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ABSTRACT

We define closed subvarieties of some Deligne–Lusztig varieties for GL(2)

over finite rings and study their étale cohomology. As a result, we show

that cuspidal representations appear in it. Such closed varieties are studied

in [Lus2] in a special case. We can do the same things for a Deligne–Lusztig

variety associated to a quaternion division algebra over a non-archimedean

local field. A product of such varieties can be regarded as an affine bundle

over a curve. The base curve appears as an open subscheme of a union of

irreducible components of the stable reduction of the Lubin–Tate curve in

a special case. Finally, we state some conjecture on a part of the stable

reduction using the above varieties. This is an attempt to understand bad

reduction of Lubin–Tate curves via Deligne–Lusztig varieties.
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1. Introduction

Let K be a non-archimedean local field and o the ring of integers in K. Let

p denote the maximal ideal of o. Let p be the characteristic of k = o/p. Let

kac be an algebraic closure of k. Assume that the characteristic of K equals

p. Let G be a reductive group over k. In [Lus] and [Lus2], for each n ≥ 1,

Lusztig constructs a variety over kac whose étale cohomology realizes certain

irreducible representations of G(o/pn). These representations are attached to

a “maximal” torus in G and its characters in general position. We call such

a variety a Deligne–Lusztig variety for G(o/pn). For n = 1, this theory is the

Deligne–Lusztig theory for G(k) in [DL]. We call the theory in [Lus] and [Lus2]

the Deligne–Lusztig theory over finite rings.

In [Lus2, §3], the Deligne–Lusztig variety for SL2(o/p
2) is explicitly studied.

In [Lus], a construction in the division algebra case is studied. It seems compli-

cated to study the cohomology of a Deligne–Lusztig variety directly in general,

because the cohomology of this variety contains many irreducible representa-

tions with lower conductor (cf. [Lus2, §3]).
Let D be the quaternion division algebra over K. Let OD be the maximal

order in D, and pD the two-sided maximal ideal of OD. In this paper, for n ≥ 1,

we study certain closed subvarieties Xn and XD
n in Deligne–Lusztig varieties

for GFn = GL2(o/p
n) and O×

2n−1 = (OD/p2n−1
D )× respectively, and study their

étale cohomology. An idea to consider such subvarieties is seen in the case

SL2(o/p
2) in [Lus2, §§3.3–3.4]. For each n, the cohomology of Xn realizes

cuspidal representations not factoring through the canonical map GFn � GFm
for any integer m < n. All irreducible representations of GFn are constructed

in [Onn] and [Sta]. In [Onn], more generally, all irreducible representations of

an automorphism group of a finite o-module of rank two are classified. For

general r ≥ 2 and n ≥ 1, strongly cuspidal representations of GLr(o/p
n) are

constructed in [AOPS]. In particular, all cuspidal representations of GFn are

constructed in [AOPS], [Onn] and [Sta]. Let q = |k|. Then X1 is the curve

defined by (xqy − xyq)q−1 = 1, and XD
1 is a disjoint union of finitely many

closed points. The curve is called the Deligne–Lusztig curve for GL2(Fq), which

we denote by ZDL. For n ≥ 2, the varieties Xn and XD
n are affine bundles

over a disjoint union of some copies of one point or the curve Z0 defined by

the equation Xq2 −X = Y q(q+1)− Y q+1 over kac depending on the parity of n.

Furthermore, the productXn×XD
n is an affine bundle of relative dimension n−1
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over a disjoint union of copies of the curve Z0. We can understand their étale

cohomology explicitly in Propositions 3.18 and 4.12. Let K2 be the quadratic

unramified extension over K. The cuspidal representations are attached to

certain characters of

TFn = (OK2/p
n
K2

)×.

The varieties Xn and XD
n admit actions of TFn . Let

Δ: TFn ↪→ TFn × TFn ; t �→ (t, t−1).

By taking the quotient of the product Xn ×XD
n by the subgroup Δ(TFn ), we

obtain a variety Xn, which admits the action of

Gn = GFn ×O×
2n−1 × TFn .

This variety is an affine bundle over a curve Yn with Gn-action. This curve Yn

is isomorphic to the curve ZDL if n = 1, and a disjoint union of some copies

of Z0 if n > 1. The curve Yn is introduced in §5.1 and its middle cohomology

is studied in Theorem 5.1. To describe the group action on Gn on Xn, it is

natural to use a notion of linking order given in [W2]. Hence, we recall this

notion in §2.2.
The above analysis was motivated by the geometry of the Lubin–Tate curve

X(pn) with Drinfeld level pn-structures. LetC be the completion of an algebraic

closure of K. Let IK denote the inertia subgroup of K. Let X(pn)C denote the

base change of X(pn) to C. As irreducible components in the stable reduction

of X(pn)C, it is known that copies of the smooth compactification of Z0 appear

(cf. [T2] and [W3]). We call these components unramified components. See the

beginning of §5 for the reason why we call them unramified. The base change

X(pn)C admits an action of GL2(o) ×O×
D × IK (cf. [Ca]). By local class field

theory over K2, we have a surjective map IK2 � O×
K2

. By composing with

the canonical isomorphism IK
∼←− IK2 , we obtain the surjective homomorphism

IK � O×
K2

. Then, we have the surjective homomorphism

G = GL2(o)×O×
D × IK � Gn.

For an affinoid X, let X denote its canonical reduction. For a positive in-

teger n ≥ 1, we conjecture that there exists a G-stable affinoid subdomain

Yn ⊂ X(pn)C such that

• the G-action on Yn factors through the map G � Gn, and

• there exists a Gn-equivariant isomorphism Yn � Yn
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(cf. Conjecture 5.2). By definition, the stable reduction of X(pn)C is a sta-

ble curve. In general, a stable curve consists of several irreducible components

which intersect at ordinary double points. By this conjecture, we can under-

stand an open subscheme of a union of irreducible components in the stable

reduction of X(pn)C (cf. Remark 5.3 (2)). In [W1], Weinstein constructs a con-

crete stable curve which is a candidate of the stable reduction of X(pn)C. In

the unramified case, the curve Yn is very similar to the stable curve constructed

in [W1] (cf. (5.2)). Originally, our motivation of this work was to give some

Deligne–Lusztig interpretation of the curve. Furthermore, the Weinstein con-

jecture is justified through the works [W3] and [T2] in some sense. In the case

where n = 1 and GL(r) (r ≥ 2), such things are studied in [Y]. We learned that

the inertia action can be interpreted as the action of a maximal torus from [Y].

See [BW] for a generalization of [Y].

