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ABSTRACT

Let A = (aij ) be an n × n random matrix with i.i.d. entries such that

Ea11 = 0 and Ea112 = 1. We prove that for any δ > 0 there is L > 0

depending only on δ, and a subset N of Bn
2 of cardinality at most exp(δn)

such that with probability very close to one we have

A(Bn
2 ) ⊂

⋃

y∈A(N )

(y + L
√
nBn

2 ).

In fact, a stronger statement holds true. As an application, we show that

for some L′ > 0 and u ∈ [0, 1) depending only on the distribution law of

a11, the smallest singular value sn of the matrix A satisfies

P{sn(A) ≤ εn−1/2} ≤ L′ε+ un

for all ε > 0. The latter result generalizes a theorem of Rudelson and

Vershynin which was proved for random matrices with subgaussian entries.

1. Introduction

In this paper, we consider random matrices A satisfying

(∗) A is n× n; the entries of A are i.i.d., with Eaij = 0, Eaij
2 = 1.

We are concerned with the following question: how many translates of a Eu-

clidean ball
√
nBn

2 (or its constant multiple) are needed to cover the random

ellipsoid A(Bn
2 )? Being geometrically natural, this problem, as we will see later,

has an application to studying invertibility properties of the matrix A.

If the entries of A have a bounded fourth moment, then the operator norm

‖A‖2→2 satisfies ‖A‖2→2 ≤ L
√
n with probability close to one (see [31] and [9]

for precise statements), whence

P{A(Bn
2 ) ⊂ L

√
nBn

2 } ≈ 1.

If, moreover, the entries of A are subgaussian, then for some L > 0 depending

only on the subgaussian moment we have

P{A(Bn
2 ) ⊂ L

√
nBn

2 } ≥ 1− exp(−n).

On the other hand, for heavy-tailed entries the operator norm of A may have

a higher order of magnitude compared to
√
n with probability close to one, so

the trivial argument given above is not applicable. The first main result of the

paper is the following theorem:
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Theorem A: Let δ ∈ (0, 1/4] and n ≥ 1
4δ . Then there is a (non-random)

collection C of parallelepipeds in R
n with |C| ≤ exp(13nδ ln 2e

δ ) having the

following property: For any random matrix A satisfying (∗), with probability

at least 1− 4 exp(−δn/8) we have

∀ x ∈ Bn
2 ∃P ∈ C such that x ∈ P and A(P ) ⊂ Ax +

C
√
n

δ
Bn

2 .

Here, C > 0 is a universal constant.

In particular, the above theorem implies the following more elegant

Corollary A: For any δ ∈ (0, 1/4] and n ≥ 1
4δ there exists a non-random

subset N ⊂ Bn
2 of cardinality at most exp(13nδ ln 2e

δ ) such that for any n× n

matrix A satisfying (∗), we have

P

{
A(Bn

2 ) ⊂
⋃

y∈A(N )

(
y +

C′√n

δ
Bn

2

)}
≥ 1− 4 exp(−δn/8)

for some universal constant C′ > 0.

Both results have geometric interpretation in terms of covering numbers. Re-

call that for two subsets S and K of a vector space the covering number

N(S,K) is defined as the smallest number of parallel translates of K sufficient

to cover S. By Theorem A, N(A(Bn
2 ),

C
√
n

δ Bn
2 ) ≤ exp(13δn ln 2e

δ ) with proba-

bility at least 1− 4 exp(−δn/8).

Another interpretation of these results, that will be of use for us, is related

to the net refinement (see Theorem A* in Section 5). Given a metric space X ,

an ε-net N on X is a subset of X such that any point of X is within a distance

at most ε from a point of N . It is easy to see that with probability at least

1− 4 exp(−δn/8) the set N from Corollary A is a C
√
n

δ -net on Bn
2 with respect

to the pseudometric d(x, y) := ‖A(x − y)‖ (x, y ∈ Bn
2 ). Here and further, ‖ · ‖

denotes the standard Euclidean norm in R
n.

A crucial feature of these results is that the set C in the theorem is non-

random. Moreover, C (as well as the set N from Corollary A) provides a “uni-

versal” covering which is independent of the distribution of the entries of A.

Finally, compared to Corollary A, the statement of Theorem A is more flexible

as it enables us to choose the “anchor” points within the parallelepipeds when

constructing the corresponding ε-net (this matter is covered in detail at the

beginning of Section 5).
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Let us briefly describe the main idea of the proof. The collection C of par-

allelepipeds is constructed using a special subset D of diagonal operators with

diagonal elements in the interval (0, 1]. Namely, we define D as the set of all

diagonal operators with diagonal entries in {1} ∪ {2−2k}∞k=0 and with determi-

nants bounded from below by exp(−δn). Then, for every operator D from D,

we take a covering of the ball Bn
2 by appropriate translates of parallelepiped

D(L′′n−1/2Bn∞) (for some L′′ = L′′(δ)), and let C be the union of such cover-

ings over D. It turns out that Theorem A follows almost immediately from the

following relation:

(1)

P{∃ diagonal matrix D with diagonal entries in {1} ∪ {2−2k}∞k=0

such that detD ≥ exp(−δn) and ‖AD‖∞→2 ≤ Cn√
δ
}

≥ 1− 4 exp(−δn/8).

In Section 3, we show that (1) holds true under condition (∗); see Theorem 3.1.

Geometrically, this property means that it is possible to construct a random

parallelepiped P ⊂ [−1, 1]n with sides parallel to the standard coordinate axes,

such that Vol(P ) ≥ exp(−δn) and A maps P inside the Euclidean ball Cn√
δ
Bn

2

with probability at least 1 − 4 exp(−δn/8). Note that parallelepiped P will be

“narrow” along directions w ∈ Sn−1 for which ‖Aw‖ is large.

As we already mentioned above, Theorem A has a direct application to the

problem of obtaining quantitative (non-asymptotic) estimates for the smallest

singular value of A. Recall that, given an m×n (m ≥ n) matrix M , its smallest

singular value can be defined as sn(M) = infy∈Sn−1 ‖My‖. An argument based

on Theorem A and results of Rudelson and Vershynin from [20, 19] yields

Theorem B: For any ṽ ∈ (0, 1] and ũ ∈ (0, 1) there are numbers L > 0,

u ∈ (0, 1) and n0 ∈ N depending only on ṽ and ũ with the following property:

Let n ≥ n0 and let A = (aij) be an n × n random matrix satisfying (∗), such
that supλ∈R

P{|a11 − λ| ≤ ṽ} ≤ ũ. Then for any ε > 0 we have

P{sn(A) ≤ εn−1/2} ≤ Lε+ un.

Note that any random variable α with Eα = 0 and Eα2 = 1 obviously satisfies

supλ∈R
P{|α−λ| ≤ ṽ} ≤ ũ for some ṽ > 0 and ũ ∈ (0, 1) determined by the law

of α. Thus, the above statement does not require any additional assumptions
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on the matrix apart from (∗); by introducing the quantities ṽ and ũ we make

the dependence of L and u on the law of a11 more explicit.

Let us put Theorem B in the context of known results.

Convergence of (appropriately normalized) smallest singular values for a se-

quence of random rectangular matrices with i.i.d. entries and growing dimen-

sions was established by Bai and Yin [3] (see also [27], where the result is proved

under optimal moment assumptions). For non-asymptotic results in this direc-

tion, we refer the reader to papers [11, 19] for the case of i.i.d. entries (see also

[28] where no moment conditions are assumed), [1, 2] for log-concave distribu-

tions of rows and [21, 12, 8, 30, 5] for more general isotropic distributions. We

refer to surveys [18, 29] (see also [17]) for more information.

For random square matrices with independent standard Gaussian entries, the

limiting distribution of the smallest singular value was computed by Edelman

[4]; universality of this result was established in [24]. Further, for matrices with

i.i.d. entries it was shown in [23] and [25] that, given anyK>0, there areR,L>0

depending only onK and the law of a11 such that P{sn(A+B) ≤ n−L} ≤ Rn−K

for any non-random matrix B satisfying ‖B‖2→2 ≤ nK (we note that analogous

results were recently obtained for more general models of randomness allowing

some dependence between the entries of A; see, in particular, [14] and [6]). In

the case B = 0 which we study in this paper, those papers do not provide

optimal estimates for sn(A). A much more precise statement was proved in [20]

under the additional assumption that the entries of A are subgaussian; namely,

Rudelson and Vershynin showed that sn(A) satisfies a small ball probability

estimate

P{sn(A) ≤ εn−1/2} ≤ Lε+ un, ε > 0,

where L > 0 and u ∈ (0, 1) depend only on the subgaussian moment of aij ’s.

Note that Theorem B gives an estimate of exactly the same form, but for the

matrices with heavy-tailed entries.

The idea of the proof of Theorem B can be described as follows. Denote

by A′ the transpose of the first n − 1 columns of A. A principal component

of the proof of [20] is an analysis of the arithmetic structure of null vectors

of A′, which is described with the help of the notion of the least common

denominator (LCD). To show that null vectors of A′ typically have an expo-

nentially large LCD, the authors of [20] consider subsets S of the unit sphere

corresponding to vectors with small LCD, and show that infx∈S ‖A′x‖ > 0
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with a large probability. For this, they use the standard ε-net argument, when

the infimum is estimated by taking a Euclidean ε-net N on S and applying

relation infx∈S ‖A′x‖ ≥ infy∈N ‖A′y‖ − ε‖A′‖2→2 together with the estimate

‖A′‖2→2 ≤ C
√
n which holds with probability very close to one under the

subgaussian moment assumptions on the entries. In our setting, the principal

difficulty consists in the fact that the condition (∗) does not guarantee a good

upper bound for the operator norm ‖A′‖2→2. To deal with this fundamental

issue, we “refine” the nets constructed in [20] by applying Theorem A. Indeed,

it can be shown that Theorem A implies that, given an ε-net N on S, it is

possible to construct a subset Ñ ⊂ S of cardinality at most exp(13δn ln 2e
δ )|N |

which is an L′ε
√
n-net on S (for some L′ = L′(δ)) with respect to the pseudo-

metric d(x, y) = ‖A′(x− y)‖ with probability at least 1− 4 exp(−δn/8). Then,

infx∈S ‖A′x‖ ≥ infy∈Ñ ‖A′y‖ − L′ε
√
n, so the argument does not depend any

more on the value of ‖A′‖2→2.

