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ABSTRACT

We prove that the group of diffeomorphisms of the interval [0, 1] contains

surface groups whose action on (0, 1) has no global fix point and such that

only countably many points of the interval (0, 1) have non-trivial stabiliser.

1. Introduction

The goal of this paper is to exhibit surface groups in the group Diff([0, 1]) of

diffeomorphisms of the interval. To be precise, let

Diff([0, 1]) = {φ ∈ Diff∞(R)|φ(t) = t for all t /∈ (0, 1)}

be the group of C∞-diffeomorphisms of the real line which are identity outside

of the unit interval. Equivalently, Diff([0, 1]) is the group of smooth diffeo-

morphisms of the interval which are infinitely tangent to the identity at its

endpoints.

Let F2 be the non-abelian free group in two generators. Since F2 acts

smoothly on the closed interval, one can construct, considering a countable

collection of disjoint subintervals of [0, 1], subgroups of Diff([0, 1]) isomorphic

to the direct product of countably many free groups. As was noted by Baik,

Kim and Koberda [2], this implies in turn that Diff([0, 1]) contains subgroups
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isomorphic to every fully residually free group, and thus in particular fundamen-

tal groups of closed surfaces. However, the dynamics of the so-obtained actions

on the interval have many rather unpleasant properties. For instance, there are

numerous global fixed points, there are no points with trivial stabiliser, and the

action is not topologically transitive. Our goal is to prove that there are also

nicer surfaces groups in Diff([0, 1]):

Theorem 1.1: There are subgroups of Diff([0, 1]) isomorphic to the fundamen-

tal group of a closed surface of genus 2 whose action on (0, 1) has no global fix

point, is topologically transitive, and such that only countably many points of

the interval (0, 1) have non-trivial stabiliser.

Recall that a group action is topologically transitive if it has a dense orbit.

Observe also that in some sense Theorem 1.1 is optimal from the point of view

of the quantity of fixed points: Hölder’s theorem [11, 8, 9] implies that a group

which acts by homeomorphism freely on an interval is abelian. Finally, let us

note that in Theorem 1.1, we consider surfaces of genus 2 just for the sake of

concreteness. This is moreover no loss of generality because the fundamental

group of a surface of genus 2 contains the fundamental group of a surface of

genus g for all g � 2.

Note now that Theorem 1.1 admits an interpretation in terms of 3-manifolds.

In fact, to every orientation preserving action π1(Σ) � R of a surface group on

the real line one can associate a foliation on Σ × R as follows. Let Σ̃ be the

universal cover of Σ, let π1(Σ) act on it via deck-transformations, and consider

the product action

π1(Σ) � Σ̃× R, γ · (z, t) �→ (γ(z), γ(t)).

The quotient manifold is diffeomorphic to Σ × R. Moreover, since this action

preserves the foliation of Σ̃×R whose leaves are the planes Σ̃×{t}, it follows that
the quotient is naturally endowed with a foliation. Since standard generators

of the groups constructed to prove Theorem 1.1 can be chosen to be as close to

the identity as one wishes, one gets for those groups that the obtained foliation

is close to the trivial foliation with leaves Σ × {t}. Moreover, since the action

is trivial outside of the interval [0, 1], it follows that the obtained foliation is

trivial outside of the compact set Σ× [0, 1]. Altogether we have:

Corollary 1.2: The trivial foliation of Σ × R can be smoothly perturbed

within the compact set C = Σ× [0, 1] so that C is saturated and such that all

but countably many leaves in C are simply connected.
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The proof of Theorem 1.1 would be much easier (in fact, the result is basi-

cally folklore among people interested in these questions) if we were considering

the group of homeomorphisms of the interval instead of the group of diffeomor-

phisms. In particular, the existence of such foliations as provided by Corollary

1.2 is known in the topological category. In particular, it was already known,

using a theorem of Calegari [6], that there were such foliations where each leaf is

smooth. The difference between this statement and that of Corollary 1.2 is that

we are now also ensuring that the foliation is transversely smooth. This might

look like a small difference but in general it is not. For example, if S is a smooth

negatively curved surface, then the weak stable manifolds of the geodesic flow

on T 1S are always smooth, but the weak stable foliation is smooth if and only

if the metric has constant curvature [10]. Note that T 1S is a 3-manifold and

that the weak stable foliation has codimension 1.