In the stable reduction of X(pn)C in the case where p �= 2, another type of

curve appears as an irreducible component. This is the smooth compactifica-

tion of the Artin–Schreier curve defined by aq − a = s2 (cf. [T2] and [W3]).

The middle cohomology of these components is related to some characters of

O×
L , where L is a tamely ramified quadratic extension of K. We do not know

whether a Deligne–Lusztig type interpretation via these components exists as

in this paper. See [Sta2] for a generalization of a Deligne–Lusztig variety in this

direction. A Lubin–Tate curve can be regarded as a local model of a modular

curve. A modular curve is a special case of Shimura varieties. There are many

works which relate bad reduction of Shimura varieties to Deligne–Lusztig vari-

eties (cf. [Ra]). The above conjecture is regarded as an attempt to describe bad

reduction of Lubin–Tate curves via Deligne–Lusztig theory.

On the division algebra side, a certain Deligne–Lusztig variety is studied in

[Ch] in a quite general setting. In the general linear group case, coverings of

Deligne–Lusztig varieties are studied in [Iv]. For arbitrary reductive groups,

in [CS], they prove that certain representations appear in the cohomology of

Deligne–Lusztig varieties.

Acknowledgments. We would like to thank the anonymous referee sincerely

for reading our paper carefully and pointing out many errors in the previous

version.

This work is supported by JSPS KAKENHI Grant Number 26800013,

15K17506.
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2. Preliminaries

In §2.1, we introduce some notation used in this paper. Throughout the rest of

the paper, we fix a non-archimedean local field K and always assume that the

characteristic of K is p. In §2.2, we introduce a notion of linking order which

will be used in §5. We introduce isomorphisms (2.13) and (2.14) which will

be used to describe group action on subvarieties of Deligne–Lusztig varieties in

§3.2 and §4.2 respectively.

2.1. Notation. For a non-archimedean local field L, let pL denote the maximal

ideal of the ring of integers of L. For an integer i ≥ 1, we set U iL = 1 + piL. As

before, we denote by o and p the ring of integers in K and its maximal ideal

respectively. Let k = o/p and q = |k|. Let Kur be the maximal unramified

extension of K in an algebraic closure Kac of K and K̃ the p-adic completion

of Kur. We write õ and p̃ for the ring of integers of K̃ and its maximal ideal,

respectively. Let k2 be the quadratic extension of k in kac = õ/p̃. Let K2 be

the unramified quadratic extension of K in Kac, and O the ring of integers of

K2. For a positive integer i ≥ 1, we set

oi = o/pi, õi = õ/p̃i, Oi = O/piK2
.

2.2. Linking order. We recall the linking order defined in [W2, §4.3]. In this

paper, we treat only the unramified case.

Let D be the quaternion division algebra over K and let OD be the maximal

order of D. Let pD be the maximal two-sided ideal of OD. For a positive

integer i, we set U iD = 1+piD ⊂ O×
D and Oi = OD/piD. By taking a uniformizer

� ∈ K, we fix an isomorphism K � k((�)). We choose an element ϕ ∈ pD

such that ϕ2 = �. We have isomorphisms D � K2 ⊕ ϕK2 and OD � O⊕ ϕO.

We regard K2 as a K-subalgebra of D in this way. We set

A1 = M2(K), A2 = D,

A1 = M2(o), A2 = OD, A = A1 × A2.

For ζ ∈ k2 \ k, we consider the K-embedding

(2.1) ιζ : K2 ↪→ A1; a+ bζ �→
(
a+ b(ζq + ζ) b

−bζq+1 a

)
with a, b ∈ K. This is the regular embedding with respect to the ordered

basis {ζ, 1} of K2 over K. Note that tr ιζ(ζ) = TrK2/K(ζ) = ζq + ζ and
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det ιζ(ζ) = NrK2/K(ζ) = ζq+1. Some readers may think it unnatural to consider

the ordered basis {ζ, 1} not {1, ζ}. However, the action of this subgroup ιζ(O
×)

on a Deligne–Lusztig variety will be related to a torus action on it in Lemma

3.8 (1) later. Hence, we consider the basis here.

We fix ζ ∈ k2 \ k. Let Δζ : K2 ↪→ A1 ×A2 be the diagonal map. For i = 1, 2,

let Ci be the orthogonal complement of K2 in Ai with respect to the standard

trace pairing. We set Ci = Ci ∩Ai (cf. [W2, §4.1]). Then, Ci is a left and right

O-module of rank one. We have

(2.2) Ai � O⊕ Ci

for i = 1, 2. Let Gal(K2/K) be the Galois group of the extension K2/K. Let

σ ∈ Gal(K2/K) be the non-trivial element. We have xv = vxσ for x ∈ O and

v ∈ Ci. We easily check that

C1 =

{
h(a, b) =

(
−a b

a(ζq + ζ) + bζq+1 a

)
∈ A1

∣∣∣ a, b ∈ o

}
,(2.3)

C2 = ϕO.(2.4)

Let n ≥ 0 be a non-negative integer. We set l = [(n+ 1)/2] and l′ = [n/2].

We put

V n1 = plK2
C1 ⊂ A1, V n2 = pl

′
K2

C2 ⊂ A2.

We have V ni V
n
i ⊂ pnK2

for i = 1, 2. We set Vn = V n1 × V n2 ⊂ A and

Lζ,n = Δζ(O) + pnK2
× pnK2

+Vn ⊂ A,

which is called the linking order. This is actually an order of A by

VnVn ⊂ pnK2
× pnK2

.

Any element g ∈ Lζ,n can be written as

g = (x+�ny +�lz1, x+�l′z2) with x, y ∈ O and zi ∈ Ci (i = 1, 2).

We consider the two-sided ideal

L0ζ,n = Δζ(pK2) + pn+1
K2
× pn+1

K2
+Vn+1 ⊂ Lζ,n.

In the following, we consider the quotient Lζ,n−1/L0ζ,n−1 for a positive integer

n ≥ 1. First, we treat the case n = 1. The restriction of the natural projection

A→ M2(k)× k2 to the subring Lζ,0 induces an isomorphism

Lζ,0/L0ζ,0 ∼−→ M2(k)× k2,
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which does not depend on the choice of ζ ∈ k2 \ k. This induces
(2.5)

(Lζ,0/L0ζ,0)× ∼−→ GL2(k)× k×2 .
Let

Q =

⎧⎪⎨⎪⎩g(α, β, γ) =
⎛⎜⎝α β γ

αq βq

α

⎞⎟⎠ ∈ GL3(k2)
∣∣∣ α, β, γ ∈ k2

⎫⎪⎬⎪⎭ ,
Q0 = {g(1, β, γ) ∈ Q}.

