
ISRAEL JOURNAL OF MATHEMATICS 228 (2018), 201–210

DOI: 10.1007/s11856-018-1759-0

GROWTH OF CENTRAL POLYNOMIALS
OF VERBALLY PRIME ALGEBRAS

BY

Allan Berele

Department of Mathematical Science, DePaul University

Chicago, IL 60614, USA

e-mail: aberele@depaul.edu

AND

Amitai Regev

Department of Mathematics, The Weizmann Institute of Sciences

Rehovot 76100, Israel

e-mail: amitai.regev@weizmann.ac.il

ABSTRACT

We compute the exact asymptotics of the codimension sequence for the

central polynomials of k × k matrices and show that it is asymptotic to
1
k2 times the ordinary cocharacter. For the other verbally prime algebras

we show that these sequences are bounded above and below by constants

times the ordinary codimensions.

1. Introduction

Let A be a p. i. algebra over the characteristic 0 field F , let Id(A) denote the

identities of A, and let IdZ(A) denote the space of central polynomials. Our

convention is that polynomial identities are considered to be central polynomi-

als, and polynomials in IdZ(A) but not in Id(A) will be called proper central

polynomials. The second author studied the codimension growth of central
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polynomials in [7]. The notations are the usual ones for p. i. algebras: Vn is the

space of degree n multilinear polynomials in x1, . . . , xn and

cn(A) = dim
Vn

Vn ∩ Id(A)
and cZn (A) = dim

Vn

Vn ∩ IdZ(A)
.

We call these numbers the codimensions and Z-codimensions of A, respectively.

It is also of interest to study the gap between these two numbers

(1) δn(A) = cn(A)− cZn (A).

If Dn(A) is the quotient space (Vn ∩ IdZ(A))/(Vn ∩ Id(A)), then δn(A) is the

dimension of Dn(A). In [4] Giambruno and Zaicev consider the central polyno-

mials of finite-dimensional algebras. They proved that the limits

lim
n→∞(czn(A))

1/n and lim
n→∞(δn(A))

1/n

both exist and are integers which they denote expZ(A) and expδ(A), and more-

over that expZ(A) = exp(A). In the special case of A = Mk(F )) this gives

Regev’s theorem that expZ(Mk(F )) equals k2; see [7].

In the current paper we first use the theory of trace polynomials to determine

the exact asymptotics of the Z-codimensions of Mk(F ). If {an} and {bn} are

sequences, we say they are asymptotic and write an � bn if lim an/bn = 1. We

let V PTR
n and VMTR

n represent, respectively, the spaces of degree n, multilinear

pure trace and mixed trace polynomials in x1, . . . , xn. For example, x1tr(x2)

would be in V MTR
2 but not V PTR

2 and tr(x1)tr(x2) would be in both. Then

pure trace and mixed trace codimensions, cPTR
n (A) and cMTR

n (A), are defined

to be the quotients of these two spaces by the (pure or mixed) trace identities

of A which we denote Idtr(A), namely,

cPTR
n (A) =dim

( V PTR
n

V PTR
n ∩ Idtr(A)

)

and

cMTR
n (A) =dim

( VMTR
n

V MTR
n ∩ Idtr(A))

)
.

It was shown in [6] that cn(Mk(F )) and cMTR
n (Mk(F )) are asymptotically equal.

Using the techniques of that paper we will show

Theorem: cZn (Mk(F )) � cPTR
n (Mk(F )) � 1

k2 cn(Mk(F )).
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This immediately gives that the gap δn(Mk(F )) � k2−1
k2 cn(Mk(F )). It also

completely determines the asymptotics of cZn (Mk(F )) and δn(Mk(F )) since it

was proven in [6] that

(2) cn(Mk(F )) � a(k)n− k2−1
2 k2n,

where a(k) was shown in [6] to equal

( 1√
2π

)k−1(1
2

)k2−1/2

· 1! · · · (k − 1)! · kk2/2.

Turning from Mk(F ) to the other verbally prime algebras, Mk,� and Mk(E),

we are able to estimate the Z-codimensions less precisely. It is useful to use

the Θ notation, so that f(n) = Θ(g(n)) will mean C1g(n) ≤ f(n) ≤ C2g(n)

for unspecified positive constants C1 and C2. Our main result is that if A is

verbally prime, then

Theorem: cZn (A), δn(A) = Θ(cn(A)).

It was shown in [2] that

cn(Mk,�) = Θ(n−(k2+�2−1)/2(k + �)2n)

and so δ(Mk,�) and cZn (Mk,�) are each Θ(n−(k2+�2−1)/2(k+�)2n). For cn(Mk(E))

we have only the less precise result exp(Mk(E)) = 2k2 (see [2]) implying that

expZ(Mk(E)) = 2k2.

