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ABSTRACT

In the setting of symplectic manifolds which are convex at infinity, we use

a version of the Aleksandrov maximum principle to derive uniform esti-

mates for Floer solutions that are valid for a wider class of Hamiltonians

and almost complex structures than is usually considered. This allows us

to extend the class of Hamiltonians which one can use in the direct limit

when constructing symplectic homology. As an application, we detect ele-

ments of infinite order in the symplectic mapping class group of a Liouville

domain and prove existence results for translated points.

1. Introduction

Symplectic homology is a natural generalisation of Floer homology to open

symplectic manifolds which are convex at infinity. It is constructed via a direct

limit of Floer homology groups for Hamiltonians which get steeper and steeper

at infinity. This construction—in the case where the symplectic manifold is

exact—is due to Viterbo [28]—although there were various previous flavours and

incarnations. It has since been generalised to non-exact symplectic manifolds

by Ritter [16, 17, 18].
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Since the underlying symplectic manifold is non-compact, there are additional

technical difficulties in the construction of symplectic homology which are not

present in the closed setting. Chief amongst these is the necessity of a maximum

principle to prevent Floer solutions from escaping to infinity. The need for such

a maximum principle to hold severely limits the type of Hamiltonians which one

can take in the aforementioned direct limit. The standard technique is to use

Hamiltonians that are radial and linear on the convex end. More precisely, the

assumption that our underlying symplectic manifold (M,ω) is convex at infinity

means that there is a compact domain M1 ⊂ M such that the complement of

M1 is symplectomorphic to the positive part of the symplectisation of a closed

contact manifold:

(1) (M \M1, ω) ∼= (Σ× (1,∞), d(rα)),

where (Σ, α) is a closed contact manifold and r denotes the coordinate on [1,∞).

Then one works with Hamiltonians Ht on M that are of the form

(2) Ht(x, r) = ar + b,

for large r. For such Hamiltonians the r-component of a solution of the Floer

equation is necessarily subharmonic, and this prevents such solutions from es-

caping to infinity.

In [19], Ritter extended the class of Hamiltonians to those which are of the

form

(3) Ht(x, r) = rht(x) + b,

for large r, where ht : Σ → R is a function which is invariant under the Reeb

flow of α. A similar construction was also given independently by the second

author in [26], and for time-independent h a different proof was given by Fauck

in his thesis [9].

In this paper we further generalise this and remove the hypothesis that ht

must be invariant under the Reeb flow. Namely, we prove:

Theorem 1.1 (Extended maximum principle): The maximum principle applies

to all Hamiltonians of the form (3).

Remark 1.2: Theorem 1.1 is stated more precisely in Theorem 3.10 below. Ac-

tually, the existence of a maximum principle depends not only on the choice of

Hamiltonian but also on the choice of almost complex structure (for simplicity
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we suppress this fact during the Introduction). The standard maximum princi-

ple requires one to work with an almost complex structure which is of SFT-type

at infinity. In addition to extending the class of Hamiltonians for which a max-

imum principle is applicable, we also extend the class of complex structures

to those of twisted SFT-type at infinity (see Definition 2.1 below). As far as

applications are concerned, extending the class of almost complex structures

is just as important as extending the class of Hamiltonians—see for instance

Proposition 4.1 below).

We believe that Theorem 1.1 will be useful in several situations. In the

present paper we discuss two of them—in the Outlook at the end of this section

we mention further applications that will appear in the sequel to this paper.

Assume now that (M,ω) is a symplectic manifold which is convex at infinity

as above, and for which the symplectic homology SH∗(M) is well defined. This

really is an extra assumption: the minimum one needs is to assume that (M,ω)

is weakly+ monotone, a condition introduced by Hofer and Salamon in [12],

which requires that at least one of the following three conditions is fulfilled:

• ω|π2(M) = 0 or c1|π2(M) = 0,

• ω is positively monotone: there exists β>0 such that (ω−βc1)|π2(M)=0,

• the minimal Chern number N of (M2n, ω) is at least n− 1.

See Ritter [18] for details of the construction in this setting. At the other end of

the spectrum, the “simplest” type of symplectic manifolds for which symplectic

homology can be defined are Liouville domains. Here one starts with a compact

exact symplectic manifold (M1, ω1 = dλ1) with boundary Σ = ∂M1, which in

addition has the property that the vector field Y1 defined implicitly by requiring

that λ1 = ω(Y1, ·) points strictly outwards along Σ. Consequently there is a

smooth function r defined on a neighbourhood of Σ in M1 with values in (0, 1]

such that Σ = r−1(1) and such that dr(Y1) = r. This allows us to identify a

neighbourhood of Σ in M1 with Σ× (0, 1]. One then “completes” (M1, ω1) into

a non-compact symplectic manifold (M,ω) by setting

M := M1 ∪Σ (Σ× R
+).

We then extend λ1 to a one-form λ on M by setting λ = rα on Σ×R
+. Setting

ω = dλ, the manifold (M,ω) is then obviously convex at infinity. This is the

class of symplectic manifolds Viterbo [28] originally worked with.
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Symplectic homology is oftentimes an infinite-dimensional theory. The most

famous early result, originally proved by Viterbo [27] (and independently by

Salamon–Weber [21], Abbondandolo–Schwarz [1], and Abouzaid [3]) is that the

symplectic homology of a cotangent bundle (T ∗N, dλcan) equipped with its stan-

dard symplectic form is equal to the singular homology of the free loop space:

SH∗(T ∗N) ∼= H∗(Λ(N);Z2).

Nevertheless, motivated by the Seidel representation [23], in [18] Ritter discov-

ered that the existence of a loop of Hamiltonian diffeomorphisms with positive

slope at infinity forces symplectic homology to be finite-dimensional. Here is

the precise statement.

Theorem 1.3 (Ritter [18]): Assume (M,ω) is a weakly+ monotone symplectic

manifold which is convex at infinity. If there exists a loop of Hamiltonian

diffeomorphisms generated by a Hamiltonian Ht : M → R which for r large is

of the form

Ht(x, r) = rht(x) + b, ht > 0,

such that

(4) ht is invariant under the Reeb flow,

then the summand of symplectic homology coming from contractible orbits can

be seen as a localisation (i.e., quotient) of the quantum homology of M .

The only reason the ht was required to be invariant under the Reeb flow was

that this was the only class for which the maximum principle was known to

hold. Our Theorem 1.1 removes this restriction.

Corollary 1.4: The assumption (4) in Theorem 1.3 is not necessary.