(2.6)

Note that we have

|Q| = q4(q2 − 1).

The center Z(Q0) of Q0 equals {g(1, 0, γ) | γ ∈ k2}, and the quotient Q0/Z(Q0)

is an abelian group of order q2. Hence, the group Q0 is a finite Heisenberg

group. Assume that n ≥ 2. For each ζ ∈ k2 \ k, we have an isomorphism

(Lζ,n−1/L0ζ,n−1)
× � Q,

which is given in [W2, Proposition 4.3.4 (5)]. We will now show how this

isomorphism is defined for n odd and give a similar isomorphism forQ0. Assume

that n is odd. Then we have n = 2l′ + 1 and l = l′ + 1. We set

v0 =

(
−1 0

ζq + ζ 1

)
∈ A×

1 and V1,n = V n−1
1 /V n1 .

Note that v20 = 1 and v0(a + bζ) = (a + bζq)v0 for a, b ∈ o. We consider the

isomorphism

φζ : V1,n
∼−→ k2; h(a, b)�l′ = (a+ bζ)�l′v0 �→ a+ bζ

with a, b ∈ k. For v, w ∈ V1,n, we have vw ∈ pn−1
K2

/pnK2
by C1C1 ⊂ O. Then we

have

φζ(xv) = xφζ(v), φζ(vx) = φζ(v)x
q for x ∈ k2 and v ∈ V1,n,

�−(n−1)vw = φζ(v)φζ (w)
q for v, w ∈ V1,n.

(2.7)

For an element x ∈ O, let x̄ denote the image of x by the reduction mapO→ k2.

We have the isomorphism

(2.8) (Lζ,n−1/L0ζ,n−1)
× ∼−→ Q; (x+�n−1y + v, x) �→ g(x̄, φζ(v), ȳ),

where x, y ∈ O and v ∈ V n−1
1 .
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Assume that n is even. Then we have n=2l′ and l= l′. We set V2,n=V
n−1
2 /V n2 .

We consider the isomorphism

φ : V2,n
∼−→ k2; �l−1ϕb �→ b̄q

with b ∈ O. Similarly as (2.7), we have

φ(xv) = xφ(v), φ(vx) = φ(v)xq for x ∈ k2 and v ∈ V2,n,
�−(n−1)vw = φ(v)φ(w)q for v, w ∈ V2,n.

Similarly as (2.8), we have the isomorphism

(2.9) (Lζ,n−1/L0ζ,n−1)
× ∼−→ Q; (x, x+�n−1y + v) �→ g(x̄, φ(v), ȳ),

where x, y ∈ O and v ∈ V n−1
2 .

Let n ≥ 1 be an integer. We write Lζ,n−1 and L0ζ,n−1 for the images of Lζ,n−1

and L0ζ,n−1 by the canonical homomorphism A � M2(on)×O2n−1 respectively.

We can easily check that the kernel of A → M2(on) × O2n−1 is contained in

L0ζ,n−1. Hence we have an isomorphism

(2.10) (Lζ,n−1/L0ζ,n−1)
× ∼−→ (Lζ,n−1/L0ζ,n−1)

×.

In the following, we simply write GFn for GL2(on). By (2.5), (2.8), (2.9) and

(2.10), we obtain a homomorphism

(2.11) L×
ζ,n−1 →

(
Lζ,n−1/L0ζ,n−1

)×
�
⎧⎨⎩GF1 × k×2 if n = 1,

Q if n ≥ 2.

Now we assume that n ≥ 2. We can check that

(2.12) |L×ζ,n−1| = q4n(q2− 1), [GFn ×O×
2n−1 : L×ζ,n−1] = q4n−7(q− 1)(q2− 1).

We set

H1,ζ,n =Lζ,n−1 ∩ (GFn × {1}) ⊂ GFn ,
H2,n =Lζ,n−1 ∩ ({1} × O×

2n−1) ⊂ O×
2n−1.

We consider the composites

f1 : H1,ζ,n ⊂ L×
ζ,n−1

can.−−→ (Lζ,n−1/L0ζ,n−1)
×,

f2 : H2,n ⊂ L×
ζ,n−1

can.−−→ (Lζ,n−1/L0ζ,n−1)
×.
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We set H0
1,ζ,n = ker f1 and H0

2,n = ker f2. Assume that n is odd and n ≥ 3. By

identifying the target of f1 with Q through (2.9) and (2.10), we can check that

the image of f1 equals the subgroup Q0. Hence, we obtain the isomorphism

(2.13) φ1,ζ : H1,ζ,n/H
0
1,ζ,n � Q0.

Assume that n is even. Similarly as above, we obtain the isomorphism

(2.14) φ2 : H2,n/H
0
2,n � Q0.

3. Deligne–Lusztig variety for GFn

In this section, we define a subvariety of the Deligne–Lusztig variety for GFn and

analyze its cohomology. As a result we obtain Proposition 3.18.

3.1. Subvariety of the Deligne–Lusztig variety for GFn . Let n be a

positive integer. Let

(3.1) F : õn → õn;
n−1∑
i=0

xi�
i �→

n−1∑
i=0

xqi�
i with xi ∈ kac.

We regard Gn = GL2(õn) as a variety over kac. Let {e1, e2} be the canonical

basis of Vn = õ⊕2
n . The map F induces the maps

F : Vn → Vn, F : Gn → Gn.

We have F (vg) = F (v)F (g) for v ∈ Vn and g ∈ Gn. We set

TFn =

{(
F (t) 0

0 t

)
∈ Gn

∣∣∣ t ∈ O×
n

}
.

We fix the isomorphism

(3.2) O×
n � TFn ; t �→

(
F (t) 0

0 t

)
.

Let

Un =

{(
1 c

0 1

)
∈ Gn

∣∣∣ c ∈ õn

}
, v =

(
0 1

−1 0

)
∈ GFn .

We consider the closed subvariety of Gn

Xn = {g ∈ Gn | F (g)g−1 ∈ Unv},
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which we call the Deligne–Lusztig variety for GFn (cf. [Lus2]). Let GFn ×TFn
act on Xn by g �→ t−1gg′ for x ∈ Xn and (g′, t) ∈ GFn × TFn .

Lemma 3.1: (1) We have

Xn =

{
g =

(
−F (x) −F (y)
x y

)
∈ Gn

∣∣∣ det(g) ∈ o×n

}
∼−→ Sn = {v = xe1 + ye2 ∈ Vn | v ∧ F (v) ∈ o×n (e1 ∧ e2)}; g �→ e2g.

