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ABSTRACT

We are interested in classifying groups of local biholomorphisms (or even

formal diffeomorphisms) that can be endowed with a canonical structure

of algebraic groups and their subgroups. Such groups are called finite-

dimensional. We obtain that cyclic groups, virtually polycyclic groups,

finitely generated virtually nilpotent groups and connected Lie groups of

local biholomorphisms are finite-dimensional. We provide several methods

to identify finite-dimensional groups and build examples.

As a consequence we generalize results of Arnold, Seigal–Yakovenko

and Binyamini on uniform estimates of local intersection multiplicities to

bigger classes of groups, including for example virtually polycyclic groups

and in particular finitely generated virtually nilpotent groups.

1. Introduction

We study the action of groups of self-maps on intersection multiplicities. More

precisely, given varieties V and W of complementary dimension of an ambient

space M and a subgroup G of self-maps of M , we want to identify condi-

tions guaranteeing that F �→ (F (V ),W ) is bounded uniformly over G where

(F (V ),W ) is the intersection multiplicity of F (V ) and W . Let us introduce

a classical example of an application of such a property. Consider a continu-

ous map F : M → M and an isolated fixed point P of F . The fixed point
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index of F at P is equal to the topological intersection multiplicity of Δ and

(F × Id)(Δ) at (P, P ) where Δ is the diagonal of M × M . By considering

the iterates (F × Id)n with n ∈ Z we obtain fixed point indexes for the fixed

points of the iterates of Fn, i.e., for periodic points. In the context of C1 maps

Shub and Sullivan proved that the intersection index of Δ and (F × Id)n(Δ) at

isolated fixed points is uniformly bounded.

Theorem 1.1 ([25]): Let U be an open subset of Rm. Let F : U → Rm be a

C1 map such that 0 is an isolated fixed point of Fn for any n ≥ 1. Then the

fixed point index of Fn at 0 is bounded by a constant independent of n.

As an immediate corollary they show that a C1 map F :M →M defined in

a compact differentiable manifold M has infinitely many periodic points if the

sequence of Lefschetz numbers (L(Fn))n≥1 is unbounded.

We denote by Diff (Cn, 0) the group of germs of biholomorphisms defined in

a neighborhood of the origin in Cn. We are interested in uniform intersection

results in the local holomorphic setting. More precisely, we want to identify

subgroups G of Diff (Cn, 0) satisfying that the set

{(φ(V ),W ) : φ ∈ G and (φ(V ),W ) <∞}
of intersection multiplicities (cf. Definition 5.1) is bounded for any pair of germs

of holomorphic varieties V,W defined in a neighborhood of 0 in Cn.

The first result in this direction is due to Arnold.

Theorem 1.2 ([1, Theorem 1]): Let φ ∈ Diff (Cn, 0). Consider germs of sub-

manifolds V,W of (Cn, 0) of complementary dimension. Suppose that the in-

tersection multiplicity μn := (φn(V ),W ) is finite for any n ∈ Z. Then the

sequence (μn)n∈Z is bounded.

The proof is a consequence of the Skolem–Mahler–Lech theorem on roots of

quasipolynomials [26].

The previous result was generalized to the finitely generated abelian case by

Seigal and Yakovenko. We denote by D̂iff (Cn, 0) the group of formal diffeo-

morphisms (cf. Definition 2.5).

Theorem 1.3 ([23, Theorem 1]): Let G be an abelian subgroup of D̂iff (Cn, 0)

generated by finitely many cyclic and one-parameter groups. Consider formal

subvarieties V , W . Then the set

{(φ(V ),W ) : φ ∈ G and (φ(V ),W ) <∞}
is bounded.
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The group Diff (Cn, 0) is a subgroup of D̂iff (Cn, 0) and hence Theorem 1.3

holds for subgroups of Diff (Cn, 0) and germs of subvarieties V and W . In

contrast with Theorem 1.2 notice that it is not necessary to require that all in-

tersection multiplicities are finite. The proof relies on a noetherianity argument

(cf. section 5).

An analogous result was proved by Binyamini for the case in which the sub-

group G of D̂iff (Cn, 0) is embedded in a group of formal diffeomorphisms that

has a natural Lie group structure.

Theorem 1.4 ([3, Theorem 5]): Let G be a Lie subgroup (cf. Definition 3.5)

of D̂iff (Cn, 0) with finitely many connected components. Consider formal sub-

varieties V , W . Then the set

{(φ(V ),W ) : φ ∈ G and (φ(V ),W ) <∞}
is bounded.

Theorem 1.3 has more natural hypotheses (commutativity and finite genera-

tion) but Theorem 1.4 is somehow more general. Indeed Binyamini shows that

any finitely generated abelian subgroup of D̂iff (Cn, 0) is a subgroup of a Lie

group with finitely many connected components [3]. Thus it is interesting to

study how to find an extension of a subgroup of D̂iff (Cn, 0) that is also a Lie

group. In this paper we characterize the subgroups of D̂iff (Cn, 0) that can be

embedded in a Lie group (with finitely many connected components) in a natu-

ral way. Moreover, we show that every such group can be canonically embedded

in an algebraic matrix group. We call these groups finite-dimensional.

Let us be more precise. We define a Zariski-closure G of a subgroup G of

D̂iff (Cn, 0) (cf. Definition 2.12); it is a projective limit of algebraic matrix

groups and hence it has a natural definition of dimension. We will say that G

is finite-dimensional if G is finite dimensional (cf. Definition 3.1). If G is finite-

dimensional then G is isomorphic to one of its subgroups of k-jets and hence

G can be interpreted as an algebraic group (Proposition 3.2). Equivalently the

group G is finite-dimensional if and only if there exists k0 ∈ N such that the

coefficients of degree greater than k0 in the Taylor expansion at the origin of the

elements of G are polynomial functions on the coefficients of degree less than

or equal to k0 (Remark 3.4).

Finite-dimensional subgroups satisfy uniform local intersection properties.

We define Ôn as the ring of formal power series with complex coefficients in n
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variables. We define the intersection multiplicity (I, J) of ideals I, J of Ôn as

the dimension of the complex vector space Ôn/(I + J).

Theorem 1.5: LetG be a finite-dimensional subgroup of D̂iff (Cn, 0). Consider

ideals I and J of Ôn. Then the set

{(φ∗(I), J) : φ ∈ G and (φ∗(I), J) <∞}
is bounded.

Since an algebraic group is a complex Lie group with finitely many connected

components, Theorem 1.5 can be seen as a consequence of Binyamini’s Theorem

1.4. Anyway, the finite-dimensional hypothesis provides a simplification of the

proof. On the other hand, Theorem 1.5 implies Theorem 1.4. More precisely,

there is no group that satisfies the hypotheses of Theorem 1.4 but does not sat-

isfy the hypotheses of Theorem 1.5: every subgroup of D̂iff (Cn, 0), that is the

image by a morphism of a real Lie group with finitely many connected compo-

nents (cf. Definition 3.5), is necessarily finite-dimensional (Theorem 4.1). Thus

our canonical approach encloses the results by Seigal–Yakovenko and Binyamini

[23, 3]. The definition of finite-dimensional subgroup of D̂iff (Cn, 0) allows us

to apply the techniques of the algebraic group theory in the study of local

intersection problems.

We will exhibit different methods to find finite-dimensional subgroups of

D̂iff (Cn, 0) (cf. Theorems 3.1, 4.1, . . . ). In particular, we identify several alge-

braic group properties implying that a subgroup of D̂iff (Cn, 0) is finite dimen-

sional, including some notable ones. Our main result is the following theorem:

Theorem 1.6: Let G be a subgroup of D̂iff (Cn, 0) such that it is either

• a Lie group with finitely many connected components or

• virtually polycyclic or

• virtually nilpotent and generated by finitely many cyclic and one-pa-

rameter subgroups of G.

Then G is finite-dimensional. In particular, the set

{(φ∗(I), J) : φ ∈ G and (φ∗(I), J) <∞}
is bounded for any pair of ideals I and J of Ôn.

See Definitions 2.19, 4.1 and 2.18 for the definitions of virtual property, poly-

cyclic and nilpotent groups, respectively.



Vol. 227, 2018 DIMENSION OF GROUPS OF DIFFEOMORPHISMS 293

Notice that in particular Theorem 1.6 applies to finitely generated virtually

nilpotent subgroups of D̂iff (Cn, 0), i.e., to subgroups of polynomial growth of

formal diffeomorphisms.

We introduce several techniques that allow one to build finite-dimensional

subgroups of D̂iff (Cn, 0). Every time we identify such a group we obtain an

analogue of Theorem 1.6. Instead of writing down the most general possible

result, we prefer to highlight some remarkable properties that imply finite-

dimensionality.

Our canonical approach makes it simpler to analyze whether or not sub-

groups of D̂iff (Cn, 0) are embeddable in algebraic groups. We will relate finite-

dimensionality with other group properties, namely:

• Finite-determination (cf. Definition 3.2) properties. We will show that

finite-determination implies finite-dimension under certain closedness

properties (Corollary 3.2).

• Finite-decomposition properties. A subgroup G of D̂iff (Cn, 0) is finite-

dimensional if and only if every element can be written as a word of uni-

formly bounded length in an alphabet whose letters belong to the union

of finitely many cyclic and one-parameter subgroups of D̂iff (Cn, 0)

(Theorem 3.1 and Remark 3.10).

• Virtually solvable subgroups of D̂iff (Cn, 0) with suitable finite genera-

tion hypotheses are finite-dimensional (Proposition 4.1, Theorems 4.2,

4.3, Corollary 4.3, . . . ).

• Decomposition of the group in a tower of extensions of the trivial group.

Let us expand on the final item of the previous list. Consider a normal subgroup

H of a subgroup G of D̂iff (Cn, 0). We can define the codimension of H or

equivalently the dimension of the extension G/H as the codimension of H in G.

Such a definition is interesting because a tower of finite-dimensional extensions

is finite-dimensional (Proposition 3.1). In particular, it is possible to decide

whether or not a subgroup of D̂iff (Cn, 0) is finite-dimensional by considering it

as a tower of (easier to handle) extensions of the trivial group. We will exhibit

some classes of extensions that are finite-dimensional, namely:

• Finite extensions.

• Finitely generated abelian extensions.

• G/H is a connected Lie group (cf. Definition 3.5).
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For instance a virtually polycyclic group is a tower of cyclic and finite extensions

of the trivial group and hence it is always finite-dimensional. Hence we can apply

Theorem 1.5 to show Theorem 1.6. The extension approach provides a method

to build examples of finite-dimensional subgroups of D̂iff (Cn, 0).

2. Pro-algebraic groups

Let us explain some of the basic properties of the pro-algebraic subgroups of

D̂iff (Cn, 0). Pro-algebraic groups of formal diffeomorphisms have been used in

the study of differential Galois theory by Morales-Ruiz–Ramis–Simó [17]. Most

of the results in this section can be found in [14] and [19]. We explain them

here for the sake of clarity and completeness.

2.1. Formal vector fields and diffeomorphisms. Let us introduce some

notations.

Definition 2.1: We denote by On the ring C{z1, . . . , zn} of germs of holomorphic

functions defined in the neighborhood of 0 in Cn. We denote by m the maximal

ideal of On. Analogously we define Ôn as the ring of formal power series with

complex coefficients in n variables whose maximal ideal will be denoted by m̂.

Next, we define formal vector fields as a generalization of local vector fields.

Definition 2.2: We denote by X(Cn, 0) the Lie algebra of germs of holomorphic

vector fields defined in the neighborhood of 0 in Cn that are singular at 0.

