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ABSTRACT
We define closed subvarieties of some Deligne-Lusztig varieties for GL(2)
over finite rings and study their étale cohomology. As a result, we show
that cuspidal representations appear in it. Such closed varieties are studied
in [Lus2] in a special case. We can do the same things for a Deligne-Lusztig
variety associated to a quaternion division algebra over a non-archimedean
local field. A product of such varieties can be regarded as an affine bundle
over a curve. The base curve appears as an open subscheme of a union of
irreducible components of the stable reduction of the Lubin—Tate curve in
a special case. Finally, we state some conjecture on a part of the stable
reduction using the above varieties. This is an attempt to understand bad

reduction of Lubin—Tate curves via Deligne-Lusztig varieties.
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1. Introduction

Let K be a non-archimedean local field and o the ring of integers in K. Let
p denote the maximal ideal of 0. Let p be the characteristic of k = o/p. Let
k2 be an algebraic closure of k. Assume that the characteristic of K equals
p. Let G be a reductive group over k. In [Lus] and [Lus2], for each n > 1,
Lusztig constructs a variety over k¢ whose étale cohomology realizes certain
irreducible representations of G(o/p™). These representations are attached to
a “maximal” torus in G and its characters in general position. We call such
a variety a Deligne-Lusztig variety for G(o/p™). For n = 1, this theory is the
Deligne-Lusztig theory for G(k) in [DL]. We call the theory in [Lus] and [Lus2]
the Deligne—Lusztig theory over finite rings.

In [Lus2, §3], the Deligne-Lusztig variety for SLa(0/p?) is explicitly studied.
In [Lus], a construction in the division algebra case is studied. It seems compli-
cated to study the cohomology of a Deligne-Lusztig variety directly in general,
because the cohomology of this variety contains many irreducible representa-
tions with lower conductor (cf. [Lus2, §3]).

Let D be the quaternion division algebra over K. Let Op be the maximal
order in D, and pp the two-sided maximal ideal of Op. In this paper, for n > 1,
we study certain closed subvarieties X,, and X2 in Deligne-Lusztig varieties
for GI' = GLa(o/p™) and O, ; = (Op/pH~1)* respectively, and study their
étale cohomology. An idea to consider such subvarieties is seen in the case
SL2(o/p?) in [Lus2, §§3.3-3.4]. For each n, the cohomology of X, realizes
cuspidal representations not factoring through the canonical map G — GE
for any integer m < m. All irreducible representations of GE are constructed
in [Onn] and [Sta]. In [Onn], more generally, all irreducible representations of
an automorphism group of a finite o-module of rank two are classified. For
general r > 2 and n > 1, strongly cuspidal representations of GL,(0/p™) are
constructed in [AOPS]. In particular, all cuspidal representations of G are
constructed in [AOPS], [Onn] and [Sta]. Let ¢ = |k|. Then X; is the curve
defined by (29y — 2y?)9~! = 1, and XP is a disjoint union of finitely many
closed points. The curve is called the Deligne-Lusztig curve for GLa(F,), which
we denote by Zpr. For n > 2, the varieties X,, and X,? are affine bundles
over a disjoint union of some copies of one point or the curve Zy defined by
the equation X9 — X = Ya(a+1) — ya+1 gyer k2¢ depending on the parity of n.
Furthermore, the product X,, x X2 is an affine bundle of relative dimension n—1
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over a disjoint union of copies of the curve Zy. We can understand their étale
cohomology explicitly in Propositions 3.18 and 4.12. Let K3 be the quadratic
unramified extension over K. The cuspidal representations are attached to
certain characters of

Ty = (Ox/vi,)".

The varieties X,, and X2 admit actions of T.X". Let
A:TE TP Tl e (t,t71).

By taking the quotient of the product X,, x X2 by the subgroup A(TF), we
obtain a variety X,,, which admits the action of

6, =G x0F | xTF,

This variety is an affine bundle over a curve Y;, with &,-action. This curve Y,,
is isomorphic to the curve Zpy, if n = 1, and a disjoint union of some copies
of Zy if n > 1. The curve Y,, is introduced in §5.1 and its middle cohomology
is studied in Theorem 5.1. To describe the group action on &, on X,, it is
natural to use a notion of linking order given in [W2]. Hence, we recall this
notion in §2.2.

The above analysis was motivated by the geometry of the Lubin-Tate curve
X (p™) with Drinfeld level p™-structures. Let C be the completion of an algebraic
closure of K. Let Ix denote the inertia subgroup of K. Let X(p™)c denote the
base change of X(p™) to C. As irreducible components in the stable reduction
of X(p™)c, it is known that copies of the smooth compactification of Zy appear
(cf. [T2] and [W3]). We call these components unramified components. See the
beginning of §5 for the reason why we call them unramified. The base change
X(p™)c admits an action of GLa(0) x OF x I (cf. [Cal). By local class field
theory over Ko, we have a surjective map Ix, — OIXQ. By composing with
the canonical isomorphism Ik <— Ik, , we obtain the surjective homomorphism
I — (’)IXQ. Then, we have the surjective homomorphism

QSZGLQ(O) X OB XIK —»@n

For an affinoid X, let X denote its canonical reduction. For a positive in-
teger n > 1, we conjecture that there exists a ®-stable affinoid subdomain
Y, C X(p™)c such that

e the ®-action on Y, factors through the map & — &,,, and
e there exists a &,,-equivariant isomorphism Y,, ~ Y,
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(cf. Conjecture 5.2). By definition, the stable reduction of X(p™)c is a sta-
ble curve. In general, a stable curve consists of several irreducible components
which intersect at ordinary double points. By this conjecture, we can under-
stand an open subscheme of a union of irreducible components in the stable
reduction of X(p™)c (cf. Remark 5.3 (2)). In [W1], Weinstein constructs a con-
crete stable curve which is a candidate of the stable reduction of X(p™)c. In
the unramified case, the curve Y, is very similar to the stable curve constructed
in [W1] (cf. (5.2)). Originally, our motivation of this work was to give some
Deligne—Lusztig interpretation of the curve. Furthermore, the Weinstein con-
jecture is justified through the works [W3] and [T2] in some sense. In the case
where n = 1 and GL(r) (r > 2), such things are studied in [Y]. We learned that
the inertia action can be interpreted as the action of a maximal torus from [Y].
See [BW] for a generalization of [Y].

In the stable reduction of X(p™)c in the case where p # 2, another type of
curve appears as an irreducible component. This is the smooth compactifica-
tion of the Artin—Schreier curve defined by a? — a = s* (cf. [T2] and [W3]).
The middle cohomology of these components is related to some characters of
OF, where L is a tamely ramified quadratic extension of K. We do not know
whether a Deligne-Lusztig type interpretation via these components exists as
in this paper. See [Sta2] for a generalization of a Deligne-Lusztig variety in this
direction. A Lubin—Tate curve can be regarded as a local model of a modular
curve. A modular curve is a special case of Shimura varieties. There are many
works which relate bad reduction of Shimura varieties to Deligne-Lusztig vari-
eties (cf. [Ra]). The above conjecture is regarded as an attempt to describe bad
reduction of Lubin—Tate curves via Deligne—Lusztig theory.

On the division algebra side, a certain Deligne—Lusztig variety is studied in
[Ch] in a quite general setting. In the general linear group case, coverings of
Deligne-Lusztig varieties are studied in [Iv]. For arbitrary reductive groups,
in [CS], they prove that certain representations appear in the cohomology of
Deligne-Lusztig varieties.

ACKNOWLEDGMENTS. We would like to thank the anonymous referee sincerely
for reading our paper carefully and pointing out many errors in the previous
version.

This work is supported by JSPS KAKENHI Grant Number 26800013,
15K17506.



Vol. 226, 2018 DELIGNE-LUSZTIG VARIETIES 881

2. Preliminaries

In §2.1, we introduce some notation used in this paper. Throughout the rest of
the paper, we fix a non-archimedean local field K and always assume that the
characteristic of K is p. In §2.2, we introduce a notion of linking order which
will be used in §5. We introduce isomorphisms (2.13) and (2.14) which will
be used to describe group action on subvarieties of Deligne—Lusztig varieties in
§3.2 and §4.2 respectively.

2.1. NOTATION. For a non-archimedean local field L, let p;, denote the maximal
ideal of the ring of integers of L. For an integer i > 1, we set Ut =1+ p%. As
before, we denote by o and p the ring of integers in K and its maximal ideal
respectively. Let k = o/p and ¢ = |k|. Let K" be the maximal unramified
extension of K in an algebraic closure K2 of K and K the p-adic completion
of K. We write 0 and p for the ring of integers of K and its maximal ideal,
respectively. Let ky be the quadratic extension of k in k¢ = 0/p. Let Ky be
the unramified quadratic extension of K in K¢ and O the ring of integers of
K>. For a positive integer ¢ > 1, we set

UiZU/pia Eiza/gi’ DZ:D/lez

2.2. LINKING ORDER. We recall the linking order defined in [W2, §4.3]. In this
paper, we treat only the unramified case.

Let D be the quaternion division algebra over K and let Op be the maximal
order of D. Let pp be the maximal two-sided ideal of Op. For a positive
integer i, we set Uj, = 1+p% C OF and O; = Op/p},. By taking a uniformizer
w € K, we fix an isomorphism K ~ k((w)). We choose an element ¢ € pp
such that ¢? = w. We have isomorphisms D ~ K, @ @K, and Op ~ O @ 9.
We regard K5 as a K-subalgebra of D in this way. We set

Ay =My(K), Ax=D,
9[1 :MQ(U), Q[QZOD, Ql:Qll XQ[Q.
For ¢ € ko \ k, we consider the K-embedding

a+b(¢T+¢) b)

(2.1) et Ko = Ay a+b(— ( peatt "

with a,b € K. This is the regular embedding with respect to the ordered
basis {(,1} of Ky over K. Note that tric(¢) = Trg,/x(¢) = ¢(? + ¢ and
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det 1¢(¢) = Nrg, /x(¢) = ¢4+, Some readers may think it unnatural to consider
the ordered basis {¢, 1} not {1, {}. However, the action of this subgroup ¢¢(9D*)
on a Deligne-Lusztig variety will be related to a torus action on it in Lemma
3.8 (1) later. Hence, we consider the basis here.