The paper is organized as follows: Sections 2 and 3 are devoted to proving the

main novel element of the paper—Theorem A. Then, in Section 4, we collect

some results from [20], and, in Section 5, prove Theorem B.

Finally, let us discuss notation. Given a finite set S, by |S| we denote its

cardinality. By e1, e2, . . . , en we denote the canonical basis in R
n. The standard

inner product in R
n shall be denoted by 〈·, ·〉. Given p ∈ [1,∞], ‖ · ‖p is the

standard �p-norm. For �2, we will simply write ‖ · ‖. Given an m × n matrix

M and p, q ∈ [1,∞], by ‖M‖p→q we shall denote the operator norm of M

considered as the mapping from (Rn, ‖ · ‖p) to (Rm, ‖ · ‖q). Universal positive

constants shall be denoted by C, c. Sometimes, to avoid confusion, we shall add

a numerical subscript to the name of a constant or function defined within a

statement.

2. Fitting a random vector into an �np -ball

Throughout the paper, by Dn we denote the set of all n× n diagonal matrices

with diagonal elements belonging to the interval (0, 1] (we will sometimes refer

to such matrices as positive diagonal contractions). Further, denote by D2
n the

set of all n× n positive diagonal contractions whose diagonal entries belong to

the set {1}∪ {2−2k}∞k=0. The set D2
n can be regarded as a discretization of Dn.

In this section, we consider the following problem: Let X be a random vector

in R
n with i.i.d. coordinates. We want to find a random diagonal operator D
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taking values in Dn such that D(X) is contained in an appropriate (fixed)

multiple of the �np -ball everywhere on the probability space and at the same

time the determinant of D is typically “not too small”. The statement to be

proved is

Proposition 2.1: For any α ∈ (0, 1) there is a number L = L(α) > 0 with the

following property: Let δ ∈ (0, 1], p ∈ [1,∞) and let X = (x1, x2, . . . , xn) be a

random vector on (Ω,Σ,P) with i.i.d. coordinates such that E|xi|p < ∞. Then

there is a random positive diagonal contraction D taking values in Dn such that

‖DX‖pp ≤ L

δ
E‖X‖pp everywhere on the probability space,

and E(detD)pα−p ≤ exp(δ).

Remark 2.2: Proposition 2.1 is a foundation block of our paper. In Section 3,

we will amplify this result (the case p = 2) by proving its “matrix version”

(Theorem 3.1). The case p �= 2 in this section is considered just for complete-

ness.

Remark 2.3: Note that a trivial definition of the diagonal operator D = (dij)

by setting

djj
p := min

(
1,

L

δ

E‖X‖pp
‖X‖pp

)
, j = 1, 2, . . . , n,

gives an unsatisfactory distribution of the determinant. For example, if the

entries of X are {0, 1}-valued with probability of taking value 1 equal to 1/n,

then E‖X‖pp = 1, and for any m ≤ n we have

P{‖X‖pp = m} =

(
n

m

)
n−m

(
1− 1

n

)n−m

≥ 1

4mm
.

Thus, the above definition of D would give

P{detD ≤ 2−n} ≥ 1

4
�2pL/δ�−�2pL/δ	.

Our construction of the required operator is more elaborate. Let us first

describe the idea informally. Assume that p = 1 and that X is our random

vector with non-negative i.i.d. coordinates with unit expectations. We consider

a sequence of non-negative numbers (levels) such that each coordinate exceeds

the k-th level with probability 2−k. The main observation is that X “does not

fit” into the �n1 -ball
Ln
δ Bn

1 only if for some k there are much more than 2−kn

coordinates of X exceeding the level. We define the required operator D so that
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its restriction to the “bad” coordinates is an appropriate dilation, while on all

other coordinates it acts isometrically. If there exist several “bad” levels the

operatorD will be defined as a product of several diagonal operators. Moreover,

it will be more convenient to “replace” the vector X by a sum of independent

vectors of two-valued variables, such that the sum is a majorant for X on the

entire probability space. We construct the majorant in the coupling Lemma 2.5

stated below.

Given a non-negative random variable ξ with an everywhere continuous cu-

mulative distribution function (in particular, P{ξ = 0} = 0), define numbers

τk(ξ) (levels) as

τk(ξ) := inf{τ ≥ 0 : P{ξ ≥ τ} = 2−k}, k ≥ 0.

Note that

(2) Eξ ≥
∞∑
k=0

2−k−1τk(ξ).

We will need the following standard fact:

Lemma 2.4 (see, for example, [26, Chapter 1, Theorem 3.1]): Let ξ1, ξ2 be two

random variables on a probability space (Ω,Σ,P), and assume that

P{ξ1 > t} ≥ P{ξ2 > t}
for all t ∈ R (that is, ξ2 is stochastically dominated by ξ1). Then there is a

probability space (Ω̃, Σ̃, P̃) and random variables ξ̃1, ξ̃2 on (Ω̃, Σ̃, P̃) such that

(1) ξ̃i is equidistributed with ξi, i = 1, 2, and (2) ξ̃1 ≥ ξ̃2 everywhere on Ω̃.

Lemma 2.5 (Coupling): Let Y = (y1, y2, . . . , yn) be a random vector on a

probability space (Ω,Σ,P) with i.i.d. non-negative coordinates with everywhere

continuous cdf and Eyi = 1. Further, let ξki (i ≤ n, k = 0, 1, . . . ) be 0-1 variables

on (Ω,Σ,P) with P{ξki = 1} = 2−k, and such that ξki are jointly independent

for all i ≤ n and k ≥ 0, and set

zi :=

∞∑
k=0

τk+1(yi)ξ
k
i , i = 1, 2, . . . , n,

and Z := (z1, z2, . . . , zn). Then there is a probability space (Ω̃, Σ̃, P̃) and ran-

dom vectors Ỹ = (ỹ1, ỹ2, . . . , ỹn) and Z̃ = (z̃1, z̃2, . . . , z̃n) on (Ω̃, Σ̃, P̃) such that

(a) Ỹ and Z̃ are equidistributed with Y and Z, respectively;

(b) z̃i ≥ ỹi for all i ≤ n everywhere on (Ω̃, Σ̃, P̃).
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Proof. Fix for a moment i ≤ n and consider the distributions of yi and zi. Take

any t > 0. If τk(yi) ≤ t for all k ≥ 0 then, obviously,

P{zi ≥ t} ≥ 0 = P{yi ≥ t}.
Otherwise, let k(t) := max{k ≥ 0 : τk(yi) ≤ t}. Then

P{zi ≥ t} ≥P{τk(t)+1(yi)ξ
k(t)
i ≥ τk(t)+1(yi)}

=2−k(t) = P{yi ≥ τk(t)(yi)}
≥P{yi ≥ t}.

Thus, yi is stochastically dominated by zi and, by Lemma 2.4, there is a prob-

ability space (Ω̃i, Σ̃i, P̃i) and variables ỹi and z̃i on (Ω̃i, Σ̃i, P̃i) equidistributed

with yi and zi, respectively, such that zi ≥ yi everywhere on Ω̃i.

Finally, by taking (Ω̃, Σ̃, P̃) to be the product space
∏

iΩi and naturally

extending the variables ỹi, z̃i to (Ω̃, Σ̃, P̃), we obtain the random vectors Ỹ , Z̃

satisfying the required conditions.

The next lemma provides an actual construction of the required diagonal

operator.

Lemma 2.6: For any α ∈ (0, 1) there is L = L(α) > 0 with the follow-

ing property. Let (τk)
∞
k=1 be an increasing non-negative sequence satisfying∑∞

k=1 τk2
−k < ∞, and let

Z̃ :=

∞∑
k=0

τk+1ξ
k,

where ξk = (ξk1 , ξ
k
2 , . . . , ξ

k
n) and ξki (i ≤ n, k = 0, 1, . . . ) are jointly independent

0-1 random variables with P{ξki = 1} = 2−k. Further, let δ ∈ (0, 1]. Then there

is a random positive contraction D̃ taking values in Dn such that

‖D̃Z̃‖1 ≤ L

δ
E‖Z̃‖1 =

Ln

δ

∞∑
k=0

τk+12
−k everywhere on the probability space,

and

E(det D̃)α−1 ≤ exp(δ).

Proof. Let L ≥ 2e be a number which we will determine later. Now, for each

k ≥ 0, define random variables

νk := |{i : ξki �= 0}|
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and

ηk :=

⎧⎨
⎩( δνk

L2−kn
)νk , if δνk ≥ L2−kn;

1, otherwise.

As building blocks of the contraction D̃, let us consider random diagonal ma-

trices D(k) with

d
(k)
jj :=

⎧⎨
⎩1, if ξkj = 0;

min(1, L2−kn
δνk

), otherwise,
j = 1, 2, . . . , n.

Then detD(k) = ηk
−1 and ‖D(k)ξk‖1 ≤ L2−kn

δ = L
δ E‖ξk‖1 (deterministically).

Note that D(k) acts as a dilation on the span of {ei : ξki �= 0} provided that

νk ≥ L2−kn
δ = L

δ Eνk, and as an isometry on the orthogonal complement. We

construct the required contraction D̃ as the product of contractions D(k) by

setting D̃ :=
∏∞

k=0 D
(k). Then

‖D̃Z̃‖1 ≤
∥∥∥∥

∞∑
k=0

τk+1D
(k)ξk

∥∥∥∥
1

≤ Ln

δ

∞∑
k=0

τk+12
−k =

L

δ
E‖Z̃‖1.