Remark 2.1: An element X of X(Cn, 0) is of the form

X = f1(z1, . . . , zn)
∂

∂z1
+ · · ·+ fn(z1, . . . , zn)

∂

∂zn

where f1, . . . , fn belong to the maximal ideal m of On. Analogously X can be

interpreted as a derivation of the C-algebra m.

Definition 2.3: We define the Lie algebra X̂(Cn, 0) as the set of derivations of

the C-algebra m̂. Analogously we can identify an element X of X̂(Cn, 0) with

the expression

X = X(z1)
∂

∂z1
+ · · ·+X(zn)

∂

∂zn
where the coefficients of the vector field belong to m̂.

Let us apply the same program to diffeomorphisms.
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Definition 2.4: We denote by Diff (Cn, 0) the group of germs of biholomorphism

defined in the neighborhood of 0 in Cn.

Remark 2.2: An element φ of Diff (Cn, 0) is of the form

φ(z1, . . . , zn) = (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn))

where f1, . . . , fn ∈ m and its linear part D0φ at the origin is an invertible linear

map.

Definition 2.5: We say that φ belongs to the group D̂iff (Cn, 0) of formal diffeo-

morphisms if it is of the form

φ(z1, . . . , zn) = (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn))

where f1, . . . , fn ∈ m̂ and D0φ is an invertible linear map.

We will use the Krull topology (the m̂-adic topology) in our spaces of formal

objects.

Definition 2.6: The sets of the form f + m̂j for any choice of f ∈ Ôn and j ≥ 0

are a base of open sets of a topology in Ôn, the so called m̂-adic (or Krull)

topology. Since we can interpret formal vector fields and diffeomorphisms as

n-uples of elements in m̂, we can define the Krull topology in X̂(Cn, 0) and

D̂iff (Cn, 0).

Remark 2.3: A sequence (fk)k≥1 of elements of Ôn converges to f ∈ Ôn in the

Krull topology if for any j ∈ N there exists k0 ∈ N such that f − fk ∈ m̂j for

any k ≥ k0. Convergence of sequences in X̂(Cn, 0) and D̂iff (Cn, 0) is analogous.

Remark 2.4: It is clear that Ôn, X̂(C
n, 0) and D̂iff (Cn, 0) are the closures in

the Krull topology of On, X(C
n, 0) and Diff (Cn, 0), respectively.

It is difficult to work with D̂iff (Cn, 0) since it is an infinite-dimensional space.

Anyway we can understand D̂iff (Cn, 0) as a projective limit lim←−k∈N
Dk where

every Dk is a finite-dimensional matrix group for k ∈ N [19, Lemma 2.2]. We

should interpret Dk as the group of k-jets of elements of D̂iff (Cn, 0). Next,

let us explain how to define rigorously the groups Dk for k ∈ N and how this

allows us to apply the theory of linear algebraic groups to the groups of formal

diffeomorphisms.
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GivenX∈X̂(Cn, 0) and φ∈D̂iff (Cn, 0) we can associateXk, φk∈GL(m/mk+1)

respectively for any k ∈ N. They are given by

m̂/m̂k+1 Xk→ m̂/m̂k+1

f + m̂k+1 �→ X(f) + m̂k+1,

m̂/m̂k+1 φk→ m̂/m̂k+1

f + m̂k+1 �→ f ◦ φ+ m̂k+1.

The linear map Xk (resp. φk) determines and is determined by the k-jet of X

(resp. φ). Moreover Lk := {Xk : X ∈ X̂(Cn, 0)} is the Lie algebra of the group

Dk := {φk : φ ∈ D̂iff (Cn, 0)}. It is an algebraic subgroup of GL(m̂/m̂k+1) since

it satisfies

Dk = {α ∈ GL(m̂/m̂k+1) : α(fg) = α(f)α(g) ∀f, g ∈ m̂/m̂k+1};

cf. [14, section 3], [19, Lemma 2.1].

Definition 2.7: Given k ≥ l ≥ 1 we define the maps πk : D̂iff (Cn, 0)→ Dk and

πk,l : Dk → Dl given by πk(φ) = φk and πk,l(φk) = φl.

Since Dk is the group of truncations of elements of D̂iff (Cn, 0) up to level

k, we can interpret D̂iff (Cn, 0) as the projective limit of the projective system

(lim←−k∈N
Dk, (πk,l)k≥l≥1) of algebraic groups and morphisms of algebraic groups

[19, Lemma 2.2]. Analogously X̂(Cn, 0) is the projective limit lim←−Lk.

2.2. Exponential map. Given X ∈ X̂(Cn, 0) we can define its exponential

exp(X). Indeed given (Xk)k≥1 ∈ lim←−Lk = X̂(Cn, 0) the family (exp(Xk))k≥1

defines an element exp(X) of D̂iff (Cn, 0) = lim←−Dk. Equivalently we con-

sider a sequence (Xj)j∈N of convergent vector fields that converges to X in the

Krull topology and then we define exp(X) as the limit in the Krull topology of

(exp(Xj))j∈N where exp(Xj) is the time 1 flow of Xj for j ∈ N.

Definition 2.8: We say that a formal vector field X ∈ X̂(Cn, 0) is nilpotent if

its linear part D0X is nilpotent. We denote by X̂N (Cn, 0) the subset of X̂(Cn, 0)

of formal nilpotent vector fields.

Definition 2.9: We say that a formal diffeomorphism φ ∈ D̂iff (Cn, 0) is unipo-

tent if its linear part D0φ is unipotent. We denote by D̂iff u(C
n, 0) the subset

of D̂iff (Cn, 0) of formal unipotent diffeomorphisms. Given a subgroup G of

D̂iff (Cn, 0) we denote by Gu the subset of unipotent elements of G. We say

that G is unipotent if G = Gu.
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Proposition 2.1 (cf. [5, 16], [9, Th. 3.17]): The map

exp : X̂N (Cn, 0)→ D̂iff u(C
n, 0)

is a bijection.

Definition 2.10: Given φ ∈ D̂iff u(C
n, 0) we define its infinitesimal generator

logφ as the unique formal nilpotent vector field such that φ = exp(logφ). We

denote φt = exp(t logφ) for t ∈ C.

2.3. Zariski-closure of a group of formal diffeomorphisms.

Definition 2.11: Let G be a subgroup of D̂iff (Cn, 0). Given k ∈ N we define

G∗
k = {φk : φ ∈ G} and Gk as the Zariski-closure of G∗

k in GL(m̂/m̂k+1).

Let us remark that since Dk is algebraic, Gk is a subgroup of Dk for any

k ∈ N.

Remark 2.5: Given k ≥ l ≥ 1 the image of the algebraic closure of G∗
k by πk,l is

the algebraic closure of the image G∗
l (cf. [4, 2.1 (f), p. 57]). Hence we obtain

πk,l(Gk) = Gl for any k ≥ l ≥ 1. In particular, (lim←−k∈N
Gk, (πk,l)k≥l≥1) is a

projective system.

Definition 2.12: Let G be a subgroup of D̂iff (Cn, 0). We define the Zariski-

closure G of G as lim←−k∈N
Gk or, in other words,

G = {φ ∈ D̂iff (Cn, 0) : φk ∈ Gk ∀k ∈ N}.
2.4. Definition of pro-algebraic group.

Definition 2.13: Let G be a subgroup of D̂iff (Cn, 0). We say that G is pro-

algebraic if G = G.

Remark 2.6: Since πk,l(Gk) = Gl for any k ≥ l ≥ 1, the natural projection

(πk)|G : G→ Gk is surjective for any k ∈ N (cf. [19, Lemma 2.5], [21, Corollary

3.25]). Thus the Zariski-closure of G coincides with G and G is pro-algebraic.

It is the minimal pro-algebraic group containing G.

We can characterize pro-algebraic subgroups of D̂iff (Cn, 0).

Proposition 2.2 ([19, Proposition 2.2], cf. [21, Proposition 3.26]): Let G be a

subgroup of D̂iff (Cn, 0). ThenG is pro-algebraic if and only ifG∗
k is an algebraic

subgroup of GL(m̂/m̂k+1) for any k ∈ N and G is closed in the Krull topology.
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2.5. Lie algebra of a pro-algebraic group. Pro-algebraic groups have a

connected component of Id whose properties are analogous to the connected

component of Id of an algebraic matrix group. This is a particular instance of a

more general situation: many analogues of concepts involving algebraic groups

can be transferred to the pro-algebraic setting.

Definition 2.14: Let G be a subgroup of D̂iff (Cn, 0). We define Gk,0 as the

connected component of Id of Gk for k ∈ N. We define G0 = lim←−k∈N
Gk,0 or,

equivalently,

G0 = {φ ∈ G : φk ∈ Gk,0 ∀k ∈ N}.

We say that G0 is the connected component of Id of G. If G is pro-algebraic,

then we denote G0 = G0.

Remark 2.7: The group G0 is a finite index normal pro-algebraic subgroup of

G [19, Proposition 2.3 and Remark 2.9], cf. [21, Proposition 3.35 and Remark

3.37].

Proposition 2.3 ([14, Proposition 2]): Let G be a subgroup of D̂iff (Cn, 0).

We consider

g = {X ∈ X̂(Cn, 0) : exp(tX) ∈ G ∀t ∈ C}.

Then g is a Lie algebra and G0 is generated by the set exp(g).

Definition 2.15: We say that g is the Lie algebra of G.

It is natural to consider G0 as the connected component of Id of G since it

is a finite index normal subgroup of G that is generated by the exponential of

the Lie algebra of G.

The Zariski-closure of a cyclic subgroup of D̂iff u(C
n, 0) is connected and

one-dimensional.

Remark 2.8 ([19, Remark 2.11], cf. [21, Remark 3.30]): Let φ be a unipotent

element of D̂iff (Cn, 0). Then 〈φ〉 is equal to {φt : t ∈ C}. In particular, the Lie

algebra of 〈φ〉 is the one-dimensional complex vector space generated by logφ.

The next property is well-known in the finite-dimensional setting.

Lemma 2.1: Let H be a finite index subgroup of a pro-algebraic subgroup G

of D̂iff (Cn, 0). Then H contains G0.
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Proof. Given an element X in the Lie algebra g of G, its one-parameter group

{exp(tX) : t ∈ C} is contained in G. Since H is a finite index subgroup of

G, {exp(tX) : t ∈ C} is contained in H . Any element of G0 is of the form

exp(X1)◦ · · · ◦ exp(Xm) for some X1, . . . , Xm ∈ g by Proposition 2.3. Hence G0

is contained in H .

The next result will be used later on to identify pro-algebraic groups.

Theorem 2.1 (Chevalley, cf. [4, section I.2.2, p. 57]): The group generated by

a family of connected algebraic matrix groups is algebraic.

2.6. Normal subgroups of pro-algebraic groups. The next results re-

late the properties of normal subgroups with those of their algebraic closures.

Lemma 2.2: Let H be a normal subgroup of a subgroup G of D̂iff (Cn, 0). Then

H is a normal subgroup of G. Moreover, Hk is a normal subgroup of Gk for

any k ∈ N.

Proof. Fix k ∈ N. We have AH∗
kA

−1 = H∗
k for any A ∈ G∗

k. We deduce

AHkA
−1 = Hk for any A ∈ G∗

k. The normalizer of the algebraic subgroup Hk

in the algebraic group Gk is algebraic and contains G∗
k. Hence it is equal to Gk

and then Hk is a normal subgroup of Gk for any k ∈ N. As a consequence H is

a normal subgroup of G.

Lemma 2.3: Let H be a finite index subgroup of a subgroup G of D̂iff (Cn, 0).