A bit more precisely, cn(Mk(E)) is bounded below by a constant times

n−(2k2−1)/2(2k2)n and above by a constant times n−(k2−1)/2(2k2)n and so the

same will be true of cZn (Mk(E)) and δn(Mk(E)),

C1n
−(2k2−1)/2(2k2)n ≤ cZn (Mk(E)), δn(Mk(E)) ≤ C2n

−(k2−1)/2(2k2)n

for some positive constants C1, C2.

We conclude this introduction with a series of related conjectures.

Conjecture 1: cZn (Mk,�) � 1
(k+�)2 cn(Mk,�).

This conjecture is equivalent to δn(Mk,�) � (1 − 1
(k+�)2 )cn(Mk,�). The next

conjecture is more speculative, but is known for k = 1; see [7].

Conjecture 2: cZn (Mk(E)) � 1
2k2 cn(Mk(E)).

And this is equivalent to δn(Mk(E)) � (1− 1
2k2 )cn(Mk(E)).

And, even more speculatively:
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Conjecture 3: For any p. i. algebra A there exists a constant 0 ≤ α ≤ 1 such

that cZn (A) � αcn(A).

If α �= 1, then this conjecture would imply that δn(A) is asymptotic to

(1 − α)cn(A). However, in the α = 1 case it is possible for δn(A) to have

smaller exponential rate of growth than cn(A); see Corollary 4 of [4].

Our last conjecture is not on the subject on asymptotics, but we think it is

interesting and take the opportunity to include it.

Conjecture 4: IfA andB each have proper central polynomials, so doesA⊗B.

2. Exact asymptotics for Mk(F )

The computation of the asymptotics of cZn (Mk(F )) in this section will parallel

the computation of cn(Mk(F )) in [6], some key ideas of which come from [3].

Our main result of this section will be to show that cZn (Mk(F )) is asymp-

totic to the pure trace codimensions of Mk(F ). Throughout this section we let

A = Mk(F ).

As in the introduction, let V PTR
n and V MTR

n be, respectively, the spaces of

degree n, multilinear pure trace polynomials and mixed trace polynomials in

x1, . . . , xn. Letting Idtr(A) be the trace identities of A = Mk(F ) we define

cPTR
n (A) and cMTR

n (A) in the usual way, namely,

c−TR
n (A) = dim

V −TR
n

V −TR
n ∩ Idtr(A)

where we write −TR as a shorthand for either PTR or MTR.

The map

f(x1, . . . , xn) �→ tr(f(x1, . . . , xn)xn+1)

is a linear isomorphism V MTR
n → V PTR

n+1 , and since the trace is non-degenerate

it also affords a linear isomorphism

V MTR
n

V MTR
n ∩ Idtr(A)

→ V PTR
n+1

V PTR
n+1 ∩ Idtr(A)

.

Hence,

(3) cMTR
n (A) = cPTR

n+1 (A) for all n ≥ 0.

We now use this equation to prove

Theorem 2.1: cPTR
n (Mk(F )) � 1

k2 cn(Mk(F )).
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Proof. By (3), cPTR
n (A) � cMTR

n−1 (A), and it was proved in [6] that

cn(A) � cMTR
n (A).

By (2),

cn−1(A) � α(k)(n− 1)−(k2−1)/2(k2)n−1

� 1

k2
α(k)n−(k2−1)/2(k2)n

� 1

k2
cn(A)

and the theorem follows.

Definition 2.2: The symmetric group acts on each of Vn, V
PTR
n and V MTR

n by

permuting the xi and the intersections

Vn ∩ IdZ(A), V −TR
n ∩ Idtr(A)

are submodules. Taking quotients we define the three cocharacters

χZ
n (A) = χSn

( Vn

Vn ∩ IdZ(A)

)
,

χPTR
n (A) = χSn

( V PTR
n

V PTR
n ∩ Idtr(A)

)
,

χMTR
n (A) = χSn

( V MTR
n

V MTR
n ∩ Idtr(A)

)
.

Each of these characters decomposes into a sum of irreducible Sn-characters.

Following [3] we denote the multiplicities of the irreducible components as cλ,

c̄λ and r̄λ:

χZ
n (A) =

∑
λ�n

cλχ
λ, χPTR

n (A) =
∑
λ�n

c̄λχ
λ, χMTR

n (A) =
∑
λ�n

r̄λχ
λ.

Taking dimensions we get the cocharacters

(4) cZn (A) =
∑
λ�n

cλdλ, cPTR
n (A) =

∑
λ�n

c̄λdλ, cMTR
n (A) =

∑
λ�n

r̄λdλ,

where dλ is the degree of χλ.

We now collect the theorems which together will imply our main result.