We fix ¢ € ko \ k. Let As: Ko — Ay x Ay be the diagonal map. For ¢ = 1,2,
let C; be the orthogonal complement of K5 in A; with respect to the standard
trace pairing. We set €; = C; N2, (cf. [W2, §4.1]). Then, €; is a left and right
©-module of rank one. We have

(2.2) A~ OB

for i = 1,2. Let Gal(K3/K) be the Galois group of the extension Ko/K. Let
o € Gal(K3/K) be the non-trivial element. We have zv = vz? for € O and
v € €;. We easily check that

(2.3) ¢ = {h(a,b) = (a(gq . g)aJr e+t Z) €Ay ‘ a,be 0} ,
(2.4) ¢ = 9.
Let n > 0 be a non-negative integer. We set | = [(n + 1)/2] and I’ = [n/2].
We put

Vi =, € C A, Vi = pl, € C s
We have V"V C p, for i =1,2. We set V" = V" x V' C 2 and

Len = AdO) +pk, X Pk, + V" C2
which is called the linking order. This is actually an order of 2 by

V'V" Cplk, X Pk,
Any element g € L¢,, can be written as
g=(r+@"y+ o'z, 0+ 2) withz,yeOandz ¢ (i=1,2).
We consider the two-sided ideal
L2 =Aclpre) +p5s' X Pt + VT C Lo

In the following, we consider the quotient L¢ -1/ L',g n_1 for a positive integer
n > 1. First, we treat the case n = 1. The restriction of the natural projection
A — Ma(k) x kg to the subring L ¢ induces an isomorphism

Lco/Lo = Ma(k) x ko,
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which does not depend on the choice of ¢ € ks \ k. This induces

(2.5) (Leo/L24)" =5 GLa(k) x k.
Let
a B
(26) Q=q9(B,7) = ad ﬂij € GL3(k2) | o, 8,7 € k2 ¢,

Qo ={9(1,8,7) € Q}.
Note that we have
QI =q"(¢* ~1).
The center Z(Qo) of Qo equals {g(1,0,v) | v € k2}, and the quotient Qo/Z(Qo)

is an abelian group of order ¢?. Hence, the group Qg is a finite Heisenberg
group. Assume that n > 2. For each ¢ € ks \ k, we have an isomorphism

(Len—1/LEn1)" = Q,

which is given in [W2, Proposition 4.3.4 (5)]. We will now show how this
isomorphism is defined for n odd and give a similar isomorphism for QJg. Assume
that n is odd. Then we have n =2I' +1 and | =1’ + 1. We set

~1
vg = %) ¢ AY and Vi, =Volve
¢I+¢ 1

Note that v3 = 1 and vo(a + b¢) = (a + b(%)vg for a,b € 0. We consider the
isomorphism

bc: Vin ko h(a,b)@’ = (a+bO)w vo > a+ bC
¢ ,

with a,b € k. For v,w € Vi ,,, we have vw € p}gl/p}z2 by €1¢; C O. Then we

have

dc(av) = xpc(v),  ¢oc(va) = ¢c(v)x? for x € kg and v € V4,
2.7
@7 w™ " Dyw = ¢¢ (v)pe (w)? for v,w € Vi 5.

For an element x € O, let Z denote the image of 2 by the reduction map O — ko.
We have the isomorphism

(2.8) (Len—1/L2, 1) S Q; (x+ @ ly+v,2) = g(Z,0c(v), ),

where z,y € O and v € V;* 1.
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Assume that n is even. Then we haven=21" and [=1'". Weset V3, = V"~ V.
We consider the isomorphism

¢: Vo = ko;  w'"lpbs bY
with b € . Similarly as (2.7), we have
d(zv) = zp(v), d(vz) = d(v)a? for x € kg and v € Vi,
w™ " Vyw = ¢(v)p(w)? for v,w € Vo p.

Similarly as (2.8), we have the isomorphism
(29)  (Len1/Len 1) = Q5 (2 +@" Y +0) = g(Z,6(v), ),

where z,y € O and v € V;* 1.

Let n > 1 be an integer. We write L¢ ,,—1 and £27n71 for the images of L¢ 1
and £27n71 by the canonical homomorphism 2 — Ma(0,,) X Og,—1 respectively.
We can easily check that the kernel of 2l — Ms(0,,) X Og,—1 is contained in
52,%1- Hence we have an isomorphism

~ 0
(2.10) (Len—1/L2n1) = (Len—1/Lin 1)

In the following, we simply write GE for GL2(0,,). By (2.5), (2.8), (2.9) and
(2.10), we obtain a homomorphism

2.11) A (£<7n_1/£27n_1)x )G Xk %fn: L,
Q ifn > 2.
Now we assume that n > 2. We can check that
(212) L5l =¢"(@ 1) [GFx 05 1 L] =a" (g = 1)(a* ~ 1),
We set
Hycn=Len1N(GE x{1}) c GE,
Hop=Len1N({1}x 05, 1) COF .
We consider the composites
Fri Hicn © £y 2 (Lenm1 /L),

an. 0
f2: HZ,n - ‘Czan—l &) (‘C’Canfl/['@”_l)x'
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We set H?,g,n = ker f; and H201n = ker f3. Assume that n is odd and n > 3. By
identifying the target of f; with @ through (2.9) and (2.10), we can check that
the image of f; equals the subgroup @y. Hence, we obtain the isomorphism

(2.13) $1.¢: Hign/Hi ¢ = Qo.
Assume that n is even. Similarly as above, we obtain the isomorphism
(2.14) ¢2: Hon/HS , ~ Qo.

3. Deligne—Lusztig variety for GI

In this section, we define a subvariety of the Deligne-Lusztig variety for GE and
analyze its cohomology. As a result we obtain Proposition 3.18.

3.1. SUBVARIETY OF THE DELIGNE-LUSZTIG VARIETY FOR GZ. Let n be a
positive integer. Let

n—1 n—1
(3.1) F:0, —0y,; inwi — Zx?wi with z; € k*C.
i=0 i=0

We regard G,, = GLo(0,,) as a variety over k*°. Let {e1,e2} be the canonical
basis of V,, = 092, The map F induces the maps

F.:V,—=V,, F:G,—G,.
We have F(vg) = F(v)F(g) for v eV, and g € G,,. We set

sz{(F(t) O)eGn teo;}.
0 t

We fix the isomorphism

(3.2) OX~TE t <F(t) 0) :

Let
1 - 1
Un:{< C)eGn chn}, v=<0 )eGﬁ.
0 1 -1 0

We consider the closed subvariety of G,

Xn={9€Gn| F(g)g_l € Unv},
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which we call the Deligne—Lusztig variety for G (cf. [Lus2]). Let GE x TF
act on X, by g — t~lgg’ for x € X,, and (¢',t) € GE x TF.

LEMMA 3.1: (1) We have

v - {g (—f;(w) —1;(.«;)) ca

S 6, ={v=xe1+yes €V, [vAF(v) €0X(e1 Nea)}; g+ eag.

det(g) € o,f}

(2) Forwv € &,,, we put

n—1

v = g v; "

=0
with v; € (k*)®2. Then &, is defined by

’Uo/\F(’Uo) Ekx(el/\eg), Z’Ui_j /\F(’Uj) S k(el/\eg)
=0

forl1<i<n-—1.

Proof. The second assertion follows from the first one. The first one is directly
checked. We omit the details.

Remark 3.2: The above lemma is similar to Lusztig’s computation for SLa(0/p?)
in [Lus2, §3.3].

Note that we have dim X,, = n. Recall that we set I’ = [n/2].

Definition 3.3: (1) We set
Y, ={ve&, |vAF*v)=0}C&, ~X,

and X = Yy = Spec k?°.
(2) Let p,: X, — X be the canonical projection induced by G,, — Gy .
We set

X, =p, (V).

This variety X,, is our main object in this paper. For an integer n > 1,
the subvariety Y,, is stable under the action of GE x T'F". Hence, X,, is stable
under the action of GE x TI'| because p, is compatible with the canonical
homomorphism GE x TF — GI} x T}
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Let (z,y) € Y,,. By (2,y) € &, we have y # 0. Since we have F?(x/y) = x/y,
we obtain z/y € 0. We set t = y/x. By F(x)y — xF(y) € 0, we have
(t7 = F(t™")zF(x) = (F(t) — t)yF(y) € o,

&3) FHe) =z, F(y) = .

Conversely, if (z,y) € &,, satisfies the condition on the second line in (3.3), we
have F?(x/y) = x/y. Hence we have (x,y) € Y,,. Therefore we have

(3.4) Yo ={(z,y) € 6, | F?(z,y) = —(z,y)}.

By this, Y,, is zero-dimensional. Note that Y,, is regarded as a generalization
of Gy in the notation of [Lus2, §3.3]. In Definition 3.3, this scheme plays a
crucial role to define X,,.

For an integer ¢ > 1, let U}(Z,n C TF denote the image of Uk, C O by the
composite 9% — DX ~ TF. Since we have F(t) —t € DX by (3.3), we have
te 05\ oxUg, .. We set

By =97\ 0;Ugk, n-
By (3.3), we obtain the map
Un: Yy — By (w,y) l—>fL‘/y

Let GE act on B, by

at +c¢

bt +d

forg=(2%) € GE. Let T act on B, trivially. Then v, is GE xT'F'-equivariant.
For t € By, we set V! = v;71(t). Then Y;! is stable under the action of T}
Note that

(3.5) g: B, = B,; t—

771 = ¢ V(@ = 1), [Bal =¢* g~ 1)
For ¢ € ko \ k, we consider the homomorphism
(3.6) Ac: OF = GEXTE, o (1c(2),2),
where ¢¢ is in (2.1).
LEMMA 3.4: (1) The map v, is surjective.
(2) For eacht € B, the action of TY on Y,! is simply transitive.
(3) The variety Y, consists of |GE| = ¢*"=3(q — 1)(¢> — 1) closed points.

The action of GE on 'Y, is simply transitive.
(4) Let ¢ € ko \ k. Then, Ac(DX) acts on Y,S trivially.
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Proof. Let t € B,,. We take an element y € 0,, such that F?(y) = —y and set
z = ty. By (3.4) we have (z,y) € Y,,, because

F(z) = -z, F(F(x)y—aF(y)) = F(x)y — 2F(y).

By vp(z,y) = t, the map v, is surjective.
Let t € B,,. By the first assertion we can take an element (xg,yo) € Y,!. Let
(z,y) € Y,!. By (3.4) we have

z/y=mofyo=t, F?(x/x0) =x/z0, F*(y/y0) =y/v0.

Hence there exists a unique element £ € 9% such that (z,y) = (£xo,&yo).
Therefore the action of TF on Y! is simply transitive.
By the first and the second assertions we have

(3.7) Yol = [T ||1Bn] = G |-

Assume that g € G fixes z € Y,, C &,. It fixes also F(z) € Y,. Since
{x, F(z)} forms a basis of V,,, we have g = 1. Thus the GZ-action on Y, is free.
By (3.7), the GE-action on Y,, is simply transitive. Hence the third assertion
follows.