As we just mentioned, the main issue in the proof of Theorem 1.1 is that

we insist on the smoothness of the action. In fact, continuous and smooth

actions on the interval are rather different. For example, a finitely generated

group acts effectively by homeomorphisms on the interval if and only if it is

left-orderable [8] (and surface groups have a Cantor set worth of orders [1]), but

this condition is far from ensuring the existence of smooth actions. For example,

Thurston’s stability theorem [13] asserts that the group of C1-diffeomorphisms

on the interval is locally indicable, meaning that any (non-trivial) finitely gen-

erated subgroup surjects on Z. In terms of orders, this means that every group

acting effectively by C1-diffeomorphisms on the interval admits what is called a

C-order (see [8] for the relation between orders on groups and one-dimensional

dynamics). However, there are many examples of locally indicable groups which

do not act smoothly on the interval. For example, Navas [12] proved that there

are semi-direct products Z2 � F2 which do not admit effective C1-actions on

[0, 1]. Other examples of this phenomenon are due to Calegari [7] and Bonatti–

Monteverde–Navas–Rivas [4].

The reader could be by now thinking that those comments are all nice and

well, but that surface groups are possibly the most flexible groups after free

groups, and that there are many instances in which it is known that if a group

contains a free group then it also contains a surface group. We agree. For

example, using that surface groups are limits of free groups, it was proved in

[5] that a locally compact group G which contains a non-discrete free group,

also contains a surface group. There are several ways to present the argument
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from [5] but the simplest form of the argument, and the one which is most

prone to generalisation, goes as follows. First consider the group π1(Σ) as an

amalgamated product

π1(Σ) = F2 ∗Z F2

where the amalgamation is given by identifying the commutators [a, b] = [a′, b′]
for the free bases {a, b} and {a′, b′} of the first and second copies of F2 respec-

tively. Now, take a, b ∈ G which generate a free group and such that there is

a 1-parameter subgroup (gt) ⊂ G with [a, b] = g1. Now, definitively if G is a

Lie group but also in all cases that come to mind to the authors, one has that

almost all representations

ρt : π1(Σ) → G, ρt(a) = a, ρt(b) = b, ρt(a
′) = gtag

−1
t , ρt(b

′) = gtbg
−1
t

are faithful. This is a very flexible argument. But we do not know how to make

it work if G = Diff∞([0, 1]) because we do not know how to ensure that the com-

mutator [a, b] is part of a flow. In fact, centralisers of generic diffeomorphisms

are cyclic groups [3].

In fact, the argument used to prove Theorem 1.1 is of a very different nature.

Basically, if Σ is our closed surface, we will obtain the desired homomorphism

ρ : π1(Σ) → Diff∞([0, 1])

as a limit ρ = lim ρn. Here, the approximating homomorphisms ρn will be

constructed inductively in such a way that at each time the corresponding kernel

is contained in a certain subgroup Γn of π1(Σ) satisfying

π1(Σ) = Γ0 � Γ1 � Γ2 � · · · with

∞⋂

n=1

Γn = {Id} and Γn−1/Γn = Z for all n,

we will obtain ρn as the holonomy of a certain perturbation of the foliation of

Σ×R associated to ρn−1. The two basic ingredients of the construction of this

perturbation are

• that the foliation associated to ρn−1 contains a trivially foliated product

H2/Γn−1 × In−1 for some interval In−1 ⊂ [0, 1], and

• that the cohomology class in H1(H2/Γn−1;Z) given by the isomorphism

Γn−1/Γn = Z is compactly supported.

It is this last point the one which makes us wonder if groups, such as the

fundamental group of a hyperbolic 3-manifold M fibering over the circle and

with say H1(M ;Z) = Z, can be subgroups of Diff∞([0, 1]).
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The paper is organised as follows. In section 2 we construct the filtration of

π1(Σ) mentioned above. Then, in section 3 we prove Theorem 1.1 assuming

Proposition 3.1, the key technical step in this paper. In section 4 we recall the

dictionary between foliations and their holonomies. This dictionary is the key

to prove Proposition 3.1 in section 5.

Acknowledgements. We would like to thank Bill Breslin and especially Sang-

hyun Kim for very interesting conversations on this topic. We also thank the

referee for his or her useful report.