(2) For v ∈ Sn, we put

v =
n−1∑
i=0

vi�
i

with vi ∈ (kac)⊕2. Then Sn is defined by

v0 ∧ F (v0) ∈ k×(e1 ∧ e2),
i∑

j=0

vi−j ∧ F (vj) ∈ k(e1 ∧ e2)

for 1 ≤ i ≤ n− 1.

Proof. The second assertion follows from the first one. The first one is directly

checked. We omit the details.

Remark 3.2: The above lemma is similar to Lusztig’s computation for SL2(o/p
2)

in [Lus2, §3.3].
Note that we have dimXn = n. Recall that we set l′ = [n/2].

Definition 3.3: (1) We set

Yn = {v ∈ Sn | v ∧ F 2(v) = 0} ⊂ Sn � Xn

and X0 = Y0 = Spec kac.

(2) Let pn : Xn → Xl′ be the canonical projection induced by Gn → Gl′ .

We set

Xn = p−1
n (Yl′).

This variety Xn is our main object in this paper. For an integer n ≥ 1,

the subvariety Yn is stable under the action of GFn × TFn . Hence, Xn is stable

under the action of GFn × TFn , because pn is compatible with the canonical

homomorphism GFn × TFn � GFl′ × TFl′ .
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Let (x, y) ∈ Yn. By (x, y) ∈ Sn, we have y �= 0. Since we have F 2(x/y) = x/y,

we obtain x/y ∈ O×
n . We set t = y/x. By F (x)y − xF (y) ∈ o×n , we have

(3.3)
(t−1 − F (t−1))xF (x) = (F (t)− t)yF (y) ∈ o×n ,

F 2(x) = −x, F 2(y) = −y.
Conversely, if (x, y) ∈ Sn satisfies the condition on the second line in (3.3), we

have F 2(x/y) = x/y. Hence we have (x, y) ∈ Yn. Therefore we have

(3.4) Yn = {(x, y) ∈ Sn | F 2(x, y) = −(x, y)}.
By this, Yn is zero-dimensional. Note that Yn is regarded as a generalization

of S00 in the notation of [Lus2, §3.3]. In Definition 3.3, this scheme plays a

crucial role to define Xn.

For an integer i ≥ 1, let U iK2,n
⊂ TFn denote the image of U iK2

⊂ O× by the

composite O× → O×
n � TFn . Since we have F (t) − t ∈ O×

n by (3.3), we have

t ∈ O×
n \ o×nU1

K2,n
. We set

Bn = O×
n \ o×nU1

K2,n.

By (3.3), we obtain the map

νn : Yn → Bn; (x, y) �→ x/y.

Let GFn act on Bn by

(3.5) g : Bn → Bn; t �→ at+ c

bt+ d

for g = ( a bc d ) ∈ GFn . Let TFn act on Bn trivially. Then νn isGFn×TFn -equivariant.

For t ∈ Bn, we set Y tn = ν−1
n (t). Then Y tn is stable under the action of TFn .

Note that

|TFn | = q2(n−1)(q2 − 1), |Bn| = q2n−1(q − 1).

For ζ ∈ k2 \ k, we consider the homomorphism

(3.6) Δζ : O
×
n ↪→ GFn × TFn ; x �→ (ιζ(x), x),

where ιζ is in (2.1).

Lemma 3.4: (1) The map νn is surjective.

(2) For each t ∈ Bn, the action of TFn on Y tn is simply transitive.

(3) The variety Yn consists of |GFn | = q4n−3(q − 1)(q2 − 1) closed points.

The action of GFn on Yn is simply transitive.

(4) Let ζ ∈ k2 \ k. Then, Δζ(O
×
n ) acts on Y

ζ
n trivially.
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Proof. Let t ∈ Bn. We take an element y ∈ õn such that F 2(y) = −y and set

x = ty. By (3.4) we have (x, y) ∈ Yn, because

F 2(x) = −x, F (F (x)y − xF (y)) = F (x)y − xF (y).

By νn(x, y) = t, the map νn is surjective.

Let t ∈ Bn. By the first assertion we can take an element (x0, y0) ∈ Y tn. Let
(x, y) ∈ Y tn . By (3.4) we have

x/y = x0/y0 = t, F 2(x/x0) = x/x0, F 2(y/y0) = y/y0.

Hence there exists a unique element ξ ∈ O×
n such that (x, y) = (ξx0, ξy0).

Therefore the action of TFn on Y tn is simply transitive.

By the first and the second assertions we have

(3.7) |Yn| = |TFn ||Bn| = |GFn |.

Assume that g ∈ GFn fixes x ∈ Yn ⊂ Sn. It fixes also F (x) ∈ Yn. Since

{x, F (x)} forms a basis of Vn, we have g = 1. Thus the GFn -action on Yn is free.

By (3.7), the GFn -action on Yn is simply transitive. Hence the third assertion

follows.

Let ξ ∈ O×
n . We easily check that ιζ(ξ) fixes ζ ∈ Bn by (3.5). Hence ιζ(ξ) sta-

bilizes Y ζn . Recall that g = ( a bc d ) ∈ GFn acts on Yn by (x, y) �→ (ax+ cy, bx+ dy)

for (x, y) ∈ Yn. Hence ιζ(ξ) acts on Y ζn by (x, y) �→ (ξx, ξy), because x = ζy.

By definition, ξ ∈ TFn acts on Yn by (x, y) �→ (ξ−1x, ξ−1y). Hence the fourth

assertion follows.

In the sequel, we introduce coordinates and several functions on Xn to under-

stand this as in Lemma 3.5. For v =
∑n−1

i=0 vi�
i∈Vn we set vi = (xi, yi)∈(kac)2.

We define ti,j by

vi−j ∧ F (vj) = ti,je1 ∧ e2
for 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ i. Explicitly, we have

ti,j = xi−jy
q
j − yi−jxqj .

We have

v ∧ F (v) =
n−1∑
i=0

i∑
j=0

vi−j ∧ F (vj)�i =

n−1∑
i=0

i∑
j=0

ti,j�
i.
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Hence, by Lemma 3.1 (2), the variety Xn is defined by( l′−1∑
i=0

xi�
i,

l′−1∑
i=0

yi�
i

)
∈ Yl′ ,(3.8)

t0,0 ∈ k×,
i∑

j=0

ti,j ∈ k for 1 ≤ i ≤ n− 1.(3.9)

By (3.4) and (3.8), we have

(3.10)
ti,j ∈ k2 for 0 ≤ i− j, j ≤ l′ − 1, t2i,i ∈ k for 0 ≤ i ≤ l′ − 1,

tqi,j = ti,i−j for 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ l′ − 1.

