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ABSTRACT

In 1997 B. Weiss introduced the notion of measurably entire functions

and proved that they exist on every arbitrary free C-action defined on a

standard probability space. In the same paper he asked about the minimal

possible growth rate of such functions. In this work we show that for

every arbitrary free C-action defined on a standard probability space there

exists a measurably entire function whose growth rate does not exceed

exp(exp[logp |z|]) for any p > 3. This complements a recent result by

Buhovski, Glücksam, Logunov and Sodin who showed that such functions

cannot have a growth rate smaller than exp(exp[logp |z|]) for any p < 2.

1. Introduction

A measure space (X,B, μ) is called a standard probability space if μ(X) = 1

and there exists a topology τ such that (X, τ) is metrizable as a topological

space, B is the completion of the σ-algebra generated by the open sets of τ , and

for every ε > 0 there exists a compact set K such that μ(K) > 1− ε.

Let (X,B, μ) be a standard probability space. A map f : X → X is called

probability preserving if for every B ∈ B, μ(B) = μ(f−1(B)). We denote

by PPT (X) the group of all invertible probability preserving transformations

from (X,B, μ) to itself. We use the standard topology on this group, defined
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by the pull back of the weak operator topology restricted to unitary opera-

tors on L2(X,B, μ) by the Koopman representation associated with the action,

T �→ UT f , where [UT f ](x) = f(Tx) (see [2, Page 61]).

A probability preserving action of C (a C-action in short) is a continuous

homomorphism T : C → PPT (X). A C-action T : C → PPT (X) is called free

if for μ-almost every x ∈ X , Tzx = x implies that z = 0. In other words, there

are no periodic points almost surely.

Let E denote the space of entire functions endowed with the local uniform

topology, and let B denote the Borel structure associated with it. The complex

plane acts on (E ,B) by translations defined by

(Twf)(z) = f(z + w).

Whether there exists a probability measure λ defined on (E ,B) such that T

is a C-action on (E ,B, λ) is not a trivial fact. In fact, it was not known until

Weiss showed such measures exist using notions from dynamical systems, which

we shall introduce now:

Definition 1.1: Let (X,B, μ) be a standard probability space, and suppose

T : C → PPT (X) is a C-action. A map F : X → C is called measurably

entire if it is a non-constant measurable function and for μ-almost every x ∈ X

the map Fx : C → C defined by Fx(z) := F (Tzx) is entire.

The existence of measurably entire functions is closely related to the question

of existence of translation invariant random entire functions. On one hand,

the space of entire functions, E , endowed with the topology of local uniform

convergence is a Polish space, and so the existence of a translation invariant

probability measure on E is an example of a measurably entire function. On the

other hand, the existence of a measurably entire function produces a translation

invariant random entire function by defining the measure

μF (A) := μ({x ∈ X ; Fx ∈ A}), A ⊂ E , measurable.

Some years ago Mackey asked the following question:

Question 1.2 (Mackey): Does every probability preserving free action of C on a

standard probability space admit a measurably entire function?

Weiss answered Mackey’s question in 1997:
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Theorem 1.3 (Weiss 1997, [5]): For every free probability preserving action of

C on a standard probability space there exists a measurably entire function.

Weiss’ paper gives rise to an abundance of measurably entire functions and in

particular answers Mackey’s question positively. In his paper Weiss raised sev-

eral questions, one of them was about the possible growth rate of such functions,

measured by the asymptotic growth of the function Mf (R) := maxz∈RD
|f(z)|,

where RD := {|z| ≤ R}. There are two possible interpretations for this question:
(i) What is the minimal growth rate of a measurably entire function of a

C-action on a standard probability space (X,B, μ)?
(ii) Given a C-action on a standard probability space (X,B, μ), what is the

minimal growth rate of a measurably entire function?

We recently proved in a joint work with L. Buhovsky, A. Logunov, and M. Sodin

the following theorem, which gives an almost full answer to the first interpre-

tation. We state this theorem using the terminology of measurably entire func-

tions, where logα x := (log x)α.

Theorem 1.4 ([1, Theorem 1]):

(a) There exists a standard probability space (X,B, μ) with a free C-action,

T , for which there exists a measurably entire function F such that for

μ almost every x ∈ X , and for every ε > 0,

lim sup
R→∞

log logmaxz∈RD
|F (Tzx)|

log2+εR
= 0.

(b) For every standard probability space (X,B, μ) for every measurably

entire function F : X → C μ-almost every x, either z �→ F (Tzx) is a

constant function or for every ε > 0

limR→∞
log logmaxz∈RD

|F (Tzx)|
log2−εR

= ∞.

While Weiss’ paper tells us such functions always exist, part (b) of Theorem

1.4 gives a lower bound for the minimal possible growth rate of measurably

entire functions defined for a general free C-action defined on a standard prob-

ability space, but not an upper bound.
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We would like to emphasize the difference between the two interpretations.

While in the first interpretation one may choose the measure space (and there-

fore the action) as well as the measurably entire function, in the second one the

action is given to us, and one may only choose the measurably entire function.

In this paper we will construct a measurably entire function with bounded

growth rate for a general free action:

Theorem 1.5: Let (X,B, μ) be a standard probability space, and suppose

T : C → PPT (X) is a free action. Then there exists a measurably entire

function F : X → C such that for μ-almost every x ∈ X for every ε > 0

(1) limR→∞
log logmaxz∈RD

|F (Tzx)|
log3+εR

= 0.

This theorem gives an upper bound for the minimal growth rate of measurably

entire functions defined on a general free C-action. Nevertheless, note that there

is still a gap between the lower and upper bounds known to us so far:

Question 1.6: Is the gap between the lower bound given by Theorem 1.4 and

upper bound given by Theorem 1.5 justified? Namely, does there exists a C-

action on a standard probability space (X,B, μ) and p ∈ (2, 3) such that for

every measurably entire function F : X → C for μ-almost every x ∈ X

limR→∞
log logmaxz∈RD

|F (Tzx)|
logpR

= ∞.

1.1. Notation. Given a > 0, we denote by Sa the square centered at the origin

of edge length 2a, namely Sa = [−a, a]2.
Let A ⊂ C and ω ∈ C. We define by A(ω) := ω + A the translation of the

set A by ω.

For a set Ω ⊂ C we define the sets

Ω+ε := {z ∈ C, d(z,Ω) < ε}, Ω−ε := {z ∈ C, d(z,Ωc) > ε}.

Acknowledgments. The author would like to thank her PhD adviser, Mikhail

Sodin, for acquainting her with this most intriguing question, conducting many

interesting discussions, and reading many revisions of this paper with great pa-

tience. The author is grateful to Jon Aaronson for several helpful discussions,

and Alon Nishry for insightful editorial remarks. Last but not least, the author

would like to thank the referee for a careful review, and for useful comments

and corrections.
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2. Preliminary lemmas

2.1. Complex analysis lemmas. In this subsection we will state and prove

lemmas using tools from complex analysis. Throughout this section we will use

the letters λ and μ to denote elements of C (and not measures). The first lemma,

proven in this subsection, is a lemma that creates a non-negative subharmonic

function with ‘windows’, i.e., rectangles where v = 0.

Lemma 2.1: For every C ≥ 1 and for every set Λ ⊂ C, such that for every

λ 	= μ ∈ Λ, ‖μ− λ‖∞ > 2, there exists a subharmonic function v such that:

(P1) For every λ ∈ Λ, define Dλ := {v = 0} ∩ S1(λ); then D
+ 1

C

λ ⊂ S1(λ)

while S1(λ) \Dλ is a union of at most 20 rectangles of edge length at

most 2 and edge width at most 2
C . In particular,

m(Dλ)

m(S1)
≥ 1− 80

C
.

(P2) For every z ∈ C, v(z) ≤ exp(2πC) exp(πC2 |z|).
(P3) For every λ ∈ Λ, v|

D
+ 5

3C
λ \D+ 1

3C
λ

≥ 1
2 .