Part (2) is Theorem 12 of [3], part (3) is Theorem 16 of [3], part (4) follows

from (1) and (2), but was first proven in [5], parts (5) and (6) follow from [6],

part (7) occurs in the proof of Theorem 1 in [4], and part (8) is proven in [6].
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Theorem 2.3: For cλ, c̄λ and r̄λ as above:

(1) 0 ≤ cλ ≤ c̄λ ≤ r̄λ for all λ.

(2) The multiplicities c̄λ and r̄λ are zero unless λ has at most k2 parts.

(3) There exists an integer d so that if λk2 ≥ d then cλ = c̄λ.

(4) cλ is zero unless λ has at most k2 parts.

(5) cn(A) is asymptotic to a rational function times k2n.

(6) cn(A) and cMTR
n (A) are asymptotically equal.

(7) cZ(A) is bounded above and below by rational functions times k2n.

(8) The sum
∑

r̄λdλ over λ of height at most k2 and λk2 ≤ d is bounded

by a rational function times (k2 − 1)n.

Here is our main theorem of this section:

Theorem 2.4: cZn (A) � cPTR
n (A) = cMTR

n−1 (A) � cn−1(A).

Proof. Only cZn � cPTR
n requires proof: The equality is (3) and the second

asymptotic equation is Theorem 2.3(6).

By Theorem 2.3(7) cZn (A) has exponential rate of growth k2, and by Theo-

rems 2.1 and 2.3(5) so does cPTR
n (A). Since cZn (A) ≤ cPTR

n (A) we need only

show that cPTR
n (A) − cZn (A) has smaller exponential rate of growth. Using the

previous theorem

cPTR
n (A)− cZn (A) =

∑
λ�n

c̄λdλ −
∑
λ�n

cλdλ (by equation (4))

=
∑
λ�n

ht(λ)≤k2

c̄λdλ −
∑
λ�n

ht(λ)≤k2

cλdλ (by Theorem 2.3(2), (4))

=
∑
λ�n

ht(λ)≤k2

(c̄λ − cλ)dλ

=
∑
λ�n

ht(λ)≤k2 , λ
k2<d

(c̄λ − cλ)dλ (by Theorem 2.3(3))

≤
∑
λ�n

ht(λ)≤k2 , λ
k2<d

c̄λdλ

≤
∑
λ�n

ht(λ)≤k2 , λ
k2<d

r̄λdλ (by Theorem 2.3(1))

which has exponential rate of growth at most k2−1 by part 8 of Theorem 2.3.
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3. Asymptotics for Mk,� and Mk(E)

In this section we let A be one of Mk,� or Mk(E). Our main lemma will be that

cZn (A) and δn(A) are each bounded below by a positive constant times cn(A).

Since cZn (A) and δn(A) are each bounded above by cn(A) by (1), this will show

δn(A), c
Z
n (A) = Θ(cn(A)).

We begin with this elementary observation.

Lemma 3.1: Given a ∈ Mk,� non-zero, or given a ∈ Mk(E) non-zero and

homogeneous, and given an index j, there exist b, c ∈ A such that bac is equal

to an element of E0 (a central element of E) times the matrix unit ejj .

Proof. Let

a =
∑

aijeij

and assume that as,t �= 0 for a certain s, t. The proof is now slightly different

depending on whether A is Mk,� or Mk(E). If A = Mk,�, then for each b = βejs,

c = γetj ∈ Mk,� we have bac = βastγejj . Since this is a diagonal element of

Mk,�, βastγ must be in E0 and we can easily find β and γ so it won’t be zero.

Next, if A = Mk(E) we again let b = βejs and c = γetj in Mk(E), so that

bac = βastγejj and since ast is a homogeneous element of E and non-zero, we

can choose β and γ so that βastγ is central and non-zero.

The next lemma translates the foregoing to the language of polynomial identi-

ties. For the sake of concreteness, let the Grassmann algebra E be F [e1, e2, . . .]

where the ei anticommute and each has square zero. Given a ∈ A we define the

support of a to be

Supp(a) = {i|ei occurs in some entry of a}.
Lemma 3.2: Given f(y1, . . . , yn) a non-identity for A, and given an index j,

and I a finite subset of N, the polynomial y0f(y1, . . . , yn)yn+1 has an evaluation

on A equal to zejj where z is non-zero and central, and Supp(z) ∩ I = ∅.
Proof. Let E′ ⊆ E be the Grassmann algebra generated by the ei for i �∈ I

and let A′ ⊆ A consist of the elements of A with entries in E′. Then A′ is
p. i. equivalent to A and so f(y1, . . . , yn) has a non-zero evaluation a on A′. By
Lemma 3.1 there exist b, c ∈ A′ ⊆ A such that bac is of the form zejj , and the

lemma follows since we can evaluate y0 to b and yn+1 to c.
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We denote Vn ∩ Id(A) by In and Vn ∩ IdZ(A) by Zn. Let g(x1, . . . , xd) be a

multilinear, proper central polynomial of A of degree d and construct a linear

map Γ : Vn → Zn+d+2 by substituting x1y0f(y)yd+1 for x1,

Γ(f(x1, . . . , xn)) = g(x1y0f(y1, . . . , yd)yd+1, x2, . . . , xn)

where we identify y0, . . . , yd+1 with xn+1, . . . , xn+d+2. Since g is a central poly-

nomial Γ(f) will also be central, and Γ is a linear transformation.

