof. (1) is by induction and monotonicity of Ψη. (2) follows from induction

and the chain of inclusions, for X ⊇ Y ,

Ψη′(Y ) ⊆ Ψη′(X) ⊆ Ψη(X),

the first holding by monotonicity of Ψη′ , the second by the previous claim.

So the array 〈Ψξη〉 is increasing in ξ and decreasing in η. Applying this claim

with ξ = ω1, we have Ψξη = Ψ∞
η , so that Ψ∞

η ⊇ Ψ∞
η′ whenever η < η′.

We now consider definability issues with respect to the operators Ψη and the

associated sequences, with the aim of showing the levels of L under consider-

ation are sufficiently closed to correctly compute these objects, and ultimately

ensuring that the sequences 〈Ψξη〉ξ≤o(Ψη) converge to the sequence of interest

〈Ψξγ2〉ξ≤o(Ψγ2)
as η → γ2.

Claim 4.5: Suppose z ∈ Lα and Lα |= KPI. Then the relation “n ∈ Ψξη” (as a

relation on 〈n, ξ, η〉 ∈ ω × α× α) is ΔLα
1 in the parameter z. Consequently, for

all η < α and ν < α, the sequence 〈Ψξη〉ξ<ν belongs to Lα.

Proof. The relation n ∈ Ψη(X) is, as remarked above, Σ1
1(z,Th(Lη)) on n,X ,

and so is Π1 over the least admissible set containing z, η. Since every set is

contained in some admissible set Lβ with β < α, we have that “n ∈ Ψη(X)” is

Δ1(z) over Lα. The last part of the claim then follows from Σ1-recursion inside

Lα, using the ΔLα
1 (z)-definability of the relation Y = Ψη(X).

Claim 4.6: Suppose z ∈ Lα, η < α and Lα is a model of Σ1-Comprehension.

Then o(Ψη) < α, and 〈Ψξη〉ξ≤o(Ψη) ∈ Lα. Moreover, the relation n ∈ Ψ∞
η (on

ω × α) is ΔLα
1 (z).

Proof. Note such Lα satisfies KPI, so by the previous claim together with Σ1-

Comprehension in Lα, Pη := {n ∈ ω | (∃ξ < α)n ∈ Ψξη} =
⋃
ξ<αΨ

ξ
η ∈ Lα.

By admissibility, the map on Pη sending n to the least ξ such that n ∈ Ψξη is

bounded in α, and the claim is immediate. The last assertion holds because

in Lα,

n ∈ Ψ∞
η ⇐⇒ (∃ξ)n ∈ Ψξη ⇐⇒ (∀ξ)(Ψξη = Ψξ+1

η → n ∈ Ψξη),

which proves the claim.
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Claim 4.7: Suppose z ∈ Lα, and that α is a limit of ordinals β so that Lβ is

a model of Σ1-Comprehension. Then the relation n ∈ Ψ∞
η is ΔLα

1 (z).

Proof. Immediate from the previous claim and the fact that the sequences are

correctly computed in models of KPI0.

Claim 4.8: If ξ < γ2, then for some η0 < γ2 we have Ψξη0 = Ψξγ2 ; furthermore,

〈Ψζγ2〉ζ<ξ ∈ Lγ2 .

Proof. The set

Qξ = {n ∈ ω | (∃η < γ2)n /∈ Ψξη}
is a member of Lγ2 by Σ1-Comprehension there. Now the map sending n ∈ Qξ

to the least η such that n /∈ Ψξη is Δ1, so by admissibility, is bounded by some

η0 < α. Recall the sequence 〈Ψξη〉η∈ON is decreasing in η; so

n ∈ Ψξη0 ⇐⇒ Lγ2 |= (∀η)n ∈ Ψξη ⇐⇒ Lδ2 |= (∀η)n ∈ Ψξη

=⇒ n ∈ Ψξγ2 =⇒ n ∈ Ψξη0 .

Note we have used the fact that Lγ2 ≺Σ1 Lδ2 . For the last part of the claim,

consider the map sending ζ < ξ to the least η0 such that (∀η > η0)Ψ
ζ
η = Ψζη0 .

This map is Π1-definable, so by Σ2-Collection in Lγ2 , we have a bound η̄ < γ2,

and for each ζ < ξ, Ψζη̄ = Ψζγ2 . By Claim 4.5 the sequence 〈Ψζη̄〉ζ<ξ = 〈Ψζγ2〉ζ<ξ
is in Lγ2 .