Proof. Given C ≥ 1 we define the subharmonic function

bC(z) = bC(x+ iy) =

⎧⎨
⎩
cos(πC2 · y) cosh(πC2 · x), |y| < 1

C ,

0, otherwise.

This function is 0 outside an infinite horizontal strip of width 2
C . Given λ ∈ Λ

we define the window function assigned to λ by

vλ(z) := max{bC(iz − λ+ 1), bC(z − λ+ i), bC(iz − λ− 1), bC(z − λ− i)}.
The set {z, vλ(z) 	= 0} looks like a window, whose cornices have ‘infinite tails’

(see Figure 1). In addition, note that vλ|
S

− 1
C

1 (λ)
= 0, while vλ|S3(λ) ≤ e

3πC
2 .

We would like to take a maximum over window functions assigned to λ ∈ Λ.

Formally, we would like to define v(z) = sup{vλ(z), λ ∈ Λ}. The problem is that

it is not clear that locally we take a supremum over a finite set, and even if we

do, the elements of Λ are not necessarily aligned in the sense that S
− 1

C
1 (λ) may

intersect ‘infinite tails’ of many elements μ 	= λ ∈ Λ. We get that the ‘infinite

tails’ of windows that were created for different elements of Λ might intrude

into the window area of other elements, and the number of ‘intruders’ is not

necessarily bounded and might cover the whole window, making property (P1)
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λ

1

2
C

“infnite tails”

cornise

Figure 1. The gray area is where vλ 	= 0.

impossible to satisfy. To overcome this problem, we create a grid using the same

base function bC , and then take a maximum over ‘window functions’ assigned

only to elements inside each grid component, bounding the number of possible

‘intruders’ in each window.

Formally, we define the sets Zodd := {2n+ 1, n ∈ Z}, Zeven := {2n, n ∈ Z}
and define the function

v0(z) := e2πC max{bC(iω + z), bC(ω + iz); ω ∈ Zodd}.
For every ω ∈ Zodd fixed for every z ∈ C,

bC(iω + z) ≤ exp
(πC

2
· |Re(z)|

)
,

bC(ω + iz) ≤ exp
(πC

2
· |Im(z)|

)
,

independently of ω. We get that v0 is bounded by

exp
(πC

2
max{|Re(z)|, |Im(z)|}+ 2πC

)
.

In addition, locally this function is a maximum of at most two subharmonic

functions, and therefore it is subharmonic (see Figure 2).

For every λ ∈ Λ we define the set

Aλ := {ω ∈ Z
2
even, S1(λ) ∩ S1(ω) 	= ∅};
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ω ∈ Z2
even

Figure 2. The grid: The gray area is the set where {v0 	= 0}
while the white area is the set where {v0 = 0}.

here Aλ is the set of elements ω ∈ Z2
even such that a square of edge 2 centered

at ω intersects a square of edge 2 centered at λ (see Figure 3). For every λ ∈ Λ,

#Aλ ≤ 4, since the squares are disjoint, aligned, and have the same edge length,

and therefore every such intersection creates a rectangle such that at least one

of its corners belongs to S1(λ) (see Figure 4).

Symmetrically, for every ω ∈ Z2
even the set defined by

Bω := {λ ∈ Λ, S1(λ) ∩ S1(ω) 	= ∅}
also contains at most 4 elements.

λ

ω

Figure 3. The right-hand picture: the points marked by x rep-

resent elements of Z2
even which belong to Aλ. The left-hand

picture: the points marked by x represent elements of Λ which

belong to Bω.
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λ

ζm + iζn

Figure 4. Since the squares are aligned and have the same edge

length, every intersection creates a rectangle such that at least

one of its corners belongs to S1(λ).

As mentioned before, for every λ ∈ Λ, vλ is subharmonic, and vλ|
S

− 1
C

1 (λ)
= 0,

while vλ|S3(λ) ≤ e
3πC
2 . Define

v(z) := max{v0(z), max
λ∈Bω

vλ(z)}, ω ∈ Z
2
even, z ∈ S1(ω).

We will first show that this function is well defined and subharmonic. For every

ω ∈ Z2
even and every z ∈ S

+ 2
3C

1 (ω) \ S− 2
3C

1 (ω),

v0(z) ≥ cos
(πC

2
· 2

3C

)
exp

(πC
2

·min{|Re(z)|, |Im(z)|}+ 2πC
)

≥1

2
exp(2πC).

Since vλ|S3(λ) ≤ e
3πC
2 and C ≥ 1 we get that, for every ω ∈ Z

2
even and every

λ ∈ Bω,

v0|
S1(ω)\S− 2

3C
1 (ω)

≥ e2πC

2
≥ e

3πC
2 ≥ vλ|S3(λ).

In particular, v defined above is well defined and is subharmonic since locally it

is a maximum over a finite set of subharmonic functions. Moreover, note that

for every μ 	∈ Bω the function vμ does not affect the definition of v in S1(ω) in

any way.

Next, for every λ ∈ Λ we look at the set Dλ := {z ∈ C, v(z) = 0} ∩ S1(λ).

Note that Dλ is in fact S1(λ) once we remove from it strips of width 2
C that

originated in the base function bC . By the way bC was defined, bC(x+ iy) ≥ 1
2

if |y| ≤ 2
3C . We get that if z ∈ D

+ 5
3C

λ \D+ 1
3C

λ , then z belongs to a translation

and/or rotation of the strip |y| ≤ 2
3C , and since v is defined as a maximum of

such functions, in particular v(z) ≥ 1
2 .
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It is left to bound the number of ‘intruders’ for every λ ∈ Λ, or formally the

number of copies of the set {bC 	= 0} intersecting S1(λ). For this it is enough

to bound the number of elements in
⋃

ω∈Aλ
Bω \ {λ}. Why is this enough? As

we saw above for every μ ∈ Λ outside the set
⋃

ω∈Aλ
S1(ω), the definition of the

function v|⋃
ω∈Aλ

S1(ω) is unchanged whether or not μ ∈ Λ, and in particular if

Aμ ∩ Aλ = ∅, then whether or not μ ∈ Λ does not change the way v is defined

inside S1(λ). We conclude that it is enough to bound the number of elements

in the set
⋃

ω∈Aλ
Bω \ {λ}, but the latter is bounded by 16 as the number of

elements in Aλ is at most 4 and the number of elements in Bω is at most 4 as

well. Adding the 4 rectangles created by vλ itself we get 20 ‘intruding’ rectangles

as needed. Note that though every intersection of S1(λ) with S1(ω) contributes

two potentially ‘intruding’ rectangles, one horizontal and one vertical, only one

of them can intersect S1(μ)
− 1

C for S1(μ) intersecting S1(ω). The reason is

that S1(λ) and S1(μ) are disjoint, and so one can be positioned either to the

left/right with respect to the other (thus intersecting the horizontal rectangle)

or above/below (thus intersecting the vertical rectangle), but not both.

An application of this lemma allows us to ‘glue’ together several subharmonic

functions {uλ} restricted to disjoint compact subsets of C, S1(λ):

Lemma 2.2: Let C > 7, and let Λ ⊂ C be such that for every λ 	= μ ∈ Λ,

‖μ− λ‖∞ > 2. Assume that for every λ ∈ Λ there exists uλ : C → [0,∞)

subharmonic such that for a positive constant M
max
λ∈Λ

max
z∈S1

uλ(z) ≤ M.

Then there exists a subharmonic function u such that:

(SH1) For every λ ∈ Λ there exists a set Dλ such that D
+ 1

C

λ ⊂ S1(λ) while

S1(λ) \ Dλ is contained in a union of at most 20 rectangles of edge

length at most 2 and edge width at most 2
C , and for every z ∈ Dλ we

have u(z) = uλ(z − λ).