We conclude this Introduction by discussing applications of our maximum

principle. The first extends previous work of the second author [26] and re-

solves a conjecture of Biran–Giroux [7]. Assume now that (M,ω = dλ) is the

completion of a Liouville domain (M1, ω1 = dλ1) with boundary Σ = ∂M1.

Consider the subgroup

G := {φ ∈ Symp(M,ω) | φ∗λ− λ = df, supp(f) ⊂ int(M1))},
and the subset

Gc := {φ ∈ G | supp(φ) ⊂ int(M1)}.
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Clearly Gc is a subgroup of the group Sympc(M1, ω1) of compactly supported

symplectomorphisms of (M1, ω1). In fact, the inclusion Gc ↪→ Sympc(M,ω) is

a homotopy equivalence. This is due to Biran–Giroux [7]; a proof can be found

in [26, Lemma 3.3].

Next, if we denote by α the restriction of the one-form λ1 on M1 to the

boundary Σ, then α is a contact form on Σ. Let us denote the associated

contact distribution by ξ, and the group of contactomorphisms by Cont(Σ, ξ).

An element φ ∈ G naturally defines an element of Cont(Σ, ξ). Indeed, for such

a φ there exists T > 0 such that on Σ× (T,∞), one has

φ(x, r) =
(
ϕ(x),

r

κ(x)

)
,

where ϕ ∈ Cont(Σ, ξ) and κ : Σ → (0,∞) satisfies ϕ∗α = κα. Thus there is a

well defined map, called the ideal restriction map, given by

Θ : G → Cont(Σ, ξ), Θ(φ) := ϕ.

Moreover, Biran and Giroux [7] discovered that the map Θ is a Serre fibration

over Cont(Σ, ξ) with fibre Gc. This implies there is a long exact sequence

πk(Sympc(M1, ω1)) −→ πk(G) −→ πk(Cont(Σ, ξ))
Δ−−→ πk−1(Sympc(M1, ω1)).

Denoting the symplectic mapping class group of (M1, ω1) by

SMCG(M1, ω1) := π0(Sympc(M1, ω1)),

the connecting homomorphism

Δ : π1(Cont(Σ, ξ)) → SMCG(M1, ω1)

is given as follows. Given a loop ϕt : Σ → Σ, t ∈ S1, of contactomorphisms

based at the identity, choose a lift [0, 1] � t 	→ φt ∈ G such that Θ(φt) = ϕt.

Then set

(5) Δ([ϕt]) := [φ1],

where in both cases [·] denotes the appropriate equivalence relation. Explicitly,

if ϕt has contact Hamiltonian ht : Σ → R (see (13) below for the definition of

ht), define Ht : M → R by first setting

Ht(x, r) = β(r)rht(x), ∀ (x, r) ∈ Σ× R
+,



44 W. J. MERRY AND I. ULJAREVIC Isr. J. Math.

where

(6) β : (0,∞) → [0, 1], β(r) =

⎧⎨
⎩
0, r ∈ (0, 1/4),

1, r ∈ (3/4,∞),
β′(r) ≥ 0,

and then extending Ht to all of M by setting Ht = 0 on the rest of M . Then if

φt
H denotes the Hamiltonian flow of H , one has

Θ(φt
H) = ϕt,

and hence Δ([ϕt]) = [φt
H ].

Biran and Giroux conjectured that if the symplectic homology of M is suffi-

ciently rich and ϕt is a positive loop (this means that the contact Hamiltonian

ht is everywhere positive), then the element Δ([ϕt]) should be of infinite order

inside SMCG(M1, ω1). In the following theorem, the total dimension of the

symplectic homology of M is denoted by dimSH∗(M).

Theorem 1.5: Let (M2n
1 , ω1) be a Liouville domain with completion (M,ω).

Let ϕt : Σ → Σ be a positive loop of contactomorphisms on the boundary

Σ := ∂M. If
2n∑
k=1

dimHk(M1;Z2) < dimSH∗(M),

then the element Δ([ϕt]) from (5) is of infinite order in the symplectic mapping

class group of (M1, ω1).

As remarked above, a special case of the theorem, in which the loop ϕt is

strict, was proved in [26]. In addition, recently progress has been made in

several related directions by other authors: Seidel [25], Chiang, Ding and van

Koert [14, 15], and Barth, Geiges and Zehmisch [6]. See Remarks 4.1 and 4.6

in [6] for a more detailed historical overview.

Another application of the maximum principle pertains to translated points.

Given a contactomorphism ϕ : Σ → Σ of a contact manifold (Σ, α), a trans-

lated point of ϕ is a point x such that ϕ(x) and x both lie on the same Reeb

orbit of α, and such that ϕ∗α|x = αx. This notion was introduced by Sandon in

[22], although it can be seen as a special case of a leaf-wise intersection point as

introduced by Moser in [13]. Using Rabinowitz Floer homology, the first author

and Albers proved:
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Proposition 1.6 ([5]): Let (M2n
1 , ω1) be a Liouville domain with completion

(M,ω). Suppose SH∗(M) is infinite-dimensional. Then any contactomorphism

of the boundary isotopic to the identity through contactomorphisms either has

infinitely many translated points or a translated point on a closed Reeb orbit.

In Section 5 we give a new proof of this result using the new maximum

principle.

Outlook. The present paper concludes by briefly explaining how to define

the analogue of positive symplectic homology in this setting. This gives rise

to an invariant SH+(ϕt,M) associated to a path of contactomorphisms on the

boundary of a Liouville domain, which we call the positive symplectic homology

for the contact isotopy ϕt. It is defined whenever ϕ1 �= Id, and, up to a grading

shift, depends only on the time-1 map ϕ1. For ϕt equal to a small piece of

the Reeb flow this group agrees with the usual positive symplectic homology

SH+(M). In general though this is not the case, and the groups SH+(ϕt,M)

can be used to obtain more refined existence results on translated points. We

will study these groups thoroughly in a sequel to the present paper.

A further variant on this idea is to construct groups SH(U,M) associated to

an open set U of the boundary Σ, by using contact Hamiltonians associated to

contact isotopies that are supported inside U . This gives applications to contact

embedding and squeezing problems, and will again be discussed in this paper’s

sequel.

Finally, we remark that Groman [11] has recently developed a novel approach

to obtaining L∞-bounds for Floer solutions on non-compact manifolds. It would

be interesting to see whether his methods can recover the results proved here.

Acknowledgement. We thank Peter Albers, Paul Biran, Leonid Polterovich

and Alex Ritter for several illuminating discussions during the preparation of

this article. The second author was partially supported by the European Re-

search Council (ERC) under the European Union’s Horizon 2020 research and

innovation programme, starting grant No. 637386.