2. A useful unscrewing of surface groups

From now on let Σ be a closed hyperbolic surface of genus 2 and identify its

universal cover with the hyperbolic plane H2. Choose a base point ∗ ∈ H2 and

denote again by ∗ its image under the cover H2 → Σ. In the same way, if

Γ ⊂ π1(Σ, ∗) is any subgroup, then we denote by ∗ the projection of the base

point of H2 to H
2/Γ. Here we let π1(Σ, ∗) act on H

2 via deck-transformations.

Finally, even if most of the time we do not make this explicit, curves in Σ and

its covers will be assumed to be oriented. In any case, the chosen orientation

will basically play no role in the arguments.

Anyway, in this section we construct a certain decreasing filtration of the

surface group π1(Σ, ∗). More precisely we prove:

Proposition 2.1: There is a decreasing sequence of nested subgroups

π1(Σ, ∗) = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · ·
of the fundamental group of Σ satisfying

⋂

i

Γi = {Id}

and such that for all i we have

Γi+1 = {γ ∈ Γi|〈γ, ci〉 = 0},
where ci ⊂ H2/Γi is an (oriented) simple closed curve and where 〈·, ·〉 is the

algebraic intersection number on H2/Γi.

Before launching the proof we need a definition and a simple fact. We will

say that a hyperbolic surface X has genus all over the place if there is some

R > 0 such that for all x ∈ X there are a pair of simple closed curves αx and βx
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contained in the ball of radius R centred at x and intersecting transversally

exactly once. In symbols, this means that

(2.1) 〈αx, βx〉 = 1 and αx, βx ⊂ BX(x,R).

To prove Proposition 2.1 we will use the following fact:

Lemma 2.2: Let X = H2/π1(X) be a connected hyperbolic surface, c ⊂ X a

simple closed curve, and

Γ = {γ ∈ π1(X)|〈c, γ〉 = 0}.
If X has genus all over the place, then so does Y = H2/Γ.

Proof. First note that if c is separating, then there is nothing to be proved

because X = Y in this case. We assume from now on that c is non-separating.

Suppose first that X is closed of genus g. The cover Y → X is cyclic and

admits a surface of genus g − 1 > 0 as a fundamental domain for this Z action.

So, Y has genus all over the place with R equal to twice the diameter of the

fundamental domain. We suppose from now on that X is not closed.

The set K = {x ∈ X |dX(x, c) � R + 1} is compact in X . Let

K̃ = π−1(K) ⊂ Y

be its preimage under the cover π : Y → X and let K̂ be the union of K̃ and

of all bounded connected components of Y \ K̃. Since the cover π : Y → X is

normal (with deck-transformation group Z), it follows that K̃ has a compact

fundamental domain under the action Z � K̃ ⊂ Y . This then implies in turn

that K̂ also has a compact fundamental domain. It follows that there is some

R′ such that for all y ∈ Y there is y′ ∈ BY (y,R′) such that

dX(π(y′), c) � R+ 1.

Now, for any such y′ we have that the ball BX(π(y′), R) centred at its projection

π(y′) and with radius R is disjoint of c and hence lifts isometrically to Y . In

symbols, this means that

BY (y′, R) 

isometric

BX(π(y′), R).

It follows that BY (y′, R) contains a pair of curves which meet transversally and

exactly once. Since BY (y′, R) ⊂ BY (y,R′+R) we have thus proved that Y has

genus all over the place, as we had claimed.
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Armed with Lemma 2.2 we are ready to prove Proposition 2.1:

Proof of Proposition 2.1. We start by ordering the non-trivial elements of

π1(Σ) = Γ0

by length, meaning that we choose a total order � satisfying

	Σ(γ) � 	Σ(η)

for all γ � η. Here 	Σ is the hyperbolic length of the shortest loop of Σ based

at ∗ in the homotopy class relative to the base point ∗. Armed with this order

we start the construction of the filtration (Γi) and of the respective sequence of

curves.

We will work inductively, starting with Γ0 = π1(Σ, ∗). Suppose that we have

given Γn and let η be a smallest non-trivial element of Γn with respect to the

order �. We will construct (Γi) in such a way that η /∈ Γn+2. Note that this

suffices to show that
⋂
Γi = Id.

Starting with the construction of Γn+1, note that the choice of η as a smallest

non-trivial element in Γn ensures that η is a shortest homotopically non-trivial

loop in X = H2/Γn based at the base point ∗. In particular, η is a simple loop,

that is, without self-intersections. If η is non-separating, then let cn be a simple

closed curve in X which meets η exactly once. This means that

η /∈ Γn+1
def
= {γ ∈ Γn|〈γ, cn〉 = 0}.