(SH2) maxz∈SC u(z) ≤ 2MeπC
2

.

(SH3) For every λ ∈ Λ

min
z∈D

+ 5
3C

λ \D+ 1
3C

λ

u(z) ≥ M.

Proof. Let v denote the subharmonic function obtained by Lemma 2.1 with the

set Λ and the constant C. Define for every λ ∈ Λ the set Dλ := {v = 0}∩S1(λ).
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Following property (P1) of the function v guaranteed by Lemma 2.1, this set

satisfies all the properties described in (SH1). Define the function

u(z) =

⎧⎨
⎩
max{2M· v(z), uλ(z − λ)}, , z ∈ D

+ 1
3C

λ , λ ∈ Λ,

2M· v(z), otherwise,

We will first show that u is subharmonic. Fix λ ∈ Λ. Following property (P3)

of the function v, for every z ∈ D
+ 5

3C

λ \ D+ 1
3C

λ we have v(z) ≥ 1
2 , while

maxz∈S1 uλ(z) ≤ M. And so

min
z∈D

+ 5
3C

λ \D+ 1
3C

λ

2M· v(z) ≥ 2M
2

= M ≥ max
z∈S1

uλ,

which implies that u defined above is well defined and subharmonic as locally

it is a maximum between two subharmonic functions. This also proves prop-

erty (SH3).

To see that property (SH1) holds, note that since uλ ≥ 0, for every z ∈ Dλ

we have uλ(z) = u(z − λ) as needed.

To see that property (SH2) holds we observe that for C > 7,

max
z∈SC

u = 2M· max
z∈SC

v ≤ 2M· exp(2πC) exp
(πC

2
· max
z∈SC

|z|
)
≤ 2MeπC

2

,

concluding our proof.

The next lemma is an extension of the previous lemma for ‘glueing’ several

entire functions.

Lemma 2.3: Let C and B be sufficiently large constants and let Λ ⊂ SC be

such that for every λ 	= μ ∈ Λ, ‖μ− λ‖∞ > 2. Assume that for every λ ∈ Λ

there exists fλ analytic in S1 such that for some M > 40 logC,

max
λ∈Λ

max
z∈S1

|fλ(z)| ≤ exp(21−BM).

Then there exists an entire function f with the following properties:

(E1) For every λ ∈ Λ define the set

Aλ = S1(λ) ∩
{
z, |f(z)− fλ(z − λ)| < exp

(
−M

4

)}
.

Then for every ε > 0, m(S1(λ) \A−ε
λ ) = O( 1

C + ε).1

(E2) maxz∈SC |f(z)| ≤ exp(21−BM · eπC2

).

1 In fact, O( 1
C

+ ε) = 160
C

+ 200ε.
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Proof. Let u be the subharmonic function constructed in Lemma 2.2 with the

set Λ, the constant C, and the functions uλ = log+ |fλ|. Recall the sets

Dλ ⊂ S1(λ) defined for every λ ∈ Λ in Lemma 2.2. These sets were defined

so that for every z ∈ Dλ, u(z) = uλ(z − λ), and S1(λ) \ Dλ is a union of at

most 20 rectangles of edge length at most 2 and edge width at most 2
C . Let

χ : C → [0, 1] be a smooth function with the following properties:

(a) For every λ ∈ Λ, χ|
D

+ 1
4C

λ

= 1.

(b) χ|
C\⋃λ∈Λ D

+ 3
4C

λ

= 0.

(c) For every z ∈ C, |∇χ(z)| ≤ 100C.

For example, we take a convolution of the normalization of a rescaling of the

bump function

φ(z) =

⎧⎨
⎩
exp(− 1

1−|z|2 ), |z| ≤ 1

0, otherwise

by 1
4C so that its integral is one, with the function

ψ(z) =
∑
λ∈Λ

1
D

+ 1
2C

λ (λ)
(z).

Define the function g0 :
⋃

λ∈Λ S1(λ) → C by

g0(z) :=
∑
λ∈Λ

fλ(z − λ) · 1S1(λ)(z).

As D
+ 1

C

λ ⊂ S1(λ) and the collection {S1(λ)}λ∈Λ is a collection of disjoint

squares, g0 is holomorphic where it is defined, as locally it is just fλ for one

particular λ ∈ Λ. Define

g(z) = g0(z) · χ(z).
Note that g is well defined as the area where χ = 0 separates S1(λ) from S1(μ),

for λ 	= μ (see Figure 5). Next we define the entire function

f(z) = g(z)− α(z),

where α is Hörmander’s solution [3, Theorem 4.2.1] to the ∂̄-equation

∂̄g(z) = ∂̄χ(z) · g0(z) = ∂̄α(z),

satisfying ∫
C

|α(z)|2 e−u(z)

(|z|2 + 1)2
dz ≤ 1

2

∫
C

|∂̄g(z)|2e−u(z)dz.
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λ λ

Figure 5. On the picture to the left, the white area is the area

where {u = 0}. The corridors created by the grid are colored in

light gray, while the ones created by elements of Λ are colored

in dark gray. For every element of Λ in the picture, the sets

Dλ are the white areas within the relevant square.

The picture to the right is the same picture, but the light gray

area now describes the set where χ ≡ 1, the white area de-

scribes the set where χ ≡ 0, and the dark gray area describes

the set where the transition occurs.

First of all, let us bound the right hand side of this inequality: by the definition

of χ and property (SH3) of u,

(2)

∫
C

|∂̄g(z)|2e−u(z)dz

=
∑
λ∈Λ

∫
D

+ 3
4C

λ \D+ 1
4C

λ

|∂̄g(z)|2e−u(z)dz

≤max
z∈C

|∇χ(z)|2 exp(22−BM) · e−M ·m
(⋃

λ∈Λ

D
+ 3

4C

λ \D+ 1
4C

λ

)

≤104C2 exp(M(22−B − 1)) · 4C2 · 40 · 2
2C

≤ C4 exp
(
−M

2

)

⇒
∫
C

|∂̄g(z)|2e−u(z)dz ≤ C4 exp
(
−M

2

)
,

provided that B, C, and M are large enough.
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Next, let us find an upper bound for f on SC : Fix c0 = 1
16C < 1

4C , then by

Cauchy’s integral formula

|f(z)|2 ≤ 1

πc20

∫
B(z,c0)

|f(w)|2dm(w)

≤ 2

πc20

∫
B(z,c0)

|g(z)|2 + |α(w)|2dm(w) = I1 + I2.

To bound I1 note that by the way g is defined

I1 ≤ 2max
SC

|g|2 ≤ 2max
λ∈Λ

max
S1

|fλ|2 ≤ 2 exp(22−BM) ≤ 1

2
exp(22−BM· eπC2

).

On the other hand, using (2) and property (SH2) of u in Lemma 2.2,

I2 =
2

πc20

∫
B(z,c0)

|α(w)|2dm(w)

≤ 4

πc20
exp(max

z∈SC

u)C4

∫
C

|α(w)|2 e−u(w)

(|w|2 + 1)2
dm(w)

≤64C2

π
exp(22−BMeπC

2

)C8 · exp
(
−M

2

)

≤C11 exp(22−BM · eπC2

) exp
(
−1

2
M

)

≤1

2
exp(22−BM· eπC2

),

provided that M is big enough so that e−
M
2 · C11 < 1

2 . Combining the two

estimates we get that

|f(z)| ≤
√
I1 + I2 < exp(21−BMeπC

2

).

We conclude that property (E2) holds.

Finally, to see property (E1), note that:

(a) For every z ∈ D
− 1

4C

λ , B(z, c0) ⊂ Dλ, which implies that Tλu(z) = uλ(z)

by property (SH1) of u, and therefore maxw∈B(z,c0) e
u ≤ exp(21−BM).

(b) By the way f was defined, for every w ∈ D
+ 1

4C

λ we have

f(w) = fλ(w − λ)− α(w).