Then H is pro-algebraic if and only if G is pro-algebraic.

Proof. Since G∗
k and H∗

k are images of G and H respectively by the morphism of

groups πk : D̂iff (Cn, 0)→Dk, H
∗
k is a finite index subgroup of G∗

k for any k∈N.
Suppose H is pro-algebraic. Then H∗

k is algebraic for any k ∈ N by Propo-

sition 2.2. Hence G∗
k is algebraic for any k ∈ N. In order to prove that G is

pro-algebraic, it suffices to show that G is closed in the Krull topology. Since

G is the union of finitely many left cosets of H and they are all closed in the

Krull topology, we deduce that G is closed in the Krull topology.

Suppose G is pro-algebraic. Then G0 is pro-algebraic by Remark 2.7. More-

over, G0 is contained in H by Lemma 2.1. Since G0 is a finite index subgroup

of G and then of H , H is pro-algebraic by the first part of the proof.

Lemma 2.4: Let H be a finite index normal subgroup of a subgroup G of

D̂iff (Cn, 0). Then H is a finite index normal subgroup of G. Moreover, Hk is

a finite index normal subgroup of Gk for any k ∈ N.
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Proof. Consider φ1, . . . , φm ∈ G such that G/H = {φ1H, . . . , φmH}. We define

the group J = 〈H,φ1, . . . , φm〉; it satisfies J ⊂ G. Let us show that J = G and

that H is a finite index normal subgroup of J .

Since H is a normal subgroup of J by Lemma 2.2, every element ψ of J is of

the form

ψ = φ±1
i1
◦ · · · ◦ φ±1

il
◦ h

where h ∈ H. The choice of φ1, . . . , φm implies the existence of 1 ≤ j ≤ m and

h′ ∈ H such that ψ = φj ◦ (h′ ◦h). In particular, the natural map G/H → J/H

is surjective and hence H is a finite index normal subgroup of J . The group

J is pro-algebraic by Lemma 2.3. Since G ⊂ J ⊂ G, we deduce J = G and

H is a finite index normal subgroup of G. Since Gk and Hk are images of G

and H respectively by the morphism πk : G→ Gk, Hk is a finite index normal

subgroup of Gk for any k ∈ N.

2.7. Algebraic properties of the Zariski-closure. The groups G and

G share many algebraic properties.

Definition 2.16: LetG be a group. Given f, g∈G, we define by [f, g]=fgf−1g−1

the commutator of f and g.

Given subgroups H,L of G we define [H,L] = 〈[h, l] : h ∈ H, l ∈ L〉 as the

subgroup generated by the commutators of elements of H and elements of L.

Definition 2.17: Let G be a group. By induction we define the subgroups

G(0) = G, G(1) = [G(0), G(0)], . . . , G(�+1) = [G(�), G(�)], . . .

of the derived series of G. We say that G(�) is the �-th derived group of G. We

use sometimes the notation G′ instead of G(1) for the derived group of G.

We say that G is solvable if there exists � ∈ N ∪ {0} such that G(�) = {1}.
We define the derived length of G as the minimum � ∈ N ∪ {0} with such a

property.

Definition 2.18: Let G be a group. By induction we define the subgroups

C0G = G, C1G = [C0G,G], . . . , C�+1G = [C�G,G], . . .
of the descending central series of G. We say that G is nilpotent if there exists

� ∈ N ∪ {0} such that C�G = {1}. We define the nilpotence class of G as the

minimum � ∈ N ∪ {0} with such a property.
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Lemma 2.5: Let G be a subgroup of D̂iff (Cn, 0). We have:

• G is abelian if and only if G is abelian.

• G is solvable if and only if G is solvable.

• G is nilpotent if and only if G is nilpotent.

The first two properties were proved in [14, Lemma 1]. The proof of the last

one is completely analogous. All these properties are a consequence of a simple

principle: the derived length (resp. the nilpotence class) does not change when

we take the Zariski-closure of a matrix group.

Definition 2.19: Let G be a group and P a group property. We say that G is

virtually P if there exists a finite index subgroup H of G that satisfies P .

Remark 2.9: If the property P is subgroup-closed (for instance, solubility or

nilpotence), then we can suppose that the group H is a finite index normal

subgroup of G (cf. [22, 1.6.9, p. 36]).

Lemma 2.6: Let G be a subgroup of D̂iff (Cn, 0). Then the following properties

are equivalent:

(1) G is virtually nilpotent (resp. solvable).

(2) G is virtually nilpotent (resp. solvable).

(3) G0 is nilpotent (resp. solvable).

Proof. Let us show the result in the virtually nilpotent case. The other case is

analogous.

Let us show (1) =⇒ (2). Let H be a finite index normal nilpotent subgroup

of G. Then H is a finite index normal nilpotent subgroup of G by Lemmas 2.4

and 2.5. Hence G is virtually nilpotent.

Let us prove (2) =⇒ (3). There exists a finite index normal nilpotent sub-

group J of G. The group J contains G0 by Lemma 2.1 and thus G0 is nilpotent.

Let us see that (3) implies (1). Since G0 is a finite index normal subgroup

of G by Remark 2.7, G is virtually nilpotent. The group G is a subgroup of G

and hence also virtually nilpotent.

2.8. Jordan decomposition of formal diffeomorphisms. Let us consider

the multiplicative Jordan decomposition of formal diffeomorphisms in commut-

ing semisimple (or equivalently diagonalizable) and unipotent parts. It was con-

structed by Martinet in [15]. The analogous decomposition for algebraic matrix
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groups is called Jordan–Chevalley decomposition since Chevalley showed the

following

Theorem 2.2 (Chevalley, cf. [4, section I.4.4, p. 83]): Let H be an algebraic

matrix group. Then the semisimple and unipotent parts of the elements of H

also belong to H .

We will see that Chevalley’s theorem also guarantees the closedness of the

Jordan decomposition for pro-algebraic subgroups of D̂iff (Cn, 0).

Definition 2.20: We say that φ ∈ D̂iff (Cn, 0) is semisimple if φk is semisimple

for any k ∈ N.

Remark 2.10: By definition, φ ∈ D̂iff (Cn, 0) is unipotent if and only if φ1

is unipotent. It is not difficult to show that φ is unipotent if and only if φk is

unipotent for any k ∈ N (cf. [21, Proposition 3.12]).

Remark 2.11: It is well-known that φ is semisimple if and only if φ is formally

conjugated to a linear diagonal map (cf. [20, Lemma 2.9] [21, Proposition 3.13]).

Given φ ∈ D̂iff (Cn, 0) we consider the multiplicative Jordan decomposition of

φk for k ∈ N. The semisimple and unipotent parts φk,s and φk,u of φk belong to

the algebraic group Dk by Chevalley’s Theorem 2.2. Moreover, since πk,l(φk,s)

is semisimple, πk,l(φk,u) is unipotent and

φl = πk,l(φk) = πk,l(φk,s)πk,l(φk,u) = πk,l(φk,u)πk,l(φk,s),

we deduce πk,l(φk,s) = φl,s and πk,l(φk,u) = φl,u for any k ≥ l ≥ 1 by uniqueness

of the Jordan–Chevalley decomposition. Hence (φk,s)k∈N and (φk,u)k∈N define

elements φs and φu in D̂iff (Cn, 0) = lim←−Dk respectively. This leads to the next

well-known result.

Proposition 2.4: Let φ ∈ D̂iff (Cn, 0). There exist unique elements φs and

φu in D̂iff (Cn, 0) such that

φ = φs ◦ φu = φu ◦ φs,
φs is semisimple and φu is unipotent.

Chevalley’s Theorem 2.2 implies

Proposition 2.5: Let G be a subgroup of D̂iff (Cn, 0). Then G contains the

semisimple and the unipotent parts of every element of G.
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Analogously there exists an additive Jordan decomposition for formal vector

fields.

Proposition 2.6: Let X ∈ X̂(Cn, 0). There exist unique elements Xs and XN

in X̂(Cn, 0) such that

X = Xs +XN and [Xs, XN ] = 0,

Xs is semisimple (i.e., formally conjugated to a linear diagonal vector field) and

XN is nilpotent.

Remark 2.12: It is clear that if X = Xs +XN is the additive Jordan decompo-

sition of X ∈ X̂(Cn, 0), then exp(X) = exp(Xs) ◦ exp(XN ) is the multiplicative

Jordan decomposition of exp(X).

Remark 2.13: Given a semisimple φ ∈ D̂iff (Cn, 0) it is easy to calculate 〈φ〉.
Indeed φ is of the form φ(z1, . . . , zn) = (λ1z1, . . . , λnzn) in some formal system

of coordinates. In such coordinates 〈φ〉 coincides with the Zariski-closure of the

group 〈diag(λ1, . . . , λn)〉 in GL(n,C). It can be described in terms of characters.

We have

〈φ〉 =
{
diag(μ1, . . . , μn) : (μ1, . . . , μn) ∈

⋂
a∈Zn, (λ1,...,λn)∈ker(χa)

ker(χa)

}

where given a = (a1, . . . , an) ∈ Zn we consider the character χa : (C∗)n → C∗

defined by χa(μ1, . . . , μn) = μa1
1 · · ·μan

n (cf. [18, Theorem 5, Chapter 3.2.3], [8,

16.1]).

Let us calculate the algebraic closure of a cyclic subgroup of D̂iff (Cn, 0).

Definition 2.21: Given a complex manifold (resp. complex vector space) M we

denote its dimension by dimM .

Lemma 2.7: Let φ ∈ D̂iff (Cn, 0). Then 〈φ〉 is an abelian group that is isomor-

phic to the product 〈φs〉 × 〈φu〉. Moreover, 〈φ〉k is isomorphic to the product

〈φs〉k × 〈φu〉k and dim 〈φ〉k = dim〈φs〉k + dim〈φu〉k for any k ∈ N.

Proof. The group 〈φ〉 is abelian by Lemma 2.5. By Proposition 2.5, the for-

mal diffeomorphisms φs and φu belong to 〈φ〉 and then 〈φ〉 contains the group

H := 〈〈φs〉, 〈φu〉〉. We claim 〈φ〉 = H ; it suffices to show that H is pro-algebraic.

Remark 2.13 implies that 〈φs〉 consists of semisimple elements and is closed

in the Krull topology. Hence 〈φs〉k is composed of semisimple elements for
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any k ∈ N. Analogously 〈φu〉 is contained in D̂iff u(C
n, 0), is closed in the Krull

topology by Remark 2.8 and 〈φu〉k consists of unipotent elements for any k ∈ N.

The group H∗
k is the image of the morphism

〈φs〉k × 〈φu〉k ι→ Dk

(α, β) �→ αβ

of algebraic groups. Hence H∗
k is an algebraic subgroup of Dk for any k ∈ N

(cf. [4, 2.1 (f), p. 57]). Since 〈〈φs〉k, 〈φu〉k〉 is abelian, the uniqueness of the Jor-
dan decomposition implies ι is injective. ThusHk is isomorphic to 〈φs〉k × 〈φu〉k
and satisfies

dimHk = dim〈φs〉k + dim〈φu〉k
for any k ∈ N. In order to conclude the proof it suffices to show that H is closed

in the Krull topology by Proposition 2.2.

Every element η ofH is of the form ψ◦ρ where ψ ∈ 〈φs〉 and ρ ∈ 〈φu〉. SinceH
is abelian, ψ is semisimple and ρ is unipotent, ψ ◦ρ is the multiplicative Jordan

decomposition of η. Moreover, H is isomorphic to 〈φs〉 × 〈φu〉 by uniqueness

of the Jordan–Chevalley decomposition. Thus 〈φs〉 (resp. 〈φu〉) is the set of

semisimple (resp. unipotent) elements of H . Given a sequence (ηk)k∈N in H

that converges in the Krull topology, the sequences (ηk,s)k∈N and (ηk,u)k∈N

are contained in 〈φs〉 and 〈φu〉, respectively, and both converge in the Krull

topology. Since 〈φs〉 and 〈φu〉 are closed in the Krull topology so is H .