2. Preliminaries on symplectisations

Although we are primarily interested in non-compact manifolds that are convex

at infinity, almost all of our arguments will take place in the symplectisation of a

closed contact manifold. Thus we begin by fixing some notation in this setting.
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Suppose (Σ, ξ) is a closed co-orientable contact manifold of dimension 2n−1.

Let SΣ := Σ×R
+ denote the symplectisation of Σ. A choice of contact form

α on Σ supporting ξ gives rise to a symplectic form dλ on SΣ. The one-form

λ is defined by λ = rα, where r is the coordinate on R
+. Given r > 0, we

abbreviate by SΣ(r) the non-compact open manifold Σ× (r,∞).

We denote by Y = r∂r the Liouville vector field on SΣ, and we denote by

R the Reeb vector field on Σ, which we also think of as a vector field on SΣ.

Note that the symplectic complement of the 2-plane field spanned by R and Y

is exactly the contact distribution ξ.

Suppose j is an almost complex structure on the symplectic vector bundle

(ξ, dα) → Σ which is compatible1 with dα. The almost complex structure

j uniquely determines an almost complex structure J on SΣ itself, which is

defined by

(7) J(aR+ bY + v) = aY − bR+ jv, a, b ∈ R, v ∈ ξ.

We say that J is of SFT-type.

We now generalise this notion. Suppose we are given a smooth positive

function q : Σ → R
+. Let Q : SΣ → R

+ be defined by

Q(x, r) = rq(x).

Observe that the Hamiltonian vector field2 XQ of Q takes the form

(8) XQ(x, r) = Xq(x) − dq(x)R(x)Y (r),

where Xq is the vector field on Σ defined by

α(Xq) = q, dα(Xq , ·) = dq(R)α− dq.

Let NQ denote the symplectic complement of the 2-plane field spanned by XQ

and Y in T (SΣ). Explicitly,

NQ(x, r) =
{(

v,−rdq(x)v

q(x)

)
| v ∈ ξx

}
.

Thus given v ∈ ξx there is a unique vector ζQ(v) ∈ NQ(x, r) such that the first

component of ζQ(v) is v.

1 Throughout we use the sign convention that an almost complex structure I is compatible

with a symplectic form Ω if Ω(I·, ·) is a positive-definite symmetric form.
2 Our sign convention is that dλ(XQ, ·) = −dQ.
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Definition 2.1: Let q ∈ C∞(Σ,R+) denote a smooth positive function, and set

Q = rq as above. Let j denote a compatible almost complex structure on ξ. The

pair (q, j) determines an almost complex structures3 JQ on SΣ which, following

Albers–Frauenfelder [4], we will call of twisted SFT-type, via the formula

(9) JQ(aXQ + bY + ζQ(v)) = bXQ − aY + ζQ(jv), a, b ∈ R, v ∈ ξ.

Observe that taking q = 1 recovers the original notion (7) of an SFT-type

almost complex structure (in this case XQ = R). Given η ∈ T(x,r)(SΣ), write

η = w + cY, where w ∈ TΣ and c ∈ R. Setting

(10) a =
λ(x,r)(η)

Q(x, r)
, b =

dQ(x, r)η

Q(x, r)
,

and

v := w − aXq(x),

we also have

η = aXQ + bY + ζQ(v).

If η = a′XQ + b′Y + ζQ(v
′) is another tangent vector to SΣ, then

(11)

dλ(JQη, η
′)

= (dr ∧ α+ rdα)(JQ(aXQ + bY + ζQ(v)), a
′XQ + b′Y + ζQ(v

′))

= (dr ∧ α+ rdα)(−bXQ + aY + ζQ(jv)), a
′XQ + b′Y + ζQ(v

′))

= dr(−bXQ + aY )α(a′XQ)− dr(a′XQ + b′Y )α(−bXQ) + rdα(jv, v′)

= (brdq(R) + ra)a′q − (−a′rdq(R) + rb′)(−bq) + rdα(jv, v′)

= Q(aa′ + bb′) + rdα(jv, v′),

which shows that JQ is compatible with dλ. From now on we abbreviate

|η|2JQ
:= dλ(JQη, η) ≥ 0.

Let us now fix a “background” Riemannian metric gΣ on Σ. We denote

by | · |Σ the associated norm on TΣ. Since Σ is compact, it follows from

(11) that for any pair (q, j) there exists a constant εQ > 0 such that for any

η = w + cY ∈ T(x,r)(SΣ), one has

(12) |η|2JQ
≥ εQr|w|2Σ.

3 This notation is slightly inconsistent, since JQ depends on both Q and j. In general we

will suppress the dependence of j in all our notation.
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3. The extended maximum principle

Definition 3.1: A connected non-compact 2n-dimensional symplectic manifold

(M,ω) is said to be modelled on Σ at infinity if the complement of a

compact subset of M is symplectomorphic to part of the symplectisation SΣ

of Σ. Explicitly, this means there exists a number 0 < rM < 1 and a compact

domain M∗ ⊂ M with compact closure such that M \M∗ is symplectomorphic

to SΣ(rM ):

ι : M \M∗ → SΣ(rM ), ι∗(dλ) = ω.

In particular, ∂M∗ ∼= Σ, and outside of M∗ the symplectic form ω is exact

(although this may not be the case on all of M). More generally, a non-compact

symplectic manifold is said to be convex at infinity if there exists a closed

contact manifold Σ such that M is modelled on Σ at infinity.

Remark 3.2: The assumption that rM < 1 is, of course, not important, and can

always be achieved by rescaling. In particular, this notion is equivalent to the

one discussed at the start of the Introduction.

Let us now fix a symplectic manifold (M,ω) which is modelled on Σ at infinity.

In all of the following we will suppress the ι from our notation. For r ≥ rM we

denoteMr := M\SΣ(r), and think ofM as being the disjoint unionMr∪SΣ(r).
Thus M∗ = MrM .

Definition 3.3: Let H ⊂ C∞(M × S1) denote the set of time-dependent Hamil-

tonians Ht(z) on M with the property that there exists rM < rH < 1 such that

the restriction of H to SΣ(rH) is, up to a constant, 1-homogeneous in r:

Ht(x, r) = rht(x) + cH , ht : Σ → R, ∀ (x, r) ∈ SΣ(rH).