We can thus suppose that η separates X into two components X1, X2.

Note that ifX1 is compact, then it has positive genus because it has connected

boundary η and is a compact subsurface of a hyperbolic surface—in particular,

X1 contains a pair of simple closed curves α1, β1 intersecting transversally ex-

actly once. We claim that the same is true also if X1 is not compact. To see

that this is the case note first that, using Lemma 2.2 inductively, we get that X

has genus all over the place. Let R > 0 be as in the definition of having genus

all over the place, choose x1 ∈ X1 with dX(x1, η) � R + 1 and pick one of the

pair of simple closed curves α1, β1 in BX(x1, R) guaranteed by the definition of

having genus all over the place. Reversing the roles of X1 and X2 we have then

proved:

Fact: Both components X1 and X2 of X \ η contain a pair {αi, βi} of simple

closed curves which meet transversally and exactly once.
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Figure 1. (a) We see the surface Z ⊂ X (the grey islands denote

the connected components of X \Z), the curves η, α1, β1, α2, β2

and the arc J . (b) We see again Z and η, and now also the

curves cn and cn+1. (c) We see again the same as in (b), but

from a different point of view, that is after applying a mapping

class. Finally, in (d) we see the cover Y = H2/Γn with lifts

of η, cn and cn+1, and with the homeomorphically lifted grey

islands. The important point to note is that curves η and cn+1

in Y intersect exactly once.

Let α1, β1 ⊂ X1 and α2, β2 ⊂ X2 be the four curves provided by the fact,

oriented in such a way that 〈αi, βi〉 = 1 for i = 1, 2. Let also J be an embedded

arc in X joining the points α1 ∩ β1 and α2 ∩ β2, whose interior is disjoint of

the curves α1, β1, α2 and β2, and which meets η exactly once (compare with

(a) in Figure 1). Let cn be the simple closed curve obtained from α1 and α2

by surgery along J . In other words, cn is the component of the boundary of

a regular neighbourhood of α1 ∪ J ∪ α2 which is not isotopic to one of the αi.

Similarly, let cn+1 be the curve obtained from β1 and β2 via surgery along J

(compare with (b) in Figure 1). Note that a regular neighbourhood of the union
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of the curves α1, β1, α2, β2, η and the arc J is a subsurface Z ofX homeomorphic

to a surface of genus 2 with 2 boundary components.

Remark: Although we will not need it below, note that up to reversing the

orientation of α1 and/or α2, and thus of β1 and/or β2, we might assume that

cn is homologous to α1 + α2, and that cn+1 is homologous to β1 − β2.

Continuing with the proof, take now Γn+1 = {γ ∈ Γn|〈γ, cn〉 = 0} and note

that, unfortunately, η ∈ Γn+1. This means that the loop η in X = H2/Γn

lifts to a loop in the cover Y = H2/Γn+1 (see (d) in Figure 1 for a pictorial

representation of Y ). However, the so-obtained loop, which we again denote by

η, does not separate Y . Indeed, it meets some lift of cn+1 to Y in a single point.

Denoting again this lift by cn+1 we have that

η /∈ Γn+2
def
= {γ ∈ Γn+1 = π1(Y, ∗)|〈γ, cn+1〉 = 0},

as we needed to prove.

3. Proof of the main theorem assuming the key step

The groups whose existence is claimed in Theorem 1.1 will be constructed by

a limiting process. The key step is the construction of a sequence of homomor-

phisms π1(Σ, ∗) → Diff([0, 1]) as follows.

Proposition 3.1: Let (Γn) be the sequence of groups provided by Proposition

2.1 and fix a finite symmetric generating set S of π1(Σ, ∗).
For all ε > 0 there is a sequence of pairs (ρn, In) where

ρn : π1(Σ, ∗) → Diff([0, 1])

is a homomorphism and In is an open subinterval of [0, 1], starting with the

trivial homomorphism ρ0 and with the interval I0 = (0, 1), and such that for

all n � 1 the following conditions are satisfied:

(1) The closure of In is contained in In−1, that is In ⊂ In−1.

(2) ρn is Cn-close to ρn−1, meaning that

‖ρn(γ)− ρn−1(γ)‖Cn � 10−n · ε
for every γ ∈ S. Here, ‖f‖Cn = maxni=0 ‖f (i)‖∞ is the standard Cn-

norm.
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(3) Stabρn(x) = Γn for all x ∈ In, where

Stabρn(x) = {γ ∈ π1(Σ)|ρn(γ)(x) = x}
is the stabiliser of x with respect to the action of π1(Σ, ∗) on [0, 1]

induced by ρn.