We set

(3.11) si =

[(i−1)/2]∑
j=0

ti,j

for 1 ≤ i ≤ 2l′ − 1. By the equality on the second line in (3.10) we have

sqi + si =

⎧⎨⎩
∑i
j=0 ti,j if i is odd,∑i
j=0 ti,j − ti,i/2 if i is even,

for 1 ≤ i ≤ 2l′ − 1. Hence by (3.9) and the first line in (3.10) we have

(3.12) si ∈ k2 for 1 ≤ i ≤ 2l′ − 1.

By the first assertion in (3.10) we have tl′,i ∈ k2 for 1 ≤ i ≤ [(l′− 1)/2]. We set

ζ = x0/y0. By (3.12) and the definition of tl′,0 we have

tl′,0 = sl′ −
[(l′−1)/2]∑

i=1

tl′,i ∈ k2,(3.13)

yl′ = ζ−qxl′ − x−q0 tl′,0,(3.14)

respectively. We set

(3.15) Δ1,n = Yl′ × kl′2 .

By (3.12), we obtain the map

pn : Xn → Δ1,n; x �→ (pn(x), (sl′ (x), . . . , s2l′−1(x))),
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where pn is in Definition 3.3 (2). It is not difficult to check pn is surjective. We

set

ZP,s = p−1
n (P, s) for (P, s) ∈ Δ1,n.

Let ZDL be the affine curve defined by (xqy− xyq)q−1 = 1. This curve is called

the Deligne–Lusztig curve for GL2(Fq). Note that the affine curve defined by

xqy − xyq = 1 is called the Drinfeld curve (cf. [DL, p. 117]). Let Z0 be the

affine curve defined by Xq2 − X = Y q(q+1) − Y q+1 over kac. Note that Z0

has q connected components. For a non-negative integer i, let Ai denote an

i-dimensional affine space over kac.

We can completely understand Xn in the following lemma.

Lemma 3.5: We have

Xn =
∐

(P,s)∈Δ1,n

ZP,s

and an isomorphism

ZP,s �

⎧⎪⎪⎨⎪⎪⎩
ZDL if n = 1,

Al
′ × Z0 if n > 1 is odd,

Al
′

if n is even

over kac.

Proof. The first equality is clear. Hence we show the latter isomorphism. The

required assertion in the case where n = 1 is clear. We assume that n ≥ 2. We

show only the case where n is odd, because the other case is proved similarly.

Let (x, y) =
(∑n−1

i=0 xi�
i,
∑n−1

i=0 yi�
i
)
∈ ZP,s. We put

(3.16) s2l′ = −
l′−1∑
i=0

t2l′,i − xl′

x0
tql′,0.

We set ζ = x0/y0 ∈ k2 \ k. We show

(3.17) sq2l′ + s2l′ + (ζ−q − ζ−1)xq+1
l′ ∈ k.

By tl′,0 ∈ k2 in (3.13) and the second line in (3.10) we have

(3.18) sq2l′ + s2l′ = −
2l′∑
i=0

t2l′,i + t2l′,l′ − xql′

xq0
tl′,0 − xl′

x0
tql′,0.
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By (3.14) we have

(3.19) t2l′,l′ = (ζ−1 − ζ−q)xq+1
l′ +

xql′

xq0
tl′,0 +

xl′

x0
tql′,0.

By the second equation in (3.9) for i = 2l′, we have
∑2l′

i=0 t2l′,i ∈ k. Hence by

(3.18) and (3.19) we obtain (3.17).

Note that ζq − ζ �= 0. We set

(3.20) X =
s2l′

(ζq − ζ)yq+1
0

, Y =
xl′

ζqy0
.

Thus by (3.17) and (ζq − ζ)yq+1
0 ∈ k×, we obtain Xq + X − Y q+1 ∈ k. This

implies that

Xq2 −X = Y q(q+1) − Y q+1.

By (3.11) and (3.20), there exists an upper triangular matrix AP,s ∈ GLl′(k
ac)

and a vector aP,s ∈ (kac)l
′
such that

(3.21) (yl′ , . . . , y2l′−1) = (Y, xl′+1, . . . , x2l′−1)AP,s + aP,s.

Hence by (3.20), there exists a vector (al′+1, . . . , a2l′ , b1, b2, c) ∈ (kac)l
′+3 such

that

(3.22) y2l′ =

2l′∑
i=l′+1

aixi + b1X + b2Y + c.

By using (3.20), (3.21) and (3.22), we know that the morphism

ZP,s → Al
′ × Z0; (x, y) =

( 2l′∑
i=0

xi�
i,

2l′∑
i=0

yi�
i

)
�→ ((xi)l′+1≤i≤2l′ , (X,Y ))

is an isomorphism.

Assume that n ≥ 2. Let v, v′ ∈ Xn and (g, t) ∈ GFn ×TFn . We can check that

pn(v) = pn(v
′)⇒ pn(t

−1vg) = pn(t
−1v′g).

Hence Δ1,n has the action of GFn × TFn such that pn is GFn × TFn -equivariant.

Let GFn ×TFn act on Yl′ through the homomorphism GFn ×TFn � GFl′ ×TFl′ . The
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first projection Δ1,n → Yl′ is G
F
n × TFn -equivariant. Let

XP,s =

⎧⎨⎩Spec kac if n is even,

Z0 if n is odd,

X(Δ1,n) =
∐

(P,s)∈Δ1,n

XP,s.(3.23)

By Lemma 3.5 we have the projections

ZP,s → XP,s,

πn : Xn → X(Δ1,n).(3.24)

Let v, v′ ∈ Xn and (g, t) ∈ GFn × TFn . We can check that

πn(v) = πn(v
′)⇒ πn(t

−1vg) = πn(t
−1v′g).

HenceX(Δ1,n) admits the action ofGFn×TFn such that πn isGFn×TFn -equivariant.
We choose a prime number � �= p and fix an algebraic closure Q� of Q�. For

a variety X over kac and i ≥ 0, we write Hi
c(X) for the i-th étale cohomology

group with compact support Hi
c(X,Q�). We put d1 = dimX(Δ1,n). Since

(3.24) is an affine bundle of relative dimension l′ we have

(3.25) Hn
c (Xn) � Hd1

c (X(Δ1,n))

as GFn × TFn -representations. For a positive integer i, let U iA1
= 1+ piA1 ⊂ A×

1 .

We write Ni for the image of U iA1
by the canonical map A×

1 → GFn . Note that Ni

equals the kernel of the natural homomorphism GFn → GFi . For t ∈ Bl′ , we set

Δt
1,n = Y tl′ × kl

′
2 ⊂ Δ1,n,

Xt
n = p−1

n (Δt
1,n) ⊂ Xn.