Just as with XQ above, the Hamiltonian vector field XHt of Ht satisfies

XHt(x, r) = Xht(x)− dht(x)R(x)Y (r), (x, r) ∈ SΣ(rH),

where Xh is the (now time-dependent) vector field on Σ defined by

(13) α(Xht) = ht, dα(Xht , ·) = dht(R)α− dht.

The vector fieldXht generates a path ϕt
h : Σ → Σ of contactomorphisms isotopic

to the identity. We say that ht is the contact Hamiltonian associated to ϕt
h.

The conformal factor of ϕt
h is the function κt

h : Σ → R
+ defined by

(ϕt
h)

∗α = κt
hα.
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If κt
h = 1, then we say ϕt

h is a strict contactomorphism. The flow φt
H of the

Hamiltonian vector field of Ht is given by

(14) φt
H(x, r) =

(
ϕt
h(x),

r

κt
h(x)

)
.

For later use, let us note that if Q = rq and H = rh, then the Poisson bracket

is given by

(15)

{Q,H} := dQ(XH)

= (qdr + rdq)(Xh − dh(R)Y )

= −Qdh(R) + rdq(Xh).

From (13) we have

dq(Xh) = dq(R)h− dα(Xq , Xh)

= dq(R)h+ dα(Xh, Xq)

= dq(R)h+ dh(R)q − dh(Xq),

and hence we also obtain

(16) {Q,H} = Hdq(R)− rdh(Xq).

Definition 3.4: Let H◦ denote the set of H ∈ H that in addition satisfies the

following two conditions:

(1) The contactomorphism ϕ1
h has no fixed points.

(2) All the fixed points of φ1
H are non-degenerate (i.e., for every fixed point

z ∈ M of φ1
H , 1 is not an eigenvalue of Dφ1

H(z) : TzM → TzM).

Note that by (1), any such fixed point is necessarily contained in the compact

manifold M1.

Definition 3.5: Let J denote the set of families J = (Jt) of almost complex

structures on M which are compatible with ω and which have the property

that there exists rM < rJ < 1 and a smooth family qt of positive functions on Σ

and an almost complex structure j on ξ such that on SΣ(rJ ), Jt agrees with the

corresponding family JQt of almost complex structures of twisted SFT-type.

Let L(M) := C∞(S1,M) denote the free loop space. Given J ∈ J we define

an L2 scalar product ⟪·, ·⟫J on L(M) by

⟪η1, η2⟫J :=

∫
S1

〈η1(t), η2(t)〉Jt dt, v ∈ L(M), η1, η2 ∈ C∞(S1, v∗TM),
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where 〈·, ·〉Jt := ω(Jt·, ·). Given H ∈ H there is a well-defined one-form aH on

the free loop space L(M), given for v ∈ L(M) by

aH(v) · η =

∫
S1

ωv(t)(η(t), v̇(t) −XHt(v(t))) dt, η ∈ C∞(S1, v∗TM).

This one-form is typically not exact, but becomes exact when we lift it to an

appropriate Novikov cover of L(M), cf. [12]. We will not discuss this here, since

it is not important as far as the maximum principle is concerned. The kernel of

aH is exactly the one-periodic solutions of the Hamiltonian system determined

by H :

ker aH = {v ∈ L(M) | v̇ = XH(v)} ∼= Fix(φ1
H).

We denote by mH,J the vector field on L(M) dual to aH :

aH(v) · η = ⟪mH,J(v), η⟫J .

Explicitly,

mH,J(v)(t) = Jt(v)(v̇ −XHt(v(t))).

The following lemma will be crucial for our maximum principle.

Lemma 3.6: Suppose H ∈ H◦ and J ∈ J . There exists B, ε > 0 depending on

H and J such that if a loop v : S1 → M satisfies

‖mH,J(v)‖J < ε,

then v(S1) ⊂ MB.

Proof. By assumption on SΣ(1) we can write Jt = JQt and Ht = rht + cH . Set

δ := min
(x,t)∈Σ×S1

qt(x), Δ := max
(x,t)∈Σ×S1

qt(x),

so that 0 < δ ≤ Δ. Define

(17) m : [0, 1]× Σ → R, m(t, x) :=
ht(x)dqt(x)R(x) − dht(x)Xqt(x)

qt(x)
.

By compactness, there exists c ≤ C such that

c ≤ m(t, x) ≤ C

for all (t, x). Choose A,B > 1 such that

(18) B >
1 + ΔeCA

δec
;
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note in particular this implies B > Δ
δ A. Next, recall the fixed background norm

| · |Σ defined just before (12). Since ϕ1
h has no fixed points and Σ is compact,

there exists ε0 such that ∫
S1

|ẋ−Xht(x)|2Σ dt ≥ ε0

for any loop x in Σ. If v(S1) is entirely contained in SΣ(A), then writing

v(t) = (x(t), r(t)) and using (12),

‖mH,J(v)‖2J ≥
∫
S1

εQtr(t)|ẋ(t) −Xht(x(t))|2Σ dt

≥εA := Aε0 max
t∈S1

εQt .

If instead v(S1) is entirely contained in MB, then since MB has compact closure

and H only has non-degenerate one-periodic orbits there exists εB such that if

‖mH,J(v)‖J ≤ εB

then v(S1) is contained in a small neighbourhood of the periodic orbits of H

(cf. [20]), and hence also in M1. Set

εA,B := min{√εA, εB}.
Then if ‖mH,J(v)‖J < εA,B, then there must exist an interval [a, b] ⊂ S1 such

that r(a) = A and r(b) = B, and such that r(t) ∈ (A,B) for all t ∈ (A,B). Let

ρ(t) := Qt(v(t)) = qt(x(t))r(t).

Then ρ(a) ≤ AΔ and ρ(b) ≥ δB. Thus by (18) there exists [a′, b′] ⊂ [a, b] such

that

ρ(a′) = ΔA, ρ(b′) = δB.

Abbreviate m(t) = m(t, x(t)), where m was defined in (17). We now look at

the Y -component of v̇ −XHt(v). Using (10) and (16) this is

dQt(v(t))(v̇ −XHt(v))

Qt(v(t)
=

ρ̇− {Q,H}
ρ

=
ρ̇−mρ

ρ
.

Thus we can estimate

‖mH,J(v)‖J ≥
∫ b′

a′

1√
ρ
|ρ̇+mρ| dt ≥ 1√

δB

∫ b′

a′
|ρ̇+mρ| dt.