(4) For all γ /∈ Γn we have ρn(γ)(In) ∩ In = ∅. In particular,

∂In ⊂ Kn
def
= [0, 1] \

⋃

γ∈π1(Σ,∗)
ρn(γ)(In).

(5) Finally, ρn(γ)(x) = ρn−1(γ)(x) for all γ ∈ π1(Σ, ∗) and all x ∈ Kn−1.

In particular, Kn−1 ⊂ Kn.

We will prove Proposition 3.1 in section 5. Assuming it for now, we conclude

the proof of Theorem 1.1.

Proof of the injectivity part of Theorem 1.1. First note that (2) in Proposition

3.1 implies that the sequence (ρk(γ))k is a Cauchy-sequence with respect to the

Cn-norm for all n. It follows that the limit limk→∞ ρk(γ) exists and that it

is smooth. In other words, we get that the homomorphism ρk converges when

k → ∞ to a homomorphism

ρ : π1(Σ, ∗) → Diff∞([0, 1]), ρ(γ)
def
= lim

k→∞
ρk(γ).

To prove Theorem 1.1 we only show for the moment that ρ is injective. To

see that this is the case fix n and let x ∈ ∂In. By (4) and (5) in the proposition

we have that

x ∈ ∂In ⊂ Kn ⊂ Kn+1 ⊂ Kn+2 ⊂ · · · .
It thus follows from (5) that

ρn(γ)(x) = ρn+1(γ)(x) = ρn+2(γ)(x) = · · ·
for all γ ∈ π1(Σ). This implies that we also have

ρ(γ)(x) = ρn(γ)(x)

for all γ. Now, because of (4) we have that

Stabρ(x) = Stabρn(x) ⊂ Γn.

Since
⋂
Γn = Id, the claim follows.
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The fact that Proposition 3.1 is true for every ε implies that we can choose

the homomorphism ρ as close (on the generators) as we want to the trivial

homomorphism, which in turn implies that the foliation given by such a ho-

momorphism ρ is a smooth pertubation of the trivial foliation, so giving us

Corollary 1.2.

4. Review of foliation and holonomy

It remains to prove Proposition 3.1. As we mentioned above, we will do that in

section 5 but first recall briefly the dictionary between actions on the real line

and codimension-one foliations.

Suppose that we have a locally trivial line bundle π : M → Σ, by which we

mean that M is a smooth fiber bundle with fibers diffeomorphic to R. If the

total spaceM is endowed with a codimension-one smooth foliation F transversal

to the fibers of π, then the distribution {x �→ TxF} of planes tangent to F is

a smooth flat connection on M . If, moreover, every leaf of F is contained in

a compact set of M , then the connection is complete, meaning that parallel

transport exists for all times. Note, for example, that this condition is satisfied

if there is a F -saturated compact C ⊂ M such that the restriction of π to any

leaf of F not contained in C is a diffeomorphism onto Σ. Suppose that such a

compact set C exists. It thus follows that the holonomy representation

ρF : π1(Σ, ∗) → Diff(π−1(∗))
is well-defined and that its image ρF(π1(Σ, ∗)) fixes every point outside of

π−1(∗) ∩ C. In other words, if we have an identification of π−1(∗) with R

in such a way that π−1(∗) ∩C ⊂ [0, 1], then the holonomy representation takes

values in Diff([0, 1]).

We also note that if we fix γ ∈ π1(Σ, ∗), and if we are given a second fo-

liation F ′ with the same properties as above, and such that the distributions

{x �→ TxF} and {x �→ TxF ′} are Ck-close as sections of Λ2TM →M , then the

images ρF ′(γ) and ρF (γ) of γ under the new and the old holonomy representa-

tions are also Ck-close to each other.

Turning now the tables, suppose that we are given a representation

σ : π1(Σ, ∗) → Diff([0, 1])
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and recall that we are identifying H2 with the universal cover of Σ. Endowing

thus H2 with the deck-transformation action of the fundamental group π1(Σ, ∗),
we consider the product action

(4.1) π1(Σ, ∗) �σ H
2 × R, γ · (z, t) �→ (γ(z), σ(γ)(t))

whose second factor is given by σ. The action (4.1) is discrete, meaning that

the quotient space Mσ is a manifold. Note now that projection H2 × R → H2

induces a map

π : Mσ → H
2/π1(Σ, ∗) = Σ.