Let £ € ©X. We easily check that ¢ (€) fixes ¢ € B, by (3.5). Hence ¢¢(§) sta-
bilizes Y,$. Recall that g = (¢ %) € GE actson Y, by (z,y) — (az + cy, b + dy)
for (z,y) € Y,,. Hence 1(£) acts on Y,$ by (z,y) — (£x,&y), because x = (y.
By definition, ¢ € T acts on Y, by (z,y) — (¢ 'z, & 'y). Hence the fourth
assertion follows.

In the sequel, we introduce coordinates and several functions on X,, to under-
n

stand this as in Lemma 3.5. For v = Zi:_()l viw' €V, we set v; = (x4, y;) € (k).
We define ¢; ; by
vi—j N F(v;) =tijer Aes

for 1 <i<n-—1and0<j<1i. Explicitly, we have
tig = Ti—jy; — Yi—jT]-

We have

n—1 1 n—1 1

vAF(v) = Z Zvi—j A F(v))w' = Z Ztmwi.

i=0 j=0 i=0 j=0
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Hence, by Lemma 3.1 (2), the variety X,, is defined by

-1 -1

(3.8) ( Z ziw, Z yiwl) eYy,
i=0 i=0

(3.9) top €k, > tijek forl<i<n-—1
j=0

By (3.4) and (3.8), we have

tii €hko for0<i—j5<l'—1, to;€k for0<i<l —1,
3] s

(3.10) . e
ti;=tiiy; forl<i<n—-land0<j<l'—1.
We set
[(=1)/2]
(3.11) si= >ty
j=0

for 1 <4 <2’ — 1. By the equality on the second line in (3.10) we have

I PILE if 7 is odd,

l Y i—otij —tiaje if i is even,

for 1 <4 <2’ — 1. Hence by (3.9) and the first line in (3.10) we have
(3.12) s;i €ky for1<i<2l—1.

By the first assertion in (3.10) we have ¢ ; € ko for 1 <4 <[(I’ —1)/2]. We set
¢ =xo/yo- By (3.12) and the definition of ¢, o we have

(=1)/2]
(3.13) tiro= sy — Z tyi € ko,
i=1
(3.14) yr = ¢y — xg Mty o,
respectively. We set
(3.15) Ayn =Yy x k.

By (3.12), we obtain the map

Prn: X = A1 2= (pp(x), (s (2),. .., s2r—1(2))),
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where p,, is in Definition 3.3 (2). It is not difficult to check p,, is surjective. We
set

Zps =1, (P,s) for (P,s) € Ay,.

Let Zpy, be the affine curve defined by (z%y — zy?)?~! = 1. This curve is called
the Deligne-Lusztig curve for GL2(F,). Note that the affine curve defined by
2%y — xzy? = 1 is called the Drinfeld curve (cf. [DL, p. 117]). Let Zy be the
affine curve defined by X7 — X = Y+l — Yo+l gyer k. Note that Zo
has ¢ connected components. For a non-negative integer i, let A’ denote an
i-dimensional affine space over k°.

We can completely understand X,, in the following lemma.

LEMMA 3.5: We have

Xn = H ZP,S

(P,s)EAL n
and an isomorphism
ZDL ifn= 1,
Zps~ A x Zy ifn>1is odd,
A if n is even
over k2°.
Proof. The first equality is clear. Hence we show the latter isomorphism. The

required assertion in the case where n =1 is clear. We assume that n > 2. We
show only the case where n is odd, because the other case is proved similarly.

Let ("Ea y) = (27;01 xiwiv Z?;Ol ylwl) S ZP,S- We put
-1

Ty
(3.16) Sop = — Z torr i — . t?’,O‘
i=0 0

We set ¢ = xzo/yo € ka2 \ k. We show
(3.17) sdy + s+ (T ¢Hait ek
By trr0 € k2 in (3.13) and the second line in (3.10) we have

v v
(3.18) say s = — g tor i+ tar i — 24 tiro — " t o-
=0 0 0
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By (3.14) we have
_ _ xf zy
(3.19) toryr = (=it 4+ Tt o+ Tt
T To

By the second equation in (3.9) for i = 2I’, we have Z?l:/o tor i € k. Hence by
(3.18) and (3.19) we obtain (3.17).

Note that (7 — ¢ # 0. We set
Solr Ty

(3.20) X = o it Y=o

Thus by (3.17) and (¢? — Q)yd™ € k*, we obtain X9+ X — Y9t! ¢ k. This
implies that

X _ x =yt _yatl

By (3.11) and (3.20), there exists an upper triangular matrix Ap s € GLy (k*°)
and a vector ap, € (k*°)" such that

(3.21) Wy yor—1) = (Yszvg1,. ., 220-1)Aps + aps.
Hence by (3.20), there exists a vector (ay 41, ... ,aa, b1, ba,c) € (k)3 such
that
21’
(3.22) yar = Y aiwi+ b X +bY +c
=41

By using (3.20), (3.21) and (3.22), we know that the morphism

2 21
Zps— A" X Zo;  (x,y) = (Zwiwiazyiwi) = (@) i<i<ar, (X,Y))
i=0 i=0
is an isomorphism.
Assume that n > 2. Let v,v’ € X,, and (g,t) € GE x TF'. We can check that

Pn(v) = pn(v') = Pt vg) = pa(t™"0'g).

Hence A;, has the action of GE x T such that p, is GE x TF-equivariant.
Let GE x T'F act on Yy through the homomorphism G x TF — Gf x T} The
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first projection Ay, — Yy is GE x TF-equivariant. Let

Spec k*¢ if n is even,

XP,S =
Zy if n is odd,
(3.23) X(Aaa) = JI Xes
(P,S)GALTL

By Lemma 3.5 we have the projections
Zps — Xps,
(3.24) Tt Xp = X(A1n).
Let v,v" € X,, and (g,t) € GE x TF. We can check that
Tn(v) = T (V') = Tt vg) = T (810 g).

Hence X (A1) admits the action of GEx T such that 7, is GE'x T'F-equivariant.

We choose a prime number ¢ # p and fix an algebraic closure Q, of Q. For
a variety X over k¢ and i > 0, we write H!(X) for the i-th étale cohomology
group with compact support H!(X,Q,). We put d; = dim X(A;,). Since
(3.24) is an affine bundle of relative dimension !’ we have

(3.25) H (X)) = H (X (Arn))

as G x TF representations. For a positive integer i, let UQi[1 =1+piA; C AT
We write N; for the image of Uéll by the canonical map ;" — GE'. Note that N;
equals the kernel of the natural homomorphism GE — G¥'. For t € By, we set

AL, =Y < kY C Ay,
sz = p;l(Ai,n) C Xy

3.2. GROUP ACTION ON X,,. To understand the cohomology of X,, as GE x T'F'-
representations, we need to explicitly understand some group action on it.

In the following, when we consider an element ¢ € ks \ k, we always regard
OX as a subgroup of GE by 1. Assume that n > 2. Let GE x T.F act on By
through the canonical homomorphism GE x TF — G x T}

LEMMA 3.6:
(1) The action of GE on By is transitive. For any ¢ € ko \ k C By, the
stabilizer of ¢ in GE equals O Ny.
(2) Let ( €ko\kC By . The stabilizer ofAin in GEXTE equals OX NyxTF.
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Proof. We show the first assertion. By Lemma 3.4 (1)—(3), the map vy is a
Gf: -equivariant surjective map, and Gﬁ acts on Yy transitively. Therefore, the
action of GE on By is transitive. By (3.5), we know that the subgroup Ny
fixes ¢. Since we have

|Gy /DX Nv| = |G /97| = | By|

by (3.7), the last assertion follows.
We show the second assertion. Let v': Ay, — By be the composite

pr vy
Al,n Y .l) Bl/.

Since v/ is G x TF-equivariant, the stabilizer of Ain in GI' x TF equals the
stabilizer of ( € By in it. Recall that T,f acts on By trivially. Hence the second
assertion follows from the first one.

We fix an element ¢ € k2 \ k. In the following, we study actions of subgroups
of DX Ny x TF on Af .

LEMMA 3.7: The action of T on Ain is transitive. Let (P,s) € Ain. The

stabilizer of (P,s) in T equals Ulzj;n

Proof. First, we show that, for each P € Y,C, the subgroup U};%n acts on the
subset ké:P = {P} x kL of Ain transitively. Let P € ng and ¢ € U};%n. We set

n—1
t1=1 + Z aiwi with a; € ks, a= (al/, .. .,agl/,l) € /{g.

i=l’

We consider the cartesian diagram

Pn
T pri
Xn > ALn > Yy
A A A
¢ ¢
ng = A1,n = YE’
A A

ké/,P ~{P}.
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We take (z,y) = (X1 ziw’, Y0 viw’) € X§ such that m,(z,y) = (P,s).
By definition we have

K3 3
(3.26) oy = xpay + Z ay4i—jTi,  UYrpi = Yr4i + Z ar+i—jYj
j=0 j=0

for 0 < i <n-—1'"—1. By using (3.11) and (3.26), we can directly check that

there exists an upper triangular matrix Ap = (a; j)1<i,j<i € GLy (k2) such that
the action of ¢ on ké: p is given by

(3.27) tikbhp =Ky i (Ps)— (Ps+adp).

Hence U }ébn acts on le/ﬁ p transitively. By Lemma 3.4 (2), the group T} acts
on Yl§ transitively. Let (P, so) and (P, s) be elements in Ain. We take t € T}
such that P = Pyt. We take a lifting t € TF' of t. We set

(P, S/) = (Po, So),{.

We take u € U};%n such that s’ = su. We have (Py, so)tu = (P,s). Hence we
obtain the first assertion.

Assume that t € T stabilizes (P,s). Since P is stabilized by ¢, we have
t e U}éz,’ﬂ, by Lemma 3.4 (2). By (3.27) and the assumption we have a = 0.
Hence we obtain the claim.

We follow the notation in (2.6). Let Q act on Zy by

9, B,7): Zo = Zo;  (X,Y) s (X+5qY+Zé, 2t (¥ + ﬂ))

« al
for g(a, B,7) € Q. We consider the subgroup
E* ~{g(a,0,0) € Q|ack*} CQ.

Then k> acts on Z trivially. For o € k2, we have the homomorphism

(3.28) froi ks = Q5 a— gla, (o —a?)yo, (@ — aq)vgﬂ).
For a € k* we have
(3.29) fro (@) = g(,0,0) € k™.