By Cauchy’s integral formula applied to z ∈ D
− 1

4C

λ , and the function

(f(z)− T−λfλ(z))
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which is holomorphic in B(z, c0), and by using the bound given by (2)

|f(z)− T−λfλ(z)|2 =

∣∣∣∣ 1

πc20

∫
B(z,c0)

(f(w)− T−λfλ(w))dm(w)

∣∣∣∣
2

(b)
=

∣∣∣∣ 1

πc20

∫
B(z,c0)

α(w)dm(w)

∣∣∣∣
2

≤ 1

πc20

∫
B(z,c0)

|α(w)|2dm(w)

≤C7 max
w∈D(z,c0)

eu ·
∫
C

|α(z)|2 e−u(z)

(|z|2 + 1)2
dm(z)

(a)

≤C7 · exp(21−BM) · C4 exp
(
−M

2

)

=C11 · exp
(
M

(
21−B − 1

2

))

≤ exp
(
−M

4

)

for B, C, and M large enough. We obtain that

D
− 1

4C

λ ⊂ Aλ ⇒ D
− 1

4C −ε

λ ⊂ A−ε
λ ,

but since S1(λ)\Dλ is a union of at most 20 rectangles, we get by the inclusion

of the sets that

m(S1(λ) \A−ε
λ ) ≤ m(S1(λ) \D− 1

4C −ε

λ ) ≤ 40 ·
(
5ε+

4

C

)
= O

(
ε+

1

C

)
,

concluding our proof.

2.2. Measure theoretic lemmas. In this subsection we will present lemmas

related to ergodic theory and dynamics.

Definition 2.4: Let (X,B, μ) be a standard probability space, and suppose

T : C → PPT (X) is a free C-action. Let S ⊂ C be a compact set. A set

B ∈ B is called an S-set if:

(F1) For every z 	= w ∈ S, TzB ∩ TwB = ∅.
(F2) For every B′ ⊂ B ⊂ X measurable, and every A ⊂ S ⊂ C measurable,

the set AB′ :=
⋃

z∈A TzB
′ is a measurable subset of X .

In the definition above, the set S is the set of ‘shifts’ by the action of C,

marked T , while B ⊂ X is a very small set that we ‘shift’ by elements of S in

the space X . For our purpose, S will be a two dimensional square.
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We are interested in S-sets, for S ⊂ C a square, because these sets allow

us to assign for every x ∈ B a function fx : S → C, which is holomor-

phic in S, creating a measurably entire function f : SB → C defined by

f(Tzx) = f(z, x) = fx(z) without worrying about inconsistencies in the defi-

nition of f . Note that as B is an S-set, the map Tzx �→ (z, x) is well defined,

and so is our function f . We would therefore like to approximate our space X

by a sequence of sets {SanBn}∞n=1 where Bn is an San -set, and an ↗ ∞.

Remark 2.5: For every square S ⊂ C and every B ∈ B, an S-set

μ(AB) := μ({TzB, z ∈ A}) = m(A)

m(S)
· μ(SB), for every A ⊂ S measurable.

Explanation: Because the measure μ is a translation invariant measure, we may

assume without loss of generality that S = [−a, a]2 for some a > 0. Every such

cube S ⊂ C is also a topological group, with the group action defined by

τwz = (w + z) mod a.

This group is a Polish group (i.e., it is a separable completely metrizable topo-

logical space), and by Haar’s theorem there exists a unique measure (up to

multiplication by constants) which is invariant under the group’s action. In

this case, this is just Lebesgue’s measure restricted to S. For every S-set, B,

define the measure νB on measurable subsets of S by νB(A) := μ(AB). Since

B is an S-set, this is indeed a well defined measure. In addition, since μ is

translation invariant, we get that this measure is invariant under the group’s

action. We conclude that νB = cB ·mS , where mS denotes the two dimensional

Lebesgue measure restricted to S, and cB is some constant. For a crude bound

on cB note that

cB =
νB(S)

mS(S)
=
μ(SB)

m(S)
≤ 1

m(S)
.

Lemma 2.6 (The Nested Towers Lemma): Let (X,B, μ) be a standard proba-

bility space, and suppose T : C → PPT (X) is a free C-action. Let {an}∞n=1

be an increasing sequence of positive numbers such that
∑∞

n=1
an

an+1
< 1

2 . Then

there exists a sequence of sets {Bn} ⊂ B such that:

(N1) Bn is an San-set.

(N2) SanBn ⊂ San+1Bn+1.

(N3) μ(SanBn) ↗ 1 as n→ ∞.
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This lemma, originally proven by Weiss in [5], is a natural extension of

Rokhlin’s lemma about approximating actions of Z by Rokhlin towers. Rokhlin’s

lemma for C-action states that for every rectangle R ⊂ C and for every ε > 0

there exists a set B which is an R-set such that μ(RB) > 1− ε. This lemma is

not enough as we would like the approximation of the space X to be monotone.

The version of Rokhlin’s lemma for C-actions was proven by Lind in [4]. We

note that Weiss’ definition for an S-set admits a weaker property than property

(F2). Nevertheless, his proof of The Nested Towers Lemma extends to our

definition of an S-set. For the reader’s convenience the proof of this lemma can

be found in the appendix.

Given a metric space (Y, d) we let K(Y ) denote the set of all compact subsets

of Y . For every A,B ∈ K(Y ) define the metric

dH(A,B) := inf{ε > 0, A ⊂ B+ε and B ⊂ A+ε};

dH is called the Hausdorff distance induced by (Y, d).

We say that (K(Y ), dH) is the induced Hausdorff space of (Y, d).

Let (X,B, μ) be a standard probability space, and let {Bn} be a sequence of

sets given by The Nested Towers Lemma, Lemma 2.6. Assume that Pn−1 is a

finite partition of Bn−1 into measurable sets {Bj
n−1}kn−1

j=1 . For every x ∈ Bn

and 1 ≤ � ≤ kn−1 define the set

R�
n(x) := {z ∈ San ; Tzx ∈ B�

n−1}.

Since Bn−1 is an San−1-set, for every z 	= w ∈ R�
n(x) we have that

San−1Tzx ∩ San−1Twx = ∅

which implies ‖z − w‖∞ > 2an−1. In particular, R�
n(x) is a finite set and

therefore compact.

Given δ > 0, we say a partition Pn = {Bj
n}kn

j=1 is a δ-fine partition con-

sistent with Pn−1 if it is a finite measurable partition of Bn, and for every

1 ≤ j ≤ kn for every x, y ∈ Bj
n, dH(R�

n(x), R
�
n(y)) < δ for every 1 ≤ � ≤ kn−1.

Lemma 2.7: Let {Bn} be a sequence of sets given by The Nested Towers

Lemma. For every sequence of positive numbers {δn} there exists a sequence

of partitions {Pn} such that for every n, Pn is a δn-fine partition consistent

with Pn−1.
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Proof. We will prove it by induction on n, where for the base step one could take

any partition P1. Assume Pn−1 was already defined and for every 1 ≤ � ≤ kn−1

define the function f� : Bn ×Bn → R+ by

f�(x, y) = dH(R�
n(x), R

�
n(y)).

For every x ∈ Bn let

D�
n(x) =

{
y ∈ Bn, f�(x, y) <

δn
2

}
.

As f� is a measurable function, these sets are measurable and form a cover for

Bn. We will first show there exists a finite sub-cover of {D�
n(x)}x∈Bn for Bn.

If no such sub-cover exists, then there exists a subsequence {xm} such that for

every k 	= m we have

f�(xm, xk) ≥ δn
2

creating an infinite separated set in K(Y ), which is a contradiction to the

fact that the induced Hausdorff space of a totally bounded set is itself totally

bounded (see Claim 2.8).