In fact, π : Mσ → Σ is a locally trivial smooth line bundle over Σ. Moreover,

the total space Mσ is endowed with a codimension-one foliation Fσ. To see

that this is the case, note that the action (4.1) preserves the foliation of H2×R

whose leaves are of the form H2 × {t}. This foliation, being preserved by (4.1),

descends to a foliation Fσ of Mσ.

These two processes we have just described are inverse to each other. In fact,

noting that the foliation Fσ is transversal to the fibers of π, note also that

the image of H2 × [0, 1] under the quotient map H2 × R → Mσ is a saturated

compact set C such that the restriction of π to any fiber of F not contained in

C is a diffeomorphism onto Σ. Note also that we have obvious identifications

π−1(∗) = ∗ × R = R and that under those identifications the set C ∩ π−1(∗)
goes to the closed interval [0, 1]. It follows that the holonomy representation

ρFσ of Fσ takes values in Diff([0, 1]). In fact ρFσ = σ.

Conversely, if we start with a foliation F of the total space of a line bundle

π :M → Σ with the properties above, consider the associated holonomy repre-

sentation ρF , and then construct the associated line bundle π : MρF → Σ and

foliation FρF , then we have a bundle isomorphism

M

���
��

��
��

�
�� MρF

����
��
��
��

Σ

mapping F to FρF .

Remark: Recall that if z ∈ π−1(∗), then the restriction of π to the leaf Fz of F
containing z is a covering of Σ, whose fundamental group is the subgroup of

π1(Σ, ∗) which is the stabilizer of z.
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Restricting to saturated sets. Before concluding this digression, suppose

that we have a line bundle π : M → Σ, a codimension-one foliation F on M

transversal to the fibers of π, and a compact set C ⊂M with the property that

the restriction of π to each leaf which is not contained in C is a diffeomorphism.

Letting as always ∗ � Σ be the base point, identify as above π−1(∗) = R in

such a way that π−1(∗) ∩ C = [0, 1]. Suppose now that U is an open saturated

subset of C and suppose that there is a connected component J of π−1(∗) ∩ U
with the property that every leaf of F contained in U meets J .

⊂

J

J U U
M

Σ

Figure 2. Consider the Moebius bandM as the total space of a

line bundle with base Σ = S1, foliate M by circles, let U ⊂ M

be a saturated annulus and restrict the foliation to U—possibly

a too simple example, but the only one we can possibly draw.

Remark: Such a J exists if U is connected and it can be chosen to be any

connected component of π−1(∗) ∩ U .

Note that since J is an interval, the relative homotopy group π1(U, J) is

isomorphic to the fundamental group of U . Note also that, applying the long

homotopy sequence to the bundle U → Σ, we get that the restriction π|U of the

projection π to the open set U induces an injective homomorphism

(π|U )∗ : π1(U, J) → π1(Σ, ∗).

The restriction of π to U lifts to an interval bundle

π|U : U → H
2/(π|U )∗(π1(U, J))

and the holonomy of the induced foliation F|U is related to the holonomy of

the foliation F as follows:

ρF((π|U )∗(γ))|J = ρF|U (γ) for all γ ∈ π1(U, J).
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In other words, as long as we restrict to the group π1(U, J) and we restrict the

holonomies to J , then the holonomy of M → Σ and the holonomy of U → Σ

agree.

5. Proof of the key step

We are now ready to prove Proposition 3.1. We will construct the desired pairs

(ρn, In) by induction. Since we already have that I0 = (0, 1) and that ρ0 is the

trivial homomorphism, we can assume by induction that the pair (ρn−1, In−1)

has been already constructed. To construct the next pair we will consider the

foliation Fρn−1 associated to ρn−1, perturb it to a new foliation, and take the

associated holonomy.

Starting thus with the representation ρn−1, we consider as above the product

action π1(Σ) �ρn−1 H2 × R as in (4.1) and let

Mn−1 =Mρn−1 = H
2 × R/{(x,t)∼(γ(x),ρn−1(γ)(t))|γ∈π1(Σ,∗)}

be the total space of the associated line bundle π : Mn−1 → Σ. As before, we

have a canonical identification π−1(∗) = R. Denote by C ⊂Mn−1 the projection

of H2 × [0, 1] and note that C is compact. Note also that C ∩ π−1(∗) = [0, 1].