3. Finite dimensional groups of formal diffeomorphisms

Our main goal is characterizing the groups G of local diffeomorphisms that

can be embedded in finite-dimensional Lie groups. We approach this problem

from a canonical point of view. Indeed we provide an invariant dimG of G

such that dimG < ∞ implies that the Zariski-closure G of G is algebraic or,

more precisely, that the map πk : G → Gk is an isomorphism of groups for

some k ∈ N. In such a case π−1
k : Gk → G can be interpreted as an algebraic

morphism and G as a matrix algebraic group (in particular, as a complex Lie

group with finitely many connected components). On the other hand, we will

see that a Lie subgroup of D̂iff (Cn, 0) with finitely many connected components

(cf. Definition 3.5) is finite-dimensional (Proposition 3.7 and Lemma 3.3).

There are other advantages of working with the Zariski-closure of a group of

local diffeomorphisms. For instance, given a normal subgroup H of a group
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G ⊂ D̂iff (Cn, 0) we can naturally define whether the extension is finite-di-

mensional. A straightforward consequence of the definition is that G is finite-

dimensional if and only if it is a tower of finite-dimensional extensions of the

trivial group. Hence it is natural to identify finite-dimensional extensions. The

following kind of extensions are finite-dimensional:

(1) H is a finite index subgroup of G.

(2) G/H is a finitely generated abelian group.

(3) G/H is a connected Lie group.

These items are generalizations of the cases treated in [23, 3] in the context

of extensions of groups. Thus a natural strategy to show dimG < ∞ for a

subgroup G of D̂iff (Cn, 0) is decomposing it as a tower of extensions of the

types (1), (2) and (3) of the trivial group. This method allows one to generalize

Theorem 1.6 to much bigger classes of groups.

3.1. Dimensional setting. The first step of our program is defining the di-

mension of an extension of subgroups of D̂iff (Cn, 0).

Lemma 3.1: Let G be a subgroup of D̂iff (Cn, 0). Consider a subgroup H of G.

Then dimGk − dimHk ≤ dimGk+1 − dimHk+1 for any k ∈ N.

Proof. Let gk and hk be the Lie algebra of Gk and Hk respectively for k ∈ N.

Since πk+1,k : Gk+1 → Gk is surjective and we are working in characteristic 0,

we obtain (dπk+1,k)Id : gk+1 → gk is surjective for any k ∈ N (cf. [4, Chapter

II.7, p. 105]). Moreover, (dπk+1,k)Id(hk+1) is equal to hk for k ∈ N. Therefore

the linear map (dπk+1,k)Id : gk+1/hk+1 → gk/hk is surjective. Since

dim gk − dim hk ≤ dim gk+1 − dim hk+1,

we deduce dimGk − dimHk ≤ dimGk+1 − dimHk+1 for any k ∈ N.

Since (dimGk − dimHk)k≥1 is increasing we can define the codimension of

H in G.

Definition 3.1: Consider a subgroup H of a subgroup G of D̂iff (Cn, 0). We

define dimG/H ∈ Z≥0 ∪ {∞} as
dimG/H = lim

k→∞
dimGk − dimHk.

We say that G/H is finite-dimensional or that H has finite codimension in

G if dimG/H < ∞. We define dimG as dimG = limk→∞ dimGk for any

subgroup G of D̂iff (Cn, 0).
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Remark 3.1: Notice that the definition does not distinguish between a subgroup

of D̂iff (Cn, 0) and its Zariski-closure. More precisely, if H is a subgroup of a

group G ⊂ D̂iff (Cn, 0), we have

dimG = dimG and dimG/H = dimG/H.

The following result is an immediate consequence of the definition. It will be

useful to know whether or not a subgroup of D̂iff (Cn, 0) is finite-dimensional

in practical applications since it allows one to divide the problem into simpler

ones.

Proposition 3.1: Consider a sequence G1 ⊂ G2 ⊂ · · · ⊂ Gm of subgroups of

D̂iff (Cn, 0). Then we obtain

dimGm/G1 = dimGm/Gm−1 + · · ·+ dimG3/G2 + dimG2/G1.

In particular, Gm/G1 is finite-dimensional if and only if Gj+1/Gj is finite-

dimensional for any 1 ≤ j < m.

The next proposition provides several characterizations of finite-dimensional

extensions.

Proposition 3.2: Let G be a subgroup of D̂iff (Cn, 0). Let H be a subgroup

of G. The following properties are equivalent:

(1) There exists k0 ∈ N such that φ ∈ G and φk0 ∈ Hk0 imply φ ∈ H.

(2) There exists k0 ∈ N such that the map π̂k0 : G/H → Gk0/Hk0 , induced

by πk0 : G→ Gk0 , is injective.

(3) There exists k0 ∈ N such that the map π̂k+1,k : Gk+1/Hk+1 → Gk/Hk

(induced by πk+1,k) is injective for any k ≥ k0.
(4) G/H is finite-dimensional.

Remark 3.2: Since we are not supposing that H is normal we consider left

cosets. The proposition can be strengthened if H is normal. Then H is normal

in G and Hk is normal in Gk for any k ∈ N by Lemma 2.2. Notice that Gk/Hk

is an algebraic group for any k ∈ N (cf. [4, section II.6.8, p. 98]). Hence π̂k+1,k

is a morphism of algebraic groups. Since π̂k is always surjective for k ∈ N,

condition (2) is equivalent to π̂k0 being an isomorphism of groups from G/H

onto the algebraic matrix group Gk0/Hk0 . Condition (3) is equivalent to π̂k+1,k

being a bijective morphism of algebraic matrix groups and then an isomorphism

of algebraic groups (cf. [18, Theorem 6, Chapter 3.1.4]).
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Proof. The first two properties are clearly equivalent.

Let us show (2) =⇒ (3). We have π̂k0 = π̂k,k0 ◦ π̂k+1,k ◦ π̂k+1 for k ≥ k0. Since
the maps π̂k,k0 , π̂k+1,k, π̂k+1 are surjective and π̂k0 is injective, π̂k,k0 , π̂k+1,k,

π̂k+1 are also injective for any k ≥ k0.
Let us show (3) =⇒ (2). The map π̂k0 is equal to π̂k,k0 ◦ π̂k for k ≥ k0.

Since π̂k,k0 = π̂k0+1,k0 ◦ · · · ◦ π̂k,k−1 is a composition of injective maps by hy-

pothesis, π̂k,k0 is injective for k ≥ k0. Given left cosets φH and ηH such that

π̂k0 (φH) = π̂k0(ηH), we obtain π̂k(φH) = π̂k(ηH) for any k ≥ k0. We deduce

(η−1φ)k ∈ Hk for any k ≥ k0. In particular, we have η−1φ ∈ H and hence

φH = ηH . Thus π̂k0 is injective.

Let us show (3) =⇒ (4). The map π̂k+1,k is an isomorphism of algebraic man-

ifolds for any k ≥ k0 by the universal mapping property of quotient morphisms

(cf. [4, Chapter II.6]). We deduce

dimGk+1 − dimHk+1 = dimGk − dimHk

for any k ≥ k0.
Let us show (4) =⇒ (3). Let gk and hk be the Lie algebra of Gk and Hk

respectively for k ∈ N. There exists k0 ∈ N such that

dimGk − dimHk = dimGk0 − dimHk0

for any k ≥ k0. The linear map (dπk+1,k)Id : gk+1 → gk is surjective for any

k ∈ N by the proof of Lemma 3.1. Since (dπk+1,k)Id(hk+1) = hk for any k ∈ N

the linear map (dπ̂k+1,k)Id : gk+1/hk+1 → gk/hk is well-defined and surjective

for any k ∈ N. Since both complex vector spaces gk+1/hk+1 and gk/hk have the

same dimension, the map (dπ̂k+1,k)Id is a linear isomorphism for any k ≥ k0.
Fix k ≥ k0. Let us show that π̂k+1,k is injective. Let A ∈ Gk+1 such

that π̂k+1,k(AHk+1) = Hk. We have πk+1,k(A) ∈ Hk. The restriction

(πk+1,k)|Hk+1
: Hk+1 → Hk is surjective by Remark 2.5, hence there exists

B ∈ Hk+1 such that πk+1,k(A) = πk+1,k(B). We obtain πk+1,k(B
−1A) = Id.

There exists φ ∈ G such that φk+1 = B−1A since πk+1 : G→ Gk+1 is surjective

by Remark 2.6. Since φk ≡ Id, the linear part D0φ of φ at 0 is equal to Id

and thus log φ belongs to the Lie algebra g of G (Remark 2.8) and satisfies

(log φ)k ≡ 0. The property (dπk+1,k)Id((log φ)k+1) = 0 and the injective na-

ture of (dπ̂k+1,k)Id imply (logφ)k+1 ∈ hk+1. Since B−1 A = exp((logφ)k+1),

we obtain B−1A ∈ Hk+1 and then A ∈ Hk+1. Hence πk+1,k is injective for

any k ≥ k0.
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Remark 3.3: The implication in Proposition 3.2 from (4) to any of the other

conditions is one of the key points in the paper. Given a projective system

(lim←−k∈N
Gk, (πk,l)k≥l≥1) of algebraic groups, we have that dimGk = dimGk+1

implies that (dπk+1,k)Id : gk+1 → gk is an isomorphism and πk+1,k is a finite

covering. An example is obtained by considering Gk = C∗ and πk+1,k(z) = z2

for any k ≥ 1. In particular, all elements in ker(πk+1,k) have finite order. In

our setting we obtain a stronger property: the morphism πk+1,k is injective.

Indeed any element A in ker(πk+1,k) is tangent to the identity and hence it is

either trivial or 〈A〉 is isomorphic to C. The latter case is impossible since then

A does not have finite order. Alternatively, any non-vanishing element in the

Lie algebra of 〈A〉, and in particular the infinitesimal generator of A, would be

contained in ker(dπk+1,k)Id.

The equivalence (3)⇔(4) in Proposition 3.2 validates our point of view. We

have that π̂k+1,k : Gk+1/Hk+1 → Gk/Hk is bijective if and only if

dimGk − dimHk = dimGk+1 − dimHk+1.

The dimension determines an extension of the form Gk/Hk for k ∈ N modulo

isomorphism.

Moreover, if (3) holds then dimG/H = dimGk0 − dimHk0 . We have

dimG/H = dimGk0 − dimHk0

if (2) holds by the proof of (2) =⇒ (3).

Remark 3.4: Let G be a finite-dimensional subgroup of D̂iff (Cn, 0). There

exists k0 ∈ N such that πk,k0 : Gk → Gk0 is an isomorphism of algebraic matrix

groups for any k ≥ k0. Consider the Taylor series expansion

φ(z1, . . . , zn) =

( ∑
i1+···+in≥1

a1i1···inz
i1
1 · · · zinn , . . . ,

∑
i1+···+in≥1

ani1···inz
i1
1 · · · zinn

)

of φ ∈ G. Given (i1, · · · , in; j) a multi-index such that i1 + · · · + in > k0 and

1 ≤ j ≤ n, the function aji1···in : G → C belongs to the affine coordinate ring

C[Gk0 ] of Gk0 . In other words, every coefficient in the Taylor expansion, of

an element of G, of degree greater than k0 is a regular function P j
i1···in on the

coefficients of degree less than or equal to k0.

