ISRAEL JOURNAL OF MATHEMATICS **228** (2018), 201–210 DOI: 10.1007/s11856-018-1759-0

GROWTH OF CENTRAL POLYNOMIALS OF VERBALLY PRIME ALGEBRAS

BY

Department of Mathematical Science, DePaul University Chicago, IL 60614, USA e-mail: aberele@depaul.edu

AND

AMITAI REGEV Amitai Regev

Department of Mathematics, The Weizmann Institute of Sciences Rehovot 76100, Israel e-mail: amitai.regev@weizmann.ac.il

ABSTRACT

We compute the exact asymptotics of the codimension sequence for the central polynomials of $k \times k$ matrices and show that it is asymptotic to $\frac{1}{k^2}$ times the ordinary cocharacter. For the other verbally prime algebras we show that these sequences are bounded above and below by constants times the ordinary codimensions.

1. Introduction

Let A be a p. i. algebra over the characteristic 0 field F , let $Id(A)$ denote the identities of A, and let $Id^Z(A)$ denote the space of central polynomials. Our convention is that polynomial identities are considered to be central polynomials, and polynomials in $Id^Z(A)$ but not in $Id(A)$ will be called proper central polynomials. The second author studied the codimension growth of central

Received September 1, 2017 and in revised form December 1, 2017

polynomials in [7]. The notations are the usual ones for p. i. algebras: V_n is the space of degree *n* multilinear polynomials in x_1, \ldots, x_n and

$$
c_n(A) = \dim \frac{V_n}{V_n \cap Id(A)} \quad \text{and} \quad c_n^Z(A) = \dim \frac{V_n}{V_n \cap Id^Z(A)}.
$$

We call these numbers the codimensions and Z-codimensions of A, respectively. It is also of interest to study the gap between these two numbers

(1)
$$
\delta_n(A) = c_n(A) - c_n^Z(A).
$$

If $D_n(A)$ is the quotient space $(V_n \cap Id^{\mathcal{Z}}(A))/(V_n \cap Id(A))$, then $\delta_n(A)$ is the dimension of $D_n(A)$. In [4] Giambruno and Zaicev consider the central polynomials of finite-dimensional algebras. They proved that the limits

$$
\lim_{n \to \infty} (c_n^z(A))^{1/n} \quad \text{and} \quad \lim_{n \to \infty} (\delta_n(A))^{1/n}
$$

both exist and are integers which they denote $\exp^Z(A)$ and $\exp^{\delta}(A)$, and moreover that $\exp^Z(A) = \exp(A)$. In the special case of $A = M_k(F)$ this gives Regev's theorem that $\exp^Z(M_k(F))$ equals k^2 ; see [7].

In the current paper we first use the theory of trace polynomials to determine the exact asymptotics of the Z-codimensions of $M_k(F)$. If $\{a_n\}$ and $\{b_n\}$ are sequences, we say they are asymptotic and write $a_n \simeq b_n$ if $\lim a_n/b_n = 1$. We let V_n^{PTR} and V_n^{MTR} represent, respectively, the spaces of degree n, multilinear pure trace and mixed trace polynomials in x_1, \ldots, x_n . For example, $x_1tr(x_2)$ would be in V_2^{MTR} but not V_2^{PTR} and $tr(x_1)tr(x_2)$ would be in both. Then pure trace and mixed trace codimensions, $c_n^{PTR}(A)$ and $c_n^{MTR}(A)$, are defined to be the quotients of these two spaces by the (pure or mixed) trace identities of A which we denote $Id^{tr}(A)$, namely,

$$
c_n^{PTR}(A) = \dim\left(\frac{V_n^{PTR}}{V_n^{PTR} \cap Id^{tr}(A)}\right)
$$

and

$$
c_n^{MTR}(A) = \dim\left(\frac{V_n^{MTR}}{V_n^{MTR} \cap Id^{tr}(A))}\right).
$$

It was shown in [6] that $c_n(M_k(F))$ and $c_n^{MTR}(M_k(F))$ are asymptotically equal. Using the techniques of that paper we will show

THEOREM: $c_n^Z(M_k(F)) \simeq c_n^{PTR}(M_k(F)) \simeq \frac{1}{k^2} c_n(M_k(F)).$