Finally, let Fn−1 = Fρn−1 be the 2-dimensional foliation associated to ρn−1.

Consider now the obvious embedding

(5.1) H
2 × In−1 → H

2 × R, (z, t) �→ (z, t).

By induction we know that (ρn−1, In−1) satisfies (3) in Proposition 3.1, meaning

for starters that Γn−1 acts trivially on In−1. It follows that the embedding (5.1)

descends to a well-defined map

(5.2) φ : H2/Γn−1 × In−1 →Mn−1.

Since (ρn−1, In−1) also satisfies (4) in Proposition 3.1, we also know that every

element of π1(Σ, ∗) \ Γn−1 moves In−1 off itself. It follows that (5.2) is an

embedding. Since the image of (5.1) is saturated under the foliation of H2 ×R

by planes H2 × {t}, we derive that (5.2) maps leaves of the trivial foliation to

leaves of Fn−1 and that its image φ(H2/Γn−1 × In−1) ⊂Mn−1 is saturated.

Anyway, we summarize the situation at hand in the following lemma:
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Lemma 5.1: There is an embedding

φ : H2/Γn−1 × In−1 → C ⊂Mn−1

with the following properties:

(a) φ(H2/Γn−1 × {t}) is a leaf of Fn−1 for all t ∈ In−1.

(b) φ({z} × In−1) is contained in a fiber of the projection π : Mn−1 → Σ

for all z ∈ H2/Γn−1.

(c) π(φ({∗} × In−1)) = ∗ and, after our earlier identification π−1(∗) = R,

we have that in fact φ({∗} × In−1) = In−1.

(d) Moreover, φ(H2/Γn−1×In−1)∩π−1(∗)=⋃
γ∈π1(Σ,∗) ρn−1(γ)(In−1).

The new homomorphism ρn : π1(Σ, ∗) → Diff([0, 1]) will be obtained as the

holonomy of a foliation F on Mn−1, transversal to the fibers of the projection

π : Mn−1 → Σ, and obtained by perturbing Fn−1 within the image of the em-

bedding φ from Lemma 5.1. We note before going any further that it follows

from Lemma 5.1 (d) that the holonomy ρF of any such foliation satisfies con-

dition (5) in Proposition 3.1. Using the induction hypothesis, the holonomy of

any such F also satisfies (4) of Proposition 3.1 at the stage n− 1, meaning:

(4′) For any γ /∈ Γn−1 we have ρF (γ)(In−1) ∩ In−1 = ∅.
Well, we start with the construction of a concrete perturbation F of Fn−1. As

we just mentioned, everything is going to happen within the image of φ.

We cannot recall too often that the restriction of Fn−1 to

φ(H2/Γn−1 × In−1) 
 H
2/Γn−1 × In−1

is nothing but the foliation whose leaves are the copiesH2/Γn−1×{t} of the cover
H2/Γn−1 of Σ associated to Γn−1. Recall also that by the very construction of

the group Γn in Proposition 2.1, there is a simple closed curve c ⊂ H2/Γn−1

such that

Γn = {γ ∈ π1(Σ, ∗)|〈γ, c〉 = 0}.
We might assume that c does not meet the base point ∗. Consider now an

embedding

ψ : S1 × [−1, 1] → H
2/Γn−1 \ {∗}

with ψ(S1 × {0}) = c and the corresponding embedding

(ψ × Id) : (S1 × [−1, 1])× In−1 → H
2/Γn−1 × In−1.
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We are going to perturb the trivial foliation of H2/Γn−1×In−1 inside the image

of ψ × Id. To do so we replace the trivial foliation of S1 × [−1, 1] × In−1 by

cylinders S1 × [−1, 1] × {t} by a new foliation by cylinders as suggested by

Figure 3.

S1

In−1

−1 1

Figure 3

In more precise but definitively more obscure terms, choose a diffeomorphism

(5.3) f ∈ Diff(In−1)

with f(y)>y for all y ∈ In−1 and a smooth monotone function g : [−1, 1] → [0, 1]

with g(x) = 0 for x near −1 and g(x) = 1 for x near 1. Now consider the foli-

ation G of S1 × [−1, 1]× In−1 whose leaf through (θ, y,−1) is the graph of the

function

S
1 × [−1, 1] → In−1, (θ, x) �→ (1− g(x))y + g(x)f(y).