Note that

E(det D̃)α−1 = E

∞∏
k=0

ηk
1−α =

∞∏
k=0

Eηk
1−α.

Next, for every k ≥ 0 we have

Eηk
1−α ≤1 +

∞∑
m=�L2−kn/δ	

( δm

L2−kn

)m−αm

P{νk = m}

≤1 +

∞∑
m=�L2−kn/δ	

(eδ
L

)m (L2−kn

δm

)αm

.

In particular, for all k such that L2−kn/δ ≥ 1, using the relation L ≥ 2e, we

obtain

Eηk
1−α ≤ 1 + 2

(eδ
L

)�L2−kn/δ	
,

and for all k satisfying L2−kn/δ < 1, we get

Eηk
1−α ≤ 1 + 2

eδ

L
(L2−kn/δ)α.

Now, let us choose L = L(α) sufficiently large so that both∑
k:L2−kn/δ≥1

2
(eδ
L

)�L2−kn/δ	
and

∑
k:L2−kn/δ<1

2
eδ

L
(L2−kn/δ)α
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are less than δ/2. Then, multiplying the estimates for Eηk
1−α, we get

E

( ∞∏
k=0

ηk

)1−α

≤ exp(δ),

and the result follows.

Proof of Proposition 2.1. Fix admissible α, δ and p. Without loss of generality,

the distribution of the coordinates of the random vector X is continuous on the

real line. Indeed, otherwise we can replace every coordinate xi with |xi| + ui,

where u1, u2, . . . , un are jointly independent with x1, x2, . . . , xn and each ui is

uniformly distributed on [0, θ] for a very small parameter θ > 0 chosen so that

E(|xi| + ui)
p ≈ E|xi|p. Then the random diagonal contraction D constructed

for the new vector X ′ := (|xi|+ ui)
n
i=1 will also satisfy the required properties

with respect to X .

Set Y := (|x1|p, |x2|p, . . . , |xn|p) and let Ỹ , Z̃ be random vectors on a space

(Ω̃, Σ̃, P̃) constructed in Lemma 2.5 with respect to Y . By Lemma 2.6 and in

view of relation (2), we can find a random positive contraction D̃ on Ω̃ taking

values in Dn such that for some L = L(α) > 0 we have

‖D̃Ỹ ‖1 ≤ ‖D̃Z̃‖1 ≤ L

δ
E‖Z̃‖1 ≤ 4L

δ
E‖Ỹ ‖1 everywhere on Ω̃

and

E(det D̃)α−1 ≤ exp(δ).

In general, the operator D̃ is not a function of Ỹ , which creates (purely techni-

cal) issues in defining a corresponding operator on the original space (Ω,Σ,P).

For completeness, let us describe an elementrary discretization argument re-

solving the problem:

Let {Bz} be a partition of Rn
+ into Borel subsets, indexed over

z = (z1, z2, . . . , zn) ∈ (Z ∪ {−∞})n

and defined by

Bz := {W ∈ R
n
+ : Wi ∈ (2zi−1, 2zi ] for all i = 1, 2, . . . , n}

(we set Wi = 0 for zi = −∞). Further, for every z we let

Ω̃z := {ω̃ ∈ Ω̃ : Ỹ (ω̃) ∈ Bz}
and

Qz := D̃(Ω̃z) = {M ∈ Dn : M = D̃(ω̃) for some ω̃ ∈ Ω̃z}.
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For each z ∈ (Z ∪ {−∞})n such that Ω̃z is non-empty, choose an operator Dz

from the closure of Qz such that detDz ≥ detM for all M ∈ Qz (of course, the

choice of Dz does not have to be unique). Otherwise, if Ω̃z is empty then we

set Dz := min(1, 4L
δ
∑

n
i=1 2zi E‖Ỹ ‖1)Idn. Finally, define a function h : Rn

+ → Dn

by setting h(W ) := Dz for all W ∈ Bz and z ∈ (Z∪{−∞})n. Observe that h is

Borel. Further, by the choice of Dz’s, we have deth(Ỹ ) ≥ det D̃ everywhere on

Ω̃, whence E(det h(Ỹ ))α−1 ≤ exp(δ). Next, by the choice of sets Bz, we have

‖M(W )‖1 ≤ 2‖M ′(W ′)‖1 for any two couples (M,W ), (M ′,W ′) ∈ Qz × Bz.

Together with the conditions on D̃ and the definition of Dz’s, this implies

‖Dz(W )‖1 ≤ 8L
δ E‖Ỹ ‖1 for all W ∈ Bz, whence

‖h(W )W‖1 ≤ 8L

δ
E‖Ỹ ‖1 everywhere on R

n
+.

Now, taking T := h(Y ), we obtain a random diagonal contraction on (Ω,Σ,P)

such that

‖T 1/pX‖pp = ‖TY ‖1 ≤ 8L

δ
E‖X‖pp everywhere on Ω

and E(det T )α−1 ≤ exp(δ). Finally, setting D := T 1/p, we get the required

operator.

The above statement can be “tensorized”. In what follows, we are interested

only in the case p = 2 and α = 1/2.

Proposition 2.7: There is a universal constant C > 0 with the following

property. Let A = (aij) be an n × n random matrix satisfying (∗), and let

δ ∈ (0, 1]. Then there is a random positive contraction D taking values in Dn

such that the Euclidean norms of the rows of AD are uniformly bounded by
C√
δ

√
n everywhere on the probability space, and

EdetD−1 ≤ exp(δn).

Proof. Indeed, for any i = 1, 2, . . . , n, let Di be the positive contraction de-

fined with respect to the i-th row of A using Proposition 2.1 (with parameters

α = 1/2, p = 2), so thatD1, D2, . . . , Dn are jointly independent. Then the prod-

uct of these contractions D :=
∏n

i=1 Di satisfies the required conditions.

Remark 2.8: It is not difficult to see that for any positive contraction M ∈ Dn

there is an element M̃ ∈ D2
n such that M̃ ≤ √

2M and det M̃−1 ≤ detM−2.

Indeed, this follows easily from the fact that for any number t ∈ (0, 1] there

is t̃ ∈ {1} ∪ {2−2k}∞k=0 with t2 ≤ t̃ ≤ √
2t (the constant

√
2 on the right-hand
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side is achieved for t =
√
2/2− o(1)). Hence, the above statement implies that,

given a matrix A satisfying (∗) and a number δ > 0, one can construct a random

contraction D̃ taking values in D2
n such that each row of AD̃ has Euclidean norm

at most C√
δ

√
n (for some universal constant C > 0), and Edet D̃−1/2 ≤ exp(δn).

3. Coverings of random ellipsoids

The main result of the section is

Theorem 3.1: Let δ ∈ (0, 1] and let A = (aij) be an n × n random matrix

satisfying (∗). Then

P

{
∃D ∈ D2

n : detD ≥ exp(−δn) and ‖AD‖∞→2 ≤ C3.1√
δ
n
}
≥ 1− 4 exp(−δn/8),

where C3.1 > 0 is a universal constant.

Remark 3.2: The above theorem can be seen as a way to “regularize” the ran-

dom matrix A by reducing its norm while preserving its “structure”. In this

connection, let us mention work [10] where a very general problem of regulariz-

ing random matrices was discussed (see [10, Section 5.4]).

As we have mentioned in the introduction, Theorem A follows almost im-

mediately from the above statement; we give the proof of Theorem A at the

very end of the section. The section is organized as follows. First, we use D̃

constructed in Remark 2.8 to verify Theorem 3.1 under an additional assump-

tion that the entries of A are symmetrically distributed (see Proposition 3.6).

Then, we will apply a symmetrization procedure to prove Theorem 3.1 in full

generality.

A random variable ξ is subgaussian if there exists a number K > 0 such

that

(3) P{|ξ| > t} ≤ 2 exp(−t2/K2), t > 0.

To put an emphasis on the value of K, we will sometimes call ξ K-subgaussian.

We note that the smallest value of K satisfying (3) is equivalent to the sub-

gaussian norm of ξ (see, for example, [29, Lemma 5.5]); however, the latter

notion is less convenient for us and will not be used in this paper.

The next lemma is equivalent to a standard Khintchine-type inequality (see,

for example, [7]).
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Lemma 3.3: Let r1, r2, . . . , rn be independent Rademacher random variables.

Then for any vector y ∈ Sn−1 the random variable
∑n

i=1 yiri is C3.3-subgaussian,

where C3.3 > 0 is a universal constant.

The sum of squares of subgaussian variables has good concentration proper-

ties; the bound below follows from a standard “Laplace transform” argument

(see, for example, [29, Corollary 5.17]):

Lemma 3.4: For any T > 0 there is L3.4 > 0 depending on T with the follow-

ing property: Let ξ1, ξ2, . . . , ξn be independent centered 1-subgaussian random

variables. Then

P

{ n∑
i=1

ξ2i > L3.4n

}
≤ exp(−Tn).

The next proposition implies that for a random matrix A satisfying (∗) with
symmetrically distributed entries and the operator D̃ from Remark 2.8, the

norm ‖AD̃‖∞→2 can be efficiently bounded from above as long as D̃ is a Borel

function of |A| (here and further in the text, given a matrix B = (bij), by |B|
we shall denote the matrix (|bij |)).
Proposition 3.5: Let K > 0 and let A be an n × n random matrix satisfy-

ing (∗), with symmetrically distributed entries. Further, let F ⊂ Dn be any

countable subset. Denote by E the event

E := {∃D ∈ F : all rows of AD have Euclidean norms at most K
√
n}.