Let Q� denote the finite set of elements x ∈ Bn forming the finite cover of Bn,

and let Q� denote the partition that we obtain by the collection {D�
n(x)}x∈Q�

.

Note that for every A ∈ Q� there exists ξ ∈ Q� such that A ⊆ D�
n(ξ), and

therefore for every x, y ∈ A,

f�(x, y) ≤ f�(x, ξ) + f�(ξ, y) < δn.

We define Pn to be the refinement of all the partitions Q�,

Pn =

{ kn−1⋂
�=1

A�, A� ∈ Q�

}
.

Let A ∈ Pn, then for every x, y ∈ A for every 1 ≤ � ≤ kn−1 there exists B ∈ Q�

such that x, y ∈ B, and therefore f�(x, y) < δn, which implies that Pn is a

δn-fine partition consistent with Pn−1, concluding our proof.

Claim 2.8: Let (Y, d) be a metric space. If Y is totally bounded, then the

induced Hausdorff space, (K(Y ), dH), is totally bounded.

For the reader’s convenience we add a proof of this fact:
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Proof. Let ε > 0. Since Y is totally bounded there exists a finite sub-cover

{Bj}Nj=1, such that for every j, diam(Bj) < ε. For every A ∈ K(Y ) we define

the sequence

xj(A) =

⎧⎨
⎩
1, A ∩Bj 	= ∅,
0, otherwise.

Note that since the sequences’ elements are only {0, 1} and their length is finite,

then the number of possible sequences is finite. Next, let A and B be sets such

that they have the same sequence. Fix a ∈ A; then there exists j such that

a ∈ Bj as {Bj} is a cover for Y . Since the sequences of A and B are the

same, 1 = xj(A) = xj(B) and so there exists b ∈ B ∩ Bj , and in particular,

as diam(Bj) < ε, we get that d(a, b) < ε. This shows that A ⊂ B+ε. By a

symmetric argument, B ⊂ A+ε as well. We conclude that dH(A,B) ≤ ε.

For every 1 ≤ j ≤ N we arbitrarily choose an element bj ∈ Bj, and define for

every sequence {xj} the set

D{xj} := {bj;xj = 1}.

The collection {D{xj}} forms a finite ε-net for the space (K(Y ), dH), concluding

the proof.

3. Construction of a special sequence

In this section we will use all the lemmas proven in the previous sections to

construct a special sequence of functions that will be used in the proof of The-

orem 1.5. Beyond this section the only thing one needs to keep in mind is the

following lemma:

Lemma 3.1: Let (X,B, μ) be a standard probability space, and suppose

T : C → PPT (X) is a free C-action. Let {an} be the sequence defined

by a1 = 1, and an = D · n log2 n · an−1 for every n ≥ 2 where D > 0 is

some parameter sufficiently large. There exists a sequence of measurable sets

{Xn}, Xn ↗ X , and a sequence of measurable functions Fn : Xn → C with

the following properties:
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(i) μ
({
x ∈ X1, |F1(x)| ≤ 1

4

})
≥ 1

25
and

μ
({
x ∈ X1, |F1(x)| ≥ 3

4

})
≥ 1

25
.

(ii) There exists a sequence of measurable sets {Gn} such that Gn⊂Xn and:

(A) μ(Xn \Gn) ≤ μ(Xn \Xn−1) +
1

D
· O

( 1

n log2 n

)
.

(B) For every x ∈ Gn:

(B1) San−2x ⊆ Xn−1, implying that San−2Gn ⊆ Xn−1 ⊆ Xn.

(B2) The function F x
n : C → C defined by F x

n (z) = Fn(Tzx) is

holomorphic in San−2 .

(B3) maxz∈San−2
|Fn(Tzx) − Fn−1(Tzx)| < 10−2n.

(B4) For every 1 ≤ m ≤ n− 2

max
z∈Sam

|Fn(Tzx)| ≤ 2 exp(21−BMB(m+ 1)),

where B is a numerical constant sufficiently large, and

MB(m) = exp

(
B ·m+ πD2

m−1∑
j=2

j2 log4 j

)
.

Proof. Let {Bn} be a sequence of sets obtained for the sequence {an} by Weiss’

Nested Towers Lemma, Lemma 2.6, such that μ(X \ Sa1B1) <
1

200 .

We will set

Xn := SanBn,

and define the sequence of functions Fn as a linear combination of step functions,

Fn(Tzx) = Fn(z, x) =

kn∑
j=1

F j
n(z) · 1Bj

n
(x),

where {F j
n}kn

j=1 are entire, and {Bj
n}kn−1

j=1 is a measurable partition of Bn, de-

noted Pn. Note that Fn is well defined, since Bn is an San -set and therefore

the mapping Tzx �→ (z, x) is well defined, as mentioned in Section 2.2.

Formally, we will construct this sequence inductively. Define F1 : X1 → C by

F1(Tzx) = F1(x, z) = z;

F1 is measurable, since it is constant with respect to one variable, and contin-

uous with respect to the other. By the way F1 is defined for every x ∈ B1 and

|z| < 1
4

|F1(Tzx)| = |z| < 1

4
,
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and so {F1 ≤ 1
4} ⊃ 1

4DB1. Following Remark 2.5:

μ
({
x ∈ X1, |F1(x)| ≤ 1

4

})
≥μ

(1
4
DB1

)
= m

(1
4
D

)
· μ(Sa1B1)

m(Sa1)
as

a1=1

=
π

43
· μ(Sa1B1) >

π

43
· 199
200

>
1

25
.

A similar computation shows that μ({|F1| ≥ 3
4}) > 1

25 as well, and so prop-

erty (i) holds.

Assume that Fn−1 : Xn−1 → C was defined as

Fn−1(Tzx) = Fn−1(x, z) =

kn−1∑
j=1

F j
n−1(z)1Bj

n−1
(x),

and that property (ii) holds for Fn−1. We assume in addition that instead of

property (B4) we have property (B′
4): for the same parameter B

max
z∈Sam

|Fn(Tzx)| ≤ exp(21−BMB(m+ 1)) +

n∑
j=1

10−2j.

Naturally, property (B′
4) implies property (B4). Moreover, we assume that for

every 1 ≤ j ≤ kn−1

max
z∈San−1

|F j
n−1(z)| ≤ exp(21−BMB(n)).

We refer to this property as property (B5), and regard it as part of property (ii′),
which is property (ii) where (B4) is replaced by (B′

4) and (B5) is added.

Since F j
n−1 is entire for every j fixed, it is uniformly continuous on S+1

an−1
,

and therefore there exists δn ∈ (0, 1) such that for every 1 ≤ j ≤ kn−1:

sup
z,w∈S

+1
an−1

|z−w|<δn

|F j
n−1(z)− F j

n−1(w)| <
10−2n

2
.

Let Pn be a partition of Bn which is δn-fine and consistent with

Pn−1 = {B�
n−1}kn−1

�=1 , the partition of Bn−1 used to define Fn−1. Such a parti-

tion exists by Lemma 2.7.

For every j we use the axiom of choice to choose a representative xjn ∈ Bj
n. We

will define the function F j
n by using Lemma 2.3 with the following parameters:

Λj
n =

{ λ

an−1
, λ ∈ San so that Tλx

j
n ∈ Bn−1

}
, C =

an
an−1

= D · n log2 n,

M := exp(21−BMB(n)), fλ(z) := Fn−1(Tan−1(λ+z) x
j
n) : S1 → C.
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Let us verify that these parameters satisfy the requirements of the lemma. First

of all, because Bn−1 is an San−1 set, then for every λ 	= μ ∈ Λj
n we have that

San−1(an−1 · λ) ∩ San−1(an−1 · μ) = ∅ ⇐⇒ S1(λ) ∩ S1(μ) = ∅.

In particular, for every λ 	= μ ∈ Λj
n, we have ‖λ− μ‖∞ > 2.