Reciprocally, suppose that aji1···in : G→ C is a polynomial function of the co-

efficients of degree less than or equal to k0 for any multi-index (i1, . . . , in; j) such
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that i1+ · · ·+in > k0 and 1 ≤ j ≤ n (meaning that there exists P j
i1···in ∈ C[Dk0 ]

such that

aji1···in(φ) = P j
i1···in((a

m
l1···ln(φ))l1+···+ln≤k0, 1≤m≤n)

for any φ ∈ G). Since all these equations hold true in the Zariski-closure

Gi1+···+in of G∗
i1+···+in

, we have that π∗
k,k0

: C[Gk0 ]→ C[Gk] is an isomorphism

of C-algebras and, in particular, πk,k0 : Gk → Gk0 is an isomorphism of algebraic

groups for any k ≥ k0. Thus G is finite-dimensional.

Let us relate the finite-dimension property with a much simpler one, namely

the finite-determination property.

Definition 3.2: Let G be a subgroup of D̂iff (Cn, 0). We say that G has the

finite-determination property if there exists k ∈ N such that φ ∈ G and

φk ≡ Id imply φ ≡ Id.
Remark 3.5: Let us compare the finite-determination and the finite-dimension

properties. On the one hand, a subgroup G of D̂iff (Cn, 0) has the finite-

determination property if there exists k ∈ N such that the projection πk :G→Dk

is injective. On the other hand, G is finite-dimensional if there exists k ∈ N

such that πk : G→ Dk is injective.

Remark 3.6: Notice that a subgroup G of D̂iff (Cn, 0) is finite-dimensional if

and only if G has the finite-determination property.

Remark 3.7: Every finite-dimensional group has finite-determination but in gen-

eral the reciprocal does not hold true. We define

φ(j)(x, y) = (x, y + djx
2 + xj+2) ∈ Diff (C2, 0)

for j ∈ N. Suppose that the subset S := {d1, d2, . . .} of C is linearly independent

over Q. We have

logφ(j) = (djx
2 + xj+2)∂/∂y

for j ∈ N. We denote by G the group generated by {φ(1), φ(2), . . .}. It is an

abelian group. Moreover, since S is linearly independent over Q, the property

φ �= Id implies φ2 �= Id for any φ ∈ G. In particular, G has the finite-

determination property.

By choice, the complex Lie algebra generated by {logφ(1), logφ(2), . . .} is

infinite-dimensional as a complex vector space. This implies that G contains

non-trivial elements whose order of contact with the identity is arbitrarily high
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or, in other words, that the map πk : G → Dk is not injective for any k ∈ N.

Hence G does not have the finite-determination property and G is not finite-

dimensional.

An example of a finite-determination group that is not finite-dimensional does

not exist in dimension 1 (Proposition 4.1).

Remark 3.8: We define

φ(j)(x, y) = (x, y + djx
2 + zj+2, z) ∈ Diff (C3, 0)

for j ∈ N where the subset S := {d1, d2, . . .} of C is linearly independent over

Q. Let G be the group generated by {φ(1), φ(2), . . .}. Analogously as in the

previous example, G is finitely-determined but it is not finite-dimensional. We

have

(φ(j)−1{x = y = 0}, {y = 0}) = dim
O3

(x, y + djx2 + zj+2, y)
= j + 2

for any j ∈ N. As a consequence finite-determination does not suffice to guar-

antee the uniform intersection property (cf. Theorem 1.5).

Definition 3.3: We say that a subgroup G of D̂iff (Cn, 0) is algebraic if G is

pro-algebraic and dimG <∞.

Remark 3.9: An algebraic subgroup G of D̂iff (Cn, 0) is the image by an al-

gebraic monomorphism of an algebraic matrix group. Given k0 ∈ N such

that πk0 : G→ Gk0 is injective, the map π−1
k0

: Gk0 → G is an isomorphism

of groups (Remark 3.2). Moreover, it is algebraic in every jet space since

πk ◦ π−1
k0

: Gk0→Gk is the inverse of the algebraic isomorphism πk,k0 : Gk → Gk0

for any k ≥ k0 (Remark 3.2).

The characterization of pro-algebraic groups given by Proposition 2.2 provides

a characterization of algebraic subgroups of D̂iff (Cn, 0).

Lemma 3.2: Let G be a subgroup of D̂iff (Cn, 0). Then G is algebraic if and

only if G∗
k is algebraic for any k ∈ N and the sequence (dimG∗

k)k≥1 is bounded.

Proof. The group G is pro-algebraic if and only if G∗
k is algebraic for any k ∈ N

and G is closed in the Krull topology by Proposition 2.2.

The sufficient condition is obvious. Let us show the necessary condition. It

suffices to show that G is closed in the Krull topology. There exists k0 ∈ N such

that πk+1,k : Gk+1 → Gk is injective for any k ≥ k0 by Remark 3.3. Therefore
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the map πk0 : G → Gk0 is injective. Consider a sequence (ηm)m≥1 of elements

of G that converge in the Krull topology. Then there exists m0 ∈ N such that

(ηm)k0 ≡ (ηm0)k0 if m ≥ m0. We deduce ηm ≡ ηm0 for any m ≥ m0 and

the sequence converges to ηm0 ∈ G. We obtain that G is closed in the Krull

topology.

Let us provide the first examples of finite-dimensional groups. Indeed we will

see that cyclic groups and one-parameter groups are always finite-dimensional.

Proposition 3.3: Let φ ∈ D̂iff (Cn, 0). We have dim〈φ〉 ≤ n.
Proof. We have

(1) dim 〈φ〉k = dim 〈φs〉k + dim 〈φu〉k
for any k ∈ N by Lemma 2.7. It suffices to show that 〈φs〉 and 〈φu〉 are finite-

dimensional.

Since φs is semisimple, we can suppose up to a formal change of coordinates

that 〈φs〉 is contained in the group of diagonal matrices (Remark 2.13). We

deduce dim〈φs〉 ≤ n.
Since φu is unipotent, we obtain 〈φu 〉 = {φtu : t ∈ C} and, in particular,

〈φu 〉k = {exp(t logφu,k) : t ∈ C} for any k ∈ N by Remark 2.8. We deduce

dim〈φu〉 = 1 if φu �≡ Id and dim〈Id〉 = 0. We get dim〈φ〉 ≤ n+ 1 by Equation

(1). In order to show dim〈φ〉 ≤ n let us prove that dim〈φs〉 = n implies φu ≡ Id.
Indeed in such a case 〈φs〉 is the linear group of diagonal transformations. Every

element of such a group commutes with φu by Lemma 2.7 and hence φu is linear

and diagonal. Since φu is both semisimple and unipotent, it is equal to the

identity map.

The finite dimension of one-parameter groups can be obtained by reduction

to the cyclic case. More precisely, we will use that every one-parameter group G

of formal diffeomorphisms has cyclic subgroups whose Zariski-closure coincides

with G.

Proposition 3.4: Let X ∈ X̂(Cn, 0). Then there exists t0 ∈ R such that

{exp(tX) : t ∈ C} ⊂ 〈exp(t0X)〉.
In particular, we obtain

dim{exp(tX) : t ∈ C} ≤ n.
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Proof. Consider the Jordan decompositionX = Xs+XN as a sum of commuting

formal vector fields such that Xs is formally diagonalizable and XN is nilpotent.

We can suppose Xs =
∑n

k=1 μkzk∂/∂zk where μ1, . . . , μn ∈ C up to a formal

change of coordinates. We denote

D =

{
a ∈ Zn :

n∑
k=1

akμk �= 0

}

where a = (a1, . . . , an). Given a ∈ D we define

Ca =

{
t ∈ C : t

n∑
k=1

akμk ∈ 2πiZ

}
;

it is a countable set. Consider an element t0 in the complement of the countable

set
⋃

a∈D Ca in R∗. We define

η(z1, . . . , zn) = exp(t0Xs) = (et0μ1z1, . . . , e
t0μnzn) ∈ D̂iff (Cn, 0).

The group C of characters χa(w1, . . . , wn) = wa1
1 · · ·wan

n with a ∈ Zn defined by

C = {χa : (et0μ1 , . . . , et0μn) ∈ ker(χa)}
satisfies C = {χa :

∑n
k=1 akμk = 0} by our choice of t0. The group 〈η〉 consists

of the linear diagonal maps diag(λ1, . . . , λn) such that χa(λ1, . . . , λn) = 1 for

any χa ∈ C by Remark 2.13. Since (etμ1 , . . . , etμn) ∈ ker(χa) for all χa ∈ C and

t ∈ C, the one-parameter group {exp(tXs) : t ∈ C} is contained in 〈η〉. We

denote ρ = exp(t0XN ); it satisfies

〈ρ〉 = {exp(tXN ) : t ∈ C}
by Remark 2.8. We denote φ = exp(t0X) = η ◦ ρ. Since 〈φ〉 contains

〈φs〉 ∪ 〈φu〉 = 〈η〉 ∪ 〈ρ〉,
it also contains {exp(tX) : t ∈ C}. Hence dim{exp(tX) : t ∈ C} ≤ n is a

consequence of Proposition 3.3.

The finite-dimensional nature of a subgroup of D̂iff (Cn, 0) is related to prop-

erties of finite decomposition of the elements of the group in terms of generators.

The following result illustrates how a finite writing property allows one to decide

whether or not dimG <∞ by solving simpler problems.

We denote H1 · · ·Hm = {h1 ◦ · · · ◦ hm : hj ∈ Hj ∀1 ≤ j ≤ m} for a family

H1, . . . , Hm of subgroups of a group G.
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Proposition 3.5: Let H1, . . . , Hm and G be subgroups of D̂iff (Cn, 0). Sup-

pose G ⊂ H1 · · ·Hm. Then we have

dimG ≤
∑

1≤j≤m

dimHj .

Moreover, given 1 ≤ j ≤ m such that Hj ⊂ G we obtain

dimG/Hj ≤
∑
k 	=j

dimHk.

Proof. Fix k ∈ N. Consider the map

τk : Hm,k ×Hm−1,k × · · · ×H1,k →Dk

(Bm, Bm−1, . . . , B1) �→BmBm−1 · · ·B1.

The map τk is algebraic even if it is not in general a morphism of groups. As

a consequence Im(τk) is a constructible set whose dimension is less than or

equal to
∑

1≤j≤m dimHj,k. The Zariski-closure of Im(τk) is an algebraic set

containing G∗
k and then Gk. We deduce dimGk ≤

∑
1≤j≤m dimHj,k for any

k ∈ N. The results are a direct consequence of Definition 3.1.

Theorem 3.1: Let G be a subgroup of D̂iff (Cn, 0). Suppose there exist

ψ1, . . . , ψl ∈ D̂iff (Cn, 0), X1, . . . , Xm ∈ X̂(Cn, 0) and p ∈ N such that every

φ ∈ G is of the form φ = φ1 ◦ · · · ◦ φq where q ≤ p and

φr ∈
l⋃

j=1

〈ψj〉 ∪
m⋃

k=1

{exp(tXj) : t ∈ C}

for any 1 ≤ r ≤ q. Then G is finite-dimensional.

Proof. The result is a straightforward consequence of Propositions 3.5, 3.3

and 3.4.