This immediately gives that the gap $\delta_n(M_k(F)) \simeq \frac{k^2-1}{k^2} c_n(M_k(F))$. It also completely determines the asymptotics of $c_n^Z(M_k(F))$ and $\delta_n(M_k(F))$ since it was proven in [6] that

(2)
$$
c_n(M_k(F)) \simeq a(k)n^{-\frac{k^2-1}{2}}k^{2n},
$$

where $a(k)$ was shown in [6] to equal

$$
\left(\frac{1}{\sqrt{2\pi}}\right)^{k-1} \left(\frac{1}{2}\right)^{k^2-1/2} \cdot 1! \cdots (k-1)! \cdot k^{k^2/2}.
$$

Turning from $M_k(F)$ to the other verbally prime algebras, $M_{k,\ell}$ and $M_k(E)$, we are able to estimate the Z-codimensions less precisely. It is useful to use the Θ notation, so that $f(n) = \Theta(g(n))$ will mean $C_1g(n) \leq f(n) \leq C_2g(n)$ for unspecified positive constants C_1 and C_2 . Our main result is that if A is verbally prime, then

THEOREM: $c_n^Z(A)$, $\delta_n(A) = \Theta(c_n(A))$.

It was shown in [2] that

$$
c_n(M_{k,\ell}) = \Theta(n^{-(k^2 + \ell^2 - 1)/2}(k+\ell)^{2n})
$$

and so $\delta(M_{k,\ell})$ and $c_n^Z(M_{k,\ell})$ are each $\Theta(n^{-(k^2+\ell^2-1)/2}(k+\ell)^{2n})$. For $c_n(M_k(E))$ we have only the less precise result $\exp(M_k(E)) = 2k^2$ (see [2]) implying that

$$
\exp^Z(M_k(E)) = 2k^2.
$$

A bit more precisely, $c_n(M_k(E))$ is bounded below by a constant times $n^{-(2k^2-1)/2}(2k^2)^n$ and above by a constant times $n^{-(k^2-1)/2}(2k^2)^n$ and so the same will be true of $c_n^Z(M_k(E))$ and $\delta_n(M_k(E)),$

$$
C_1 n^{-(2k^2-1)/2} (2k^2)^n \le c_n^Z(M_k(E)), \ \delta_n(M_k(E)) \le C_2 n^{-(k^2-1)/2} (2k^2)^n
$$

for some positive constants C_1, C_2 .

We conclude this introduction with a series of related conjectures.

CONJECTURE 1: $c_n^Z(M_{k,\ell}) \simeq \frac{1}{(k+\ell)^2} c_n(M_{k,\ell}).$

This conjecture is equivalent to $\delta_n(M_{k,\ell}) \simeq (1 - \frac{1}{(k+\ell)^2})c_n(M_{k,\ell})$. The next conjecture is more speculative, but is known for $k = 1$; see [7].

CONJECTURE 2: $c_n^Z(M_k(E)) \simeq \frac{1}{2k^2} c_n(M_k(E)).$

And this is equivalent to $\delta_n(M_k(E)) \simeq (1 - \frac{1}{2k^2})c_n(M_k(E)).$ And, even more speculatively:

CONJECTURE 3: *For any p. i. algebra A there exists a constant* $0 \le \alpha \le 1$ *such that* $c_n^Z(A) \simeq \alpha c_n(A)$.

If $\alpha \neq 1$, then this conjecture would imply that $\delta_n(A)$ is asymptotic to $(1 - \alpha)c_n(A)$. However, in the $\alpha = 1$ case it is possible for $\delta_n(A)$ to have smaller exponential rate of growth than $c_n(A)$; see Corollary 4 of [4].

Our last conjecture is not on the subject on asymptotics, but we think it is interesting and take the opportunity to include it.

CONJECTURE 4: If A and B each have proper central polynomials, so does $A \otimes B$.

2. Exact asymptotics for $M_k(F)$

The computation of the asymptotics of $c_n^Z(M_k(F))$ in this section will parallel the computation of $c_n(M_k(F))$ in [6], some key ideas of which come from [3]. Our main result of this section will be to show that $c_n^Z(M_k(F))$ is asymptotic to the pure trace codimensions of $M_k(F)$. Throughout this section we let $A = M_k(F)$.