Let (P,s) € Ain. Let A¢ be as in (3.6). In the following lemma, we show
that Ac (D)) stabilizes Zp 5, and describe the action of it on Zp s with respect
to fy. In particular, we know that A¢(D)) acts on Zp, factoring through
A(O7) = Ac(D) /oy Uk, ,)- This lemma will be used in (3.56).
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LEMMA 3.8: (1) The subgroup A¢(9)) acts on Ain trivially.

n

(2) Assume that n is odd. Let a € 9 and (P, s) € Ain. There exists an
element ~vo(P, s) € ko such that
— we have the following commutative diagram:

A (a
ZP,S < >ZP,S

A Fro(p,s) (&) v
P;s > APs

for any o € O, and
— ’YO(P, S) =0 I.ftl/70(P, S) =0.
Ifa € o) Uk, ,, we have f,(ps (@) € k*.
Proof. Let (z,y) = (X0 ziw’, Y1) viw') € X§. We have
SCZ:CyZ fOI'].S’L.Sllf].,

(3.30) . .
yr = ay —xg Mty with ty o € ko,

where the second equality is (3.14). Let a € 9. We set a = a + b( with
a,b € 0,,. On X§ we have

Ag(a)'z = ((a+d(¢" + Q)z — b¢"y) /o,

(3:31) Ac(a)*y = (bx + ay)/a.

Hence we have
(3.32) Ac(a)(z = (Ty) = — (Ty.

By Lemma 3.4 (4), y; is fixed by A¢(a) for 1 < j <!’ —1. By this and (3.32),
for1<i<n-—1and0<j<][(i—1)/2], the function

tig = Ty —yit] =y (@i j — (Tyij)

is fixed by the action of Ac(«). Therefore, for I’ <i < 2l — 1, each s; € ks in
(3.11) is fixed by A¢(cr). The first assertion follows from this and Lemma 3.4 (4).

We prove the second assertion. For o € 0 U}(zyn we have & € k™. Hence the
latter assertion follows from (3.29). We show the former assertion. By (3.30)
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and (3.31) we have

y + b(¢T + — pratt bCe
Acla)z = (a+b(C?+ )z —b("y I ¢ (= — )
« «@
-1 7
) bCatiy, ‘ /
= Z xwt + (6/1’1:171/ + < _ ql ’O)wl mod =t 1.
i=0 %o

Hence, by (3.31) and z¢ = (yo, we obtain
bty o
P
Yy
By the proof of the first assertion, toy ; for 0 <7 <[’ —1 is fixed by A¢(«). By
(3.16) and (3.20), we have

Ac(a)*zy = a® oy +

g bty o
* — A4 1 )
Ag()Y =a?'Y + dcq_lyloﬁ-la
(3.33) Ao x b Bl
cla = - ’ — ’ .
ays ™ ayg (¢ - ¢)

We set (P, s) = —ty0/(C9  yd(¢? — ¢)). By using & — a? = b(¢ — ¢9) and

Y4 = —Yo, we can easily check that

o bty o o ¢atoty,
(a - aq)VO(P’S) = ’ ) ((a - O‘q)’VO(Pa S))q = ,a
Calygtt yit!
7,q+1
bt;{O

(d _ dq)’YO(P’ S)qul — _yg(q+1)(<q B g)

Hence we obtain the claim by (3.33).
For an integer ¢ > 1, let €; ; be the image of €1 by 21 — Ma(0;). Let ¢ € ka\k.

The decomposition (2.2) induces Ma(0;) ~ O, ® €1 ;. Let s¢;: Ma(0;) = O; be
the first projection. Explicitly, we have

a b) _, ¢ +d) — (ag +¢)
c d (1—¢

Let HY ., C Hi¢n be asin §2.2. Explicitly, we have

(3.34) s¢,it Ma(0;) = Oy (

(335)  HY(p=14Pk,Cin1 C Hicn=1+4p5" +pk,Cinr C No.

In the following lemma, we determine the stabilizer of (P, s) € Ain in G and

describe its action on Zp,. The action of the stabilizer factors through the
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finite Heisenberg group Qo in (2.6). The lemma plays an important role when
we will show Lemma 3.12. The property (c) below is important when we relate
X, to a curve on the right-hand side of (5.2) which admits an action of the
multiplicative group of the linking order introduced in §2.2.
LEMMA 3.9: Let (P,s) € Af,.
(1) The stabilizer of (P, s) in GE equals
H?,c,n if n is even,
Hy¢n ifnisodd.

(2) Assume that n is odd. Then Hi ., acts on Zp, factoring through
Hicm— Hl,{,n/H107<7n- Furthermore, there exists an isomorphism
$1¢.pst Hicn/H ¢p = Qo

such that

(a) for g € Hy¢n/HY ., we have the commutative diagram

g
Zp75 > ZP,s
v 1 ( v
¢, P,s 9)
XP,S > XP,S)

(b) ¢1.¢.ps(9) = 9(1,0,5¢1(g0)) for g = 1+ @""'gy € Npy with
go € Ma(k), and

(€) ¢1.¢,ps corresponds to ¢1,¢ in (2.13) for any (P,s) € Ain which
satisfies

(336) tlfﬁo(P, S) = 0.

Proof. We prove the first assertion. Let

n—1 n—1
g=1 + o <Z Z) e Ny, (z,y)= (;gciwi, gyiwi> € Xfr
We have
(3.37) g r = :chwl/(aercy), gy = y+wl/(b:c+dy).
Recall that

ti,j = y?(xi,j — gqyi,j) for 1 S ) S n—1and0 S _] S [(’L - 1)/2]
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We have
@ (x—Cy) =0 mod =

Let s¢ be as in (3.34) and go = (¢ 4). By (3.37) we have

g (x—Cly) =z —(ly+ @ (aC+e — CIC+d))y+w' (a—bCh) (z—Cy)
(3.38) =2 —Cly—(C1—C)scr (g0)yw' +w' (a—b¢h)(x—Cy)
=2—Cly— (¢~ )scp(go)ym’ +w? (a—bCT) (xp —Cyn).

Let g € GE be an element such that (P,s)g = (P,s). By P = Pg and Lemma
3.4 (3) we have g € Ny/. By the assumption g stabilizes each s; for I’ < i < 2]'—1.
Let 1 <4 < [(I’—1)/2] be an integer. Since t; ; is a function of z; and y; for
0 < j <1l —1, the function ¢ ; is fixed by g. Since sy is so, ¢ o is so by (3.11).
Repeating similar arguments, we can check that the function ¢; o = y¢(z; —(%y;)
for any I’ < ¢ < 2" — 1 is also stabilized by g. Hence x; — (%y; is so for
I <1i<2l'— 1. Therefore we have g*(z — (%y)

we must have

’
z — (%y mod w?. Hence,

ser(go) =0 mod @t

by (3.38). Hence the first assertion follows.
We prove the second assertion. Assume that n is odd. Let h(a,b) be as in
(2.3). Let (P, s) be as in Lemma 3.8. For

n—1
g=1+Y @'h(ai,b;)+@" '€ € Hicpn witha;,b; € k and & € ky,

=l

we set

n(P,s,g9) = (ar +br)vo(P,s)? — (ar + b ()"0(P;s) € ke,
¢17C7P75: Hl,(,n/H?,C,n = QO? g g(laal’ + bl’C’n(P’Sag) + 5)

We check that this satisfies (b) and (c). First, we consider (b). Let g=1+w" g
be as in (b). We have g = 1 + @ 'h(an—1,bn—1) + @" Ls¢1(go) with some
an-1,bn—1 € k. Hence we have the claim. Secondly, we consider (c). Let
(P,s) € Ain be an element such that ¢y o(P,s) = 0. We have (P, s) = 0 by
Lemma 3.8 (2). Hence we have the claim.
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In the sequel we show the commutativity in (a). Let (z,y) € Zps. We have
g zr = v + (ar + br C)¢yo,
g (xs — Cly) = 2 — Cly; for 0 < <2l —1,
9" (@2 = CMyarr) = zor — (Tyar — (av + bw () (zr — Cyr) — yo(¢? = Q)§,

where we use (3.37) at the first equality, the second one is proved in the proof
of the first assertion, and the third one follows from (3.38). Hence we obtain
g tor i = top; for 1 <4 <1'—1. Hence by (3.16), (3.20) and the second equality
in (3.30) we have

gY =Y +ay +by¢,
g°X = X + (av +br¢)?Y +n(P,s,9) +&.

Hence the claim follows.
The following fact will be used in §5.
COROLLARY 3.10: The action of GE on A, is transitive.

Proof. We take ¢ € ko \ k and 61 = (P,s) € Ain. Assume that n is odd. By
Lemma 3.9 (1), we have the injective map

(339) Hl,(,n\GS — Al,n; Hl,(,ng — 519.
By
[Hi¢.o\Gry | =IGi||Nv /Hi gl
=|G7|[Ma (o) /€1 ]
=¢* "2 (g —1)(¢° = 1) = |Ar]

the map (3.39) is surjective. Hence we obtain the claim.
Assume that n is even. By Lemma 3.9 (1) and

1HY o \Go | = 1A10] = ¢*" V(g = 1)~ 1)
the group GL acts on Ay, transitively.

Finally, we write down the group action of Gf X TlF on X; = X ~ ZpL. Let
g=(2Y%) € Gf and t € T}'. Then (g,t) acts on X; by

(3.40) (9,1): X1 — Xq;  (z,y) = (t (az + cy), ™ (bx + dy)).
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3.3. PRELIMINARIES. We collect some well-known facts on the first cohomology
of the curve Zy. We fix an isomorphism ks — Z(Qo); v — ¢g(1,0,~). For a finite
abelian group A, we write AV for Hom(A, Q;). We regard kY as a subset of ky
by the dual of the trace map Try, ,: ko — k. For each character ¢ € k3 \ kY,
which is regarded as a character of Z(Q)g), there exists a unique g-dimensional
irreducible representation 7, of @) such that

) Tw/|Z(Q0) ~ w/®q, and
o Tr7y(g(a,0,0)) = —1for a € ko \ k

(cf. [BH, Lemma in §22.2] and [T2, Lemma 4.14]). We regard k* as a subgroup
of @ by k¥ — @Q; a+— ¢g(,0,0). As k*-representations we have
(3.41) Tyt |px = 199,
where 1 is the trivial character of £*. We have an isomorphism
(3.42) HYZy)~ P 7w
W eky \kY
as Q-representations (cf. [T2, Lemma 4.16.1]). Let g € ka. We consider the

map (3.28). To understand the restriction Tw"fw (k) 85 in (3.45), we need the
0
following lemma.

LEMMA 3.11: Let ¢’ € ky \ kY. We have

TrTi/J’(f’Yo(a)) =-1
for all o € ko \ k.