Note that by the proof of Claim 4.8, for this η0, Ψ
ξ
η0 = Ψξη whenever ξ < γ2

and η0 ≤ η < δ2.

Claim 4.9: For all ξ < γ2, Ψ
ξ
γ2 = Ψξδ2 ; consequently Ψ<γ2γ2 = Ψ<γ2δ2

.

Proof. By using induction on ξ and since Ψ<ξγ2 ∈ Lγ2 for all ξ < γ2 by the

previous claim, it is sufficient to show Ψγ2(X) = Ψδ2(X) whenever X ∈ Lγ2 .

We already know ⊇ holds by Claim 4.3.

So suppose n ∈ Ψγ2(X). Then for some X ′ ⊆ X , n ∈ Φγ2(X
′) by definition

of Ψγ2 . Then n ∈ Φγ2(X) = Φ(X), by monotonicity of Φ = Φγ2 in Lγ2 . So

Lγ2 |= (∀x)(∃y)T (n,X, x, y, z)

so that by Σ1-elementarity (this is enough, since Π1
2 relations are ΠKPI0

1 ), Lδ2
models the same. Thus n ∈ Ψδ2(X) (with witness X ′ = X).



88 S. HACHTMAN Isr. J. Math.

We haven’t yet used the full strength of Lγ2 ≺Σ2 Lδ2 , nor, for that matter, any

of the assumptions on γ1, δ1. We appeal to Σ2-elementarity to show that in fact

o(Ψδ2) ≤ γ2; the assumptions on γ1, δ1 will be used to show that Ψ∞
δ2

= Ψ∞
γ2 , and

it will follow that the operator Ψγ2 (which is equal to Φ) stabilizes inside Lγ2 .

Notice that by Claims 4.4 and 4.8, Ψξγ2 =
⋂
η<γ2

Ψξη for all ξ < γ2. So

Ψ<γ2γ2 =
⋃

ξ<γ2

Ψξγ2 = {n ∈ ω | (∃ξ < γ2)(∀η < γ2)n ∈ Ψξη}.

This set is Σ2-definable over Lγ2 . By Claim 4.4, Ψγ2δ2 ⊆ Ψγ2η for all η < δ2, and

we have

Ψγ2δ2 ⊆ {n ∈ ω | (∀η < δ2)n ∈ Ψγ2η } ⊆ {n ∈ ω | (∃ξ < δ2)(∀η < δ2)n ∈ Ψξη}.
(The second inclusion holds simply because γ2 < δ2.) By the assumed Σ2-

elementarity Lγ2 ≺Σ2 Lδ2 , this last set is precisely Ψ<γ2
γ2 . Putting this together

with Claim 4.9,

Ψγ2δ2 ⊆ Ψ<γ2γ2 = Ψ<γ2δ2
⊆ Ψγ2δ2

so that Ψγ2δ2 = Ψ<γ2δ2
is the least fixed point of Ψδ2 , and Ψ<γ2γ2 = Ψ∞

δ2
.

Claim 4.10: Ψ∞
δ2

= Ψ∞
γ2 .

Proof. As usual, Claim 4.4 and γ2 < δ2 gives us the inclusion ⊆. We have

Ψ∞
δ2

= Ψ<γ2γ2 ∈ Lδ2 by Claim 4.5. Suppose n /∈ Ψ∞
δ2
. Then

Lδ1 |= (∃η)(∃P )(∀m ∈ ω)(m ∈ Ψη(P ) → m ∈ P ) ∧ n /∈ P,

with witnesses η = δ2 and P = Ψ∞
δ2
. Recall “m ∈ Ψη(P )”, being a Σ1

1 statement

about m,Th(Lη), P , is Π1 over any admissible set containing η, z, P . Since Lδ1
is assumed to be admissible, the relation above is then Σ1 in Lδ1 . It therefore re-

flects to Lγ1 (recall that z, the parameter from which everything is defined, is as-

sumed to belong to Lγ1). But then n /∈Ψ∞
η for some η<γ1; hence n /∈Ψ∞

γ2 .

So the least fixed points Φ∞ = Ψ∞
γ2 and Ψ∞

δ2
are equal. The argument just

given shows the relation n /∈ Φ∞ is Σ1 over Lδ1 , hence over Lγ1 ; in any event,

the set Φ∞ belongs to Lγ2 (using Σ1-Comprehension in Lγ2 in the case that

γ1 = γ2).