As in the introduction, let V_n^{PTR} and V_n^{MTR} be, respectively, the spaces of degree n, multilinear pure trace polynomials and mixed trace polynomials in x_1,\ldots,x_n . Letting $Id^{tr}(A)$ be the trace identities of $A = M_k(F)$ we define $c_n^{PTR}(A)$ and $c_n^{MTR}(A)$ in the usual way, namely,

$$
c_n^{-TR}(A) = \dim \frac{V_n^{-TR}}{V_n^{-TR} \cap Id^{tr}(A)}
$$

where we write $-TR$ as a shorthand for either PTR or MTR .

The map

$$
f(x_1,\ldots,x_n)\mapsto tr(f(x_1,\ldots,x_n)x_{n+1})
$$

is a linear isomorphism $V_n^{MTR} \to V_{n+1}^{PTR}$, and since the trace is non-degenerate it also affords a linear isomorphism

$$
\frac{V_n^{MTR}}{V_n^{MTR} \cap Id^{tr}(A)} \to \frac{V_{n+1}^{PTR}}{V_{n+1}^{PTR} \cap Id^{tr}(A)}.
$$

Hence,

(3)
$$
c_n^{MTR}(A) = c_{n+1}^{PTR}(A) \text{ for all } n \ge 0.
$$

We now use this equation to prove

THEOREM 2.1: $c_n^{PTR}(M_k(F)) \simeq \frac{1}{k^2} c_n(M_k(F)).$

Proof. By (3), $c_n^{PTR}(A) \simeq c_{n-1}^{MTR}(A)$, and it was proved in [6] that

$$
c_n(A) \simeq c_n^{MTR}(A).
$$

By (2) ,

$$
c_{n-1}(A) \simeq \alpha(k)(n-1)^{-(k^2-1)/2}(k^2)^{n-1}
$$

$$
\simeq \frac{1}{k^2} \alpha(k) n^{-(k^2-1)/2} (k^2)^n
$$

$$
\simeq \frac{1}{k^2} c_n(A)
$$

and the theorem follows.

Definition 2.2: The symmetric group acts on each of V_n , V_n^{PTR} and V_n^{MTR} by permuting the x_i and the intersections

$$
V_n \cap Id^Z(A), \ V_n^{-TR} \cap Id^{tr}(A)
$$

are submodules. Taking quotients we define the three cocharacters

П

$$
\chi_n^Z(A) = \chi_{S_n} \Big(\frac{V_n}{V_n \cap Id^Z(A)} \Big),
$$

$$
\chi_n^{PTR}(A) = \chi_{S_n} \Big(\frac{V_n^{PTR}}{V_n^{PTR} \cap Id^{tr}(A)} \Big),
$$

$$
\chi_n^{MTR}(A) = \chi_{S_n} \Big(\frac{V_n^{MTR}}{V_n^{MTR} \cap Id^{tr}(A)} \Big).
$$

Each of these characters decomposes into a sum of irreducible S_n -characters. Following [3] we denote the multiplicities of the irreducible components as c_{λ} , \bar{c}_{λ} and \bar{r}_{λ} :

$$
\chi_n^Z(A) = \sum_{\lambda \vdash n} c_{\lambda} \chi^{\lambda}, \quad \chi_n^{PTR}(A) = \sum_{\lambda \vdash n} \bar{c}_{\lambda} \chi^{\lambda}, \quad \chi_n^{MTR}(A) = \sum_{\lambda \vdash n} \bar{r}_{\lambda} \chi^{\lambda}.
$$

Taking dimensions we get the cocharacters

(4)
$$
c_n^Z(A) = \sum_{\lambda \vdash n} c_\lambda d_\lambda, \quad c_n^{PTR}(A) = \sum_{\lambda \vdash n} \bar{c}_\lambda d_\lambda, \quad c_n^{MTR}(A) = \sum_{\lambda \vdash n} \bar{r}_\lambda d_\lambda,
$$

where d_{λ} is the degree of χ^{λ} .

We now collect the theorems which together will imply our main result. Part (2) is Theorem 12 of [3], part (3) is Theorem 16 of [3], part (4) follows from (1) and (2) , but was first proven in $[5]$, parts (5) and (6) follow from $[6]$, part (7) occurs in the proof of Theorem 1 in [4], and part (8) is proven in [6].