Proof. For £ € k, let Zy¢ be the affine smooth connected curve defined by
X7+ X =Yt 4 € over k*°. Recall that Zy = ngk Zo,e. We consider the
projective smooth curve

Ze ={(S:T:U) €Pjac | SIU 4 SUI =TI + U}

We have the open immersion Zye < Z¢; (X,Y) — (X 1Y : 1). We set
Z = ngk Z¢, which contains Zy as an open subscheme. Let n € ko and
a € ko \ k, and set ¢ = a?! # 1. The action of g(1,0,7)fy,(a) on Zy is given
by

(X,Y) = (X + (=Y —70) +7.¢Y + (1 =)o) -
This action naturally extends to the one on Z. One can check that the multi-
plicity of any fixed point of g(1,0,n)fy,(a) on Z is one. The set of fixed points
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of g(1,0,n) fy, () on Zy equals

Heer{(X, %) € Afu [ X9+ X =3 + ¢} if =0,

0 otherwise.

Hence, by [Del, Corollaire 5.4 in Rapport], we have

21 —
(3.43) Tr(g(1,0,m) o 0) HE(Zo)) = 4 =0

0 otherwise.

We set

M = ker Try, /3, -
Let m9(Zp) be the set of connected components of Zy. As above, we have
70(Zo) =~ k. Hence we have H2(Zy) ~ @D, crv x as k-representations. We can

easily check that f.,(c) acts on mo(Zp) trivially, and g(1,0,7) acts on it as
multiplication by Try, /,(n). Hence we have

(3.44)  Tr(g(1,0,n) fre (a); HE(Z0)) = Z X(Tray () = q ifne M,

xERY 0 otherwise.

Note that HO(Zy) = 0. By (3.43) and (3.44) we obtain

—q(g—1) ifn=0,
Tr(g(1,0,n) fro(@); HE (Z0)) = { ¢ if n € M\ {0},

0 otherwise.

We have ¢'|ps # 1 by the assumption ¢’ € ky \ kY. Let H!(Zy)[¢'] be the
/-isotypic part of H}(Zp). By (3.42) we have H}(Zo)[y'] =~ 7ys. Therefore we
have

Tr 7y (fro (@) = (fw( ); HY(Zo)['])

2 Z W) Tr(g(1,0,m) £, (@); H(Z0))
neksa
1
=, —da=-D+q > ¥ 'm)=-1
¢ ( neM\{0} )

Hence the assertion follows.
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We write 441 for the abelian group {z € ky | 297! = 1}. We regard
X € Hyy1 as a character of f,,(ky') via the homomorphism

T fro(ky ) = tgi1;  fro(2) = it
The kernel of m equals the subgroup £* C Q. The image of f, (k2 \ k) by

7 equals pgr1 \ {1}. By (3.41), the action of f,,(k5') on gar (ky) factors
Y0
through 7. Hence for each vy € k2, we have

(3.45) mwlan~ B x
xEuy, M1}

as fy, (k5 )-representations, because both sides have the same trace by Lemma
3.11.

In the sequel, we consider the subgroup N; C GE and describe characters
of it. Note that N; is abelian. We take a K-embedding Ko < My(K). We
have the isomorphism N; ~ Ma(oy); 1+ @'z + = mod pl,. For a character
X: 0 — Q; , the conductor exponent of x means the least integer » > 0 such
that x|pr = 1. Let ¢: 0 — QZX be a character of conductor exponent n. For an
element 8 € My (0;/) we consider the character

Ya N Qs g (Tr(B(g — 1)).
We have the isomorphism

Kt Ma(or) > Hom(N;, Q;); B+ 1)s.
The group GE acts on Ma(0y) by conjugation. By the above isomorphism, GE
acts on Hom(Nl,QéX) by ¥g — ¢j with Pj(z) = Ys(g 1 xg). We have the

commutative diagram

Mg(op) i > HOIn(Nl,@Z)
A

\%
551/ = - Hom(Ué(zyn,@;),

where the right vertical arrow is induced by the inclusion Ué@,n — N.
Let w € (TF)V. We take an element 3 € O such that Valor,  =wlpr .
2,m 2,m
We define a character o, of DX N; by
(3.46) ou(zu) = w(@)s(u)
for x € ©X and u € N;.
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3.4. CoHOMOLOGY OF X,,. In the following, we study the étale cohomology of
X, by using results in §3.2 and §3.3. Our aim is to show Proposition 3.18.

Now we assume that n > 2. Let ¢t € By. Recall that X!, is open and closed
in X,,. We set

Wy = HM(X}) C HY' (X5).
Let ¢ € ko \ k. We put
Gne=9XNy xTF c GE x 1F,

where O is regarded as a subgroup of GZ by i¢ as before. We regard ¢ as an
element of By. Recall that p, is G x TF-equivariant. Then X$ admits the
action of G, ¢ by Lemma 3.6 (2). Hence we can regard W, as a representation
of Gn,(-

Assume that n is even. By n = 2I’, the action of T/ on AS

1, 1s simply

transitive by Lemma 3.7. By Lemma 3.8 (1), we have

(3.47) Welpxxrr = P wow™
we(T])Y

as 9 x TF _representations. We regard

Hompr (w™, W)

as a representation of O X Ny.. This is a character of O¢ N;y which is an extension
of w by (3.47). Hence this is isomorphic to o,. Therefore we have

(3.48) We o~ @ ow@w
we(T)Y

as Gy, ¢-representations. By Lemma 3.6 (2), the stabilizer of W, in GE x T'F
equals Gy, ¢. The subspaces {W};}cp, are permuted transitively by GE xTF.
Hence, by [Se, Proposition 19 in §7.2], we have isomorphisms

HYN X))~ @ mdd ™ (o, 0w
we(TF)
(3.49)

GY -
~ @ (IndD%Nl,U“’)@w 1
we(T)Y

as GI' x TF representations.
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We assume that n is odd until (3.59). By (3.25), we have

(3.50) We~ @@ HUXpo) CHMNXn)~ @ HXps).
(Ps)eas (P,s5)€An

For an element 3 € Mz (0y/), we write 3 € Mz (k) for the image of it by the canon-
ical map My (0y7) — Ma(k). In the following lemma, we understand characters
of Ny41 appearing in We.

LEMMA 3.12: Let 8 € My(oy). Assume that the character ¢g of Ny 11 appears
in WC‘
(1) We have B € O, and B € ks \ k. The reduction (3 is conjugate to the

matrix

0 1
b= ( Nty e(F) Trkz/k@) & M)

(2) The stabilizer {g € GE' | V% =1} equals OF Ny

Proof. Since n is odd, we have [ ="+ 1and n =20' +1. We set 8 = B9 + 51
with 8o € Op and fy € €1 ,. By the former assertion in Lemma 3.9 (2), the
subgroup HY ¢.n acts on W trivially. By the assumption and (3.35), we have
Ya(l+ ol t1h) =1 for any h € € ;. By tr(Boh) = 0, we have

(3.51) Y@ r(Bih)) = (tr(@ 1 BR)) = Ys(1 + = tTh) =1

for any h € € ;. We put 1 = h(a,b) with a,b € oy in the notation of (2.3).

Assume that 81 # 0. By ¢ € ka \ k, we can check that the image of the map
iy —oy; he tr(ﬂlh)

equals the ideal (a,b), and this ideal contains p! ~1/p!" by 81 # 0. Hence, by
(3.51), we have ¥ (p”~!) = 1. Since 1 has conductor exponent n, this is a
contradiction. Hence we have $; =0. Therefore we have 5=y €9O;. By (3.42),
we have an isomorphism

(3.52) Hl(Zo)~ @ x®
x€ky \kY

as Z(Q) ~ ko-representations. By (3.52), there exists x € kY \ kY such that

¥s(1+ @ g0) = x(s¢,1(90))
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for go € Ma(k) by Lemma 3.9 (2). By s¢,1(z0) = o for zo € ko, we have

(3.53) ¥p(1+ @ o) = x(x0)

for 2o € ko. We identify p"~1/p™ with k by @" 1z +— 2 for z € k. We set

1/’0 = 1/’|p"*1/p"zk € kY \ {1}
The left-hand side of (3.53) equals v o Try, x(Bzo). Hence, by (3.53) and
X € kY \ kY, we have 3 € ky \ k. We set 8 = a + b with a,b € k. By 5 € ko \ k
we have b € k*. Let M = (a-‘,—b(é-‘,—(q) 9y € GF. Then, MEM~! equals B.
Therefore the first assertion follows.
The second assertion follows from the first one and [Sta, §2.1].

The following lemma is a well-known result on representation theory of a
finite Heisenberg group.

LeEmMA 3.13 ([BF, (8.3.3) Proposition]): Let G be a finite group and N a
normal subgroup such that G/N is an elementary abelian p-group. Let x be a
character of N, which is stabilized by G. Define an alternating bilinear form

hy: G/N x G/N = Qg5 (91,92) = x([91, 92]) = (919297 *95 ).

Assume that h, is non-degenerate. Then there exists a unique up to isomor-
phism irreducible representation p, such that p,|n contains x. The represen-
tation p, has degree [G : N]'/? and the restriction p, |y is a multiple of x.

COROLLARY 3.14 ([Sta, §4.2]): Let 13 be a character of N; appearing in W.
Let 95 be a character of U }{27an which is an extension of 1g. Then there exists
a unique irreducible representation p Ts of U}Q’n]\flr of degree q containing 3.
We have

PJB|U}(MNZ = J?q-
Moreover, every irreducible representation of U}Q’n]\flr containing g has this

form.

Proof. We set G = Ull(z,an” N = U}Q’an and x = 1;5. By applying Lemma
3.13 as in [Sta, §4.2] we obtain the assertions.

Definition 3.15: We identify Uy} with ky by 1+ @" "'z~ z for = € ky. For
a character w € (D), we say that w is strongly primitive if the restriction
w|U?1 does not factor through the trace map Try, /1 k2 — k.

2
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In this definition, we follow [AOPS, Definition 5.2]. Note that this definition
does not depend on the choice of the uniformizer . We write (O,),, for the

set of all strongly primitive characters of 9. Note that

(D7)l = (= 1)(¢* - 1).

For a strongly primitive character w, we consider the restriction
.77l X
Uw|U}< N Uk N = Qg

of o, in (3.46). We obtain the representation p,,,| Lo of Uk, ,, N by Corol-
lary 3.14, for which we simply write p,,. Note that thg isomorphism class of p,,
depends only on o.;|UI1(2m.

Let A¢: 9% — Gy, ¢ be the diagonal map in (3.6). We consider (3.50). For
each (P,s) € AS > the subspace H!(Xps) of W is stable under the action of
Ac(0x Uk, ) by Lemma 3.8 (1). Recall that k* C Q acts on Xps trivially. By
the latter assertion in Lemma 3.8 (2), the restriction W<|A<(0; Uk, ) is trivial.