Now, the foliation G agrees near S1×{−1, 1}×In−1 with the trivial foliation with

leaves S1 × [−1, 1]× {y}. In particular, we can extend the foliation (ψ × Id)(G)
on (ψ× Id)(S1× [−1, 1]×In−1) to a foliation H on H2/Γn−1×In−1 by declaring

that H agrees with the trivial foliation outside of (ψ × Id)(G).
We now let Fn be the foliation of Mn−1 which agrees with Fn−1 on

Mn−1 \ φ(H2/Γn−1 × In−1)

and with φ(H) on φ(H2/Γn−1 × In−1). Here φ is, as all along, the embedding

(5.2). Let also

ρn = ρFn : π1(Σ, ∗) → Diff[0, 1]
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be the holonomy of the Fn and let In ⊂ In−1 be a maximal open subinterval

such that f(In−1)∩ In−1 = ∅. We claim that if we choose f in (5.3) sufficiently

close to the identity, then the pair (ρn, In) satisfies the claims in Proposition 3.1.

In fact, as we mentioned earlier, (5) is already satisfied. By choice of In−1, we

are also satisfying (1). Then, if we choose f in (5.3) Cn+10-close to Id, then the

associated foliation of G of S1× [−1, 1]× In−1 is C
n-close to the trivial foliation

by cylinders S1 × [−1, 1] × {t}. This implies in turn that the foliation H on

H2/Γn−1 × In−1 is again close to the trivial foliation and, surprise, surprise,

this implies again that the perturbed foliation Fn is close to the unperturbed

foliation Fn−1. The off-shot of all this is that as long as we choose f sufficiently

close to the identity, then (2) in Proposition 3.1 is also satisfied.

To see that (3) and (4) are satisfied note that, by (4′) above, it suffices to

prove that they both hold if we restrict the holonomy representation ρn = ρFn

to the subgroup Γn. Noting that Γn is nothing but the image of

π1(φ(H
2/Γn−1 × In−1), {∗} × In−1)

under the restriction of the projection π :Mn−1→Σ, we obtain from the discus-

sion at the end of section 4 that it follows that the holonomies of ρn = ρFn of

Fn and ρH :Γn→Diff(Īn) of the foliation H on H2/Γn−1×In−1 are related by

ρn((π∗(γ))|In = ρH(γ)

for γ ∈ Γn−1 = π1(φ(H
2/Γn−1 × In−1), {∗} × In−1). The holonomy ρH of the

foliation H is given by

(5.4) ρH(γ) = f 〈γ,c〉,

which means that ρH(γ)(In) ∩ In = ∅ unless 〈γ, c〉 = 0, that is unless γ ∈ Γn.

It also implies that Ker(ρH) = Γn, which means in particular that ρH(γ) fixes

In pointwise if γ ∈ Γn. These observations, combined with (5.4), show that ρn

satisfies (3) and (4) from Proposition 3.1.

This completes the induction step and thus the proof of Proposition 3.1.

End of the proof of Theorem 1.1. It remains to show that the induced action

on [0, 1] has only countably many points with non-trivial stabiliser, that it has

no global fixed points in (0, 1), and that it is topologically transitive.

Note that by points (3) and (5) of Proposition 3.1, the stabiliser of a point

x ∈ Kn�Kn−1 is precisely Γn. Also, the stabiliser of any point x ∈ [0, 1]�K∞ is

trivial by point (4) of Proposition 3.1 and the fact that
⋂
Γn = {Id}. It follows
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that the points in K∞ =
⋃

nKn are the only points in (0, 1) with non-trivial

stabiliser with respect to the action induced by the limiting representation. In

our construction, K∞ is countable because we assume that In is a maximal

open subset of In−1 with f(In) ∩ In = ∅.
Noting now that Γn is a proper subgroup of π1(Σ, ∗) for n � 1 we get that

the only points on [0, 1] fixed by the whole group are those in K0 = {0, 1}. In

other words, the action on (0, 1) has no global fixed point.

Finally, note that Γ and Γ/Γn act in the same way on the set π0([0, 1]�Kn)

of connected components of the complement of Kn. Since the latter group acts

transitively by construction, so does the former. Noting that the diameter of

the connected components of [0, 1]�Kn tends to 0, it follows that the orbit of

every x /∈ K∞ is dense. Hence, the action is topologically transitive.
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