Then

P{∃D ∈ F : ‖AD‖∞→2 ≤ CKn} ≥ P(E)− exp(−n),

where C > 0 is a universal constant.

Proof. Fix any admissible K and F . Clearly, for any n × n matrix B and a

diagonal matrix D, the Euclidean norms of rows of BD and |B|D are the same.

Hence, we may assume that there is a Borel function f : Rn×n
+ → F such that

E = {all rows of Af(|A|) have norms at most K
√
n}.

For any D ∈ F , let

ED := E ∩ {f(|A|) = D}.
Without loss of generality, P(ED) > 0 for any D ∈ F .
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Next, as the unit cube [−1, 1]n is the convex hull of its vertices V = {−1, 1}n,
we have

(4) ‖Af(|A|)‖∞→2 = sup
y∈Bn∞

‖Af(|A|)y‖ = sup
v∈V

‖Af(|A|)v‖.

Note that, given event ED, the entries of Af(|A|) = AD are symmetrically

distributed, so the distribution of ADv given ED is the same for any vertex

v ∈ V . Fix a vertex v.

Observe that for any t > 0 we have

(5) PED{‖ADv‖ > t} ≤ sup
B

P{‖B̃Dv‖ > t},

where by PED we denote the conditional probability given ED and the supremum

is taken over all matrices B = (bij) such that the rows of BD have Euclidean

norms at most K
√
n, and B̃ = (rijbij), with rij being jointly independent

Rademacher (±1) variables. Fix any admissible B = (bij).

Then the variables 〈B̃Dv, ei〉, i = 1, 2, . . . , n, are jointly independent and, in

view of Lemma 3.3 and the choice of B, each variable K−1n−1/2〈B̃Dv, ei〉 is

C3.3-subgaussian. By Lemma 3.4, there is a universal constant C > 0 such that

P{‖B̃Dv‖ > CKn} = P

{
1

n

n∑
i=1

〈B̃Dv, ei〉2 > (CK)2n

}
≤ exp(−(1 + ln 2)n).

Then, taking a union bound over 2n vertices of the unit cube and using (5) and

(4), we get an estimate

PED{‖AD‖∞→2 > CKn} ≤ 2n · sup
B

P{‖B̃Dv‖ > CKn} ≤ exp(−n).

Finally, clearly

P{‖AD‖∞→2 > CKn} ≤P(Ec) +
∑
D

PED{‖AD‖∞→2 > CKn}P(ED)

≤P(Ec) + exp(−n),

and the result follows.

Proposition 3.6: Let δ ∈ (0, 1] and let A = (aij) be an n× n random matrix

satisfying (∗), with symmetrically distributed entries. Then

P

{
∃D ∈ D2

n : detD ≥ exp(−δn) and ‖AD‖∞→2 ≤ C3.6√
δ
n
}
≥ 1− 2 exp(−δn/4).
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Proof. Fix any δ ∈ (0, 1]. In view of Remark 2.8, there is a random contraction

D taking values in D2
n such that each row of AD has the Euclidean norm at

most C√
δ

√
n and EdetD−1/2 ≤ exp(δn/4). Denote by E the event

E := {detD ≥ exp(−δn)}.

In view of the conditions on D and Markov’s inequality, we have

P(E) ≥ 1− exp(−δn/4).

Hence, by Proposition 3.5, taking F to be the set of all contractions from D2
n

having determinant at least exp(−δn), we obtain

P

{
∃D ∈ D2

n : detD ≥ exp(−δn) and ‖AD‖∞→2 ≤ C3.6√
δ
n
}

≥1− exp(−δn/4)− exp(−n)

for a universal constant C3.6 > 0.

For the next lemma we will need the following definition (essentially taken

from [13]). Let S be a finite set and d be a pseudometric on S. We say that (S, d)

is of length at most � (for some � > 0) if there is n ∈ N, positive numbers

b1, b2, . . . , bn with ‖(b1, b2, . . . , bn)‖ ≤ � and a sequence (Sk)
n
k=0 of partitions of

S such that

(1) S0 = {S};
(2) Sn = {{s}}s∈S;

(3) Sk is a refinement of Sk−1 for all k = 1, 2, . . . , n;

(4) for each k ∈ {1, 2, . . . , n} and any Q,Q′ ∈ Sk such that Q ∪ Q′ is a

subset of an element of Sk−1, there is a one-to-one mapping φ : Q → Q′

such that d(s, φ(s)) ≤ bk for all s ∈ Q.

In particular, the above conditions on Sk imply that all elements of Sk have the

same cardinality.

Theorem 3.7 (see [13, Theorem 7.8]): Let (S, d) be a finite pseudometric space

of length at most � and let μ be the normalized counting measure on S. Then

for any function f : S → R satisfying |f(s)− f(s′)| ≤ d(s, s′) (s, s′ ∈ S) and all

t > 0 we have

μ

{∣∣∣∣f −
∫

f dμ

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− t2

4�2

)
.



Vol. 227, 2018 INVERTIBILITY OF MATRICES 523

Remark 3.8: In [13], the above theorem is formulated for metric spaces. It is

easy to see that passing to pseudometrics does not change the picture.

Denote by Πn the set of permutations of [n] := {1, 2, . . . , n}.
Lemma 3.9: Let y=(y1, y2, . . . , yn) be a non-zero vector and v=(v1, v2, . . . , vn)

be a vertex of the cube [−1, 1]n. Further, let μ be the normalized counting

measure on Πn. Define a function f : Πn → R as

f(p) :=

n∑
j=1

vp(j)yj , p ∈ Πn.

Then

μ

{∣∣∣∣f −
∫

f dμ

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− t2

64‖y‖2
)
, t > 0.

Proof. Without loss of generality, we can assume that |yj | ≥ |yj+1|
(j = 1, 2, . . . , n− 1). Define a pseudometric d on Πn: for any p, q ∈ Πn let

d(p, q) := |f(p)− f(q)|.
Further, we define a sequence of partitions (Πn,k)

n
k=0 of Πn: let Πn,0 := {Πn}

and for each k = 1, 2, . . . , n, let Πn,k consist of all subsets of Πn of the form

{p ∈ Πn : p(1) = i1, p(2) = i2, . . . , p(k) = ik}
for all {i1, i2, . . . , ik} ⊂ [n].

Now, let k ∈ {1, 2, . . . , n} and let Q,Q′ ∈ Πn,k be such that Q∪Q′ is a subset

of an element of Πn,k−1. Note that there are numbers i1, i2, . . . , ik, i
′
k such that

p(j) = ij for all j < k and p ∈ Q∪Q′; p(k) = ik for all p ∈ Q and p(k) = i′k for

all p ∈ Q′. Define a one-to-one mapping φ : Q → Q′ by

φ(p)(j) := p(j) for j �= k, p−1(i′k); φ(p)(k) := i′k; φ(p)(p−1(i′k)) := ik.

For any p ∈ Q, we have

d(p, φ(p)) ≤ 2|yk|+ 2|yp−1(i′k)| ≤ 4|yk|,
with the last inequality due to the fact that p−1(i′k) ≥ k. Thus, the space (Πn, d)

is of length at most 4‖y‖. Applying Theorem 3.7, we get the result.

The next statement shall be used in a symmetrization argument within the

proof of Theorem 3.1; we think it may be of interest in itself.
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Proposition 3.10: Let B = (bij) be a non-random n×n matrix such that the

Euclidean norm of every row is at most
√
n and such that∣∣∣∣

n∑
j=1

bij

∣∣∣∣ ≤ √
n, i = 1, 2, . . . , n.

Further, let πi (i = 1, 2, . . . , n) be independent random permutations uniformly

distributed on Πn, and denote by B̃ = (̃bij) the random n × n matrix with

entries defined by

b̃ij := bi,πi(j).

Then

P{‖B̃‖∞→2 ≤ C3.10n} ≥ 1− exp(−n)

for a universal constant C3.10 > 0.

Proof. We will show that for any v ∈ {−1, 1}n we have

P{‖B̃v‖ > C3.10n} ≤ exp(−n− n ln 2)

for a sufficiently large universal constant C3.10 and then take the union bound

over the vertices of the cube.

Fix any v = (v1, v2, . . . , vn) ∈ {−1, 1}n and let m be the number of ones

in (v1, . . . , vn). Clearly, the random variables 〈B̃v, ei〉 (i = 1, 2, . . . , n) are

independent. Next, for a fixed i, the distribution of 〈B̃v, ei〉 coincides with

that of the variable ξi :=
∑n

j=1 vπi(j)bij . By Lemma 3.9 and in view of the

condition on the rows of B, we have

P{|ξi − Eξi| > τ} ≤ 2 exp
(
− τ2

64n

)
, τ > 0.

Hence, the variables n−1/2(ξi − Eξi) (i = 1, 2, . . . , n) are C-subgaussian for a

universal constant C > 0. In view of Lemma 3.4, we get that

(6) P

{ n∑
i=1

(ξi − Eξi)
2 > C̃n2

}
≤ exp(−n− n ln 2)

for some constant C̃ > 0. Finally, observe that

n∑
i=1

ξ2i ≤ 2
n∑

i=1

(ξi − Eξi)
2 + 2

n∑
i=1

(Eξi)
2 (deterministically),
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so, applying the estimate

|Eξi| =
∣∣∣∣2m− n

n

n∑
j=1

bij

∣∣∣∣ ≤ √
n

and (6), we obtain

P{‖B̃v‖2>(2C̃+2)n2}=P

{ n∑
i=1

ξ2i >(2C̃+2)n2

}
≤exp(−n−n ln 2).