Let

n(t) := exp

(∫ t

0

m(s) ds

)
,



52 W. J. MERRY AND I. ULJAREVIC Isr. J. Math.

and

s(t) := n(t)ρ(t),

so that ṡ = ṅρ+ nρ̇ = n(ρ̇+mρ). Thus

‖mH,J(v)‖J ≥ 1

eC
√
δB

∫ b′

a′
|ṡ| dt

=
1

eC
√
δB

(s(b′)− s(a′))

≥ 1

eC
√
δB

(ecδB − eCΔA)

≥ 1

eC
√
δB

,

where the last line used (18). The lemma follows with B as specified and

ε := min
{
εA,B,

1

eC
√
δB

}
.

This completes the proof.

Definition 3.7: Let us say that a homotopy H = (Hs) ⊂ H, s ∈ R is a contin-

uation homotopy of Hamiltonians if:

(1) H is asymptotically constant, i.e.,

Hs =H0, ∀ s ≤ 0,

Hs =H1, ∀ s ≥ 1.

(2) The asymptotes H0, H1 both belong to H◦.
(3) H is monotonically increasing in s:

∂Hs

∂s
≥ 0.

Definition 3.8: Let us say that a homotopy J = (Js) ⊂ J , s ∈ R is a con-

tinuation homotopy of almost complex structures if Js is asymptotically

constant, i.e.,

Js =J0, ∀ s ≤ 0,

Js =J1, ∀ s ≥ 1.

Definition 3.9: Given continuation homotopies H and J and a real number

E ≥ 0, we denote by

MH,J(E)
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the space of all smooth maps u : R × S1 → M that are negative flow lines of

the s-dependent vector field mHs,Js :

(19) ∂su+mHs,Js(u(s, ·)) = 0,

and which have energy

EJ(u) :=

∫ ∞

−∞
⟪∂su, ∂su⟫Js ds ≤ E.

Explicitly, (19) means that u solves the partial differential equation

∂su+ Jt(u)∂tu = Jt(u)XHs
t
(u).

The main result of this section is the following a priori L∞ bound on elements

of MH,J(E). This result was stated in the Introduction as Theorem 1.1.

Theorem 3.10 (The Extendend Maximum Principle): Suppose we are given

continuation homotopies H and J and E ≥ 0. Then there exists a constant

r0 = r0(E,H,J) > 0 such that

u(R× S1) ∩ SΣ(r0) = ∅, ∀u ∈ MH,J(E).

The proof will take some time, and we will proceed in several stages. Let us

write Jt = JQs
t
and Ht = rht

s + cHs on SΣ(1), where hs
t : Σ → R is a family

of smooth functions such that
∂ht

s

∂s ≥ 0 and qst : Σ → R
+ is a family of smooth

positive functions. Both hs
t and qst only depend on s in [0, 1].

First, we prove that a flow line can only spend a finite time outside of a

compact set.

Lemma 3.11: There exists T > 1 and L > 0 such that if u ∈ MH,J(E) and

Ω is a connected component of u−1(SΣ(T )), then Ω is contained in I × S1 for

I ⊂ R an interval of length at most L.

Proof. By Lemma 3.6 there exists εi, Bi > 0 for i = 0, 1 such that if a loop v

satisfies

‖mHi,Ji(v)‖Ji < εi

for i = 0, 1, then v ⊂ MBi . Let T := maxBi and let ε = min εi. Thus if

u(s, ·) ⊂ SΣ(T ) for all s ∈ [a, b], where either [a, b] ⊂ (−∞, 0] or [a, b] ⊂ [1,∞),

then we have

E =

∫
R

‖∂su(s, ·)‖2Js ds ≥ |b− a|ε2,
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and hence |b− a| ≤ Eε−2. Thus if Ω is a connected component of u−1(SΣ(T )),

decomposing Ω as

Ω = Ω− ∪ Ω0 ∪Ω+,

where Ω− = Ω ∩ (−∞, 0], Ω0 = Ω ∪ [0, 1], and Ω+ = Ω ∩ [1,∞) (some of which

may be empty), we see that Ω has length at most

Eε−2 + 1 + Eε−2.

Thus the lemma follows with L = 2Eε−2 + 1.

Let now Ω denote a connected component of u−1(SΣ(T )). Write

u|Ω = (w, r),

so that w : Ω → Σ and r : Ω → (T,∞). Our goal is to find a constant r0

depending on H,J and E (but not on u!) such that

sup
(s,t)∈Ω

r(s, t) ≤ r0.

Consider the function

ρ(s, t) := Qs
t (u(s, t)) = qst (w(s, t))r(s, t).

It is also convenient to define the following two families of functions:

f s
t : Σ → R, gst : Σ → R,

where

fs
t (x) :=

∂sq
s
t (x)

qst (x)
,

and

gst (x) :=
∂tq

s
t (x)

qst (x)
+
(dqst (x)(Xhs

t
(x))

qst (x)
− dhs

t (x)(R(x))
)
.

Finally, let kst denote the vector valued function

kst : Σ → R
2, kst = (f s

t , g
s
t ).

In the following, to keep the notation free from clutter we will drop the s

superscript and the t subscript wherever possible. The key to our argument is

the following elliptic differential inequality for log ρ.
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Proposition 3.12: Define

μ : Ω → R, μ(s, t) := log ρ(s, t).

Then μ satisfies the second order elliptic differential inequality

Δμ+ k(w) · ∇μ ≥ ∇k(w) · w + k(w) · ∇w.

The proof of Proposition 3.12 is a variation on a standard computation (see,

for instance, [24] or [2]). We note however that Proposition 3.12 is not enough

to apply the standard maximum principle, since there is no reason why the term

on the right-hand side should be uniformly pointwise bounded.

Proof. On Ω we have

∂sρ = ∂sq(w) + dQ(u)∂su

= ∂sq(w)r + dQ(u)(−J(u)(∂tu−XH(u))

=
∂sq(w)

q(w)
ρ− λ(∂tu)− λ(XH(u))

=
∂sq(w)

q(w)
ρ− λ(∂tu) +H(u).

Similarly

∂tρ = ∂tq(w)r + dQ(u)∂tu

=
∂tq(w)

q(w)
ρ+ dQ(u)(J(u)∂su+XH(u))

=
∂tq(w)

q(w)
ρ+ λ(∂su) + {Q,H}(u)

=
∂tq(w)

q(w)
ρ+ λ(∂su) +

(dq(Xh(w))

q(w)
− dh(R(w))

)
ρ,

where the last line used (15). Thus

ddcρ = u∗ω− (g(w)∂tρ+ f(w)∂sρ+(∂t(g(w)) + ∂s(f(w)))ρ+ ∂s(H(u)))ds∧ dt.