THEOREM 2.3: *For* c_{λ} , \bar{c}_{λ} and \bar{r}_{λ} as above:

- (1) $0 \leq c_{\lambda} \leq \bar{c}_{\lambda} \leq \bar{r}_{\lambda}$ for all λ .
- (2) *The multiplicities* \bar{c}_{λ} *and* \bar{r}_{λ} *are zero unless* λ *has at most* k^2 *parts.*
- (3) There exists an integer d so that if $\lambda_{k^2} \geq d$ then $c_{\lambda} = \bar{c}_{\lambda}$.
- (4) c_{λ} *is zero unless* λ *has at most* k^2 *parts.*
- (5) $c_n(A)$ *is asymptotic to a rational function times* k^{2n} *.*
- (6) $c_n(A)$ and $c_n^{MTR}(A)$ are asymptotically equal.
- (7) $c^Z(A)$ *is bounded above and below by rational functions times* k^{2n} *.*
- (8) The sum $\sum \bar{r}_{\lambda} d_{\lambda}$ over λ of height at most k^2 and $\lambda_{k^2} \leq d$ is bounded *by a rational function times* $(k^2 - 1)^n$.

Here is our main theorem of this section:

THEOREM 2.4:
$$
c_n^Z(A) \simeq c_n^{PTR}(A) = c_{n-1}^{MTR}(A) \simeq c_{n-1}(A)
$$
.

Proof. Only $c_n^Z \simeq c_n^{PTR}$ requires proof: The equality is (3) and the second asymptotic equation is Theorem 2.3(6).

By Theorem 2.3(7) $c_n^Z(A)$ has exponential rate of growth k^2 , and by Theorems 2.1 and 2.3(5) so does $c_n^{PTR}(A)$. Since $c_n^Z(A) \leq c_n^{PTR}(A)$ we need only show that $c_n^{PTR}(A) - c_n^Z(A)$ has smaller exponential rate of growth. Using the previous theorem

$$
c_n^{PTR}(A) - c_n^Z(A) = \sum_{\lambda \vdash n} \bar{c}_{\lambda} d_{\lambda} - \sum_{\lambda \vdash n} c_{\lambda} d_{\lambda} \qquad \text{(by equation (4))}
$$
\n
$$
= \sum_{\lambda \vdash n} \bar{c}_{\lambda} d_{\lambda} - \sum_{\lambda \vdash n} c_{\lambda} d_{\lambda} \qquad \text{(by Theorem 2.3(2), (4))}
$$
\n
$$
= \sum_{\lambda \vdash n} (\bar{c}_{\lambda} - c_{\lambda}) d_{\lambda}
$$
\n
$$
= \sum_{\lambda \vdash n} (\bar{c}_{\lambda} - c_{\lambda}) d_{\lambda}
$$
\n
$$
= \sum_{\lambda \vdash n} (\bar{c}_{\lambda} - c_{\lambda}) d_{\lambda} \qquad \text{(by Theorem 2.3(3))}
$$
\n
$$
\leq \sum_{\lambda \vdash n} \bar{c}_{\lambda} d_{\lambda}
$$
\n
$$
\leq \sum_{\lambda \vdash n} \bar{c}_{\lambda} d_{\lambda}
$$
\n
$$
\leq \sum_{\lambda \vdash n} \bar{c}_{\lambda} d_{\lambda} \qquad \text{(by Theorem 2.3(1))}
$$
\n
$$
\lim_{h \uparrow (\lambda) \leq k^2, \lambda_{k^2} < d} \bar{r}_{\lambda} d_{\lambda} \qquad \text{(by Theorem 2.3(1))}
$$

which has exponential rate of growth at most k^2-1 by part 8 of Theorem 2.3. ■

3. Asymptotics for $M_{k,\ell}$ and $M_k(E)$

In this section we let A be one of $M_{k,\ell}$ or $M_k(E)$. Our main lemma will be that $c_n^Z(A)$ and $\delta_n(A)$ are each bounded below by a positive constant times $c_n(A)$. Since $c_n^Z(A)$ and $\delta_n(A)$ are each bounded above by $c_n(A)$ by (1), this will show

$$
\delta_n(A), c_n^Z(A) = \Theta(c_n(A)).
$$

We begin with this elementary observation.