Proof of Theorem 3.1. Let Ã be an independent copy of A. Obviously

E

( n∑
j=1

ãij

)2

= E

n∑
j=1

ã2ij = n

for every i = 1, 2, . . . , n. Then, in view of Markov’s inequality, each row of Ã

satisfies ∣∣∣∣
n∑

j=1

ãij

∣∣∣∣ ≤
√

32n

δ
and

n∑
j=1

ã2ij ≤
32n

δ

with probability at least 1− δ/16 > exp(−δ/8). Denote by Ẽ the event

Ẽ :=

{∣∣∣∣
n∑

j=1

ãij

∣∣∣∣ ≤
√

32n

δ
and

n∑
j=1

ã2ij ≤
32n

δ
for all i = 1, 2, . . . , n

}
.

In view of the above, P(Ẽ) ≥ exp(−δn/8). Let π1, π2, . . . , πn be random per-

mutations uniformly distributed on Πn and jointly independent with Ã, and

denote by B̃ = (̃bij) the random matrix with entries b̃ij := ãi,πi(j) (i, j ≤ n).

Then Proposition 3.10 yields

P

{
‖B̃‖∞→2 ≤ C3.10

√
nmax

i≤n

( n∑
j=1

ã2ij

)1/2

| Ã
}

≥ 1− exp(−n),

whence, in particular,

P{‖B̃‖∞→2 ≤ C3.10

√
32/δ n | Ẽ} ≥ 1− exp(−n).

But B̃ is equidistributed with Ã given Ẽ , so that

P{‖Ã‖∞→2 ≤ C3.10

√
32/δ n | Ẽ} ≥ 1− exp(−n).

Clearly, ‖ÃD‖∞→2 ≤ ‖Ã‖∞→2 for any contraction D ∈ Dn (deterministically),

so we obtain for the event E1 := {‖ÃD‖∞→2 ≤ C3.10

√
32/δ n for all D ∈ Dn}

P(E1) ≥ (1− exp(−n))P(Ẽ) ≥ 1

2
exp(−δn/8).
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Next, the matrix 2−1/2(A − Ã) has symmetrically distributed entries, and sat-

isfies conditions of Proposition 3.6. Hence,

P{‖(A− Ã)D‖∞→2 ≤ C3.6

√
2/δ n for some D ∈ D2

n with detD ≥ exp(−δn)}
≥1− 2 exp(−δn/4).

Conditioning on E1, we get

P{‖(A−Ã)D‖∞→2≤C3.6

√
2/δ n for some D∈D2

n with detD ≥ exp(−δn) | E1}

≥1− 2 exp(−δn/4)

P(E1)
≥1− 4 exp(−δn/8).

Note that, given E1, we have ‖AD‖∞→2 ≤ ‖(A− Ã)D‖∞→2 +C3.10

√
32/δ n for

all contractions D ∈ Dn. Combining this with the last formula, we obtain

P{‖AD‖∞→2 ≤ C3.6

√
2/δ n+ C3.10

√
32/δ n

for some D ∈ D2
n with detD ≥ exp(−δn) | E1} ≥ 1− 4 exp(−δn/8).

Finally, since A is independent of E1, the conditioning in the last estimate can

be dropped, and we obtain the statement.

To complete the proof of Theorem A, we will need two more technical lemmas:

Lemma 3.11: For any δ ∈ (0, 1/2] and all n ∈ N we have

|{D ∈ D2
n : detD ≥ exp(−δn)}| ≤

(2e
δ

)4δn

.

Proof. Denote S := {D ∈ D2
n : detD ≥ exp(−δn)}. Note that for any matrix

D ∈ S and for any k ≥ 0, the number of diagonal elements of D equal to 2−2k

is less than 2−k+1δn. Hence, the cardinality of S can be estimated as

|S| ≤
∞∏
k=0

(
n

[2−k+1δn]

)
≤

∞∏
k=0

(e
δ

)2−k+1δn

2k2
−k+1δn

=
(e
δ

)4δn

24δn =
(2e
δ

)4δn

.

Lemma 3.12: For any n ∈ N and K ∈ [2, 2
√
n], the unit Euclidean ball Bn

2 can

be covered by at most (2eK2)8n/K
2

translates of the cube K√
n
Bn

∞.
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Proof. First, note that for any y ∈ Bn
2 we have∣∣∣{i ≤ n : |yi| ≥ K

2
√
n

}∣∣∣ ≤ 4n

K2
.

Hence, it is sufficient to show that the set |{y ∈ Bn
2 : |supp(y)| ≤ 4n

K2 }| can be

covered by at most (2eK2)8n/K
2

translates of K
2
√
n
Bn

∞. A simple volumetric ar-

gument, together with an estimate Vol(Bm
2 )≤(2πem )m/2, implies that Bm

2 can be

covered by at most 7m translates of 1√
m
Bm

∞ (for any m∈N). As a consequence,

we obtain a covering of B
�4n/K2	
2 by at most 7�4n/K

2	 translates of K
2
√
n
Bn

∞.

Finally, the cardinality of the optimal covering of |{y∈Bn
2 : |supp(y)|≤ 4n

K2 }| can
be estimated from above by(

n

�4n/K2�
)
7�4n/K

2	 ≤ (2eK2)8n/K
2

.

Proof of Theorem A. Let δ ∈ (0, 1/4] and n ≥ 1
4δ . First, applying Lemma 3.12

with K = 1/
√
δ, we see that Bn

2 can be covered by (2e/δ)8nδ translates of the

dilated cube 1√
nδ
Bn∞. Let

Q = {D ∈ D2
n : detD ≥ exp(−δn)}.

Then, in view of Lemma 3.11, we get that Bn∞ can be covered by at most

(2e/δ)4δn exp(δn) parallelepipeds in such a way that for any y ∈ Bn
∞ andD ∈ Q,

y is covered by a translate of D(Bn
∞). Combining the two coverings, we get a

collection C of parallelepipeds covering Bn
2 such that

|C| ≤ (2e/δ)4δn exp(δn) · (2e/δ)8nδ = exp
(
δn+ 12nδ ln

2e

δ

)
,

and for any y ∈ Bn
2 and D ∈ Q, the set C contains a translate of D( 1√

nδ
Bn

∞)

covering y. Finally, applying Theorem 3.1, we get that with probability at least

1− 4 exp(−δn/8) for some D ∈ Q we have AD(Bn∞) ⊂ C3.1n√
δ

Bn
2 , implying

P

{
∀ x ∈ Bn

2 ∃ P ∈ C such that x ∈ P and A(P ) ⊂ Ax+
2 · C3.1

√
n

δ
Bn

2

}
≥1− 4 exp(−δn/8)

(the multiple “2” in the last formula appears because the translation −Ax+A(P )

is not origin-symmetric in general).
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Proof of Corollary A. Fix n and δ, and let C be the collection of parallelepipeds

defined in Theorem A. For each P ∈ C, choose a point yp ∈ P ∩ Bn
2 , and let

N := {yP : P ∈ C}. Then, clearly,

|N | = |C| ≤ exp
(
δn+ 12nδ ln

2e

δ

)
,

and with probability at least 1 − 4 exp(−δn/8) for every x ∈ Bn
2 there is

y = y(x) ∈ N with −Ax+Ay ∈ C
√
n

δ Bn
2 . In short,

P

{
A(Bn

2 ) ⊂
⋃

y∈A(N )

(
y +

C
√
n

δ
Bn

2

)}
≥ 1− 4 exp(−δn/8).

4. The smallest singular value—Preliminaries

As we already mentioned in the introduction, the proof of Theorem B heavily

relies on results obtained by Rudelson and Vershynin in papers [20] and [19].

In this section, we will state several intermediate results from those papers that

we will need in Section 5 to complete our proof.

A crucial step in the proof of [20, Theorem 1.2] is a decomposition of the unit

sphere into sets of “compressible” and “incompressible” vectors.

Definition 4.1 (Sparse, compressible and incompressible vectors): Fix parame-

ters θ, ρ ∈ (0, 1). A vector x ∈ R
n is called θn-sparse if |supp(x)| ≤ θn. A

vector x ∈ Sn−1 is called compressible if x is within Euclidean distance ρ from

the set of all θn-sparse vectors. Otherwise, x will be called incompressible.

The set of all compressible unit vectors will be denoted by Compn(θ, ρ), and the

set of incompressible vectors by Incompn(θ, ρ). Sometimes, when the dimension

n or the parameters θ, ρ are clear from the context, we will simply write Comp,

Incomp to denote the sets.

Remark 4.2: A similar decomposition of the unit sphere was already introduced

in an earlier paper [11] for the purpose of bounding the smallest singular value

of rectangular matrices.

Obviously, for any ε > 0 we have

P{sn(A) < εn−1/2} ≤ P{ inf
y∈Comp

‖Ay‖ < εn−1/2}+P{ inf
y∈Incomp

‖Ay‖ < εn−1/2}.

Treatment of the compressible vectors is simpler due to the fact that the set

Comp is “small”; we will deal with this set in the first part of Section 5. Let
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us remark that, unlike in the subgaussian result of [20], where an estimate for

compressible vectors follows almost directly from an analogue of Lemma 4.9

(see below) together with a standard covering argument, in our case we will

still need to use additional results (proved in Section 3) as the norm ‖A‖2→2

may be “too large”. We will need the following simple lemma:

Lemma 4.3: For any θ, ρ ∈ (0, 1] the set Comp = Compn(θ, ρ) admits a Eu-

clidean 3ρ-net N ⊂ Comp of cardinality |N | ≤ (e/θ)θn( 5ρ )
θn.

Proof. Note that the definition of Comp implies that for any y ∈ Comp there is

y′ ∈ Sn−1 such that |supp(y′)| ≤ θn and ‖y − y′‖ ≤ 2ρ. Hence, it is enough to

show that one can find a Euclidean ρ-net N on the set of θn-sparse unit vectors,

with the required estimate on |N |. This follows from a standard estimate on

the cardinality of an optimal ρ-net on S�θn−1, together with a bound for the

binomial coefficient
(

n
�θ

)
.