We fix the isomorphism
X xXrrl ~ . ~q—1
O /00 Usy = Hgr1; = ad .

By this, the restriction WC|A<(05) can be regarded as a pg1-representation.
Recall that

WC ~ @ H(} (Xpys).
(P,s)GAf’n

By Lemma 3.4 (2) we have |A§n| = ¢*(™=2)(¢> — 1). Hence have
[y \ BV [JAS | = (7))t -

n /stp

By Lemma 3.8 (2), (3.42) and (3.45), the representation WC|A<(D§) is isomor-
phic to

(3.54) P T

X€#;/+1\{1}

Ly v z for

as lg+1-representations. We identify U}g; with ko by 1 + w"™™
x € ky. Let (P,s) € Ain. By the latter assertion in Lemma 3.7, we can regard
H!(Xps) as a representation of {1} x U}g; Note that W¢|A<(U;71 ) is trivial
; .
by (3.54). By the property (b) in Lemma 3.9 (2) and (3.52), we have
Hcl(XP,S) = @ P

P eky\kV
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as {1} x Uﬁ;i—representations. By the former assertion in Lemma 3.7, we have
an isomorphism

F
(3.55) Welgiyxrr ~ Ind"" HY(Xp) ~ @ w®a

Un—l
Ko,n wE(Tf)Svtp
as TF-representations. By (3.54) and (3.55), we have an isomorphism
(3.56) Weloxsrr = T P wxew!
WE(TE) Yy XERY 1 \ {1}

as O x TF-representations, where  is considered as a character of O through
OX = fgt1; o — a?~!. For a strongly primitive character w we put

0, = Hompr (w™, W),

which is regarded as a representation of O Ny, Since W contains only strongly
primitive characters by (3.56), we have an isomorphism

(3.57) We~ P Goow!

we(TH) %y

as G, ¢-representations.

LEMMA 3.16: The O, Ny -representation o, is irreducible and satisfies

o U“"U}(Q,HNV ~ p,, and

o Tro,(¢") =—w({) for (' € ka \ k.

Proof. Let 9 C GE'. By (3.56), we have an isomorphism

(3.58) Gulox ~ @ wx
x€ny \{1}

Let ¢’ € k2 \ k. We have ZX€#QV+1\{1} x(¢’971) = —1 by (971 # 1. By (3.58) we
have Tra,,(¢") = —w(¢’). Since 7, is contained in W¢, there exists 3 € O/ \ o}/
such that o, contains the character g of N; by Lemma 3.12. By dima,, = ¢
and Corollary 3.14, there exists a character ’LZB of U }(27an which is an extension
of 13 such that o[y Ny PG The irreducibility of 7,, follows from the
irreducibility of 5W|U}<2,TLNL/ ~ Py, in Corollary 3.14. We have

~ e
O'w|U}<2’an = p$ﬁ|U}<2’an =~ 1/)5q-
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By (3.58), we have 3W|U}(2 = w|%1( . Hence we have W|U}<2 o= QZ5|U}(
: - n

n 2,Mn

Therefore, for z € U11<2,n and y € N;, we have

ow(zy) = w(@)s(y) =vs(@)Ps(y) = Ps(ay).
Hence we obtain 5W|U;1( N, = pw by the uniqueness in Corollary 3.14.
2,m

Remark 3.17: See [AOPS, Lemma 5.6], [BH, Proposition in §19.4] and [Sta,
§4.2] for more details on o,,.

By the former assertion in Lemma 3.6 (1), we know that the subspaces
{Wi}iep, are permuted transitively by GE x TF and the stabilizer of We
equals G, ¢. Hence, by (3.57), we have isomorphisms

3.59 H*(X,) ~Ind " 5W ~ Ind f; Ow) Quw 1
¢ Gny¢ < On N,

7, n N7

we(TF) %

stp

F F :
as G, x T -representations.

For each w € (TF)Y

w )sep We set

GF e
IndD" o, if n is even,

(3.60) me=4 N
IndDiNl,aw if n is odd.

Note that we have dim, = ¢" '(¢ — 1). The isomorphism class of 7, does
not depend on the embedding ¢¢: 9 < GE. The representation 7, is called
a strongly cuspidal representation of GZ in [AOPS, §5]. In the case GL(2),
strongly cuspidal is equivalent to cuspidal by [AOPS, Theorem A]. Hence, in
Introduction, we simply call 7, cuspidal. This representation is irreducible.
This class of representations is described also in [Onn, §6.2] and [Sta, §4.2]. Let
H!(X,,)stp be the maximal subspace of HJ'(X,,) consisting of strongly primitive
characters of T'F".

PROPOSITION 3.18: Let n > 2 be a positive integer. Then we have an isomor-
phism

H(Xp)stp @ T, Q@w !

we(TH )y

F F :
as G, x T, -representations.

Proof. The required assertion follows from (3.49) and (3.59).
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Remark 3.19: (1) If nis odd, as in (3.59), we have H*(X,,)stp = H2(X,).
On the other hand, if n is even, this does not hold as in (3.49).
(2) The above proposition is regarded as a geometric realization of the cor-
respondence in [AOPS, Theorem 5.10] for GL(2) and o of characteristic
p. The correspondence is a generalization of the Green correspondence
w > 7, in Lemma 3.20 in the case GL(2). See also [AOPS, Introduc-
tion].
(3) Let 0 € Gal(K2/K) be the non-trivial character. Then we have 7, ~ 0.

Recall the cohomology of X1 = Zpy,. We regard (k)Y as a subgroup of (k)Y
by the dual of the norm map k5 — k*. We write H}(Zpr,)stp for the maximal
subspace on which k5 acts not factoring through the norm map k5 — k*. For
any w € (k5)V \ (k*)V, there exists an irreducible cuspidal representation m,,
(cf. [BH, §6.4]). We identify k5 ~ T{" as before. We set

(T )etp = (k)Y \ (K7,
The following is well-known as the Deligne-Lusztig theory for GLy(F,), which
gives a geometric realization of the Green correspondence in this case.

LEMMA 3.20: We have an isomorphism

Hcl(Xl)Stp: @ o, Quw !

we(T{),
as GY' x TF -representations.

Proof. This is a special case of the Deligne-Lusztig theory in [DL] (cf. (3.40),
[T2, §4.3] and [Y]).

Remark 3.21: (1) Asin Remark 3.19 (2), we have 7, ~m,- for we (T1)Y,.

(2) See [BH, §6.4] for more details on cuspidal representations of G

4. Deligne-Lusztig variety for O,

We use the same notation for the quaternion algebra D at the beginning of §2.2.
In this section, we define a closed subvariety of the Deligne-Lusztig variety for
O5,_, and compute its cohomology. Analysis in this section is very analogous
to the one in §3. Our main result in this section is Proposition 4.12.
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4.1. DELIGNE-LUSZTIG VARIETY FOR O | AND ITS SUBVARIETY. Let n be
a positive integer. Let G/, be the group consisting of all 2 x 2 matrices (2Y)
such that ¢ € wo,_1 and a,d € 0. and b € 0,,_1. We regard this as an affine
variety over k*°. By wo,_1 C 0, we have a determinant map

. ! ~X
det: G}, — o0, .
Let
o~ ;L ~ ~ 0~
Vo=0,®0,_1, V,=won_1Po0,, V, =0 "

These V,, and V! admit actions of G}, by right multiplication. We have the
canonical surjective map V,/ — V,, and the injective map V,, < V. Let {e1, ez}
be the canonical basis of V). Let F be as in (3.1). We define morphisms

F':V, =V zer +yes— wF(y)er + F(x)es,
F': Gl — Ghs g @' Fg)' ™"

where ¢’ = (2 }). Explicitly, we have

o[ F(d) Fle)w™! _fa b ,
Flg) = (wF(b) F(a) ) for g = (c d) € G-

Note that we have
det F'(g) = F(detg)  for g € G},
F'(vg) = F'(v)F'(g) inV, forveV, and g€ G,.
On the other hand, for elements v € V,, and w € V!, we define an element
vAwin A’V ~8,(e1 Aey) by 0 Aw for any lifting & € V} of v. This is well-
defined. In the same manner, for elements v € V,, and w € wV,,, by considering
@V, C V', we can define v Aw € \* V.
te D;}

We set
TF = Lo eq,
0 F(t)
(4.1) OX ~TF, tr—><t 0).

and fix an isomorphism
0 F(t)

This group T'f" equals the one defined before and is denoted by the same letter.
Let U/, be the group of upper triangular matrices in G/, with 1’s on the diagonal.
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Then we set
XY ={9€G, | Fgg " €U},

which we call the Deligne-Lusztig variety for O, , (cf. [Lus, §2]). Let G/F"
denote the set of F'-fixed points in G,,. Then we have

G = {[a,b] - <£b ?EZD €q,

Recall that ap = ¢F(a) for a € O,. We fix an isomorphism

a€ D), beDn_l}.

G;F/ = 0%, 13 la,b] — a+ pb.

Let OF, 1 x TF act on XP by z + tad for x € X and (d,t) € O, x T
The reduced norm map Nrdp,x: D* — K™ induces

NI‘dD/K: 02><H71 — 0:.

LEMMA 4.1: (1) We have

J— J— € y /! X
Xb = {g <wF(y) F(:c)) e G, detgeon}

~ 6P ={v=(2,y) =ze; +yea € Vp |vAF'(v) € 0X(e1 Aea)};

g+ e1g.

2) Let OF , x TF act on &P through the isomorphism in 1. Fort € TF,
2n—1 n n g n
v € G and d € O, _,, we have

vd A F"(vd) = Nrdp i (d) (v A F™*(v)),
to A2 (tv) = t2(v A F2(v)).
Proof. The claims follow from direct computations. We omit the details.

Note that we have dim X2 = n. As before, we set | = [(n + 1)/2] and
I'=[n/2].

Definition 4.2: (1) We set
VP ={ve&? |vAF?v)=0}c6l~XxP.
(2) Let pP: XP — X be the canonical projection. Then we put

X7 = ()" ("),
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Let
n—1 n—2
(2,y) = (Z z;w", Zyiﬂwz) € 6P,
i=0 i=0
Explicitly, Y, is defined by
xo € ks, wi,y; €k for1<i<mn-—1
Hence, this variety is 0-dimensional and consists of ¢*(*~1 (¢*—1) closed points.
By Lemma 4.1 (2), the variety Y,” is stable under the action of O, | x T\F'.
It equals the image of G’Sl C XD by the isomorphism X2 = &2, Hence, the
O, _,-action on it is simply transitive. We consider the surjective map
v Y,P = BP =0, 1 (z,y) —y/a
Let O, _; act on BY by
F(a)t + F(b)
4.2 bp: BY — BY; tw
(4.2) a+bp: B, s bt 4 a

for a+ b € O, , where a is regarded as an element of 9,,_1 by the canonical
map O, — O,_1. Let TF act on BY trivially. Then v? is O _; x TF-
equivariant. For t € BY we set

VP = @wP)y () cYP.

n,t = n
The scheme X2 admits an action of O, _; x T.F'| because pZ is compatible
with the canonical homomorphism O, x TF" — 0| x T and Y,” is stable

under the action of O | x T/F". Let

n—1 n—2
e = (L owt Y paw') € i
i=0 i=0

The variety X2 is defined by

Zx?zi,j — Zy}zyiﬂﬂ- €k for1<i<n-—1,
(4.3) =0 j=1

xo € k3, wi,y; €k for1<i<l—1.