3.2. Group action on Xn. To understand the cohomology ofXn as GFn×TFn -

representations, we need to explicitly understand some group action on it.

In the following, when we consider an element ζ ∈ k2 \ k, we always regard

O×
n as a subgroup of GFn by ιζ . Assume that n ≥ 2. Let GFn × TFn act on Bl′

through the canonical homomorphism GFn × TFn � GFl′ × TFl′ .
Lemma 3.6:

(1) The action of GFn on Bl′ is transitive. For any ζ ∈ k2 \ k ⊂ Bl′ , the

stabilizer of ζ in GFn equals O×
nNl′ .

(2) Let ζ∈k2\k⊂ Bl′ . The stabilizer of Δζ
1,n in GFn×TFn equals O×

nNl′×TFn .
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Proof. We show the first assertion. By Lemma 3.4 (1)–(3), the map νl′ is a

GFl′ -equivariant surjective map, and GFl′ acts on Yl′ transitively. Therefore, the

action of GFn on Bl′ is transitive. By (3.5), we know that the subgroup O×
nNl′

fixes ζ. Since we have

|GFn /O×
nNl′ | = |GFl′ /O×

l′ | = |Bl′ |

by (3.7), the last assertion follows.

We show the second assertion. Let ν′ : Δ1,n → Bl′ be the composite

Δ1,n
pr1−−→ Yl′

νl′−−→ Bl′ .

Since ν′ is GFn × TFn -equivariant, the stabilizer of Δζ
1,n in GFn × TFn equals the

stabilizer of ζ ∈ Bl′ in it. Recall that TFn acts on Bl′ trivially. Hence the second

assertion follows from the first one.

We fix an element ζ ∈ k2 \ k. In the following, we study actions of subgroups

of O×
nNl′ × TFn on Δζ

1,n.

Lemma 3.7: The action of TFn on Δζ
1,n is transitive. Let (P, s) ∈ Δζ

1,n. The

stabilizer of (P, s) in TFn equals U2l′
K2,n

.

Proof. First, we show that, for each P ∈ Y ζl′ , the subgroup U l
′
K2,n

acts on the

subset kl
′
2,P = {P}×kl′2 of Δζ

1,n transitively. Let P ∈ Y ζl′ and t ∈ U l′K2,n
. We set

t−1 = 1 +

n−1∑
i=l′

ai�
i with ai ∈ k2, a = (al′ , . . . , a2l′−1) ∈ kl′2 .

We consider the cartesian diagram

Xn

pn

��πn �� Δ1,n

pr1 �� Yl′

Xζ
n

��

�� Δζ
1,n

��

�� Y ζl′

��

kl
′
2,P

��

��

{P}.

��
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We take (x, y) = (
∑n−1
i=0 xi�

i,
∑n−1

i=0 yi�
i) ∈ Xζ

n such that πn(x, y) = (P, s).

By definition we have

t∗xl′+i = xl′+i +

i∑
j=0

al′+i−jxj , t∗yl′+i = yl′+i +

i∑
j=0

al′+i−jyj(3.26)

for 0 ≤ i ≤ n − l′ − 1. By using (3.11) and (3.26), we can directly check that

there exists an upper triangular matrix AP = (ai,j)1≤i,j≤l′ ∈ GLl′(k2) such that

the action of t on kl
′
2,P is given by

(3.27) t : kl
′
2,P → kl

′
2,P ; (P, s) �→ (P, s+ aAP ).

Hence U l
′
K2,n

acts on kl
′
2,P transitively. By Lemma 3.4 (2), the group TFl′ acts

on Y ζl′ transitively. Let (P0, s0) and (P, s) be elements in Δζ
1,n. We take t ∈ TFl′

such that P = P0t. We take a lifting t̃ ∈ TFn of t. We set

(P, s′) = (P0, s0)t̃.

We take u ∈ U l′K2,n
such that s′ = su. We have (P0, s0)t̃u = (P, s). Hence we

obtain the first assertion.

Assume that t ∈ TFn stabilizes (P, s). Since P is stabilized by t, we have

t ∈ U l′K2,n
by Lemma 3.4 (2). By (3.27) and the assumption we have a = 0.

Hence we obtain the claim.

We follow the notation in (2.6). Let Q act on Z0 by

g(α, β, γ) : Z0 → Z0; (X,Y ) �→
(
X +

βq

α
Y +

γ

α
, αq−1

(
Y +

β

αq

))
for g(α, β, γ) ∈ Q. We consider the subgroup

k× � {g(α, 0, 0) ∈ Q | α ∈ k×} ⊂ Q.
Then k× acts on Z0 trivially. For γ0 ∈ k2, we have the homomorphism

(3.28) fγ0 : k
×
2 → Q; α �→ g(α, (α − αq)γ0, (α− αq)γq+1

0 ).

For α ∈ k× we have

(3.29) fγ0(α) = g(α, 0, 0) ∈ k×.
Let (P, s) ∈ Δζ

1,n. Let Δζ be as in (3.6). In the following lemma, we show

that Δζ(O
×
n ) stabilizes ZP,s, and describe the action of it on ZP,s with respect

to fγ0 . In particular, we know that Δζ(O
×
n ) acts on ZP,s factoring through

Δζ(O
×
n )→ Δζ(O

×
n /o

×
nU

1
K2,n

). This lemma will be used in (3.56).
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Lemma 3.8: (1) The subgroup Δζ(O
×
n ) acts on Δζ

1,n trivially.

(2) Assume that n is odd. Let α ∈ O×
n and (P, s) ∈ Δζ

1,n. There exists an

element γ0(P, s) ∈ k2 such that

— we have the following commutative diagram:

ZP,s

��

Δζ(α) �� ZP,s

��
XP,s

fγ0(P,s)(ᾱ) �� XP,s

for any α ∈ O×
n , and

— γ0(P, s) = 0 if tl′,0(P, s) = 0.

If α ∈ o×nU
1
K2,n

, we have fγ0(P,s)(ᾱ) ∈ k×.
Proof. Let (x, y) = (

∑n−1
i=0 xi�

i,
∑n−1

i=0 yi�
i) ∈ Xζ

n. We have

xi = ζyi for 1 ≤ i ≤ l′ − 1,

yl′ = ζ−qxl′ − x−q0 tl′,0 with tl′,0 ∈ k2,
(3.30)

where the second equality is (3.14). Let α ∈ O×
n . We set α = a + bζ with

a, b ∈ on. On Xζ
n we have

Δζ(α)
∗x = ((a+ b(ζq + ζ))x − bζq+1y)/α,

Δζ(α)
∗y = (bx+ ay)/α.