Incompressible vectors have the important property that a significant portion

of their coordinates are of order n−1/2. In paper [20], this property was referred

to as “incompressible vectors are spread”. For the reader’s convenience, we

provide a proof of this fact below (let us note once again that analogous concepts

were already considered in [11]).

Lemma 4.4 ([20, Lemma 3.4]): For any θ, ρ ∈ (0, 1) and for any vector

x ∈ Incompn(θ, ρ) there is a subset of indices σ(x) ⊂ {1, 2, . . . , n} of cardi-

nality at least 1
2ρ

2θn such that for all i ∈ σ(x) we have

ρ√
2n

≤ xi ≤ 1√
θn

.

Proof. For every subset I ⊂ {1, 2, . . . , n}, let PI be the coordinate projection

onto the span of {ei : i ∈ I}. Let σ = σ(x) := σ1 ∩ σ2, where

σ1 =
{
i ≤ n : |xi| ≤ 1√

θn

}
, σ2 =

{
i ≤ n : |xi| ≥ ρ√

2n

}
.

Since ‖x‖ = 1, we have |σc
1| ≤ θn, and Pσc

1
(x) is a θn-sparse vector. Then the

condition that x is incompressible implies

‖Pσ1(x)‖ = ‖x− Pσc
1
(x)‖ > ρ.

Hence,

(7) ‖Pσ(x)‖2 ≥ ‖Pσ1(x)‖2 − ‖Pσc
2
(x)‖2 ≥ ρ2 − n · ‖Pσc

2
(x)‖2∞ ≥ ρ2/2.
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On the other hand, in view of the inclusion σ(x) ⊂ σ1, we get

(8) ‖Pσ(x)‖2 ≤ ‖Pσ(x)‖2∞ · |σ| ≤ 1

θn
· |σ|.

Together, (7) and (8) imply that |σ| ≥ 1
2ρ

2θn.

For incompressible vectors we will need the following basic estimate from [20].

Proposition 4.5 ([20, Lemma 3.5]): Let M be a random n × n matrix with

column vectors X1, X2, . . . , Xn, and let Hj (j = 1, 2, . . . , n) be the span of all

column vectors except the j-th. Then for every ε > 0 we have

P{ inf
y∈Incomp(θ,ρ)

‖My‖ < ερn−1/2} ≤ 1

θn

n∑
j=1

P{dist(Xj, Hj) < ε}.

In view of independence and equi-measurability of the columns of A in our

model, the above proposition yields for any ε > 0

P{ inf
y∈Incomp(θ,ρ)

‖Ay‖ < ερn−1/2} ≤ 1

θ
P

{∣∣∣∣
n∑

i=1

X∗
i ain

∣∣∣∣ < ε

}
,

where X∗ = (X∗
1 , X

∗
2 , . . . , X

∗
n) denotes a random normal unit vector to the span

of the first n − 1 columns of A. Obtaining small ball probability estimates for

|∑n
i=1 X

∗
i ain| was a crucial ingredient of [20].

Given a real-valued random variable ξ, define its Levy concentration func-

tion as

L(ξ, z) := sup
λ∈R

P{|ξ − λ| ≤ z}, z ≥ 0.

First, let us look at some well known estimates of L(ξ, v) and then state a

stronger bound from [20].

Theorem 4.6 (Rogozin, [16]): Let n ∈ N, let ξ1, ξ2, . . . , ξn be jointly indepen-

dent random variables and let t1, t2, . . . , tn be some positive real numbers. Then

for any t ≥ maxj tj we have

L
( n∑

j=1

ξj , t

)
≤ C4.6 t

( n∑
j=1

(1− L(ξj))tj2
)−1/2

,

where C4.6 > 0 is a universal constant.

Obviously, if ξ is essentially non-constant, there are v > 0 and u ∈ (0, 1)

such that L(ξ, v) ≤ u. The following lemma is an elementary consequence of
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Theorem 4.6 (see [11, Lemma 3.6] and [20, Lemma 2.6] for similar statements

proved under additional moment assumptions on the variable).

Lemma 4.7: Let ξ be a random variable with L(ξ, ṽ) ≤ ũ for some ṽ > 0 and

ũ ∈ (0, 1). Then there are v′ > 0 and u′ ∈ (0, 1) depending only on ũ, ṽ with

the following property: Let ξ1, ξ2, . . . , ξn be independent copies of ξ. Then for

any vector y ∈ Sn−1 we have

L
( n∑

j=1

yjξj , v
′
)

≤ u′.

Proof. By Theorem 4.6, for any y ∈ Sn−1 and any h ≥ maxj |yj |ṽ, we have

L
( n∑

j=1

yjξj , h

)
≤ C4.6h

ṽ
√
1− ũ

.

Define v′ := ṽ
√
1−ũ

2C4.6
and consider two cases.

(1) For every j = 1, . . . , n we have |yj | ≤
√
1−ũ

2C4.6
. Then v′ ≥ maxj |yj |ṽ, and

we obtain from the above relation

L
( n∑

j=1

yjξj , v
′
)

≤ 1

2
.

(2) There is j0 such that |yj0 | >
√
1−ũ

2C4.6
. Then we get

L
( n∑

j=1

yjξj , v
′
)

≤ L(yj0ξj0 , v′) ≤ ũ.

Thus, we can take u′ := max(1/2, ũ).

Lemma 4.8 (“Tensorization lemma”, [20, Lemma 2.2]): Let α1, α2, . . . , αn be

i.i.d. random variables, and let ε0 > 0.

• Assume that

L(α1, ε) ≤ Lε for some L > 0 and for all ε ≥ ε0.

Then

P

{ n∑
j=1

αj
2 ≤ ε2n

}
≤ (CLε)n for all ε ≥ ε0,

where C > 0 is a universal constant.
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• Assume that L(α1, v
′) ≤ u′ for some v′ > 0 and u′ ∈ (0, 1). Then there

are v > 0 and u ∈ (0, 1) depending only on u′, v′ such that

P

{ n∑
j=1

αj
2 ≤ vn

}
≤ un.

As a consequence of Lemmas 4.7 and 4.8, we get

Lemma 4.9: Let α be a random variable with L(α, ṽ) ≤ ũ for some ṽ > 0 and

ũ ∈ (0, 1). Then there are v > 0 and u ∈ (0, 1) depending only on ũ, ṽ with

the following property: Let A be an n × n random matrix with i.i.d. entries

equidistributed with α. Then for any y ∈ Sn−1 we have

P{‖Ay‖ ≤ v
√
n} ≤ un.

Remark 4.10: Lemma 4.9 can be compared with [11, Proposition 3.4] and [20,

Corollary 2.7]; however, those statements were proved with additional assump-

tions on the entries of A.

To get a stronger estimate than the one obtained in Lemma 4.7, the following

notion was developed in [20] and [19] (see also preceding work [22] by Tao and

Vu).

Definition 4.11 (Essential least common denominator): For parameters

r ∈ (0, 1) and h > 0 and any non-zero vector x ∈ R
n, define

LCDh,r(x) := inf{t > 0 : dist(tx,Zn) < min(r‖tx‖, h)}.
We note that later we shall choose r sufficiently small and h to be a small

multiple of
√
n. Thus, most of the coordinates of LCDh,r(x) · x are within a

small distance to integers. For a detailed discussion of the above notion, we

refer to [17].

The next statement is proved in [19].

Theorem 4.12 ([19, Theorem 3.4]): Let ξ1, ξ2, . . . , ξn be independent copies of

a centered random variable such that L(ξi, v) ≤ u for some v > 0 and u ∈ (0, 1).

Further, let x = (x1, x2, . . . , xn) ∈ Sn−1 be a fixed vector. Then for every h > 0,

r ∈ (0, 1) and for every

ε ≥ 1

LCDh,r(x)
,
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we have

L
( n∑

i=1

xiξi, εv

)
≤ C4.12ε

r
√
1− u

+ C4.12 exp(−2(1− u)h2),

where C4.12 is a universal constant.

Thus, in order to get a satisfactory small ball probability estimate for the

infimum over incompressible vectors, it is sufficient to show that the random

normal X∗ has exponentially large LCD with probability close to one. This will

be done in the second part of Section 5. As for the set Comp, our treatment of

the random normal will be based on results of Section 3.

5. The smallest singular value—proof of Theorem B

In this section we give a proof of Theorem B stated in the introduction. Let us

start with a version of Theorem A more convenient for us:

Theorem A


: Let δ ∈ (0, 1/4], n ≥ 1

4δ , ε ∈ (0, 1/2], S ⊂ Sn−1, and let

N ⊂ S be a Euclidean ε-net on S. Then there exists a (deterministic) subset

Ñ ⊂ S with |Ñ | ≤ exp(13δn ln 2e
δ )|N | such that for any n×n random matrix A

satisfying (∗), with probability at least 1−4 exp(−δn/8) the set Ñ is a ( εC�

δ

√
n)-

net on S with respect to the pseudometric d(x, y) := ‖A(x− y)‖ (x, y ∈ Sn−1),

where C
 > 0 is a universal constant.

Proof. Fix parameters n and δ, and let C be the collection of parallelepipeds

from TheoremA covering Bn
2 . Define a set

C̃ := {εP + y : P ∈ C, y ∈ N , S ∩ (εP + y) �= ∅}
and for every P̃ ∈ C let yP̃ be a point in the intersection S ∩ P̃ . Finally, set

Ñ := {yP̃ : P̃ ∈ C̃}.
Informally speaking, C̃ is a “product” of the rescaled collection ε · C and the net

N . For each parallelepiped in C̃ having a non-empty intersection with S, we

take one (arbitrary) point from this intersection to construct the refined net Ñ .