Next, for every n ≥ 1 for every D large enough

M =exp(21−BMB(n)) = exp

(
21−B exp

(
B · n+D2π

n−1∑
j=2

j2 log4 j

))

≥ exp(21−B exp(B · n+D2π · n log2 n)).

In fact a more accurate lower bound is

exp(21−B exp(B · n+D2π · n2 log4 n)),

but the bound indicated above is enough for our use. In particular, for every

constant B there exists D large enough so that

M ≥ 40 log(D · n log2 n).

We conclude that all the requirements of Lemma 2.3 are satisfied.

Define the function

(3) Fn(Tzx) = Fn(z, x) =

kn∑
j=1

F j
n(z) · 1Bj

n
(x).

Note that every summand in the sum is a measurable function as it is an

indicator function of the measurable set Bj
n in one variable and the continuous

function F j
n in the other. This implies that Fn is a measurable function since

the number of sets in the partition (and therefore the number of summands in

the sum) is finite.

To conclude the proof it remains to show that property (ii’) holds for Fn as

well.

Fix 1 ≤ j ≤ nk−1 and λ ∈ Λj
n, and recall the definition of the sets Aλ in

Lemma 2.3:

Aλ = S1(λ) ∩
{
z, |f(z)− fλ(z − λ)| < exp

(
−M

4

)}
,



328 A. GLÜCKSAM Isr. J. Math.

where for us f = F j
n for some 1 ≤ j ≤ nk−1. Let Dλ = an−1 · Aλ, and define

the set

Gn :=

kn−1⋃
j=1

( ⋃
λ∈Λj

n

D
−1−an−2

λ

)
Bj

n ⊆ Xn.

We will first show that property (A) holds. By the way the partition Pn was

defined,

(4)

kn⋃
j=1

( ⋃
λ∈Λj

n

S−δn
an−1

(an−1 · λ)
)
Bj

n ⊆ Xn−1 ⊆
kn⋃
j=1

( ⋃
λ∈Λj

n

S+δn
an−1

(an−1 · λ)
)
Bj

n

(see Figure 6).

μ

λ

< δn

2an−1

2an

Tμy ∈ B�
n−1

Tλx
j
n ∈ B�

n−1

Figure 6. Fix n and 1 ≤ j ≤ kn. The black points represent

the set Λj
n. For every y ∈ Bj

n, y 	= xjn, the gray configuration of

squares represents the case where y was chosen to be the rep-

resentative of Bj
n instead of xjn. Thus, the gray configuration

of squares is a distortion of the black configuration of squares

by at most δn, by the way the partition Pn was defined.
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We have

μ(Xn \Gn) ≤μ
(
Xn \

kn⋃
j=1

( ⋃
λ∈Λj

n

San−1(an−1 · λ)
)
Bj

n

)

+ μ

( kn⋃
j=1

( ⋃
λ∈Λj

n

(San−1(an−1 · λ) \D−1−an−2

λ )

)
Bj

n

)
.

We will use Remark 2.5 to bound each of these terms: Remember that following

Lemma 2.3,

m(S1(λ) \A−ε
λ ) = O

( 1

C
+ ε

)
.

We obtain that for every λ ∈ Λj
n,

m(San−1 \ (an−1 · Aλ)
−1−an−2) ≤ O(1) · a2n−1

(an−1

an
+

1 + an−2

an−1

)
.

Define

Sj :=

( ⋃
λ∈Λj

n

(San−1(an−1 · λ) \D−1−an−2

λ )

)
.

Then since Bj
n is an San -set,

μ

( kn⋃
j=1

SjB
j
n

)
Remark

2.5=

kn∑
j=1

m(Sj) · μ(SanB
j
n)

m(San)

≤
kn∑
j=1

∑
λ∈Λj

n

m(San−1(an−1 · λ)\(an−1 · Aλ)
−1−an−2) · μ(SanB

j
n)

m(San)

≤
kn∑
j=1

#Λ·
nO(1) ·

a2n−1(
an−1

an
+ 1+an−2

an−1
)

4a2n
· μ(SanB

j
n)

≤ a2n
a2n−1

· O(1) ·
a2n−1(

an−1

an
+ 1+an−2

an−1
)

4a2n

kn∑
j=1

μ(SanB
j
n)

≤ O
(an−2

an−1

)
.



330 A. GLÜCKSAM Isr. J. Math.

Similarly,

μ

(
Xn \

kn⋃
j=1

( ⋃
λ∈Λj

n

San−1(an−1 · λ)
)
Bj

n

)

≤μ
(
Xn \

kn⋃
j=1

( ⋃
λ∈Λj

n

S+1
an−1

(an−1 · λ)
)
Bj

n

)

+ μ

( kn⋃
j=1

( ⋃
λ∈Λj

n

(S+1
an−1

\ San−1)(an−1 · λ)
)
Bj

n

)

(4)

≤ μ(Xn \Xn−1) +

kn∑
j=1

#Λj
n · 2 · an−1

a2n
· μ(SanB

j
n)

<μ(Xn \Xn−1) +
2

an−1
.

Overall, we get that

μ(Xn \Gn) ≤μ(Xn \Xn−1) +O
(an−2

an−1

)

=μ(Xn \Xn−1) +
1

D
·O

( 1

n log2 n

)
,

concluding the proof.

Next, we will show that for every x ∈ Gn the properties enumerated as (B)

hold. Fix x ∈ Gn. There exists 1 ≤ j ≤ kn, and λ ∈ Λj
n, such that

x ∈ D
−1−an−2

λ Bj
n.

Property (B1) holds: Note that Tλx
j
n ∈ Bn−1 by the way Λj

n was defined.

Similarly, for every y ∈ Bj
n there exists μ ∈ C such that |μ− λ| < δn

an−1
< 1

an−1

and Tan−1·μy ∈ Bn−1. Let y ∈ Bj
n be such that x = Twy for w ∈ D

−1−an−2

λ .

Then for every z ∈ San−2 we have that

Tzx = Tz+wy ∈ D−1
λ y ⊂ D−1+δn

μ y ⊂ Dμy ⊂ Xn−1,

as needed.

Property (B2) holds: Since F j
n is entire, we get that z �→ Fn(Tzx) is entire

for every x ∈ Gn.

Property (B3) holds: We want to show that for every z ∈ San−2 ,

|Fn(Tzx)− Fn−1(Tzx)| < 10−2n.
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The idea is that δn was chosen so that for every j, if the function F j
n−1 is per-

turbed by something smaller than δn, then its image is perturbed by something

which is bounded by 10−2n

2 . Next, we take a partition which is a δn-fine parti-

tion consistent with Pn−1, which means that for every y ∈ Bj
n, the configuration

of squares associated with it is at most a δn-distortion of the configuration of

squares associated with xjn, meaning {fλ} used to construct Fn differ by at most
10−2n

2 from those used if y was the chosen representative. Combining this with

the fact that Fn approximates these fλ to begin with, we get that |Fn − Fn−1|
is small.

Formally, let x0 ∈ B�
n−1 ∩ SanB

j
n; then there exist λ ∈ Λj

n and w ∈ San such

that x0 = Twy, y ∈ Bj
n, and |λ− w| < δn. By the way Fn is constructed, for

every z ∈ D−δn
λ

|Fn−1(Tzx0)− Fn(Tzx0)| =|F �
n−1(z)− Fn(Tz+wT−wx0)|

=|F �
n−1(z)− Fn(Tz+wy)|

by (3)
= |F �

n−1(z)− F j
n(z + w)|

≤|F �
n−1(z)− F �

n−1(z + w − λ)|
+ |F �

n−1(z + w − λ)− F j
n(z + w)|.

Now, by property (E1) of F j
n, guaranteed by Lemma 2.3, we know that since

|λ− w| < δn, then z + w ∈ Dλ and so

|F �
n−1(z + w − λ)− F j

n(z + w)| < exp
(
−MB(n)

4

)
<

10−2n

2
.