We put
[(i-1)/2] [i/2]
(4.4) S; = Z x?mi_j — Z yjyiﬂ_j forl’ <i<mn-—1.
=0 =1
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Let
I={icZ|l<i<2(-1)}
By (4.3), for I’ < i < mn — 1, we can check that

L L 1 e s

(45) 45— D im0 TITig = D5y YiYit1—j — xf;; if 7 is even,
: i t i i 1 g s s

D im0 TG = iy Y Yit1—j + y?;l)/Q if ¢ is odd.

Hence we have s; € ks for all i € I by (4.3). We set
(4.6) Ao, =YP x kL.
We obtain the surjective map
Py X7 = Doy x = (py (@), (si(2)ier)-
We can check that A, , admits the action of O, ; x Tf" such that p2 is
O, 1 x TF-equivariant. We set
ng = (pg)_l(P,s) for (P,s) € Ag .

LEMMA 4.3: We have

xP= J[ 2B,
(P,S)GAQ’.,L

and an isomorphism

A=t x Z, ifn is even,

7B~
® Al-1 if n is odd.

Proof. We prove only the case where n is even. We have [ =1’ and n = 2. By
(4.5) we have

+1
531—1 + S91—-1 — yf € k.

By setting

S21—1 Ui
4.7 X = Y =
( ) :I:g+1 ’ Zo

)

we have X9+ X — Y9t € k. By (4.4) and (4.7), there exists an upper matrix
Aps € Mj_1(ke) and ap, € klzfl such that

(4.8) (w1, .y x21-2) = (Ysyia1,- - y21-2)Aps +aps.
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By (4.7) and (4.8) there exists a vector (aj41,...,a2-2,b1,ba,¢) € kl;rl such
that
202
(4.9) Tao1= Y ayi +hi X +bY +e.
i=l+1
By (4.7), (4.8) and (4.9), we know that the morphism
2l-1 202

Zps — AT X Zo; ( d Y yi+1wi> = ((Yi)it1<i<ar—1, (X, Y))
i=0 i=0
is an isomorphism. Hence the required assertion follows.

Remark 4.4: Compare Lemma 4.3 with Lemma 3.5. For varieties X and Y over
k*, we write X ~ Y if X ~ Y x A’ with some non-negative integer i. Let n > 1
be an integer. By the lemmas we have

Zy if n is odd,

Zpgr~ for (P,s) € A1 n,
Speck?¢ if n is even,
Z if n is even,

ZP g~ 0 for (P,s) € Agp.

Speck?® if n is odd,

This is asymmetric with respect to the parity of n. This causes the asymmetry
mentioned in [BH, §54.8].

For t € BP | we put
AL, =Y x kN C A,

X = () H(A,) € X

Let
Spec k?¢ if n is odd,
XB, =47
(4.10) ' Z if n is even,
X(Aon)= ] XE.
02€A2 ,

By Lemma 4.3 we have the projections
ZP = XP,,

(4.11) XD X(Ag,).



Vol. 226, 2018 DELIGNE-LUSZTIG VARIETIES 915

We can check that X (As,) admits the action of O | x T.f' such that (4.11)
is O | x TF-equivariant. We set da = dim X (Az,,). Since (4.11) is an affine
bundle of relative dimension [ — 1, we have an isomorphism

HEHXY) ~ HE (X (D))
as Oy, x T representations.

4.2. GROUP ACTION ON X2 We study group action on X2 similarly as in
§3.2. Let O, 1 xT.F act on Y} and BP through the canonical homomorphism
O, 1 xTE - 05 | xTF.

LEMMA 4.5: The action of O, _; on BP is transitive. The stabilizer of 0 € BP
in OF,_, equals DXUZ .

Proof. The group O , acts on Y;? transitively. Since v is an O ;-equi-
variant surjective map, O , acts on BZD transitively. By (4.2), we can know
the stabilizer of 0.

Since T} acts on BP trivially, the stabilizer of Agyn in 05 | x TF equals
OXUR~ < TF.

LEMMA 4.6: The action of TY on AJ, is transitive. For (P,s) € Aj,, its

2,n

stabilizer in T equals Uf(l;lI

Proof. The group T}/ acts on Yl,Do transitively. Hence, to prove the first asser-
tion, it suffices to show that, for each P € YLDO, the subgroup U }Qm CTF acts
on the subset kj p = {P} x kj C AJ , transitively (cf. the proof of Lemma 3.7).
Let P € Yl% and t € U}{%H. We put
n—1
t=1+ Zaiwi with a; € ko,

i=l
s = (si)ier, a=(a;)ier € k3.
We can check that there exists an upper triangular matrix Bp € GL;_1(k2)
such that ¢ acts on ké p by
(4.12) kyp — ki pi  (Pis) v (P,s+aBp).

Hence U}Qm acts on kj p transitively. Therefore the first assertion follows. If ¢
stabilizes (P,s) € AJ,, we have a = 0 by (4.12). Hence the latter assertion
follows.
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By definition, we have

(4.13) yi=0 forl<i<i—1
on XD,
LEMMA 4.7: (1) The action of the subgroup O in O, | on Aj, equals

the one of TY.
(2) Assume that n is even. For a € O and (P,s) € A§, we have the

commutative diagram

(e,a™h)

D D
ZP,S = ZP,S
\ _ \
9(&,0,0)

D D
XP,S = XP,S'

Proof. We simply write o for (a,a™!) € DX x TF. We have
(4.14) o*r=xz, o*y=(F(a)/a)y.

By this, yF(y) is fixed by the action of o’. Hence s; for ¢ € I is so. Hence the
first assertion follows.

We prove the second assertion. We assume that n is even. By the above
argument sg;_1 is also fixed by o/. By (4.13) and (4.14) we have o/*y; = a4~ Ly,
and hence

*X =X, oY =a"ly
by (4.7). Hence the required assertion follows.
Let Hgyn C Hj p, be as in §2.2. Explicitly, we have
HY, =1+ ph, +ple, € C Hop = 14 pi ' +plley c URL,
LEMMA 4.8: Let (P,s) € Aj,,.
(1) The stabilizer of (P, s) in O, _, equals
HY, ifnis odd,
Hy ,, ifn is even.

(2) Assume that n is even. The group Hs ,, acts on ng factoring through
Hy, — H27n/H8,n. Let Hg,n/Hgm act on ng = Zy through the
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isomorphism ¢o: Hyn/H3, ~ Qo in (2.14). For each d € Ha,/HY ,,
we have the commutative diagram

d
D D
ZP,S = ZP,S
\ \
$2(d)
D D
XP,S > XP,s'

Proof. Let (z,y) € Xp, and

d=1+w'a+ b e US™ witha,be O.
We have
(4.15) d*z =2+ o' (ax +by), d'y=y+ N (Fb)x+oF(a)y).
For i € I, by (4.13), we have s; = Zg(ial)/m zfzi—j. We set

a:ZaiwiED, SZ(Si)ie], a:(ai)igeké.
i=0

Then, by (4.13) and (4.15), there exists an upper triangular matrix
Ap € GL;_1(k2) such that the action of d on ké,P is given by
(4.16) kip— kip; (Ps)— (Ps+adp).

Assume that d € Oy, _; stabilizes (P, s). Since d stabilizes P we have d € U3 .
By (4.16), we must have a = 0. Hence, we obtain the first assertion.
We prove the second assertion. Assume that n is even. Let

d=1+w?ta+ ¥ e Hy, witha= Zaiwi, b= Zbiwi S8y
i=0 i=0

and (z,y) € ZIQ,S. By (4.15), we have
d*r; =z; forl<i<2l—2,
d*xoi—1 = ®a1—1 + boyr + aoro, Ay =y + blxo.
Note that s,_; = Zi;é xlx9;_1_;. Therefore, by (4.7), we have
d*X =X +b)Y +ap, dY =Y +0b].
Hence the required assertion follows.

COROLLARY 4.9: The action of O, _, on Ay, Is transitive.
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Proof. We take an element 6, € Aj . Assume that n is even. By Lemma 4.8
(1) we have the injective map

(417) Hg,n\(’);n_l — Ag,n; H27nd — 62d
By
| H2,\Os, 1| =105 _y[|Up 1/ Ha
=105 11190
:qS(n—Q) (q2 _ 1) — |A2,n|

the map (4.17) is surjective. Hence we obtain the claim.
Assume that n is odd. By Lemma 4.8 (1) and

|HS \O%, 1| = |A2n] = "D (¢ — 1)

we obtain the claim in the same way as above.

4.3. COHOMOLOGY OF X2 In the sequel, we describe characters of the abelian
subgroup Uj5 C O, _; similarly as in the end of §3.3. We fix an isomorphism
Op-1 = UB; © — 1+ ¢"z. Fix a non-trivial additive character ¢: 0 — QZ
of conductor exponent n. Let Trdp,x: D — K be the reduced trace map. For
any B € Op_1, let

WE:UR = Q2 d(Trdp i (Bx — 1))
We have the isomorphism x: O,,_1 ~ Hom(Ug,QeX); 8 — 1/)[?. Then we have

the commutative diagram

On1 " =Hom(UR,Q,)
A

Y
5lr = >H0m(U}(2,QZX),

where the right vertical arrow is induced by the inclusion U }(2 — UpR. Let
w € (TF)V. We write 13 with some 8 € Oy for the restriction wlyr . Then we
2

obtain a character 1/)}; of UJ. We define a character w of O XU} by

(4.18) ol (zu) = w(x)d)g(u)

w

for x € O and u € U},. See also [BF, (6.5.2)].
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For each t € B we set
WP = B (XD © B (XD).