Finally, we claim o(Φ) < γ2. The map defined in Lγ2 that takes a natural

n ∈ Φ∞ = Ψ∞
γ2 to the least ξ such that (∃η0)(∀η > η0)n ∈ Ψξη is Σ2-definable,

and so by Σ2-Collection in Lγ2 , is bounded in γ2. Since for each ξ < γ2 we have

Φξ = Ψξγ2 = Ψξη0 for some η0 < γ2, this implies o(Φ) < γ2.



Vol. 230, 2019 DETERMINACY AND MONOTONE INDUCTION 89

That 〈Φξ〉ξ≤o(Φ) belongs to Lγ2 follows from the last assertion of Claim 4.8.

We have that the desired instance of Π1
2(z)-MI holds in Lγ2 , which completes

the proof.

Theorem 4.11: Suppose M is an illfounded ω-model of KP with 〈ζn, sn〉n∈ω
an infinite depth Σ2-nesting based on M, and that M is locally countable, in

the sense that every LM
a Σω-projects to ω in M. Then if β = supn∈ω ζn, we

have

Lβ |= Π1
2-MI.

Proof. If β = ζn for some n ∈ ω, then we obtain the result immediately by

applying the lemma in M to the tuple 〈ζn, ζn+1, sn+1, sn〉. So we can assume

〈ζn〉n∈ω is strictly increasing. Let Φ : P(ω) → P(ω) be Π1
2(z) and monotone

in Lβ for some z ∈ Lβ, and let ζn be sufficiently large that z ∈ Lζn . Now

Lζn+1 ≺Σ1 Lβ and both models satisfy KPI0, so that whenever X ⊆ ω is in

Lζn+1 , we have

Lβ |= n ∈ Φ(X) ⇐⇒ Lζn+1 |= n ∈ Φ(X).

In particular, Lζn+1 believes Φ is Π1
2(z) and monotone, so that by the lemma

applied to the tuple 〈ζn, ζn+1, sn+1, sn〉, we have o(Φ) < ζn+1, and the sequence

〈Φξ〉ξ≤o(Φ) (which is computed identically in Lζn+1 and Lβ) belongs to Lζn+1.

Combining Theorems 3.1 and 4.11, we obtain

Corollary 4.12: If M, β are as in the previous theorem, then for any Σ0
3(z)

set with z ∈ Lβ, either

(1) Player I wins G(A) with a strategy σ ∈ Lβ; or

(2) Player II wins G(A) with a strategy Δ1
3(z)-definable over Lβ.

5. Infinite depth Σ2-nestings from determinacy

In this section we show in the base theory Π1
1-CA0 that Σ0

3-DET implies the ex-

istence of models bearing infinite depth Σ2 nestings. The arguments are mostly

cosmetic modifications of those given in Welch’s [17]. The most significant ad-

justment is to the Friedman-style game, Welch’s Gψ , which is here tailored to

allow the proof of the implication to be carried out in Π1
1-CA0.
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For α an ordinal, let Tα2 denote the lightface Σ2-theory of Lα, i.e.,

Tα2 = {σ | σ is a Σ2 sentence without parameters, and Lα |= σ}.
We will also abuse this notation slightly by applying it to nonstandard ordinals

b, so that if b ∈ ONM \wfo(M), T b2 denotes the Σ2-theory of (Lb)
M. It will

always be clear from the context which illfounded model M this b comes from.

Lemma 5.1: SupposeM is an illfounded ω-model of KP such that (La)
M |= “all

sets are countable”, for every a ∈ ONM. Set β = wfo(M). Suppose for all

nonstandard ordinals a of M, there exists some <M-smaller nonstandard M-

ordinal b so that T b2 ⊆ T β2 . Then there is an infinite depth Σ2 nesting based

on M.

Proof. This is essentially shown in Claim (5) in Section 3 of [17]. We outline

the shorter approach suggested there.

Suppose b is a nonstandard M-ordinal with T b2 ⊆ T β2 . By the assumption of

local countability in levels of LM, we have a uniformly Σ2-definable Σ2 Skolem

function, which we denote hb2 (see [3]). The set

H = hb2[ω
<ω]

is transitive in M, since for any x ∈ H , the <M
L -least surjection of ω onto x is

in H , and since M is an ω-model, the range of this surjection is a subset of H .