LEMMA 3.1: *Given* $a \in M_{k,\ell}$ *non-zero, or given* $a \in M_k(E)$ *non-zero and homogeneous, and given an index* j*, there exist* b, c ∈ A *such that* bac *is equal to an element of* E_0 *(a central element of* E *) times the matrix unit* e_{ij} *.*

Proof. Let

$$
a=\sum a_{ij}e_{ij}
$$

and assume that $a_{s,t} \neq 0$ for a certain s, t. The proof is now slightly different depending on whether A is $M_{k,\ell}$ or $M_k(E)$. If $A = M_{k,\ell}$, then for each $b = \beta e_{is}$, $c = \gamma e_{tj} \in M_{k,\ell}$ we have $bac = \beta a_{st} \gamma e_{jj}$. Since this is a diagonal element of $M_{k,\ell}$, $\beta a_{st} \gamma$ must be in E_0 and we can easily find β and γ so it won't be zero.

Next, if $A = M_k(E)$ we again let $b = \beta e_{is}$ and $c = \gamma e_{ti}$ in $M_k(E)$, so that $bac = \beta a_{st} \gamma e_{jj}$ and since a_{st} is a homogeneous element of E and non-zero, we can choose β and γ so that $\beta a_{st}\gamma$ is central and non-zero.

The next lemma translates the foregoing to the language of polynomial identities. For the sake of concreteness, let the Grassmann algebra E be $F[e_1, e_2,...]$ where the e_i anticommute and each has square zero. Given $a \in A$ we define the support of a to be

$$
Supp(a) = \{i|e_i \text{ occurs in some entry of } a\}.
$$

LEMMA 3.2: *Given* $f(y_1, \ldots, y_n)$ *a* non-identity for *A*, and given an index *j*, *and* I *a finite subset of* N*, the polynomial* $y_0 f(y_1, \ldots, y_n)y_{n+1}$ *has an evaluation on A equal to* ze_{jj} *where* z *is non-zero and central, and* $\text{Supp}(z) \cap I = \emptyset$ *.*

Proof. Let $E' \subseteq E$ be the Grassmann algebra generated by the e_i for $i \notin I$ and let $A' \subseteq A$ consist of the elements of A with entries in E'. Then A' is p. i. equivalent to A and so $f(y_1,..., y_n)$ has a non-zero evaluation a on A'. By Lemma 3.1 there exist $b, c \in A' \subseteq A$ such that *bac* is of the form ze_{ij} , and the lemma follows since we can evaluate y_0 to b and y_{n+1} to c.

We denote $V_n \cap Id(A)$ by I_n and $V_n \cap Id^{\mathcal{Z}}(A)$ by Z_n . Let $g(x_1,\ldots,x_d)$ be a multilinear, proper central polynomial of A of degree d and construct a linear map $\Gamma: V_n \to Z_{n+d+2}$ by substituting $x_1y_0f(y)y_{d+1}$ for x_1 ,

$$
\Gamma(f(x_1,...,x_n)) = g(x_1y_0f(y_1,...,y_d)y_{d+1}, x_2,...,x_n)
$$

where we identify y_0, \ldots, y_{d+1} with $x_{n+1}, \ldots, x_{n+d+2}$. Since g is a central polynomial $\Gamma(f)$ will also be central, and Γ is a linear transformation.

LEMMA 3.3: If $f_1, \ldots, f_t \in V_n$ are linearly independent modulo I_n , then

 $\Gamma(f_1),\ldots,\Gamma(f_t)\in Z_{n+d+2}$

are linearly independent modulo I_{n+d+2} .

Proof. Since Γ is a linear transformation, we need only show that if f is not an identity for A then $\Gamma(f)$ is also not an identity for A. Since g is multilinear and non-zero, there exists a homogeneous evaluation

$$
x_{\alpha} \mapsto \bar{x}_{\alpha} = a_{\alpha} e_{j_{\alpha},j_{\alpha}}
$$

under which g is non-zero. By the previous lemma, $y_0g(y_1,\ldots,y_d)y_{d+1}$ has a non-zero evaluation $y_i \mapsto \bar{y}_i$ such that

$$
\bar{y}_0 g(\bar{y}_1,\ldots,\bar{y}_d) \bar{y}_{d+1} = z e_{i_1,j_1},
$$

where z is non-zero and central in E with support disjoint from the union $\bigcup_i \text{Supp}(\bar{x}_i)$. Hence

$$
\Gamma(f)(\bar{x}_1,\ldots,\bar{x}_n,\bar{y}_0,\ldots,\bar{y}_{d+1}) = f(\bar{x}_1 \cdot ze_{j_1,j_1},\bar{x}_2,\ldots,\bar{x}_n)
$$

= $zf(\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_n) \neq 0.$

Taking dimensions we get this corollary.