Remark 3.10: Given a real connected Lie group G its Iwasawa–Malcev decom-

position (cf. [10, Theorem 6], [13]) provides a finite decomposition. Given a

maximal (connected) compact subgroup K of G, there exist Lie subgroups

H1, . . . , Hr of G isomorphic to R such that any element g of G can be writ-

ten uniquely and continuously in the form

g = h1 · · ·hrk
where hj ∈ Hj for any 1 ≤ j ≤ r and k ∈ K. Let {X1, . . . , Xm} be a basis of

the Lie algebra of K and denote Jj = {exp(tXj) : t ∈ R}. The set J1 · · · Jm
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contains a neighborhood of Id in K. Since K is compact and connected, we

have

G ⊂ H1 · · ·Hr J1 · · · Jm · · · J1 · · · Jm︸ ︷︷ ︸
p times

for some p ∈ N. In particular, a real connected Lie group (and even a Lie group

with finitely many connected components) admits a decomposition in words of

uniform length whose letters are taken from the elements of a finite set of cyclic

and one-parameter subgroups. The Iwasawa–Malcev decomposition is applied

in a similar spirit in Binyamini’s proof of Theorem 1.4 [3]. Since every algebraic

group of formal diffeomorphisms is isomorphic to an algebraic matrix group,

finite-dimension can be interpreted as a finite-decomposition property.

This remark can be used to show that Lie groups of formal diffeomorphisms

(with finitely many connected components) are finite-dimensional. They have a

finite-decomposition property and then are finite-dimensional by Theorem 3.1.

3.2. Extensions of groups of formal diffeomorphisms. In this section

we study extensions that are always finite-dimensional. First, we deal with

finite extensions.

Lemma 3.3: Let G be a subgroup of D̂iff (Cn, 0). Consider a finite index sub-

group H of G. Then we obtain dimG/H = 0.

Proof. There exists a subgroup J of H such that J is a finite index normal

subgroup of G. Since Jk is a finite index normal subgroup of Gk by Lemma 2.2,

we obtain dim Jk = dimGk for any k ∈ N. We deduce dimG/J = 0 and then

dimG/H = 0 since J ⊂ H .

Corollary 3.1: Let G be a subgroup of D̂iff (Cn, 0). Consider subgroups

H,K of G such that H ⊂ K and K is a finite index subgroup of G. Then

dimG/H = dimK/H .

Proof. We have dimG/H=dimG/K+dimK/H=dimK/H by Lemma 3.3.

Next, we will consider finitely generated abelian extensions. First let us dis-

cuss the finite generation hypothesis. A positive dimensional connected Lie

group is not finitely generated since it is not countable. Anyway, it is finitely

generated by a finite number of one-parameter groups whose infinitesimal gen-

erators are the elements of a basis of the Lie algebra. This idea inspires an
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alternative definition of a finitely generated subgroup of D̂iff (Cn, 0) in which

generators can be elements of the group or one-parameter flows.

Definition 3.4: Let H be a subgroup of a subgroup G of D̂iff (Cn, 0). We say

that G is finitely generated in the extended sense over H if there exist

elements φ1, . . . , φl ∈ G and formal vector fields X1, . . . , Xm ∈ X̂(Cn, 0) such

that

G =

〈
H,φ1, . . . , φl,

m⋃
j=1

{exp(tXj) : t ∈ R}
〉
.

We say that G/H is finitely generated in the extended sense if H is normal in

G. If G is of the form 〈H,φ1, . . . , φl〉, we say that G is finitely generated overH .

We are interested in calculating the dimension of subgroups of D̂iff (Cn, 0).

In this context the new definition of a finitely generated group can be reduced

to the usual one via the next lemma.

Lemma 3.4: Let H be a subgroup of a subgroup G of D̂iff (Cn, 0). Suppose

that G is finitely generated over H in the extended sense. Then there exists a

subgroup G+ of D̂iff (Cn, 0) such that H ⊂ G+ ⊂ G, G+ = G and G+ is finitely

generated over H .

Proof. SupposeG = 〈H,φ1, . . . , φl,
⋃m

j=1{exp(tXj) : t ∈ R}〉. Given 1 ≤ j ≤ m,

there exists tj ∈ R such that ψj := exp(tjXj) satisfies {exp(tXj) : t ∈ C} ⊂ 〈ψj〉
by Proposition 3.4. We define

G+ = 〈H,φ1, . . . , φl, ψ1, . . . , ψm〉.

It is clear that H ⊂ G+ ⊂ G. The choice of ψj for 1 ≤ j ≤ m implies G ⊂ G+.

Since G+ ⊂ G, we obtain G = G+.

Proposition 3.6: Let H be a normal subgroup of a subgroup G of D̂iff (Cn, 0).

Suppose G/H is abelian and G/H is finitely generated in the extended sense.

Then G/H is finite-dimensional.

Proof. We have G = 〈H,φ1, . . . , φl,
⋃m

j=1{exp(tXj) : t ∈ R}〉. We denote

Hj = 〈φj〉

for 1 ≤ j ≤ l and
Jk = {exp(tXk) : t ∈ R}
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for 1 ≤ k ≤ m. Since H is normal in G and G/H is abelian, we obtain

G = H1 · · ·HlJ1 · · ·JmH . This implies

dimG/H ≤
∑

1≤j≤l

dimHj +
∑

1≤k≤m

dim Jk ≤ (l +m)n

by Propositions 3.5, 3.3 and 3.4.

Remark 3.11: Proposition 3.6 implies in particular that Theorem 1.5 can be

applied to a finitely generated (in the extended sense) abelian subgroup of

D̂iff (Cn, 0). So Seigal–Yakovenko’s Theorem 1.3 can be understood as a conse-

quence of the finite-dimension of finitely generated abelian subgroups of formal

diffeomorphisms.

Next, let us consider the third type of extensions, namely extensions that are

real connected Lie groups. Of course the first task is finding a proper definition

of a Lie group for an extension since it is not clear a priori.

Definition 3.5: Let H be a normal subgroup of a subgroup G of D̂iff (Cn, 0).

We say that G/H is a (connected) Lie group if there exists a (connected) Lie

group L and a surjective morphism of groups σ : L→ G/H such that the map

σk : L→ Dk/Hk induced by σ is a morphism of differentiable manifolds for any

k ∈ N.

Notice that Dk/Hk is a smooth algebraic manifold. The map πk : G → Dk

induces a map π̂′
k : G/H → Dk/Hk. The map σk is equal to π̂′

k ◦ σ.
Remark 3.12: The previous definition of a Lie group coincides with the usual

one for a subgroup G of D̂iff (Cn, 0), i.e., in the case H = {Id} (cf. [3]).
Let us see that connected Lie group extensions are finite-dimensional (Propo-

sition 3.8). Proposition 3.7 is a corollary of Proposition 3.8.

Proposition 3.7: Let G be a subgroup of D̂iff (Cn, 0). Suppose that G is a

connected Lie group. Then G is finite-dimensional.

Proposition 3.8: Let H be a normal subgroup of a subgroup G of D̂iff (Cn, 0).

Suppose that G/H is a connected Lie group. Then G/H is finite-dimensional.

Proof. Let us explain the idea of the proof. Suppose H = {Id} and L (cf. Def-

inition 3.5) is a connected complex Lie subgroup of GL(n,C). If L is abelian,

i.e., [L,L] = {Id}, then L is also abelian (cf. Lemma 2.5). In general we have
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[L,L] = [L,L] and, in particular, L′ is always the derived group of an alge-

braic group and thus algebraic (cf. [18, Chapter 3.3.3]). We can think of L

as an algebraic-by-finitely generated commutative group since L/L′ is abelian

and finitely generated in the extended sense. Since all these extensions are

finite-dimensional in a natural way, hence the image of L is finite-dimensional.

Consider the real Lie group L and the surjective morphism of groups

σ : L → G/H provided by Definition 3.5. Fix k ∈ N. Let gk and hk be

the Lie algebras of Gk and Hk. The set Gk/Hk is an algebraic group for any

k ∈ N (cf. [4, section II.6.8, p. 98]). Let g be the Lie algebra of L. Consider the

map (dσk)Id : g → gk/hk induced by σk for k ∈ N. We define by g̃ = g ⊗R C

the complexified of the Lie algebra g. We denote by (dσk)Id : g̃ → gk/hk the

morphism of complex Lie algebras induced by (dσk)Id. Let L̃ be a connected

simply connected complex Lie group whose Lie algebra is equal to g̃. Then there

exists a unique morphism σ̃k : L̃ → Gk/Hk of complex Lie groups such that

(dσ̃k)Id = (dσk)Id for any k ∈ N (cf. [18, Chapter 1.2.8]). Notice that σ̃k(L̃)

contains σk(L).

We denote by ρk : Gk → Gk/Hk the morphism of algebraic groups given by

the projection. Since σ̃k(L̃)
′ is the derived group of the connected complex Lie

group of matrices σ̃k(L̃), it is an algebraic subgroup of Gk/Hk (cf. [18, Chapter

3.3.3]). Hence ρ−1
k (σ̃k(L̃)

′) is an algebraic subgroup of Gk such that

dim ρ−1
k (σ̃k(L̃)

′)− dimHk ≤ dim L̃′ ≤ dim L̃ ≤ dimR L

where dimR L is the dimension of the real Lie group L. Since 〈G′, H〉∗k is con-

tained in ρ−1
k (σ̃k(L̃

′)) and the latter group is algebraic, we obtain

〈G′, H〉k ⊂ ρ−1
k (σ̃k(L̃

′))

and then

dim 〈G′, H〉k − dimHk ≤ dimR L

for any k ∈ N. Therefore the extension 〈G′, H〉/H is finite-dimensional. It

suffices to show that G/〈G′, H〉 is finite dimensional by Proposition 3.1.

Let X1, . . . , Xm be a basis of g (as a real Lie algebra). Fix k ∈ N. Anal-

ogously as in the proof of Proposition 3.4 there exists a countable subset Ak

of R such that the algebraic closure of 〈σk(exp(tX1))〉 in Gk/Hk contains the

one-parameter group σk{exp(sX1) : s ∈ C} for any t ∈ R∗ \ Ak. We choose

t ∈ R∗ \ ⋃k≥1 Ak and a representative ψ1 ∈ G of the class in G/H defined
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by σ(exp(tX1)). Analogously we define ψ2, . . . , ψm. It is clear that the exten-

sion 〈G′, H, ψ1, . . . , ψm〉/〈G′, H〉 is abelian and finitely generated. It suffices to

show 〈G′, H, ψ1, . . . , ψm〉 = G by Proposition 3.6. We will prove

〈H,ψ1, . . . , ψm〉 = G.

Fix k ∈ N. We denote J = 〈H,ψ1, . . . , ψm〉. The image of the Zariski-

closure Jk of J∗
k by the morphism ρk is equal to the closure of 〈J∗

k , Hk〉/Hk

in Gk/Hk. The Zariski-closure of 〈ρk(ψj,k)〉 contains σk({exp(sXj) : s ∈ C})
for any 1 ≤ j ≤ m by the choice of ψj . Hence the closure of 〈J∗

k , Hk〉/Hk in

Gk/Hk contains 〈G∗
k, Hk〉/Hk. We deduce that the closure of ρk(J

∗
k ) in Gk/Hk

is equal to Gk/Hk. Thus ρk(Jk) is equal to Gk/Hk. Since Jk contains Hk, we

get Jk = Gk for any k ∈ N. Hence we obtain 〈H,ψ1, . . . , ψm〉 = G.

Remark 3.13: We can recover Binyamini’s Theorem 1.4 in the context of the

theory of finite-dimensional groups of formal diffeomorphisms by applying The-

orem 1.5, Proposition 3.7 and Lemma 3.3.