Since H |= V = L, we have by condensation in M that H = Lγb ≺Σ2 Lb for

some γb ≤M b.

We claim that γb is a standard ordinal, equivalently, γb < β. For suppose

not, so there is some nonstandard ordinal c of Lb in Lγb . Let f be the <M
L -

least surjection from ω onto c. Then f = hb2(k) for some k ∈ ω, and for

m,n ∈ ω, the sentences “h2(k) exists, is a function from ω onto some ordinal,

and h2(k)(m) ∈ h2(k)(n)” are Σ2. But since T b2 ⊆ T β2 , this would imply

hβ2 (k)(m) ∈ hβ2 (k)(n) whenever f(m) ∈ f(n) in (Lb)
M. This contradicts the

wellfoundedness of β.

The lemma now follows by choosing some descending sequence 〈bn〉n∈ω of

nonstandard ordinals of M with T bn2 ⊆ T β2 for all n, and setting

γn = γbn = suphbn2 [ω<ω] < β.

Since the γn are true ordinals, we can choose some non-decreasing subsequence

〈γnk
〉k∈ω , and 〈γnk

, bnk
〉k∈ω is the desired infinite depth Σ2-nesting.
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Our winning condition will make use of one fine structural notion, already

referred to in this paper: that of a level of L projecting to ω. We will say an

ω-model M of V = L satisfies ρn = ω if there is some subset of ω that is Σn-

definable over M but does not belong to M (note that for fixed n, this is first

order expressible in M). As remarked above, if M satisfies ρn = ω for some n,

then there is f : ω ⇀M, an M-definable partial surjection. A straightforward

diagonalization gives the following fact.

Fact 5.2: Suppose M is an ω-model of V = L + ρn = ω for some n. Then

the first order theory of M, regarded as a real Th(M) via some natural coding,

cannot be a member of M: Th(M) /∈ M.

Theorem 5.3: Work in Π1
1-CA0. If Σ0

3-determinacy holds, then there is a

model M for which there exists an infinite depth Σ2-nesting based on M.

Corollary 5.4: Work in Π1
1-CA0. Σ0

3-determinacy implies the existence of a

β-model of Π1
2-MI; in particular, Lγ |= Π1

2-MI for some countable ordinal γ.

Proof. Immediate, combining Theorem 5.3 with Theorem 4.11.

Proof of Theorem 5.3. We define a variant of Welch’s game Gψ from [17]. Play-

ers I and II play complete consistent theories in the language of set theory, fI, fII,

respectively, extending

(∗) V = L + KP + ρ1 = ω.

These theories uniquely determine term models MI,MII. Player I loses if MI

has nonstandard ω; similarly, if MI is an ω-model and MII is not, then Player

II loses. (Note that this is a Boolean combination of Σ0
2 conditions on fI, fII.)

The remainder of the winning condition assumesMI,MII are both ω-models.

Player I wins if either of the following hold:

(1) fII ∈ MI, or fI = fII.

(2) (∃β ≤ ONMI)(∃a ∈ ONMII)(∀n ∈ ω)(∃〈ai, σi〉i≤n) so that, for all i < n,

• a0 = a and ai ∈ ONMII ,

• (ai+1 < ai)
MII ,

• σi is the first Σ2 formula (in some fixed recursive list of all formulas

in the language of set theory) so that LMI

β �|= σi and L
MII
ai |= σi;

• if ai is a successor ordinal in MII, then ai+1 is the largest limit

ordinal of MII below ai;
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• if ai is a limit ordinal in MII, and σi is the formula ∃u∀vψ(u, v)
(with ψ Δ0), then ai+1 is ∈MII -least in ONMII so that

(∃u ∈ Lai+1)(Lai |= ∀vψ(u, v))

holds in MII.

Note that if (2) holds, then MII must be an illfounded model: If β, a witness

the condition, then there is a uniquely determined infinite sequence 〈ai, σi〉i∈ω
that is the union of the witnessing sequences 〈ai, σi〉i≤n. Then 〈ai〉i∈ω is an

infinite descending sequence of MII-ordinals.

Note also that this condition is Σ0
3 as a condition on fI, fII. Strictly speaking,

the quantifiers over MI, ONMII , etc. should be regarded as natural number

quantifiers ranging over the indices of defining formulas (codes) for members

of the models MI,MII. Clause (1) is then Σ0
2, and (2) is Σ0

3, since each bul-

leted item there is recursive in codes for the objects β, a, 〈ai, σi〉i≤n and the

pair 〈fI, fII〉.
Denote the set of runs which I wins by F ; so F is Σ0

3.