Lemma 3.3: If f1, . . . , ft ∈ Vn are linearly independent modulo In, then

Γ(f1), . . . ,Γ(ft) ∈ Zn+d+2

are linearly independent modulo In+d+2.

Proof. Since Γ is a linear transformation, we need only show that if f is not an

identity for A then Γ(f) is also not an identity for A. Since g is multilinear and

non-zero, there exists a homogeneous evaluation

xα �→ x̄α = aαejα,jα

under which g is non-zero. By the previous lemma, y0g(y1, . . . , yd)yd+1 has a

non-zero evaluation yi �→ ȳi such that

ȳ0g(ȳ1, . . . , ȳd)ȳd+1 = zei1,j1 ,

where z is non-zero and central in E with support disjoint from the union⋃
i Supp(x̄i). Hence

Γ(f)(x̄1, . . . , x̄n, ȳ0, . . . , ȳd+1) = f(x̄1 · zej1,j1 , x̄2, . . . , x̄n)

= zf(x̄1, x̄2, . . . , x̄n) �= 0.

Taking dimensions we get this corollary.

Corollary 3.4: cn−d−2(A) ≤ δn(A) for all n ≥ d+ 2.

We can use this lower bound on δn(A) to compute a lower bound on cZn (A)

using the following lemma.

Lemma 3.5: If f1, . . . , ft ∈ Zn are linearly independent modulo In, then

xn+1f1, . . . , xn+1ft ∈ Vn+1

are linearly independent modulo Zn+1.
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Proof. Assume that some linear combination

f =
∑

αixn+1fi = xn+1

∑
αifi

was in Zn+1. If the αi were not all zero, then
∑

αifi would be a proper central

polynomial and so would have a non-trivial evaluation z in the center of A. But

then the assumption that xn+1

∑
αifi is central would imply that the ideal Az

of A is central, which is impossible.

Corollary 3.6: cn−d−3(A) ≤ cZn (A) for all n ≥ d+ 3.

Here is our main result for the Z-codimensions of verbally prime algebras:

Theorem 3.7: If A is a verbally prime algebra, then there is a constant k so

that

k · cn(A) ≤ cZn (A), δn(A) ≤ cn(A).

Hence cZn (A) and δn(A) are each Θ(cn(A)).

Proof. It follows from Theorem 4.22 of [1] that cn(A) is asymptotic to a func-

tion of the form Cngen (e = exp(A) �= 2.71 · · · ) and so cn−d−2(A) is asymptotic

to e−d−2cn(A) and cn−d−3(A) is asymptotic to e−d−3cn(A). Hence, each is

bounded below by a constant times cn(A) and the theorem follows from Corol-

laries 3.4 and 3.6.

As stated in the introduction, the bounds on cn(Mk,�) and cn(Mk(E)) from [2]

imply that

cZn (Mk,�), δn(Mk,�) = Θ(n−(k2+�2−1)/2(k + �)2n)

and

C1n
−(2k2−1)/2(2k2)n ≤ cZn (Mk(E)), δn(Mk(E)) ≤ C2n

−(k2−1)/1(2k2)n

for some C1, C2 > 0.

References

[1] A. Berele, Properties of hook Schur functions with applications to P. I. algebras, Advances

in Applied Mathematics 41 (2008), 52–75.

[2] A. Berele and A. Regev, On the codimensions of the verbally prime p. i. algebras, Israel

Journal of Mathematics 91 (1995), 239–247.

[3] E. Formanek, Invariants and the ring of generic matrices, Journal of Algebra 89 (1984),

178–223.



210 A. BERELE AND A. REGEV Isr. J. Math.

[4] A. Giambruno and M. Zaicev, Central polynomials and growth functions, Israel Journal

of Mathematics 226 (2018), 15–28.

[5] A. Regev, Algebras satisfying a Capelli identity, Israel Journal of Mathematics 33 (1979),

149–154.

[6] A. Regev, Codimensions and trace codimensions of matrices are asymptotically equal,

Israel Journal of Mathematics 47 (1984), 246–248.

[7] A. Regev, Growth of the central polynomials, Communications in Algebra 44 (2016),

4411–4421.