(3.31)

Hence we have

(3.32) Δζ(α)
∗(x− ζqy) = x− ζqy.

By Lemma 3.4 (4), yj is fixed by Δζ(α) for 1 ≤ j ≤ l′ − 1. By this and (3.32),

for 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ [(i− 1)/2], the function

ti,j = xi−jy
q
j − yi−jxqj = yqj (xi−j − ζqyi−j)

is fixed by the action of Δζ(α). Therefore, for l′ ≤ i ≤ 2l′ − 1, each si ∈ k2 in

(3.11) is fixed by Δζ(α). The first assertion follows from this and Lemma 3.4 (4).

We prove the second assertion. For α ∈ o×nU
1
K2,n

we have ᾱ ∈ k×. Hence the

latter assertion follows from (3.29). We show the former assertion. By (3.30)
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and (3.31) we have

Δζ(α)
∗x =

(a+ b(ζq + ζ))x− bζq+1y

α
= x+

bζq

α
(x− ζy)

≡
l′−1∑
i=0

xi�
i +
(
ᾱq−1xl′ +

b̄ζq+1tl′,0
ᾱxq0

)
�l′ mod �l′+1.

Hence, by (3.31) and x0 = ζy0, we obtain

Δζ(α)
∗xl′ = ᾱq−1xl′ +

b̄ζtl′,0
ᾱyq0

.

By the proof of the first assertion, t2l′,i for 0 ≤ i ≤ l′ − 1 is fixed by Δζ(α). By

(3.16) and (3.20), we have

Δζ(α)
∗Y = ᾱq−1Y +

b̄tl′,0

ᾱζq−1yq+1
0

,

Δζ(α)
∗X = X − ζq−1 b̄tql′,0

ᾱyq+1
0

Y − b̄tq+1
l′,0

ᾱy
2(q+1)
0 (ζq − ζ)

.

(3.33)

We set γ0(P, s) = −tl′,0/(ζq−1yq+1
0 (ζq − ζ)). By using ᾱ − ᾱq = b̄(ζ − ζq) and

yq
2

0 = −y0, we can easily check that

(ᾱ − ᾱq)γ0(P, s) = b̄tl′,0

ζq−1yq+1
0

, ((ᾱ − ᾱq)γ0(P, s))q = −
ζq−1b̄tql′,0

yq+1
0

,

(ᾱ− ᾱq)γ0(P, s)q+1 = − b̄tq+1
l′,0

y
2(q+1)
0 (ζq − ζ)

.

Hence we obtain the claim by (3.33).

For an integer i ≥ 1, let C1,i be the image of C1 by A1 → M2(oi). Let ζ ∈ k2\k.
The decomposition (2.2) induces M2(oi) � Oi ⊕ C1,i. Let sζ,i : M2(oi)→ Oi be

the first projection. Explicitly, we have

(3.34) sζ,i : M2(oi)→ Oi;

(
a b

c d

)
�→ ζq(bζ + d)− (aζ + c)

ζq − ζ .

Let H0
1,ζ,n ⊂ H1,ζ,n be as in §2.2. Explicitly, we have

(3.35) H0
1,ζ,n = 1 + plK2

C1,n−l ⊂ H1,ζ,n = 1 + pn−1
K2

+ pl
′
K2

C1,n−l′ ⊂ Nl′ .
In the following lemma, we determine the stabilizer of (P, s) ∈ Δζ

1,n in GFn and

describe its action on ZP,s. The action of the stabilizer factors through the
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finite Heisenberg group Q0 in (2.6). The lemma plays an important role when

we will show Lemma 3.12. The property (c) below is important when we relate

Xn to a curve on the right-hand side of (5.2) which admits an action of the

multiplicative group of the linking order introduced in §2.2.
Lemma 3.9: Let (P, s) ∈ Δζ

1,n.

(1) The stabilizer of (P, s) in GFn equals⎧⎨⎩H0
1,ζ,n if n is even,

H1,ζ,n if n is odd.

(2) Assume that n is odd. Then H1,ζ,n acts on ZP,s factoring through

H1,ζ,n → H1,ζ,n/H
0
1,ζ,n. Furthermore, there exists an isomorphism

φ1,ζ,P,s : H1,ζ,n/H
0
1,ζ,n � Q0

such that

(a) for g ∈ H1,ζ,n/H
0
1,ζ,n we have the commutative diagram

ZP,s
g ��

��

ZP,s

��
XP,s

φ1,ζ,P,s(g) �� XP,s,

(b) φ1,ζ,P,s(g) = g(1, 0, sζ,1(g0)) for g = 1 + �n−1g0 ∈ Nn−1 with

g0 ∈ M2(k), and

(c) φ1,ζ,P,s corresponds to φ1,ζ in (2.13) for any (P, s) ∈ Δζ
1,n which

satisfies

(3.36) tl′,0(P, s) = 0.

Proof. We prove the first assertion. Let

g = 1 +�l′
(
a b

c d

)
∈ Nl′ , (x, y) =

( n−1∑
i=0

xi�
i,

n−1∑
i=0

yi�
i

)
∈ Xζ

n.

We have

(3.37) g∗x = x+�l′(ax+ cy), g∗y = y +�l′(bx+ dy).

Recall that

ti,j = yqj (xi−j − ζqyi−j) for 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ [(i − 1)/2].
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We have

�l′(x − ζy) ≡ 0 mod �2l′ .

Let sζ,l′ be as in (3.34) and g0 = ( a bc d ). By (3.37) we have

g∗(x−ζqy)=x−ζqy+�l′(aζ+c− ζq(bζ+d))y+�l′(a−bζq)(x−ζy)
=x−ζqy−(ζq−ζ)sζ,l′(g0)y�l′+�l′(a−bζq)(x−ζy)
=x−ζqy−(ζq−ζ)sζ,l′(g0)y�l′+�2l′(a−bζq)(xl′−ζyl′).

(3.38)

Let g ∈ GFn be an element such that (P, s)g = (P, s). By P = Pg and Lemma

3.4 (3) we have g ∈ Nl′ . By the assumption g stabilizes each si for l
′ ≤ i ≤ 2l′−1.

Let 1 ≤ i ≤ [(l′ − 1)/2] be an integer. Since tl′,i is a function of xj and yj for

0 ≤ j ≤ l′− 1, the function tl′,i is fixed by g. Since sl′ is so, tl′,0 is so by (3.11).

Repeating similar arguments, we can check that the function ti,0 = yq0(xi−ζqyi)
for any l′ ≤ i ≤ 2l′ − 1 is also stabilized by g. Hence xi − ζqyi is so for

l′ ≤ i ≤ 2l′ − 1. Therefore we have g∗(x − ζqy) ≡ x − ζqy mod �2l′ . Hence,

we must have

sζ,l′(g0) ≡ 0 mod �l′

by (3.38). Hence the first assertion follows.