Claim 5.5: Player I has no winning strategy in G(F ).

Proof. Suppose instead that I has some winning strategy in this game. By

Shoenfield absoluteness (a version of which is provable in Π1
1-CA0, see [13])

there is such a winning strategy σ in L. Let α be the least admissible ordinal

so that σ ∈ Lα (such exists since Π1
1-CA0 implies the reals are closed under the

hyperjump; see [12] Ch. VII). Let fII be the theory of Lα. Note that then Lα

projects to ω, since it is the least admissible containing some real; in particular,

it satisfies condition (∗). Let fI = σ ∗ fII be the theory that σ responds to fII

with.

Now σ is winning for I in G(F ); so MI is an ω-model. Since MII is well-

founded, (2) must fail, and again since σ is winning for I, we have (1) holds;

that is, either fII ∈ MI or fI = fII. If fI = fII, then II was simply copying I’s

play, so that σ ∈ Lα = MI, implying fI ∈ MI, a contradiction to Fact 5.2.

So fII ∈MI. The strategy σ is computable from fII, so must also belong to

MI. But then, since fI=σ∗fII, we again obtain the contradiction fI∈MI.

Claim 5.6: If Player II has a winning strategy in G(F ), then there is a model

with an infinite depth Σ2-nesting.
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Proof. Towards a contradiction, let τ be a winning strategy for II, and suppose

there is no model as in Definition 4.1. As in the proof of the previous claim, we

may assume τ ∈ L, and let α be the least admissible with τ ∈ Lα. Put

fI = Th(Lα);

then fI satisfies the condition (∗). Let fII = τ ∗ fI be τ ’s response.
We claim that if MII is the model so obtained, then wfo(MII) ≤ α (note

Π1
1-CA0 is enough to ensure the existence of (a real coding) the wellfounded

ordinal of MII). Suppose otherwise; then wfo(MII) > α, and then Lα ∈ MII.

Since fI = Th(Lα) and τ belongs to MII, we have fII = τ ∗ fI does as well. As
before, this contradicts the assumption that II wins the play; specifically, by

Fact 5.2, fII fails to satisfy condition (∗).
So wfo(MII) ≤ α. We claimMII is illfounded. Otherwise, either o(MII) = α,

in which case we getMII = Lα = MI, in which case (1) holds and I wins; or else

o(MII) < α, so thatMII = Lγ for some γ < α, so that fII = Th(Lγ) ∈ Lα=MI,

and again (1) holds, contradicting that τ is winning for II.

So MII is illfounded with wfo(MII) ≤ α. Set β = wfo(MII). If there is no

model bearing an infinite depth Σ2-nesting, then by Lemma 5.1 there exists

some nonstandard MII-ordinal a, so that, for every nonstandard MII-ordinal b

with b ≤MII a, we have T b2 �⊆ T β2 . That is, for all such b, there is a Σ2 sentence σ

so that Lβ �|= σ, but LMII

b |= σ.

It is now straightforward to show β, a witness the winning condition (2).

Set a0 = a. Suppose inductively that ai is a nonstandard MII-ordinal with

ai ≤MII a. Then by choice of a, there is some Σ2 formula σ so that LMII

b |= σ

and Lβ �|= σ; let σi be the least such under our fixed enumeration of formulae.

If ai is not limit in MII, take ai+1 to be the greatest limit ordinal of MII

below ai; note then ai+1 is also nonstandard and below a, and σi+1 is defined

as above.

Now if ai is limit in MII, we have that σi is of the form (∃u)(∀v)ψ(u, v) for

some Δ0 formula ψ. Let ai+1 be least so that for some x ∈ LMII
ai+1, we have

LMII
ai |= (∀v)ψ(x, v). Then ai+1 <

MII ai, and since Lβ �|= σi, we must have that

ai+1 is nonstandard. Thus the construction proceeds, and we have that I wins

the play 〈fI, fII〉 via condition (2). So τ cannot be a winning strategy.