On the other hand, since |λ− w| < δn,

|F �
n−1(z)− F �

n−1(z + w − λ)| ≤ sup
ζ,ξ∈S

+1
an−1

|ζ−ξ|<δn

|F �
n−1(ζ)− F �

n−1(ξ)| <
10−2n

2

as well. Overall, for every x0 ∈ Bn−1 ∩ SanB
j
n we have that

(5) |Fn(Tzx0)− Fn−1(Tzx0)| < 10−2n.

Next, since x ∈ D
−1−an−2

λ Bj
n there exists w ∈ D

−1−an−2

λ such that T−wx ∈ Bj
n.

In addition, since the partition Pn is δn-fine there exists ζ such that |ζ − λ| < δn,

and T−w−ζx ∈ B�
n−1. For every z ∈ San−2

z + w ∈ D−1
λ ⇒ z + w − ζ + λ ∈ D−1+δn

λ ⊂ D−δn
λ ,
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and by using (5) we get that if x0 = T−w−ζx ∈ B�
n−1 ∩ SanB

j
n, then

|Fn(Tzx) − Fn−1(Tzx)| =|Fn(Tz+w+ζT−w−ζx)− Fn−1(Tz+w+ζT−w−ζx)|
=|Fn(Tz+w+ζx0)− Fn−1(Tz+w+ζx0)| < 10−2n,

and property (B3) holds.

Property (B′
4) holds: Note that for every m ≤ n − 3 we have that by

property (B3) and the induction assumption (which holds only for m ≤ n− 3),

max
z∈Sam

|Fn(Tzx)| ≤ max
z∈Sam

|Fn−1(Tzx)|+ 10−2n

≤ exp(21−BMB(m+ 1)) +

n∑
j=1

10−2j.

For m = n− 2, by property (B3),

max
z∈San−2

|Fn(Tzx)| ≤ max
z∈San−1

|Fn−1(Tzx)|+ 10−2n

≤ exp(21−BMB(n)) + 10−2n.

Property (B5) holds: By property (E2) of Lemma 2.3 for every 1 ≤ j ≤ kn

max
z∈San

|F j
n(z)| ≤ exp(21−B max

1≤�≤kn−1

max
z∈San−1

|F �
n−1(z)| · exp(πC2))

≤ exp(21−BMB(n) exp(π · n2 log4 n))

≤ exp(21−BMB(n+ 1)).

This concludes the proof of the lemma.

4. The Proof of Theorem 1.5

Let {Fn} be the sequence constructed in Lemma 3.1.

4.1. The sequence {Fn} converges almost surely to a measurably

entire function. Let x∈⋃∞
m=1

⋂∞
k=mGk. Then by property (B3), {Fn(Tzx)}

converges locally uniformly to an entire function, and in particular if {Fn}
converges almost surely, then it converges to a measurably entire function. It

is therefore enough to show that μ(
⋃∞

m=1

⋂∞
k=mGk) = 1 to conclude the proof.

To see that μ(
⋃∞

m=1

⋂∞
k=mGk) = 1 we will show that

0 = μ

(( ∞⋃
m=1

∞⋂
k=m

Gk

)c)
= μ

( ∞⋂
m=1

∞⋃
k=m

Gc
k

)
= limm→∞μ

( ∞⋃
k=m

Gc
k

)
.
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By using property (A) of the sequence {Fn} and the fact that {Xn} is increasing,
we obtain that

μ

( ∞⋃
k=m

Gc
k

)
Gk⊆Xk
= μ

( ∞⋃
k=m

(X \Xk) � (Xk \Gk)

)

≤ μ

( ∞⋃
k=m

(X \Xk)

)
+

∞∑
k=m

μ(Xk \Gk)

Property (A)

≤ μ(X \Xm) +

∞∑
k=m

(
μ(Xk \Xk−1) +

1

D
· O

( 1

k log2 k

))

Xn−1⊆Xn≤ 2μ(X \Xm−1) +
O(1)

D

∞∑
k=m

1

k log2 k
.

To conclude the proof, note that the latter tends to zero as m tends to ∞, since

the series converges.

4.2. The limiting function F is not constant. Since the sequence {Fn}
converges in measure to a function which we shall denote by F ,

μ
({

|F | ≤ 1

3

})
=limn→∞μ

({
|Fn| ≤ 1

3

})

μ
({

|F | ≥ 2

3

})
=limn→∞μ

({
|Fn| ≥ 2

3

})
.

We will bound each of the quantities above from below by a uniform constant

for every n:

μ
({

|Fn| ≤ 1

3

}) property
(B3)

≥ μ
({

|Fn−1| ≤ 1

3
− 10−2n

}
\Gc

n

)
...

property
(B3)

≥ μ

({
|F1| ≤ 1

3
−

n∑
m=1

10−2m

}
\

n⋃
m=1

Gc
m

)

≥ μ
({

|F1| ≤ 1

4

})
− μ

( n⋃
m=1

Gc
m

)

(A)

≥ 1

25
− 2μ(X \X1)− O(1)

D

∞∑
n=2

1

n log2 n

=
3

100
− O(1)

D

∞∑
n=2

1

n log2 n
,
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where D is the constant from the definition of the sequence {an}. If we choose

D large enough we get

μ
({

|Fn| ≤ 1

3

})
≥ 1

100
.

A similar computation shows that μ({|F | ≥ 2
3}) is greater than the same con-

stant, concluding that F is not constant.

4.3. Upper bound for the growth rate of the function. Let

x ∈ ⋂∞
k=nGk; we will show that (1) holds. For every k ≥ n, by property

(B4) of the sequence {Fn}

max
z∈Sam

|F (Tzx)| ≤ 2 exp(21−BMB(m+ 1)).

In addition, as am+1

am
∼ m log2m, for every ε > 0 for everym > mε large enough

MB(m) = exp

(
B ·m+ π

m∑
k=2

( ak
ak−1

)2
)

≤ exp

(
B ·m+O(1) ·D

m∑
k=2

k2 log4 k

)

≤ exp(B ·m+O(1) ·Dm3 log4m)

≤ exp(O(1) · log3+ ε
2 am).

We conclude that for every ε > 0

log log max
z∈Sam

|F (Tzx)|
log3+ε am

≤ O(1)

log
ε
2 am

−→
m→∞ 0.

For every R large enough, let m be such that am ≤ R < am+1. Using the

estimate above with m+ 1 and ε
2 instead of ε we get

log logmaxz∈SR |F (Tzx)|
log3+εR

≤
log logmaxz∈Sam+1

|F (Tzx)|
log3+ε am

≤ O(1)

log
ε
2 am

·
( log(am+1)

log(am)

)3+ ε
2 −→

m→∞ 0.

concluding the proof of the theorem.
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5. Appendix

For completeness we introduce here a proof of The Nested Towers Lemma:

Lemma 2.6 (The Nested Towers Lemma): Let (X,B, μ) be a standard proba-

bility space, and suppose T : C → PPT (X) is a free C-action. Let {an}∞n=1

be an increasing sequence of positive numbers such that
∑∞

n=1
an

an+1
< 1

2 . Then

there exists a sequence of sets {Bn} ⊂ B such that

(N1) Bn is an San-set.

(N2) SanBn ⊂ San+1Bn+1.

(N3) μ(SanBn) ↗ 1 as n→ ∞.

We start this appendix with a discussion of a preliminary lemma. This lemma

is a version of Rokhlin’s lemma for flows. It was proven by Lind in [4]:

Lemma 5.1: Let T be a free n-dimensional flow on a standard probability

space (X,B, μ). Then for any rectangle Q ⊂ Rn and ε > 0, there exists a Q-set,

F ⊂ X such that

μ(TQF ) > 1− ε.