COROLLARY 3.4: $c_{n-d-2}(A) \leq \delta_n(A)$ for all $n \geq d+2$.

We can use this lower bound on $\delta_n(A)$ to compute a lower bound on $c_n^Z(A)$ using the following lemma.

LEMMA 3.5: *If* $f_1, \ldots, f_t \in Z_n$ *are linearly independent modulo* I_n *, then*

$$
x_{n+1}f_1, \ldots, x_{n+1}f_t \in V_{n+1}
$$

are linearly independent modulo Z_{n+1} .

Proof. Assume that some linear combination

$$
f = \sum \alpha_i x_{n+1} f_i = x_{n+1} \sum \alpha_i f_i
$$

was in Z_{n+1} . If the α_i were not all zero, then $\sum \alpha_i f_i$ would be a proper central polynomial and so would have a non-trivial evaluation z in the center of A . But then the assumption that $x_{n+1} \sum_i \alpha_i f_i$ is central would imply that the ideal Az of A is central, which is impossible.

COROLLARY 3.6: $c_{n-d-3}(A) \leq c_n^Z(A)$ for all $n \geq d+3$.

Here is our main result for the Z-codimensions of verbally prime algebras:

Theorem 3.7: *If* ^A *is a verbally prime algebra, then there is a constant* ^k *so that*

$$
k \cdot c_n(A) \le c_n^Z(A), \quad \delta_n(A) \le c_n(A).
$$

Hence $c_n^Z(A)$ *and* $\delta_n(A)$ *are each* $\Theta(c_n(A))$ *.*

Proof. It follows from Theorem 4.22 of [1] that $c_n(A)$ is asymptotic to a function of the form Cn^ge^n ($e = \exp(A) \neq 2.71 \cdots$) and so $c_{n-d-2}(A)$ is asymptotic to $e^{-d-2}c_n(A)$ and $c_{n-d-3}(A)$ is asymptotic to $e^{-d-3}c_n(A)$. Hence, each is bounded below by a constant times $c_n(A)$ and the theorem follows from Corollaries 3.4 and 3.6.

As stated in the introduction, the bounds on $c_n(M_{k,\ell})$ and $c_n(M_k(E))$ from [2] imply that

$$
c_n^Z(M_{k,\ell}), \, \delta_n(M_{k,\ell}) = \Theta(n^{-(k^2 + \ell^2 - 1)/2}(k+\ell)^{2n})
$$

and

$$
C_1 n^{-(2k^2-1)/2} (2k^2)^n \le c_n^Z(M_k(E)), \, \delta_n(M_k(E)) \le C_2 n^{-(k^2-1)/1} (2k^2)^n
$$

for some $C_1, C_2 > 0$.

References

- [1] A. Berele, *Properties of hook Schur functions with applications to P. I. algebras*, Advances in Applied Mathematics **41** (2008), 52–75.
- [2] A. Berele and A. Regev, *On the codimensions of the verbally prime p. i. algebras*, Israel Journal of Mathematics **91** (1995), 239–247.
- [3] E. Formanek, *Invariants and the ring of generic matrices*, Journal of Algebra **89** (1984), 178–223.
- [4] A. Giambruno and M. Zaicev, *Central polynomials and growth functions*, Israel Journal of Mathematics **226** (2018), 15–28.
- [5] A. Regev, *Algebras satisfying a Capelli identity*, Israel Journal of Mathematics **33** (1979), 149–154.
- [6] A. Regev, *Codimensions and trace codimensions of matrices are asymptotically equal*, Israel Journal of Mathematics **47** (1984), 246–248.
- [7] A. Regev, *Growth of the central polynomials*, Communications in Algebra **44** (2016), 4411–4421.