First, we consider the case where n is odd. In the same way as (3.48), by
using Lemma 4.6 and Lemma 4.7 (1), we have an isomorphism

D ~ D
Wo'loxumxrr = @ o, Ow
we(T)Y

as DXUR x TF-representations, where w is the character of OXUP in (4.18). In
the same way as (3.49), by Lemma 4.5, we obtain an isomorphism

(4.19) HY'Y(XD)~ @ (Ind Z"U; cPYeow
we(T)Y
as O3, | X TF representations.
Secondly, we consider the case where n is even. In the sequel we analyze the
cohomology H?1(XLD). We have an isomorphism

HT'(XD) > @ HIXE).
(P,s)€A2
We have dim H"1(XP) = ¢*~*(¢ — 1)(¢*> — 1).
By Lemmas 4.6 and 4.8 (2) we have an isomorphism
W()D|{1}fo =~ @ w®4.
oJE(TF)Stp
Hence, by Lemma 4.7, we obtain

W loxxrr = D D wouw

WE(TE) Yp XEhgy 1 \{1}
as DX x TF-representations. Here, x € u>1/+1 is regarded as a character of O
by OX — pg1; a— al=L.
For a strongly primitive character w we set

55 = Homgr (w, W).

w
LEMMA 4.10: The representation 62 is irreducible and satisfies
) 5£)|U}< Uy Is a g-multiple of the character 0£|U}< Uz and
2,m 2,m

o Tral(¢) = —w(C) for ¢ € ko \ k.

Proof. The required assertion is proved in the same way as Lemma 3.16.
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Remark 4.11: See [BF, §9] or [BH, Lemma 2 in §54.6 and §54.8] on o

We have
WP ~ @ P ow
we(TH)%

stp

as DXUR"' x TF-representations. By Lemma 4.5, we obtain

Hn—l(xD) ~1 dOZXn—IXTf WD
c n) =M=t pr Vo

@ (In do2nUTl‘ 155)@“’

( n )stp

(4.20)
we

as O, x TF_representations.

We set
Ind 2" - r_ob ifnis even,
(4.21) P = oo
Ind Z"U; ol if nis odd.

We have dim p2 = ¢"~ 1.

PRrROPOSITION 4.12: Let n > 1 be a positive integer. We have an isomorphism

HEHX )stp = @ P Ow

we(T)stp
as O | X TE -representations.
Proof. The required assertion follows from (4.19) and (4.20).
Remark 4.13: Similarly as in Remark 3.19, we note that
HE ™ X )stp = HE 7N (X))
when n is even.

In the lemma below, we check that pD is irreducible by formal arguments
on the basis of known results. As a result, we know that the isomorphism
in Proposition 4.12 gives an irreducible decomposition of H?~*(XLE)s, as an
O, x TF-representation.

LEMMA 4.14: The representation pL is irreducible.
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Proof. We have the surjective homomorphism
g: KSO5=K*O0f = 0%, _1; whz—z withze Of

where Z denotes the image of z by OF — O, _,. We consider the commutative
diagram

X X
K5 0p = 03,1
A A

X 9 3z
n X n
KyUp = OxUp,

where ¢’ is the restriction of g to K; UJ. Assume that n is even. Let /P be

the inflation of 32 by ¢’. It is known that Ind% KXUp o'P is irreducible by [BH

Proposition (1) in §54.4]. We set p’ = Ind}f Sf 'D

is irreducible. Let pZ be the inflation of pD by ¢g. By the Frobenius reciprocity,

. Since p’ is semisimple, this

we have
HomK;(’)é (ﬁlaﬁu[u)) = I—IOIHOQ>< (pw’pw) 7é 0.

Since p' is irreducible, we have an injective K5 O} -equivariant homomorphism
P — pP. Since both sides have the same dimension, this is an isomorphism.
Hence p? is irreducible and pL is so. Also in the case where n is odd, we can
show that pL is irreducible in the same manner.

5. Conjecture on stable reduction of Lubin—Tate curve

Let X(p™) be the Lubin—Tate curve with Drinfeld level p”-structures. In this
section, we state a conjecture on “unramified components” in the stable reduc-
tion of X(p™)c. See Introduction for these components. The cohomology of
these components is related to cupspidal representations of GLo(K) which are
constructed from admissible pairs (K3/K, ), where £ is some smooth character
of K5, in the sense of [BH, Theorem in §20.2]. These cuspidal representations
are called unramified in [BH, §20.1]; which we recall the definition in §5.2. In
this sense, we call these irreducible components unramified. To state a conjec-
ture, we construct a curve based on X (A;,) and X (Asg,,) in §5.1. The curve
is very similar to a stable curve considered in [W1].
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5.1. CONSTRUCTION OF CURVE. Let n > 1 be a positive integer. We set
Il=[(n+1)/2] and I’ = [n/2] as before. Recall that we set
A, =Yy x kg, Ay, = YlD X kéﬁl
in (3.15) and (4.6) respectively. We set
G,=GI'x0f ..

Let X (A1) and X (Asz,) be as in (3.23) and (4.10) respectively. We write T,
(vesp. Ty ,,) for T} acting on X (Ay,) in §3 (resp. X(Agy) in §4). Note that
TF, and Ty, are the same group (cf. (3.2) and (4.1)).

We consider the product X (A1) x X (Asg,,) having the action of

F F
Gp xT7,, xTy,,.

Let A: O < T, x Tf, be the anti-diagonal map defined by t — (¢,¢71) for
teOX. Let

Yo = (X(A1n) X X(A20))/A(D7).
Let X, = (X, x XP)/A(DX) be as in Introduction. Then, as mentioned
there, the projection X,, — Y, is an affine bundle. Let DY act on Y,, as
(t,1) € Tf, x T4, fort € O). Then the curve ¥;, admits the action of G, x O%.
We consider the quotient

An = (Al,n X Ag,n)/A(D:)

The action of A(D) on Ay, X Ay, is free by Lemmas 3.7 and 4.6, because of
max{2l’,2l — 1} > n. Hence we have

1 itn =1,
(5.1) [Anl =9, . ) )

" q-1)(¢*-1) ifn=2

Specifically, Y;, is a disjoint union of |A,,| copies of the curve

ZDL ifn= ].,
Zo ifn>2.

T =

The action of G,, on A,, is transitive by Corollaries 3.10 and 4.9. We take an
element ¢ € ko \ k. Let

e 51 =(P,s) e Ain such that t; o(P, s) = 0; see (3.36), and

[ ] 52 S Ag,n
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We write ¢ for the image of (d1,d2) € Ay, X Ay, under the canonical map
Ay XAy — A, By Lemmas 3.9 (1) and 4.8 (1), the group L',Zn_l stabilizes
0. Hence we have the surjective map

[,Zn_l\Gn — Ay [,Zn_lg — 0g.

This map is bijective, because of |£,<X7n_1\Gn| = |A,| by (2.12) and (5.1). Hence
the stabilizer of (d1,d2) in G,, equals 5?,7%1- Let Kznfl act on Z, through
the homomorphism (2.11). Let Zs, 5, be the open and closed subscheme in Y,
labeled by (41, d2). By the property (c) in Lemma 3.9 (2) and Lemma 4.8 (2),
we have an ﬁénfl—equivariant isomorphism Z,, ~ Zs, 5,. Since the stabilizer of

. . X . .
Zsy,5, 0 Gy is L, 1, we have an isomorphism
? ’

(5.2) Vo= I Zosy~Znxy G

(8.65)EA,
The right hand side of this is similar to Ind X when E/F is an unramified
quadratic extension in the notation of [W1, §5.1].

For a non-archimedean local field L, let W be the Weil group of L. Let
I;, ¢ Wp, be the inertia subgroup of L. Let ay: Wfb =5 L™ be the the Artin
reciprocity map normalized such that a geometric Frobenius is sent to a prime
element. Composing this with the canonical map 13> — W2P induces the
surjective map a9 : I ib — Of. For each n > 1 we consider the composite

0
a
0 . ~ can. rab 2Ka2 % can. x
aK2,n.IK_IK2 IK2 O Dn
We regard Y, as a variety with G,, X [x-action via the map
0
Ixag, ,: Gp xIx = G, x O

THEOREM 5.1: Letn > 1 be a positive integer. Let the notation be as in (3.60)
and (4.21).

(1) We have an isomorphism

H(Y)> P (reopl)eo!
we(Dx )dip
as G, X Ii-representations.
(2) We have an isomorphism
H(Y,) ~ Indfg  H(Zo)

as G,-representations.
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Proof. We show the first assertion. By Remarks 3.19 (1) and Remark 4.13, we
have H(Y,,)stp = HL(Yy). The claim follows from Proposition 3.18, Lemma

3.20 and Proposition 4.12.
The second assertion follows from (5.2).

5.2. CONJECTURE. Let m be an irreducible cuspidal representation of GLo(K).
We say that 7 is unramified if there exists a non-trivial unramified smooth
character ¢ of K* such that 7 ® (¢ o det) ~ 7 (cf. [BH, §20.1]).

Let X(p™) be the Lubin-Tate curve with Drinfeld level p™-structures (cf. [Ca]).
This is a rigid analytic curve over K. Then, {X(p™) o, makes a projective
limit. The wide open curve X(p™) has a stable covering (cf. [CMc, Theorem
2.40]). We state a conjecture on unramified components in the stable reduction
of X(p™), whose cohomology realizes the local Langlands correspondence and
the local Jacquet—Langlands correspondence for unramified cuspidal represen-
tations of GLa(K). For 1 <i < n, let p,;: X(p") — X(p%) be the projection.
A morphism of affinoid rigid analytic varieties f: X — Y induces the morphism
of affine schemes f: X — Y. Let C be as in Introduction. For a rigid analytic
variety X over F , let X denote the base change of it to C.

CONJECTURE 5.2: For integers n > 1 and 1 < i < n, there exist G,,-stable
affinoid subdomains Y, ; in X(p™) such that
¢ Y, ,NY, ;=0ifi#j,
o there exists a G, X Ix-equivariant isomorphism Y, ¢ ~ Yy,
® 0,i(Yni) =Y, and
e the map Dpit Y. ic — Yiic is a purely inseparable map compatible
with G, X Ix — G; x Ik.

Remark 5.3: (1) If the conjecture is true, an isomorphism
H (Ynic) =~ H(Yy)

as G; X Ix-representations holds.

(2) If this conjecture is true, the curve Y, actually appears as an open
subscheme of a disjoint union of irreducible components of the stable
reduction of X(p™)c by [IT, Proposition 7.11].
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(3) In a representation theoretic viewpoint, Y, ; (i < n) is less interesting

than Y, ,. However, these components Y, ; actually appear in the
stable reduction of X(p™)c (cf. the stable reduction of X (p?)c in [T1]).
To give a more precise description of the stable reduction, we consider
these Y, ; (i < n) above.

Remark 5.4: For n = 1, this is a special case of [Y]. For general n, a family of
affinoids is studied in [T2].
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