What remains is to check that with high probability Ñ is indeed a ( εCδ
√
n)-net

on S with respect to the pseudometric d(x, y) := ‖A(x− y)‖.
Observe that

|Ñ | = |C̃| ≤ |C| · |N | ≤ exp
(
13δn ln

2e

δ

)
|N |.
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Next, let A be an n× n random matrix satisfying (∗), and define event E as

E :=
{
∀ x ∈ Bn

2 ∃P ∈ C such that x ∈ P and A(P ) ⊂ Ax+
C
√
n

δ
Bn

2

}
.

By Theorem A, we have P(E) ≥ 1− 4 exp(−δn/8).

Fix any point x ∈ S. By the definition of N , there is a vector y ∈ N such

that ε−1(x − y) ∈ Bn
2 . Hence, for any point ω ∈ E on the probability space,

there is a parallelepiped P = P (ω) ∈ C such that ε−1(x− y) ∈ P and

Aω(P ) ⊂ Aω(ε
−1(x − y)) +

C
√
n

δ
Bn

2 .

Note that S ∩ (εP + y) ⊃ {x} �= ∅, whence P̃ := εP + y ∈ C̃, and, from the

above relation,

Aω(P̃ ) ⊂ Aωx+
εC

√
n

δ
Bn

2 ,

whence

AωyP̃ −Aωx ⊂ εC
√
n

δ
Bn

2 ,

where yP̃ ∈ Ñ . We have shown that

E ⊂
{
∀x ∈ S ∃y = y(x) ∈ Ñ such that ‖A(x− y)‖ ≤ εC

√
n

δ

}
,

and the result follows.

Remark 5.1: Let us note that a weaker version of Theorem A
, with condition

Ñ ⊂ S dropped, can be proved by applying Corollary A instead of Theorem A.

At this point, a significant part of our argument follows the same scheme as in

[20]. In the first part of this section, we are dealing with compressible vectors.

Proposition 5.2 (Compressible vectors): Let α be a centered random variable

with unit variance such that L(α, ṽ) ≤ ũ for some ṽ > 0 and ũ ∈ (0, 1). Then

there are numbers θ5.2, v5.2 > 0 and u5.2 ∈ (0, 1) depending only on ṽ, ũ with

the following property: Let n ∈ N and let A be an n × n random matrix with

i.i.d. entries equidistributed with α. Then for Comp = Compn(θ5.2, θ5.2) we have

P{ inf
y∈Comp

‖Ay‖ < v5.2
√
n} ≤ 5 u5.2

n.

Proof. Without loss of generality, we can assume that n is large. First, note

that by Lemma 4.9 we have a strong probability estimate for any fixed unit
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vector: there are v > 0 and u ∈ (0, 1) depending on ṽ, ũ such that for any

y ∈ Sn−1 we get

(9) P{‖Ay‖ < v
√
n} ≤ un.

In order to obtain a uniform estimate over a set S = Compn(θ, θ) for some

small parameter θ, we will take a net N ⊂ S constructed in Lemma 4.3 and

refine it with the help of Theorem A
 to get a net Ñ with respect to pseudo-

metric ‖A(x− y)‖. We will apply Theorem A
 with parameter δ defined as the

largest number in (0, 1/4] so that exp(13δn ln 2e
δ ) ≤ u−n/3. Let us describe the

procedure in more detail.

First, define parameter θ ∈ (0, 1/6] as the largest number satisfying the in-

equalities (5e
θ2

)θn

≤ u−n/3 and
3θC


δ
≤ v

2
.

Let S be as above. By Lemma 4.3, there is a 3θ-net N ⊂ S on S (with respect

to the usual Euclidean metric) of cardinality |N | ≤ ( 5eθ2 )
θn. Now, by Theorem

A
, there is a deterministic subset Ñ ⊂ S having the following properties:

• |Ñ | ≤ exp(13δn ln 2e
δ ) · |N | ≤ u−n/3 · ( 5eθ2 )

θn ≤ u−2n/3;

• with probability at least 1− 4 exp(−δn/8) for every y ∈ S there exists

x(y) ∈ Ñ such that

‖A(x− y)‖ ≤ 3θ · C


δ

√
n ≤ v

2

√
n.

Applying the union bound over Ñ to relation (9), we get

P{‖Ay′‖ < v
√
n for some y′ ∈ Ñ} ≤ |Ñ |un ≤ un/3.

On the other hand, the second property of Ñ implies that

P

{
inf
y∈S

‖Ay‖ < inf
y∈Ñ

‖Ay‖ − v
√
n

2

}
≤ 4 exp(−δn/8).

Combining the two estimates, we get

P{‖Ay‖ < v
√
n/2 for some y ∈ S} ≤ un/3 + 4 exp(−δn/8),

and the result follows with u5.2 := max{u1/3, exp(−δ/8)}.
Remark 5.3: It is not difficult to see that Proposition 5.2 can be stated and

proved in the same way for A which is not square, but instead is an n− 1 × n

matrix with i.i.d. entries equidistributed with α. Indeed, for n large enough we
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can assume that γ ·n < (n− 1) < n for γ as close to one as we want (the values

of θ5.2, u5.2 and v5.2 may differ in that case). This will be important for us later.

Remark 5.4: Proposition 5.2 could be proved by a completely different argu-

ment based on [27, Proposition 13] and not using results of Section 3 at all.

However, we prefer to have a “uniform” treatment of both compressible and

incompressible vectors.

Let us turn to estimating the infimum over incompressible vectors. As we

already discussed in Section 4, it suffices to show that the random unit normal

vector to the span of the first n− 1 columns of A has exponentially large LCD

with probability very close to one. This property is verified in Theorem 5.9

below. We start with some auxiliary statements. First, note that Theorem 4.12

together with Lemma 4.8 imply that anti-concentration probability for a single

vector can be estimated in terms of the LCD of the vector. Namely, the bigger

LCD(x) is, the less is the probability that the image Ax concentrates in a small

ball:

Lemma 5.5 (Small ball probability for a single vector; see [20, Lemma 5.5]):

Let h > 0, r ∈ (0, 1) and let α be a random variable satisfying L(α, ṽ) ≤ ũ for

some ṽ > 0 and ũ ∈ (0, 1). Then there is L5.5 ≥ 1 depending only on ṽ, ũ with

the following property: Let A′ be an n−1×n random matrix with i.i.d. elements

equidistributed with α. Then for any vector x ∈ Sn−1 and any

ε ≥ ṽ ·max
( 1

LCDh,r(x)
, exp(−2(1− ũ)h2)

)

we have

P{‖A′x‖ < ε
√
n} ≤ (L5.5ε/r)

n−1.

Proof. Fix any vector x ∈ Sn−1 and denote Y = (Y1, Y2, . . . , Yn−1) := A′x.
Note that, in view of Theorem 4.12, we have

L(Yi, ε) ≤ C4.12ε

r
√
1− ũ

+ C4.12 exp(−2(1− ũ)h2) ≤ C4.12(1 + ṽ−1)ε

r
√
1− ũ

, i ≤ n,

for any ε satisfying conditions of the lemma. Hence, by Lemma 4.8,

P

{ n−1∑
i=1

Yi
2 ≤ ε2(n− 1)

}
≤

(C′(1 + ṽ−1)ε

r
√
1− ũ

)n−1

.
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The above statement is useful for incompressible vectors: the following Lem-

ma 5.6 shows that incompressible vectors have LCD at least of order
√
n. The

lemma is taken from papers [20, 19], and its proof is included for completeness.

Lemma 5.6 (see [19, Lemma 3.6]): For every θ, ρ ∈ (0, 1) there are

q5.6 = q5.6(θ, ρ) > 0 and r5.6 = r5.6(θ, ρ) > 0 such that for every h > 0 any

vector x ∈ Incompn(θ, ρ) satisfies

LCDh,r5.6(x) ≥ q5.6
√
n.

Proof. Set a := 1
2ρ

2θ and b := ρ/
√
2. We choose r = r5.6 := b

√
a
2 = 1

2ρ
2
√
θ and

q = q5.6 := (1/
√
θ + 2r

a )−1 =
√
θ/3.

Let x ∈ Incompn(θ, ρ), h > 0 and assume that LCDh,r(x) < q
√
n. Then, by

definition of the least common denominator, there exist p ∈ Z
n and λ ∈ (0, q

√
n)

such that

(10) ‖λx− p‖ < rλ < rq
√
n =

1

6
ρ2θ

√
n =

1

3
a
√
n.

It is easy to check that for a vector with such norm the set

σ̃(x) := {i ≤ n : |λxi − pi| < 2/3}
has a cardinality at least (1− a2

4 )n. Further, by Lemma 4.4, the set of “spread”

coordinates σ(x) has cardinality at least an. Hence, the set I(x) := σ(x)∩ σ̃(x)

is non-empty, and |I(x)| > a
2n. For any i ∈ I(x) we have

|pi| < λ|xi|+ 2

3
<

q√
θ
+

2rq

a
= 1

(in the last step we used our definition of q). Since p ∈ Z
n, we get that pi = 0

for all i ∈ I(x).

Finally, due to the definition of I(x) and our choice of r, denoting by PJ the

coordinate projection on a span {i ∈ J : ei}, we obtain

‖λx− p‖2 ≥ ‖λPI(x)‖2 > λ2|I(x)| ρ
2

2n
= λ2 ρ

2a

4
= (rλ)2,

which contradicts (10) and, hence, the assumption that LCDh,r(x) < q
√
n.

Let n ∈ N, h > 0, θ, ρ ∈ (0, 1), and let q5.6 and r5.6 be as in the above

statement. Following [20], we consider the “level sets” Sk of Incompn(θ, ρ)

defined as

Sk = Sk(θ, ρ, h) := {x ∈ Incompn(θ, ρ) : k ≤ LCDh,r5.6(x) < 2k}, k ≥ 0.
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In the proof of the theorem below we will partition Incompn(θ, ρ) into subsets

of vectors having LCD’s of the same order:

(11) Incompn(θ, ρ) =
⊔

k=2i,i≥i0

Sk,

where, using Lemma 5.6, we introduce the lower bound i0 := log2(q5.6
√
n/2)

(we have Sk = ∅ for all k < q5.6
√
n/2). Following [20], we are going to combine

estimates for individual sets Sk.