Remark 5.2: Note that unlike our definition of an S-set, Lind’s definition does

not require measurability. Namely, his definition lacks condition (F2) com-

pletely. Nevertheless, he proved that the set F found in Lemma 5.1, not only

satisfies condition (F2), but in fact fulfills a stronger condition than the one we

impose. For more information see [4, p. 177].

We first describe the idea of the proof. We start with a sequence of sets

{Bn(0)} obtained by Rokhlin’s lemma for a sequence {εn}, and define for ev-

ery n a sequence of sets {Bn(k)}∞k=0: Bn(k + 1) will only include elements of

Bn(k) so that their restricted orbit, Sanx, is included in San+1Bn+1(k). Then

we will bound the measure of the sets that we remove to conclude that for

Bn :=
⋂∞

k=0 Bn(k) we have SanBn ↗ X as n→ ∞.

Proof. Let {εn} be a positive monotone decreasing sequence such that∑∞
n=1 εn < ∞. By Rokhlin’s lemma for flows, Lemma 5.1, for every n there

exists a set Bn(0) such that:

(L1) Bn(0) is an San -set.

(L2) μ(SanBn(0)) > 1− εn.
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We inductively define the sets

Bj(k + 1) = {x ∈ Bj(k), Sajx ⊂ Saj+1Bj+1(k)}.
First of all, Bj(k+1) ⊆ Bj(k) and so the set Bj :=

⋂∞
k=1 Bj(k) is well defined.

Next, every measurable subset of Bj(0) is in itself an Saj -set, because of prop-

erty (F2) of an Saj -set. If for every k, Bj(k) is measurable, then it is an Saj -set,

and so is Bj . To conclude that property (N1) holds it is left to show that for

every k the set Bj(k) is measurable.

It is clear that the inclusion condition, condition (N2), holds by the way

the sequence {Bj} is defined. To prove that (N1), (N3) hold we will need the

following claim:

Claim: Let x ∈ Bj(k). Then x ∈ Bj(k + 1) if and only if there exists

y ∈ Bj+1(k) such that Sajx ⊂ Saj+1y.

This claim tells us that for every x that we threw away on step k of the

construction of the sequence {Bj(k)}, x ∈ Bj(k)\Bj(k+1), its restricted orbit,

Sajx, is included in the restricted orbit of some element y ∈ Bj+1(k − 1) that

we threw away on step (k − 1) of the construction of the sequence {Bj+1(k)},
y ∈ Bj+1(k − 1) \Bj+1(k).

Proof of the claim. The ‘if’ part of the claim is obvious. To prove the other

side, assume by contradiction that the set defined by

Ax := {y ∈ Bj+1(k), Sajx ∩ Saj+1y 	= ∅}
contains at least two elements. Note that Ax may contain at most four elements,

for if ζ ∈ Sajx ∩ Saj+1y 	= ∅ then there exists z ∈ Saj and w ∈ Saj+1 such that

ζ = Tzx = Twy, meaning that

Sajx ∩ Saj+1y =SajTw−zy ∩ Saj+1y = (Saj+1 ∩ Saj (w − z))y

=(Saj+1(z − w) ∩ Saj )x.

In particular, there exists a rectangle R = Saj+1(z − w) ∩ Saj such that

Rx = Sajx ∩ Saj+1y.

As Saj and Saj (z − w) are aligned squares, their intersection will give us a

rectangle. Since aj < aj+1 and the squares TzSaj and Saj+1 are aligned, the

rectangle R must contain at least one of the corners of Saj (see Figure 7).
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Figure 7. An intersection of aligned squares is a rectangle, so

that at least one of its corners belongs to the smaller square in

the intersection.

In addition, because Bj+1(k)⊂Bj+1(0) it fulfills property (F1) of an Saj+1 -set,

and so each element of the set of ‘corners’ of Sajx,

{Taj(1+i)x, Taj(1−i)x, Taj(−1+i)x, Taj(−1−i)x},

belongs to the set Saj+1y for a unique y ∈ Ax. We conclude that Ax cannot

contain more than four elements.

Next, note that R is a closed rectangle as an intersection of two closed squares.

We get that

Sajx = � Rαx,

where the collection {Rα} contains at most four disjoint closed rectangles, and

the union is disjoint since x ∈ Bj(k) for which property (F1) of an Saj -set holds.

This yields that Saj = � Rα, which is a contradiction to the fact that a square

is a connected set, and thus concludes the proof of the claim.

We will prove the measurability of Bj(k) by induction on k. Recall that an

S-set B ⊂ X satisfies condition (F2) if for every B
′ ⊂ B measurable and every

A ⊂ S measurable the set

AB′ :=
⋃
z∈A

TzB
′

is a measurable subset of X . Now, for every j the set Bj(0) is measurable by

property (F2). Assume that for every j we know that Bj(k) is measurable.
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Following the claim above and the definition of Bj(k + 1), for x ∈ Bj(k)

x ∈ Bj(k + 1)
def⇐⇒ Sajx ⊂ Saj+1Bj+1(k)

claim⇐⇒ ∃y ∈ Bj+1(k), Sajx ⊂ Saj+1y

⇐⇒ ∃y ∈ Bj+1(k), x ∈ Saj+1−ajy ⇐⇒ x ∈ Saj+1−ajBj+1(k).

We conclude that

Bj(k + 1) = Bj(k) ∩ Saj+1−ajBj+1(k),

which is measurable as the intersection of two measurable sets, since property

(F2) holds for B�(k) for every �, by the induction assumption.

It is left to show that this sequence saturates the whole space, namely that

μ(SanBn) ↗ 1. Following the claim above, if x ∈ Bj(k) \ Bj(k + 1) and

y ∈ Bj+1(k− 1) is such that Tzx = y, then necessarily y 	∈ Bj+1(k). We obtain

that

(6) SajBj(k) \ SajBj(k + 1) ⊆ Saj+1Bj+1(k − 1) \ Saj+1Bj+1(k).

In addition, if Sajx ∩ Saj+1−2ajBj+1(0) 	= ∅, then there exists z ∈ Saj and

w ∈ Saj+1−2aj such that Tz−wx ∈ Bj+1(0), but then for every ξ ∈ Saj we have

that ξ + w − z ∈ Saj+1 and so

Tξx = Tξ+w−zTz−wx ∈ Saj+1Bj+1(0) ⇒ Sajx ⊂ Saj+1Bj+1(0),

contradicting the fact that x 	∈ Bj(1). We conclude that

(7) SajBj(0) \ SajBj(1) ⊆ X \ Saj+1−2ajBj+1(0).

Combining (6) and (7) one can see that

SajBj(k) \ SajBj(k + 1)
(6)

⊆Saj+1Bj+1(k − 1) \ Saj+1Bj+1(k)

...

(6)

⊆Saj+k
Bj+k(0) \ Saj+k

Bj+k(1)

(7)

⊆X \ Sak+j+1−2ak+j
Bk+j+1(0).
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Now, using Remark 2.5, for every k and j we get that for m = j + k

(8)

μ(SajBj(k) \ SajBj(k + 1)) ≤μ(X \ Sam+1−2amBm+1(0))

=1− μ(Sam+1−2amBm+1(0))

=1−m(Sam+1−2am) · μ(Sam+1Bm+1(0))

m(Sam+1)

≤1− (am+1 − 2am)2

a2m+1

(1− εm)

<2εm +
4am
am+1

.

We note that by the triangle inequality

μ(X \ SajBj(n)) ≤μ(X \ SajBj(0)) +

n−1∑
k=0

μ(SajBj(k) \ SajBj(k + 1))

(8)

≤ μ(X \ SajBj(0)) +

n−1∑
k=1

(
2εj+k +

4aj+k

aj+k+1

)

<2

∞∑
k=j

(
εk +

2ak
ak+1

)
.

Since the latter is the tail of a converging series it tends to 0, concluding the

proof of (N3), as μ(X \Bn) = limk→∞μ(X \Bn(k)) −→
n→∞ 0.
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