Binyamini proves that the matrix coefficients of G belong to a noetherian ring

by using the Iwasawa–Malcev decomposition of a connected Lie group (cf. [10,

Theorem 6]). The same ideas imply that G is finite-dimensional almost for

free. Indeed, by Definition 3.5 the image by σ of a one-parameter group is also

a one-parameter group. Hence G admits a finite decomposition of the form

G = L1 · · ·Lm where every Lj is either a cyclic group or a one-parameter group

by Remark 3.10. Theorem 3.1 implies that G is finite-dimensional. Our choice

of proof is intended to stress the efficacy of the approach through towers of ex-

tensions. Indeed given a connected Lie group G ⊂ D̂iff (Cn, 0), we showed that

its derived group G′ is finite-dimensional by using classical results of Lie group

theory. This allowed us to reduce the problem to treat the finitely generated

(in the extended sense) and abelian extension G/G′.

Remark 3.14: In the proof of Proposition 3.8 it suffices to consider a linear

independent subset {X1, . . . , Xm} of g whose image in g/g′ is a basis. As a

consequence we obtain

dimσ(L) ≤ dim L̃′ + (dim L̃− dim L̃′)n = dim L̃+ (dim L̃− dim L̃′)(n− 1).

This formula recalls the formula in Theorem 4 of [3] in which the role of a

maximal connected compact subgroup of L is replaced with the derived group.
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Remark 3.15: Subgroups of Lie groups (with finitely many connected compo-

nents) of formal diffeomorphisms are always subgroups of algebraic groups of

formal diffeomorphisms by Proposition 3.7 and Lemma 3.3. Given a subgroup

G of D̂iff (Cn, 0) the existence of an embedding of G in a Lie group of for-

mal diffeomorphisms implies that G is contained in the image by an algebraic

monomorphism of an algebraic matrix group (Remark 3.9).

The following theorem about finite-determination properties of Lie subgroups

of D̂iff (Cn, 0) is due to Baouendi et al.

Theorem 3.2 ([2, Proposition 5.1]): Let G be a subgroup of D̂iff (Cn, 0). Sup-

pose that G is a Lie group with a finite number of connected components. Then

G has the finite-determination property.

We include a proof since it is an extremely easy application of our techniques.

Proof. The group G is finite-dimensional by Proposition 3.7 and Lemma 3.3.

Hence it has the finite-determination property.

In general the implication finite-determination =⇒ finite-dimension does not

hold for subgroups G of D̂iff (Cn, 0) (cf. Remark 3.7). Anyway, it is interesting

to explore in which conditions it is true since the former property is much easier

to verify. Next, we see that the implication is satisfied, even for extensions,

under a property of algebraic closedness for cyclic subgroups.

Theorem 3.3: Let H be a normal subgroup of a subgroup G of D̂iff (Cn, 0).

Suppose that the map π̂k0 : G/H → Gk0/Hk0 satisfies that (π̂k0 )|〈G,H〉/H is

injective for some k0 ∈ N. Furthermore suppose 〈φ〉 ⊂ 〈G,H〉 for any φ ∈ G.
Then G/H is finite-dimensional.

Proof. Let T be the subgroup of 〈G,H〉 generated by
⋃

φ∈G 〈φ〉0. The prop-

erty 〈φ〉 ⊂ 〈G,H〉 implies that the group T ∗
k = 〈⋃φ∈G 〈φ〉k,0〉 is contained in

〈G∗
k, Hk〉. Moreover, it is a (connected) algebraic group since it is generated by

a family of connected algebraic matrix groups (Theorem 2.1) for any k ∈ N.

Theorem 2.1 also implies that 〈T ∗
k , Hk,0〉 is algebraic. Since Hk is normal in

Gk, we deduce that 〈T ∗
k , Hk,0〉 is a finite index subgroup of 〈T ∗

k , Hk〉 and, in
particular, 〈T ∗

k , Hk〉 is algebraic for any k ∈ N. The group G∗
k normalizes the

algebraic group T ∗
k . Thus T ∗

k is a normal subgroup of Gk. As a consequence

〈T ∗
k , Hk〉 is a subgroup of 〈G∗

k, Hk〉 that is normal in Gk for any k ∈ N.
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The group 〈φ〉0 is a finite index normal subgroup of 〈φ〉 and 〈φ〉k,0 is a finite

index normal subgroup of 〈φ〉k for all φ ∈ G and k ∈ N. We obtain that

all elements of the subgroup 〈G∗
k, Hk〉/〈T ∗

k , Hk〉 of the algebraic matrix group

Gk/〈T ∗
k , Hk〉 have finite order. Suppose that the Zariski-closure of a group of

matrices of elements of finite order consists only of semisimple elements; we will

prove this later on (Lemma 3.5). Since Gk/〈T ∗
k , Hk〉 is the Zariski-closure of

〈G∗
k, Hk〉/〈T ∗

k , Hk〉, the group Gk/〈T ∗
k , Hk〉 consists of semisimple elements.

Let us show that π̂k,k0 : Gk/Hk → Gk0/Hk0 is injective for any k ≥ k0. Such
a property implies that G/H is finite-dimensional by Proposition 3.2. The

hypothesis implies that (π̂k,k0 )|〈G∗
k,Hk〉/Hk

is injective. Let φkHk be an element

of the kernel of π̂k,k0 where φ ∈ G. Since φk0 ∈ Hk0 , there exists η ∈ H such

that φk0 ≡ ηk0 and, in particular,

(φ ◦ η−1)k0 ≡ Id.
The formal diffeomorphism φ ◦ η−1 is unipotent and so is (φ ◦ η−1)k. Thus

the class of (φ ◦ η−1)k in Gk/〈T ∗
k , Hk〉 is unipotent. Since it is also semisim-

ple by the previous discussion, we obtain (φ ◦ η−1)k ∈ 〈T ∗
k , Hk〉 and then

φk ∈ 〈T ∗
k , Hk〉 ⊂ 〈G∗

k, Hk〉. Since (π̂k,k0 )|〈G∗
k,Hk〉/Hk

is injective, we obtain

φk ∈ Hk. In particular, π̂k,k0 : Gk/Hk → Gk0/Hk0 is injective for any

k ≥ k0.
Corollary 3.2: Let G be a subgroup of D̂iff (Cn, 0) that has the finite-

determination property. Suppose that 〈φ〉 is contained in G for any φ ∈ G.

Then G is finite-dimensional.

Let us remark, regarding Corollary 3.2, that the condition 〈φ〉 ⊂ G is easy to

verify if we know the Jordan–Chevalley decomposition of the elements of G.

Lemma 3.5: Let G be a subgroup of GL(n,C) such that all its elements have

finite order. Then all elements of G are semisimple.

Proof. The Tits alternative [27] implies that either G is virtually solvable or it

contains a non-abelian free group. Since clearly the second option is impossi-

ble, G is virtually solvable. Hence G0 is solvable. Since it is also connected,

the group G0 is upper triangular up to a linear change of coordinates by Lie–

Kolchin’s theorem (cf. [8, section 17.6, p. 113]).

We denote H = G ∩ G0; it is a finite index normal subgroup of G. The

derived group H ′ of H consists of unipotent upper triangular matrices. They
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are also semisimple by hypothesis and, as a consequence, H ′ is the trivial group
and H is abelian. Moreover, H consists of semisimple elements; hence H and

then H are diagonalizable. Since H is a finite index normal subgroup of G, H

is a finite index normal subgroup of G. An element A of G satisfies Ak ∈ H for

some k ∈ N. Since Ak is semisimple, A is semisimple for any A ∈ G.

4. Families of finite-dimensional groups

The finite-dimensional subgroups of D̂iff (C, 0) can be characterized; they are

the solvable groups.

Proposition 4.1: Let G be a subgroup of D̂iff (C, 0). Then the following

conditions are equivalent:

(1) G is solvable.

(2) G has the finite-determination property.

(3) G is finite-dimensional.

Proof. The items (1) and (2) are equivalent (cf. [12, Théorème 1.4.1]).

Let us show (1) =⇒ (3). The group G is solvable by Lemma 2.5. Since

(1) =⇒ (2), G has the finite determination property and then G is finite-dimen-

sional by Remark 3.6.

Let us prove (3) =⇒ (1). Since G is finite-dimensional, G has the finite-

determination property by Remark 3.6. The property (2) =⇒ (1) implies that

G and then G are solvable.

Remark 4.1: Any solvable subgroup G of D̂iff (C, 0) satisfies

dimG = dimG ≤ 2

by the formal classification of such groups (cf. [21, Theorem 5.3] [9, section

6B3]).

Remark 4.2: Notice that solvable subgroups of D̂iff (Cn, 0) are not in general

finite-dimensional for n ≥ 2 (cf. Remark 3.6).

It is very easy to use the extension theorems in section 3 to find a big class

of examples of finite-dimensional subgroups of formal diffeomorphisms.
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Theorem 4.1: Let G be a subgroup of D̂iff (Cn, 0). Suppose that G has a

subnormal series

(2) {Id} = G0 �G1 � · · ·�Gm = H

such that Gj+1/Gj is either

• finite or

• abelian and finitely generated in the extended sense or

• a connected Lie group (cf. Definition 3.5)

for any 0 ≤ j < m. Then G is finite-dimensional.

Proof. The result is a straightforward consequence of Proposition 3.1, Lemma

3.3 and Propositions 3.6 and 3.8.

For instance, a finite-by-cyclic-by-cyclic-by-finite-by-cyclic group of formal

diffeomorphisms is finite-dimensional. Anyway we think that it is interesting

to apply the extension approach laid out in section 3 to show that several

distinguished classes of groups are always finite-dimensional. Our first targets

are polycyclic groups.

Definition 4.1: Let G be a group. We say that G is polycyclic if it has a sub-

normal series as in Equation (2) such that Gj+1/Gj is cyclic for any 0 ≤ j < m.

Remark 4.3: A group G is polycyclic if and only if it is solvable and every

subgroup of G is finitely generated (cf. [22, Theorem 5.4.12]).

Theorem 4.2: Let G be a virtually polycyclic subgroup of D̂iff (Cn, 0). Then

G is finite-dimensional.

Proof. A virtually polycyclic group is a cyclic-by-· · · -by-cyclic-by-finite group.

Therefore G is finite-dimensional by Theorem 4.1.

Definition 4.2: We say that a group G is supersolvable if it has a normal series

in which all the factors are cyclic groups.

Remark 4.4: The definition is very similar to Definition 4.1. Anyway supersol-

ubility is stronger since we require the groups Gj in Equation (2) to be normal

in G for 0 ≤ j ≤ m.

Corollary 4.1: Let G be a virtually supersolvable subgroup of D̂iff (Cn, 0).

Then G is finite-dimensional.
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Let us focus now on nilpotent groups.

Theorem 4.3: Let G be a virtually nilpotent subgroup of D̂iff (Cn, 0). Sup-

pose that G is finitely generated in the extended sense. Then G is finite-

dimensional. In particular subgroups of D̂iff (Cn, 0) of polynomial growth are

finite-dimensional.

Proof. There exists a subgroup G+ of G such that G+ is finitely generated and

G+ = G by Lemma 3.4. Since G+ is a subgroup of G, it is virtually nilpotent.

Thus up to replacing G with G+ we can suppose that G is finitely generated.

Let H be a finite index normal nilpotent subgroup of G. Since H is a

finite index subgroup of a finitely generated group, it is finitely generated

(cf. [22, Theorem 1.6.11]). Any finitely generated nilpotent group is polycyclic

(cf. [11, Theorem 17.2.2]). Therefore G is virtually polycyclic and then finite-

dimensional by Theorem 4.2.

By a theorem of Gromov [7], the groups of polynomial growth are exactly

the finitely generated virtually nilpotent groups. Hence every subgroup of

D̂iff (Cn, 0) of polynomial growth is finite-dimensional.