A principal observation made in [19] and [20] is that the sets Sk admit Eu-

clidean ε-nets of relatively small cardinality. We give both the formal statement

and its proof from [19] below for the sake of completeness:

Lemma 5.7 ([19, Lemma 4.8]): For any θ, ρ ∈ (0, 1) there is L = L(θ, ρ) > 0

such that for every h ≥ 1 and k > 0 the set Sk admits a Euclidean (4h/k)-net

of cardinality at most (kL/
√
n)n.

Proof. In view of Lemma 5.6, we can assume that k ≥ q5.6
√
n/2. Further,

without loss of generality 4h
k < 2; otherwise a one-point net works.

Fix for a moment a point x ∈ Sk. Then, by definition of the “level sets”,

k ≤ LCDh,r5.6(x) < 2k. By definition of LCD, there exists p = p(x) ∈ Z
n such

that

‖LCDh,r5.6(x) · x− p‖ ≤ h.

Hence, ∥∥∥x− p

LCDh,r5.6(x)

∥∥∥ ≤ h

k
<

1

2
.

It is a simple planimetric observation that if we normalize the vector

p/LCDh,r5.6(x), the distance to the unit vector x cannot increase more than

twice: ∥∥∥x− p

‖p‖
∥∥∥ ≤ 2h

k
.

Thus, the set

Nint :=
{ p

‖p‖ : p = p(x) for some x ∈ Sk

}
is a 2h/k-net for Sk. How many different p ∈ Z

n do we have to consider? Note

that for any x ∈ Sk, the norm of p(x) cannot be too large: since ‖x‖ = 1,

LCDh,r5.6(x) < 2k and 4h/k < 2, we get

‖p(x)‖ ≤ LCDh,r5.6(x) + h < 3k.
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Hence, all vectors p ∈ Z
n in the definition of Nint belong to the Euclidean ball

of radius 3k centered at the origin. A standard volumetric argument shows that

there are at most (1+Ck/
√
n)n integer points in this ball for a sufficiently large

constant C > 0. Recall that k ≥ q5.6
√
n/2, whence

|Nint| ≤
(
1 +

Ck√
n

)n

≤
( kL√

n

)n

for an appropriate number L = L(θ, ρ) > 0. The net Nint does not have to be

contained in Sk. But, by a standard argument, we can “replace” Nint with a

4h/k-net of the same cardinality, and with elements from the set Sk.

Together with Theorem A
, the above lemma gives

Lemma 5.8: For any θ, ρ ∈ (0, 1) there is L5.8 = L5.8(θ, ρ) ≥ 1 such that for

every h ≥ 1 and k > 0 there is a finite subset N ⊂ Sk of cardinality at most

(kL5.8/
√
n)n with the following property. The event

{For every y ∈ Sk there is y′ = y′(y) ∈ N such that ‖A(y − y′)‖ ≤ hL5.8

√
n/k}

has probability at least 1− 4 exp(−n/32).

Now, we can prove

Theorem 5.9: Let α be a centered random variable of unit variance such that

L(α, ṽ) ≤ ũ for some ṽ > 0 and ũ ∈ (0, 1). Then there exist q, s, w, r > 0

depending only on ṽ, ũ with the following property: let X1, X2 . . . , Xn−1 be

random n-dimensional vectors whose coordinates are jointly independent copies

of α. Consider any random unit vector X∗ orthogonal to {X1, X2, . . . , Xn−1}.
Then

P{LCDs
√
n,r(X

∗) < exp(qn)} ≤ 2 exp(−wn).

Proof. Without loss of generality, we can assume that n is a large number and

that ṽ ≤ 1. Denote by A′ the n − 1 × n matrix with rows X1, X2, . . . , Xn−1.

Then, by the definition ofX∗, we have A′X∗ = 0 almost surely. Let θ5.2 and u5.2

be defined as in Remark 5.3 (with A′ replacing A). Then, by Proposition 5.2

and Remark 5.3, we have

P{X∗ ∈ Compn(θ5.2, θ5.2)} ≤ 5u5.2
n ≤ exp(−wn)
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for w > 0 such that, say, exp(−2w) > u5.2, and provided that n is large. Thus,

it is enough to prove that

P{LCDs
√
n,r(X

∗) < exp(qn), X∗ ∈ Incompn(θ5.2, θ5.2)} ≤ exp(−wn)

for small enough r, w, s, q depending only on ṽ, ũ. We start by defining

r := r5.6(θ5.2, θ5.2).

Note that, by Lemma 5.6, we have

Incompn(θ5.2, θ5.2) ⊂ {x ∈ Sn−1 : LCDs
√
n,r(x) ≥ q5.6

√
n}

for any s > 0 and, in particular, for s defined by

s :=
ṽr

4L2
5.8L5.5

,

where L5.8 = L5.8(θ5.2, θ5.2) and L5.5 are taken from Lemmas 5.8 and 5.5, re-

spectively, and q5.6 = q5.6(θ5.2, θ5.2). Let us emphasize that no vicious cycle

is created here in regard to interdependence between s and r. Finally, we let

q := 2s2(1− ũ) (w will be defined at the very end of the proof).

We will make use of representation (11) of the set Incompn(θ5.2, θ5.2). Denote

K := {2i : i ∈ [log2(q5.6
√
n)− 1, qn/ ln 2] ∩N}.

Then, in view of Lemma 5.6, we have

{x ∈ Incompn(θ5.2, θ5.2) : LCDs
√
n,r(x) < exp(qn)} ⊂

⊔
k∈K

Sk.

It is sufficient to prove that

(12) P{X∗ ∈ Sk} ≤ 5 exp(−n/32) for all k ∈ K.

Indeed, since |K| < qn, the union bound over K will conclude the theorem.

In turn, (12) will follow as long as we show that

P{A′x = 0 for some x ∈ Sk} ≤ 5 exp(−n/32) for all k ∈ K.

Fix for a moment any k ∈ K and let Nk be the subset of Sk of cardinality at

most (kL5.8/
√
n)n, constructed in Lemma 5.8 (with h := s

√
n). Further, take

ε :=
ṽr
√
n

2kL5.8L5.5

.
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Note that, in view of the definition of q and K, we have k ≤ exp(2s2(1 − ũ)n).

Hence, for n large enough, ε satisfies the condition of Lemma 5.5:

ε ≥ ṽ ·max
(1
k
, exp(−2s2(1− ũ)n)

)
≥ ṽ ·max

( 1

LCDh,r(x)
, exp(−2(1− ũ)h2)

)
.

Hence,

P{‖A′y‖ ≥ ε
√
n for all y ∈ Nk} ≥ 1− |Nk|(L5.5ε/r)

n−1

≥ 1−
(kL5.8√

n

)n(L5.5ε

r

)n−1

≥ 1− kL5.8√
n

·
( ṽ
2

)n−1

≥ 1− 2−n exp(2s2(1− ũ)n),

where the last relation follows by the assumption ṽ ≤ 1. Finally, note that,

since s ≤ 1/4, the last quantity is bounded from below by 1− 2−n/2. Applying

the definition of Nk in Lemma 5.8 and, noticing that hL5.8

√
n/k ≤ ε

√
n/2, we

get

P{‖A′y‖ ≥ ε
√
n/2 for all y ∈ Sk} ≥1− 4 exp(−n/32)− 2−n/2

≥1− 5 exp(−n/32).

This proves (12) and implies the result.

Proof of Theorem B. Without loss of generality, the dimension n is large. Let

A = (aij) be an n×n random matrix with i.i.d. centered entries with unit vari-

ance such that for some ṽ > 0 and ũ ∈ (0, 1) we have L(aij , ṽ) ≤ ũ. We define

θ := θ5.2(ṽ, ũ) and v := v5.2(ṽ, ũ), where θ5.2, v5.2 are taken from Proposition 5.2,

and let q, s, w, r be as in Theorem 5.9 (with respect to ṽ, ũ). We will prove a

small ball probability bound for sn(A).

It is sufficient to consider the parameter domain ε ∈ (θṽ exp(−qn), 1
]
. We

have

P{sn(A) < εn−1/2} ≤P{ inf
y∈Compn(θ,θ)

‖Ay‖ < v
√
n}

+ P{ inf
y∈Incompn(θ,θ)

‖Ay‖ < εn−1/2}

≤5u5.2
n + P{ inf

y∈Incompn(θ,θ)
‖Ay‖ < εn−1/2},
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where we have applied Proposition 5.2. Further, by Proposition 4.5, we have

P{ inf
y∈Incompn(θ,θ)

‖Ay‖ < εn−1/2} ≤ 1

θ
P

{∣∣∣∣
n∑

i=1

X∗
i ain

∣∣∣∣ < ε

θ

}
,

where X∗ denotes a random unit normal vector to the span of the first n − 1

columns of A. In view of Theorem 4.12, this last relation implies

P{ inf
y∈Incompn(θ,θ)

‖Ay‖ < εn−1/2} ≤θ−1
P{LCDs

√
n,r(X

∗) < θṽε−1}

+
C4.12ε

θṽr
√
1− ũ

+ C4.12 exp(−2s2(1 − ũ)n).

Finally, noticing that θṽε−1 ≤ exp(qn) and applying Theorem 5.9, we get

P{ inf
y∈Incompn(θ,θ)

‖Ay‖ < εn−1/2} ≤2θ−1 exp(−wn)

+
C4.12ε

θṽr
√
1− ũ

+ C4.12 exp(−2s2(1 − ũ)n).

Together with an estimate for the compressible vectors, this implies the

result.
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