However

u∗ω =ω(∂su, ∂tu)ds ∧ dt

× ω
(
∂su, J(u)∂su+XH(u)

)
ds ∧ dt

× (−|∂su|2 + dH(u)(∂su))ds ∧ dt
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which means we can alternatively write

ddcρ = −(|∂su|2+g(w)∂tρ+f(w)∂sρ+(∂t(g(w))+∂s(f(w)))ρ+∂sH(u))ds∧dt.

Since ddcρ = −Δρds ∧ dt we obtain

(20) Δρ = g(w)∂tρ+ f(w)∂sρ+ (∂t(g(w)) + ∂s(f(w)))ρ + ∂sH(u) + |∂su|2.

Next, denoting by 〈·, ·〉 the metric dλ(JQ·, ·), we have

〈∂su,XQ〉 = 〈−J(u)(∂tu−XH(u)), XQ〉
= 〈∂tu, Y 〉 − {Q,H}(u)

=
〈∂tr

r
Y, Y

〉
− {Q,H}(u)

= ∂tρ− g(w)ρ

where we used (11) and (15). Similarly

〈∂su, Y 〉 = ∂sρ− f(w)ρ.

The norm of ∂su can be estimated from below by its projection onto the

(XQ, Y )-plane, which gives us

|∂su|2 ≥ 1

ρ
〈∂su,XQ〉2 + 1

ρ
〈∂su, Y 〉2

=
1

ρ
|∇ρ|2 + ρ(g(w)2 + f(w)2)− 2(∂tρ · g(w) + ∂sρ · f(w))

≥ 1

ρ
|∇ρ|2 − 2(∂tρ · g(w) + ∂sρ · f(w)).

From the identity

Δμ =
1

ρ
Δρ− 1

ρ2
|∇ρ|2,

and using ∂sH ≥ 0, we obtain from (20) that

Δμ+ k(w) · ∇μ ≥ ∂s(f(w)) + ∂t(g(w)),

which is what we wanted to prove.

We can now complete the proof of Theorem 3.10.
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Proof of Theorem 3.10. The Aleksandrov integral version of the weak maxi-

mum principle ([10, Theorem 9.1], see also [2, Appendix A]) tells us that

sup
Ω

μ ≤ sup
∂Ω

μ+ C‖∇k(w) · w + k(w) · ∇w‖L2(Ω)

= logT + C‖∇k(w) · w + k(w) · ∇w‖L2(Ω),

where C depends on the L2-norm of k(w) and the diameter of Ω. The diameter

of Ω is bounded thanks to Lemma 3.11. Since Σ is compact and Hs and Js are

asymptotically constant, it is clear that k(w) and ∇k(w) are bounded in L2(Ω).

It remains to see that ∇w is bounded in L2(Ω). It suffices to show that ∂sw

and ∂tw are bounded in L2 using our fixed background norm | · |Σ, i.e., that∫
Ω

|∂sw|2Σ and

∫
Ω

|∂tw|2Σ

are bounded. That ∂sw is bounded is easy, since from (12) we have (temporarily

writing all the sub/superscripts)

|∂sw(s, t)|2Σ ≤ 1

εQs
t
r(s, t)

|∂su(s, t)|2JQs
t

.

Thus setting ε = mins,t εQs
t
we have

∫
Ω

|∂sw|2Σ ≤ 1

εT

∫
Ω

‖∂su‖2 ≤ E

εT
.

The ∂tw term is a little trickier: for this we use the Floer equation to write

∂tu = J∂su+XH(u), which gives

‖∂tu‖2 ≤ 2‖∂su‖2 + 2‖XH(u)‖2.

Then the same estimate gives

|∂tw|2Σ ≤ 1

εr
|∂tu|2

=
1

εr
|J∂su+XH(u)|2

≤ 2

εr
(|∂su|2 + |XH(u)|2).

From (8) and (11) we see that 1
r |XH(u)|2 is bounded, and this completes the

proof.
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4. Symplectic homology revisited

Let us recall the definition of the symplectic homology SH∗(M) of an exact

symplectic manifold M modelled on a contact manifold Σ at infinity. Our

approach is slightly non-standard as we will use Hamiltonians which are of

the form (3) at infinity (our main result, Theorem 3.10 implies this is well-

defined). For brevity we will work with Liouville manifolds only, rather than the

technically more complicated setting of a weak+ monotone symplectic manifold

as referred to in Theorem 1.3.

Let ht : Σ → R be a 1-periodic contact Hamiltonian such that the time-1

map ϕ1
h : Σ → Σ of the corresponding contact isotopy has no fixed points. We

call such contact Hamiltonians admissible.

Floer data for h consists of a (time-dependent) Hamiltonian H ∈ H◦ and an

almost complex structure J ∈ J such that (up to a constant) Ht(x, r) = rht(x)

at infinity, and such that the pair (H, J) is regular in the sense that the lin-

earisation of the Floer operator

u 	→ ∂su+ Jt(u)∂tu− Jt(u)XHt(u)

at any zero is surjective. Regularity is a generic condition, and it ensures that

the moduli spaces of the solutions of the Floer equation are actually manifolds.

In the situation above, we will say that h is the slope of H.

Given Floer data (H, J), one can construct a chain complex CF∗(H, J) which

is generated (as a Z2 vector space) by 1-periodic Hamiltonian orbits of H and

graded by a (negative) Conley–Zehnder index [20, Section 2.4]. The homology

of the chain complex CF∗(H, J) is denoted by HF∗(H, J), and called Floer ho-

mology. For more details on Floer homology, and proofs of the various assertions

made in these paragraphs, see for instance [20].

The Floer homologies HF∗(H, J) and HF∗(H ′, J ′) associated to two different

sets (H, J) and (H ′, J ′) for h are canonically isomorphic. This leads to the Floer

homology HF∗(h) which is associated to the admissible contact Hamiltonian h.

The dependence on the admissible contact Hamiltonian is essential, namely the

Floer homologies corresponding to different contact Hamiltonians are in general

not isomorphic.

Given admissible contact Hamiltonians ht, h
′
t : Σ → R such that ht ≤ h′

t,

using Theorem 3.10, one can construct a continuation map

HF∗(h) → HF∗(h′).
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The continuation maps turn the set {HF∗(h) | h admissible} into a directed sys-

tem of groups indexed by admissible contact Hamiltonians (with the standard

order relation—pointwise ≤). The symplectic homology is the direct limit

of this system

SH∗(M) := lim−→
h

HF∗(h).

Note that this definition coincides with the classical finite-slope definition of

symplectic homology [27]. This is due to constant admissible contact Hamilto-

nians forming a cofinal subset of the set of all admissible contact Hamiltonians.