These claims combine to show that if there is no model with an infinite depth

Σ2 nesting, then neither player has a winning strategy in the game G(F ). This

completes the proof of the theorem.
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We have thus shown that Σ0
3 determinacy implies the existence of a model

satisfying Π1
2-MI, and indeed, of some ordinal γ so that Lγ |= Π1

2-MI. The

meticulous reader will observe, however, that our proof of determinacy in Sec-

tion 3 really only made use of ¬�Σ0
3 monotone inductive definitions. This may

at first appear strange, in light of the fact that ¬�Σ0
3 is a much smaller class

than Π1
2. This situation is clarified somewhat by the following theorem, which

shows that if γ is minimal with Lγ |= Π1
2-MI, then the Π1

2 relations that are

correctly computed in Lγ are precisely the ¬�Σ0
3 relations.

Theorem 5.7: Let γ be the least ordinal so that Lγ satisfies Π1
2-MI. Let z

be a real in Lγ , and suppose Φ(u) is a Σ1
2 formula; say it is Σ1

2(z) for some

real z. Then there is a �Σ0
3(z) relation Ψ so that, for all reals x of Lγ , we

have Lγ satisfies Φ(x) if and only if Ψ(x) holds (in V , or equivalently, in Lγ).

Equivalently,

{x ∈ ωω ∩ Lγ | Lγ |= Φ(x)} = Lγ ∩ �A

for some Σ0
3(z) set A ⊆ ωω × ωω.

Proof. Fix such a formula Φ(x); for simplicity, assume z is recursive. Then

there is a recursive tree T on ω3 so that for all x, Φ(x) holds if and only if for

some y, T〈x,y〉 is wellfounded; here T〈x,y〉 is defined as usual as the tree

T〈x,y〉 = {s ∈ ω<ω | 〈s, x�|s|, y�|s|〉 ∈ T }.

We define a version of the game from Theorem 5.3. This time, for a fixed real x,

each player is required to produce their respective ω-models MI,MII satisfying

(∗∗) V = L(x) + KP + ρ1 = ω.

In addition, MI must satisfy the sentence “(∃y)T〈x,y〉 is ranked”; whereas MII

must satisfy its negation. If a winner has not been decided on the basis of one

of these conditions being violated, then Player I wins if either of the conditions

(1), (2) from the proof of Theorem 5.3 holds. Let Fx be the set of f ∈ ωω so that

Player I wins the play of the game on x, where fI(n) = f(2n), fII(n) = f(2n+1)

for all n. Let F = {〈x, f〉 | f ∈ Fx}. Then F is Σ0
3; let Ψ(x) be the statement

“I has a winning strategy in the game G(Fx)”.

Suppose x ∈ Lγ is such that Lγ |= Φ(x). We claim Ψ(x) holds; that is,

Player I has a winning strategy in G(Fx). Let y be a witness to truth of Φ, and

let α be least such that y ∈ Lα(x) and Lα(x) |= KP. Then by admissibility,
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Lα(x) contains a ranking function for T〈x,y〉. Let σ be the strategy for I that

always produces the theory of Lα(x). We claim σ is winning for Player I.

Suppose towards a contradiction thatMII is the model produced by a winning

play by II against σ; we can assume MII ∈ Lγ . Then MII is an ω-model. It

cannot be wellfounded, since then it would be of the form Lβ(x) for some

β; but we can’t have β ≥ α (since MII cannot contain y, or else it would

have a ranking function for T〈x,y〉), nor can β < α hold (since otherwise (1) is

satisfied, and I wins the play). So MII is illfounded, say with wfo(MII) = β;

by the Truncation Lemma (see II.8 in [1]), wfo(MII) is admissible, so we can’t

have y ∈ MII since then we would have a ranking function for T〈x,y〉 in MII,

contrary to the requirement on II’s model; hence β < α. Now since I does

not win the play, the condition (2) fails, so there must be some infinite depth

Σ2-nesting based on MII, by Lemma 5.1 and the argument of Claim 5.6. But

this contradicts the fact that the model MII belongs to Lγ , by minimality of γ

and Theorem 4.11.

Conversely, suppose Φ(x) fails in Lγ . Suppose towards a contradiction that

Player I wins the game G(Fx) (in V ); then by Theorem 3.1, there is a winning

strategy σ ∈ Lγ . Let MII be the least level of L(x) containing σ. Note that

MII |= (∗∗) + “(∀y)T〈x,y〉 is not ranked”. By the argument in the proof of

Theorem 5.3 (Claim 5.6), we obtain failure of both (1) and (2), so that II wins

the play, a contradiction to σ being a winning strategy for I.
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