We provide a sort of reciprocal of the previous theorem in the setting of

unipotent subgroups of formal diffeomorphisms.

Lemma 4.1: Let G be a unipotent subgroup of D̂iff (Cn, 0). Suppose that G

has the finite-determination property. Then G is nilpotent.

Proof. Since G has the finite-determination property, there exists k ∈ N such

that πk : G→ G∗
k is an isomorphism of groups. Moreover, G∗

k is a unipotent al-

gebraic matrix group. Unipotent groups of matrices are always triangularizable

and then nilpotent by Kolchin’s theorem (cf. [24, chapter V, p. 35]). Hence G

is nilpotent.

Corollary 4.2: Let G be a unipotent subgroup of D̂iff (Cn, 0). Suppose that

G is finitely generated in the extended sense and finitely determined. Then G

is finite-dimensional.

Proof. The group G is nilpotent by Lemma 4.1. Thus it is finite-dimensional

by Theorem 4.3.

Remark 4.5: Theorems 4.2, 4.3 and Corollary 4.1 admit straightforward gen-

eralizations to extensions. For instance, a finitely generated (in the extended
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sense) virtually nilpotent extension of groups of formal diffeomorphisms is finite-

dimensional.

Let us focus on solvable subgroups of D̂iff (Cn, 0) that are not necessarily

polycyclic. In order to show dimG <∞ for a solvable subgroup of D̂iff (Cn, 0)

it suffices to consider finite generation properties on the derived groups of G.

Proposition 4.2: Let G be a solvable subgroup of D̂iff (Cn, 0). Suppose that

G(�)/G(�+1) is finitely generated in the extended sense for any � ∈ Z≥0. Then

G is finite-dimensional.

Proof. Every extension of the form G(�)/G(�+1) is abelian and then finite-

dimensional by Proposition 3.6. Since there exists � such that G(�) = {1},
G is finite-dimensional by Theorem 4.1.

In the following our goal is weakening substantially the finite-generation hy-

potheses in Proposition 4.2. We will see that under certain hypotheses a virtu-

ally solvable subgroup G of D̂iff (Cn, 0) is finite-dimensional if and only if Gu

(cf. Definition 2.9) is finite-dimensional.

Theorem 4.4: Let G be a virtually solvable subgroup of D̂iff (Cn, 0) such that

G is finitely generated over Gu in the extended sense. Then G/Gu is finite-

dimensional. In particular, G is finite-dimensional if and only if Gu is finite-

dimensional.

Corollary 4.3: Let G be a finitely generated in the extended sense virtu-

ally solvable subgroup of D̂iff (Cn, 0) such that Gu is finitely generated in the

extended sense and nilpotent. Then G is finite-dimensional.

Remark 4.6: Notice that the nilpotence of Gu is necessary in Corollary 4.3 by

Lemma 4.1. The main advantage of Corollary 4.3 is that we are replacing a

property of finite generation for every derived subgroup of G by the analogous

property for just G and Gu.

Proof of Theorem 4.4. First let us show that Gu is a subgroup of G if G is

virtually solvable. Since G0 is solvable (by Lemma 2.6) and G1,0 is connected,

we can suppose that all elements ofG0 have linear parts that belong to the group

of upper triangular matrices by Lie–Kolchin’s theorem (cf. [8, 17.6, p. 113]).

Notice that Gu is contained in G0. Since the set of unipotent upper triangular

matrices is a group that contains the linear part of Gu, the set Gu is also a

group. Thus Gu is a normal subgroup of G.
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There exists a subgroup J of G such that Gu ⊂ J , J = G and J is finitely

generated over Gu by Lemma 3.4. It suffices to show dim(J/Gu) < ∞ since

dim(G/Gu) = dim(J/Gu).

We denote K = J ∩ G0. The group K is a finite index normal subgroup

of J . Since K/Gu is a finite index normal subgroup of J/Gu, the group K/Gu

is finitely generated. The elements of the derived group K ′ have linear parts

that are unipotent upper triangular matrices. Thus K ′ is contained in Gu and

K/Gu is abelian. We deduce dim(K/Gu) < ∞ by Proposition 3.6 and then

dim(J/Gu) <∞ by Corollary 3.1.

Proof of Corollary 4.3. Since Gu is a normal subgroup of G by the proof of

Theorem 4.4, it suffices to show dimGu < ∞ by Theorem 4.4 and Proposition

3.1. The group Gu is finite-dimensional by Theorem 4.3.

4.1. Examples of infinitely dimensional groups. So far we have exhib-

ited distinguished families of virtually solvable groups whose members are finite-

dimensional. Now let us consider the problem of finding families of infinite-

dimensional solvable subgroups of D̂iff (Cn, 0).

Remark 4.7: Consider the subgroup 〈φ, η〉 of Diff (C2, 0) generated by

φ(x, y) = (x, y(1 + x)) and η(x, y) = (x, y + x2).

Since 〈φ, η〉′ is contained in the group

H1 := {(x, y + b(x)) : b ∈ C{x} ∩ (x2)},
we get 〈φ, η〉(2) = {Id}. In particular, 〈φ, η〉 is a finitely generated unipotent

solvable subgroup of Diff (C2, 0). Since [(x, y − xk), φ] = (x, y + xk+1) for any

k ∈ N, the group 〈φ, η〉 is not nilpotent. Thus 〈φ, η〉 is neither finitely deter-

mined nor finite-dimensional by Lemma 4.1.

Next we see that solvable subgroups of D̂iff (Cn, 0) of high derived length are

never finite-dimensional.

Proposition 4.3: Let G be a solvable group contained in D̂iff u(C
n, 0) whose

derived length is greater that n. Then G does not have the finite-determination

property. In particular G is not finite-dimensional.

Remark 4.8: Such groups always exist if n ≥ 2. Indeed the maximum of the

derived lengths of the solvable unipotent subgroups of D̂iff (Cn, 0) is 2n−1 [14].
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Remark 4.9: Notice that given a solvable group G, its derived length is the

supremum of the derived lengths of all its finitely generated subgroups. Hence

there exists a finitely generated subgroup H of G with the same derived length.

In particular, we can suppose that the examples provided by Proposition 4.3

for n ≥ 2 are finitely generated.

Remark 4.10: Let us provide an example of a group that satisfies the hypotheses

of Proposition 4.3 [14]. We denote φ(x, y) = (x, y(1 + x)), η(x, y) = (x, y + x2)

and ψ(x, y) = ( x
1−x , y). Consider the subgroup G := 〈φ, η, ψ〉 of Diff (C2, 0).

We define the subgroup

H0 = {x, y(1 + a(x)) + xb(x)) : a, b ∈ C{x} ∩ (x)}

of Diff (C2, 0). It is clear that G′ is contained in H0 and G(2) is contained in

the abelian group H1 defined in Remark 4.7. Hence G is a finitely generated

unipotent solvable subgroup of Diff (C2, 0) whose derived length is at most 3.

Since [η−1, φ] = (x, y + x3),

[ψ, φ] =
(
x, y

1 + 2x

(1 + x)2

)
and [[ψ, φ], [η−1, φ]] =

(
x, y − x5

(1 + x)2

)
,

the diffeomorphism [[ψ, φ], [η−1, φ]] belongs to G(2) \{Id} and hence the derived

length of G is equal to 3.

Proof of Proposition 4.3. Suppose that G has the finite-determination property.

Hence G is nilpotent by Lemma 4.1. Therefore the derived length of G is less

than or equal to n [14, Theorem 5], obtaining a contradiction.

5. Local intersection theory

Let us explain in this section why Theorem 1.5 holds. A priori we could use

directly Binyamini’s theorem [3] since an algebraic group is a Lie group with

finitely many connected components. Anyway we think that it is instructive to

apply our canonical approach to the ideas introduced by Seigal–Yakovenko in

[23] (to show Theorem 1.5 for finitely generated in the extended sense abelian

subgroups of formal diffeomorphisms).

Consider two formal subschemes I and J of the scheme spec Ôn. We can

identify I and J with two ideals of the ring Ôn of formal power series.
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Definition 5.1: We define the intersection multiplicity (I, J) as

(I, J) = dimC Ôn/(I + J).

Remark 5.1: This definition of intersection multiplicity coincides with the usual

one if I and J are complete intersections of complementary dimension. It is finite

if and only if the usual intersection multiplicity is finite. Moreover, it provides

an upper bound for the usual intersection multiplicity of I and J viewed with

their associated cycle structures (cf. [6, Proposition 8.2]). Therefore, by showing

Theorem 1.5 with Definition 5.1 it will be automatically satisfied for the usual

intersection multiplicity.

Next let us show Theorem 1.5. Since we follow Seigal–Yakovenko’s ideas we

refer to their paper [23] for details. We are interested in stressing how their

point of view fits in the context of the theory of finite-dimensional groups of

formal diffeomorphisms.

Proof of Theorem 1.5. Let V andW be formal subschemes of spec Ôn. Suppose

that V is given by the ideal K of Ôn. Given φ ∈ Diff (Cn, 0), the subscheme

φ−1(V ) is given by the ideal

φ∗K = {f ◦ φ : f ∈ K}.
There exists k ∈ N such that π̂k : G → Gk is an isomorphism of groups by

Proposition 3.2. The map πm,k : Gm → Gk is an isomorphism of algebraic

groups for any m ≥ k. In particular, the affine coordinate rings C[Gk] and

C[Gm] are isomorphic as C-algebras for any m ≥ k.
Given an ideal J of Ôn the property dimC Ôn/J > m is equivalent to a system

of algebraic equations on the coefficients of the m-th jets of the generators of J

[23, Lemma 3]. In particular, (φ−1(V ),W ) > m holds for φ ∈ D̂iff (Cn, 0) if and

only if the coefficients of the m-th jet of φ satisfy a certain system of algebraic

equations. More intrinsically we can say that

Sm := {φ ∈ G : (φ−1(V ),W ) > m}
defines an ideal Im of the affine coordinate ring C[Gm]. It also defines an ideal,

that we denote also by Im, in C[Gk] for any m ≥ k. We can suppose Im ⊂ Im′

for all m′ ≥ m ≥ k by replacing Im with Ik + · · ·+ Im for m ≥ k. Since C[Gk]

is noetherian, there exists m0 ≥ k such that Im = Im0 for any m ≥ m0. In

particular, (φ−1(V ),W ) > m0 implies (φ−1(V ),W ) =∞ for any φ ∈ G.
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Remark 5.2: The key point of the proof is showing that the increasing sequence

of ideals I1 ⊂ I2 ⊂ · · · is contained in a noetherian ring. Seigal and Yakovenko

show that it is contained in a ring of quasipolynomials in their setting [23]

whereas Binyamini includes them in a noetherian subring of continuous func-

tions of G [3]. We use the fact that the coefficients of degree greater than k

of the Taylor expansion of the elements of G are regular functions on the co-

efficients of degree less than or equal to k if G is finite-dimensional (Remark

3.4). This allows us to write all equations defining the ideals Im in terms of

the coefficients of φ ∈ G of degree less than or equal to k. In particular, The-

orem 1.5 is an immediate consequence of the noetherianity of polynomial rings

in finitely many complex variables. More precisely, in the finite-dimensional

setting the noetherian ring C[Gk] containing all the ideals Im for m ∈ N is an

affine coordinate ring of an algebraic matrix group canonically associated to G.

Proof of Theorem 1.6. The hypothesis implies that G is finite-dimensional by

Theorems 4.2 and 4.3. Hence the conclusion is a consequence of Theorem1.5.
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non linéaires résonnantes du premier ordre, Annales Scientifiques de l’École Normale
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