Apart from continuation maps, there is yet another important class of mor-

phisms between HF∗(h), the so-called naturality isomorphisms. They are

associated to the loops of Hamiltonian diffeomorphisms on M. We first intro-

duce some notation: Let φt : M → M be an isotopy, let Ht : M → R be a

Hamiltonian, let Jt be a family of almost complex structures on M, and let

γ : S1 → M be a loop on M . Denote

(φ∗H)t(x) :=Ht(φt(x)),

(φ∗J)t :=φ∗
t Jt,

(φ∗γ)(t) :=φ−1
t (γ(t)).

Proposition 4.1: Let ht : Σ → R be an admissible contact Hamiltonian, let

(H, J) be Floer data for h, and let G ∈ H be a 1-periodic Hamiltonian that

generates a loop of Hamiltonian diffeomorphisms. Denote by gt : Σ → R the

slope of G. Then, the contact Hamiltonian h̃t : Σ → R defined by

h̃t(x) :=
(ht − gt)(ϕ

1
g(x))

κt
g(x)

is admissible, and ((φK)∗H, (φG)
∗J) is Floer data for h̃. The linear map

CF (H, J) → CF ((φK)∗H, (φG)
∗J)

defined on generators by

γ 	→ (φG)
∗γ

is an isomorphism. We denote the induced isomorphism on the homology

level by

N (G) : HF (h) → HF (h̃),

and call it the naturality isomorphism.
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Proof. See the proof of [26, Lemma 2.27].

Finally, let us discuss the proofs of Theorem 1.5. It is essentially identical

to the argument from [26, Theorem 4.13], modulo use of the new maximum

principle. Nevertheless for the reader’s convenience we will provide a proof.

Proof of Theorem 1.5. Let ht : Σ → R
+, t ∈ S1, be a positive, 1-periodic

contact Hamiltonian that generates a loop ϕt
h of contactomorphisms. As in (6),

let β : R+ → [0, 1] be a smooth function

β : R+ → [0, 1], β(r) =

⎧⎨
⎩
0, r ∈ (0, 1/4),

1, r ∈ (3/4,∞),
β′(r) ≥ 0.

Denote by Ht : M → R the Hamiltonian that is equal to 0 on M \ SΣ and to

(x, r) 	→ β(r)rht(x) on SΣ. The time-1 map φ1
H represents the class Θ([ϕt

h]) in

the symplectic mapping class group. Assume, by contradiction, that the class

[φ1
H ] is trivial. This means there exists a compactly supported Hamiltonian

Lt : M → R such that

φ1
H = φ1

L,

and such that Lt+1 = Lt. Consider the Hamiltonian Gt : M → R that gen-

erates the isotopy φt
H ◦ (φt

L)
−1. Note that G generates a loop of Hamiltonian

diffeomorphisms. Denote by Gm : M → R the Hamiltonian

Gm
t :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mGmt t ∈ [0, 1
m ],

mGmt t ∈ [ 1m , 2
m ],

...

mGmt t ∈ [1− 1
m , 1],

and by gm the corresponding slopes. The isotopy of the Hamiltonian Gm is

equal to the concatenation of m copies of {φt
G}. Let ε > 0 be a small enough

positive number. Denote by fm : Σ → R the admissible (cf. Proposition 4.1)

slope

fm
t (x) := ε · κt

gm ◦ (ϕt
gm)−1 + gmt .

The naturality with respect to Gm provides the isomorphism

(21) HF(fm) → HF(ε).
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Hence the groups HF(fm) are all isomorphic to the singular homology

H(M1,Σ;Z2). Since min fm ≥ m · min h, and since minh > 0, for each ad-

missible a ∈ R the map

HF∗(a) → SH∗(M ;Z2)

factors through HF∗(fm) for large enough m. Hence

dim SH(M ;Z2) ≤ dimH(M1,Σ;Z2) = dimH(M ;Z2).

Contradiction! Therefore, the class Θ([ϕt
h]) is not trivial. Since the iterates

of the loop {ϕt
h} are generated by positive contact Hamiltonians as well, the

same argument shows that the class Θ([ϕt
h]) is in fact of infinite order in the

symplectic mapping class group.

5. Translated points and the positive symplectic homology of a con-

tactomorphism

Definition 5.1: Let (Σ, α) be a co-oriented contact manifold with a choice of

contact form. Let θt : Σ → Σ denote the Reeb flow of α. Let ϕ : Σ → Σ denote

a contactomorphism. Let κ : Σ → R
+ denote the conformal factor of ϕ and α,

so that

ϕ∗α = κα.

A translated point of ϕ and α is a point x ∈ Σ such that there exists T ∈ R

such that

ϕ(x) = θ−T (x), κ(x) = 1.

We call the minimal (in absolute value) such T the period of x (the word

“minimal” is included to deal with the case where the translated point lies on a

closed Reeb orbit of α). This notion was introduced by Sandon in [22], although

it can be seen as a special case of a leaf-wise intersection point as introduced

by Moser in [13].

In this section we show how the maximum principle proved here can be used to

prove that if a Liovuille domain has infinite-dimensional symplectic homology,

then any contactomorphism of the boundary isotopic to the identity through

contactomorphisms has infinitely many translated points. This result is not

new; in [5] the same result was obtained using Rabinowitz Floer homology

(and symplectic homology is infinite-dimensional if and only if Rabinowitz Floer

homology is; cf. [8]). We then go on to explain how by working with the analogue
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of positive symplectic homology, we can define a more refined invariant which

we call the positive symplectic homology of a contactomorphism. Its properties

will be elucidated in a sequel to the present paper.

Let (M,dλ) denote an exact symplectic manifold modelled on Σ at infinity

as before. Let ϕt : Σ → Σ be a path of contactomorphisms with ϕ0 = Id, and

let ht : Σ → R denote the contact Hamiltonian associated to ϕt.

After reparametrising ϕt if necessary, we may assume ht is 1-periodic in t.

Let κt : Σ → R
+ denote the conformal factor of ϕt. Denote by θt : Σ → Σ the

Reeb flow of α := λ|Σ.
Fix a small ε > 0. Let f c denote the function on Σ given by

f c
t (x) = ht(x) + cκt(x),

and let F c denote a Hamiltonian on M such that

(22) F c
t (x) = rf c

t (x), (x, r) ∈ Σ× (ε,∞).

The 1-periodic orbits of this Hamiltonian contained in Σ × (ε,∞) correspond

to translated points of ϕ1 with period c. Indeed, the Hamiltonian flow of F c
t is

given by

φt
F c(x, r) =

(
ϕt(θct(x)),

r

κt(θct(x))

)
,

and hence if φ1
F c(x, r)=(x, r) then θc(x) is a translated point of ϕ1 with period c.

In particular, if c is not the period of a translated point of ϕ1 then f c is

admissible, and hence HF(f c) is well-defined. Since κt is positive, if c ≤ c′ then
f c ≤ f c′ , and hence there is a well-defined continuation map

HF(f c) → HF(f c′).

This gives almost immediately the following result.

Proposition 5.2: Suppose SH∗(M) is infinite-dimensional. Then any con-

tactomorphism of the boundary isotopic to the identity through contactomor-

phisms either has infinitely many translated points or a translated point on a

closed Reeb orbit.

Proof. If not, then there exists a maximum C such that ϕ1 has no translated

points with period greater than c. The usual continuation arguments then show

that

HF(f c) ∼= HF(f c′), ∀C < c < c′.
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Since HF(f c) is finitely generated for any finite c (by assumption), it follows

that

lim−→
c

HF(f c)

is finite-dimensional. But since f c forms a cofinal family, this direct limit agrees

with SH(M), a contradiction.

The group

lim−→
c

HF(f c)

is not so interesting (as an invariant of ϕt) since it just agrees with the symplectic

homology of M . But we can rectify this as follows. Suppose ϕ1 has no fixed

points, so that HF(h) is well-defined. Let p > 0 be such that any translated

point x of ϕ1 with period T > 0 has T > p (such p exists as ϕ1 has no fixed

points.)

Let Ht be a Hamiltonian on M which agrees with rht(x) on Σ× (ε,∞) and

is C2 small and Morse on the rest of M . Let A > 0 be such that any critical

point z(t) of the action functional

AH(z) :=

∫
S1

z∗λ−
∫
S1

H(z) dt

has action AH(z) ≤ A (this is well defined since ϕ1 has no fixed points).

Fix now a number c > p which is not the period of a translated point of ϕ1

and choose ε < r0 < r1. Consider a function g : R+ → R
+ which satisfies

g(r) = 0, ∀ 0 ≤ r ≤ r0, and g′(r) = c, ∀ r ≥ r1,

and

rg′(r)− g(r) > 0, ∀ r > r0.

We now modify the function F c from (22) to a new function F̃ c : M → R by

requiring that

F̃ c
t (x, r) = rht(x) + g(κt(x)) ∀ (x, r) ∈ Σ× (ε,∞).

For an appropriate choice of r0 < r1 (depending on p and A), the critical points

of AF̃ c come in two forms:

• Critical points z(t) corresponding to translated points of ϕ1 with period

less than c and action AF̃ c(z) > A.

• Critical points z(t) of AH with action AF̃ c(z) ≤ A.
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Let CF+(f c) denote the subcomplex generated by those quotienting out those

critical points with action less than or equal to A. Let HF+(f c) denote the

associated homology. Thus by construction this homology is generated by the

translated points of ϕ1 with period less than c. Now set

SH+(ϕt,M) := lim−→
c

HF+(f c).

We call SH+(ϕt,M) the positive symplectic homology for the contact

isotopy ϕt. It is defined for any isotopy with ϕ1 �= Id. By construction we

obtain a long exact sequence

· · · → HF∗(h) → SH+
∗ (ϕ

t,M) → SH∗(M) → HF∗−1(h) → · · · .
If ϕt = θat is a piece of Reeb flow, where a > 0 is small, then

HF∗(h) = H∗+n(M,Σ)

and thus SH+(ϕt,M) agrees with the positive symplectic homology SH+(M)

of M . But in general this is not true. Up to a grading shift, these groups only

depend on the homotopy class of the isotopy ϕt. The groups SH+(ϕt,M) can

be used to give more interesting results on the existence of translated points

than Proposition 5.2, and we will continue its study in this paper’s sequel.
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[13] J. Moser, A fixed point theorem in symplectic geometry, Acta Mathematica 141 (1978),

17–34.

[14] R.Chiang, F. Ding and O. van Koert, Open books for Boothby–Wang bundles, fibered

Dehn twists and the mean Euler characteristic, Journal of Symplectic Geometry 14

(2014), 379–426.

[15] R.Chiang, F. Ding and O. van Koert, Non-fillable invariant contact structures on prin-

cipal circle bundles and left-handed Dehn twists, International Journal of Mathematics

27 (2016), 55p.

[16] A. F. Ritter, Deformations of symplectic cohomology and exact Lagrangians in ALE

spaces, Geometric and Functional Analysis 20 (2010), 779–816.

[17] A. F. Ritter, Topological quantum field theory structure on symplectic cohomology,

Journal of Topology 6 (2013), 391–489.

[18] A. F. Ritter, Floer theory for negative line bundles via Gromov–Witten invariants, Ad-

vances in Mathematics 262 (2014), 1035–1106.

[19] A. F. Ritter, Circle-actions, quantum cohomology, and the Fukaya category of Fano toric

varieties, Geometry & Topology 20 (2016), 1941–2052.

[20] D. Salamon, Lectures on Floer homology, in Symplectic Geometry and Topology (Park

City, UT, 1997), IAS/Park City Mathematics Series, Vol. 7, American Mathematical

Society, Providence, RI, 1999, pp. 143–225.

[21] D. Salamon and J. Weber, Floer homology and the heat flow, Geometric and Functional

Analysis 16 (2006), 1050–1138.

[22] S. Sandon, On iterated translated points for contactomorphisms of R2n+1 and R
2n ×S1,

International Journal of Mathematics 23 (2012), 14 pp.

[23] P. Seidel, π1 of symplectic automorphism groups and invertibles in quantum homology

rings, Geometric and Functional Analysis 7 (1997), 1046–1095.

[24] P. Seidel, A biased view of symplectic cohomology, in Current Developments in Mathe-

matics, 2006, International Press, Somerville, MA, 2008, pp. 211–253.

[25] P. Seidel, Exotic iterated Dehn twists, Algebraic & Geometric Topology 14 (2014), 3305–

3324.

[26] I. Uljarevic, Floer homology of automorphisms of Liouville domains, Journal of Symplec-

tic Geometry 15 (2017), 861–903.

[27] C. Viterbo, Functors and computations in Floer homology with applications. Part II,

http://front.math.ucdavis.edu/1805.01316.

[28] C. Viterbo, Functors and computations in Floer homology with applications, I, Geometric

and Functional Analysis 9 (1999), 985–1033.