We prove the second assertion. Assume that n is odd. Let h(a, b) be as in

(2.3). Let γ0(P, s) be as in Lemma 3.8. For

g = 1 +

n−1∑
i=l′

�ih(ai, bi) +�n−1ξ ∈ H1,ζ,n with ai, bi ∈ k and ξ ∈ k2,

we set

η(P, s, g) = (al′ + bl′ζ)γ0(P, s)
q − (al′ + bl′ζ)

qγ0(P, s) ∈ k2,
φ1,ζ,P,s : H1,ζ,n/H

0
1,ζ,n � Q0; g �→ g(1, al′ + bl′ζ, η(P, s, g) + ξ).

We check that this satisfies (b) and (c). First, we consider (b). Let g=1+�n−1g0

be as in (b). We have g = 1 + �n−1h(an−1, bn−1) + �n−1sζ,1(g0) with some

an−1, bn−1 ∈ k. Hence we have the claim. Secondly, we consider (c). Let

(P, s) ∈ Δζ
1,n be an element such that tl′,0(P, s) = 0. We have γ0(P, s) = 0 by

Lemma 3.8 (2). Hence we have the claim.
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In the sequel we show the commutativity in (a). Let (x, y) ∈ ZP,s. We have

g∗xl′ = xl′ + (al′ + bl′ζ)ζ
qy0,

g∗(xi − ζqyi) = xi − ζqyi for 0 ≤ i ≤ 2l′ − 1,

g∗(x2l′ − ζqy2l′) = x2l′ − ζqy2l′ − (al′ + bl′ζ)
q(xl′ − ζyl′)− y0(ζq − ζ)ξ,

where we use (3.37) at the first equality, the second one is proved in the proof

of the first assertion, and the third one follows from (3.38). Hence we obtain

g∗t2l′,i = t2l′,i for 1 ≤ i ≤ l′−1. Hence by (3.16), (3.20) and the second equality

in (3.30) we have

g∗Y = Y + al′ + bl′ζ,

g∗X = X + (al′ + bl′ζ)
qY + η(P, s, g) + ξ.

Hence the claim follows.

The following fact will be used in §5.
Corollary 3.10: The action of GFn on Δ1,n is transitive.

Proof. We take ζ ∈ k2 \ k and δ1 = (P, s) ∈ Δζ
1,n. Assume that n is odd. By

Lemma 3.9 (1), we have the injective map

(3.39) H1,ζ,n\GFn ↪→ Δ1,n; H1,ζ,ng �→ δ1g.

By

|H1,ζ,n\GFn | =|GFl′ ||Nl′/H1,ζ,n|
=|GFl′ ||M2(ol′)/C1,l′ |
=q3(n−2)(q − 1)(q2 − 1) = |Δ1,n|

the map (3.39) is surjective. Hence we obtain the claim.

Assume that n is even. By Lemma 3.9 (1) and

|H0
1,ζ,n\GFn | = |Δ1,n| = q3(n−1)(q − 1)(q2 − 1)

the group GFn acts on Δ1,n transitively.

Finally, we write down the group action of GF1 ×TF1 on X1 = X1 � ZDL. Let

g = ( a bc d ) ∈ GF1 and t ∈ TF1 . Then (g, t) acts on X1 by

(3.40) (g, t) : X1 → X1; (x, y) �→ (t−1(ax+ cy), t−1(bx+ dy)).
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3.3. Preliminaries. We collect some well-known facts on the first cohomology

of the curve Z0. We fix an isomorphism k2
∼−→ Z(Q0); γ �→ g(1, 0, γ). For a finite

abelian group A, we write A∨ for Hom(A,Q
×
� ). We regard k∨ as a subset of k∨2

by the dual of the trace map Trk2/k : k2 � k. For each character ψ′ ∈ k∨2 \ k∨,
which is regarded as a character of Z(Q0), there exists a unique q-dimensional

irreducible representation τψ′ of Q such that

• τψ′ |Z(Q0) � ψ′⊕q, and
• Tr τψ′(g(α, 0, 0)) = −1 for α ∈ k2 \ k

(cf. [BH, Lemma in §22.2] and [T2, Lemma 4.14]). We regard k× as a subgroup

of Q by k× ↪→ Q; α �→ g(α, 0, 0). As k×-representations we have

(3.41) τψ′ |k× � 1⊕q,

where 1 is the trivial character of k×. We have an isomorphism

(3.42) H1
c (Z0) �

⊕
ψ′∈k∨2 \k∨

τψ′

as Q-representations (cf. [T2, Lemma 4.16.1]). Let γ0 ∈ k2. We consider the

map (3.28). To understand the restriction τψ′ |fγ0 (k×2 ) as in (3.45), we need the

following lemma.

Lemma 3.11: Let ψ′ ∈ k∨2 \ k∨. We have

Tr τψ′(fγ0(α)) = −1
for all α ∈ k2 \ k.
Proof. For ξ ∈ k, let Z0,ξ be the affine smooth connected curve defined by

Xq + X = Y q+1 + ξ over kac. Recall that Z0 =
∐
ξ∈k Z0,ξ. We consider the

projective smooth curve

Zξ = {(S : T : U) ∈ P2
kac | SqU + SU q = T q+1 + ξU q+1}.

We have the open immersion Z0,ξ ↪→ Zξ; (X,Y ) �→ (X : Y : 1). We set

Z =
∐
ξ∈k Zξ, which contains Z0 as an open subscheme. Let η ∈ k2 and

α ∈ k2 \ k, and set ζ = αq−1 �= 1. The action of g(1, 0, η)fγ0(α) on Z0 is given

by

(X,Y ) �→ (X + (ζ − 1)γq0(Y − γ0) + η, ζY + (1 − ζ)γ0) .
This action naturally extends to the one on Z. One can check that the multi-

plicity of any fixed point of g(1, 0, η)fγ0(α) on Z is one. The set of fixed points
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of g(1, 0, η)fγ0(α) on Z0 equals⎧⎨⎩
∐
ξ∈k{(X, γ0) ∈ A2

kac | Xq +X = γq+1
0 + ξ} if η = 0,

∅ otherwise.

Hence, by [Del, Corollaire 5.4 in Rapport], we have

(3.43) Tr(g(1, 0, η)fγ0(α);H
∗
c (Z0)) =

⎧⎨⎩q2 if η = 0,

0 otherwise.

We set

M = kerTrk2/k .

Let π0(Z0) be the set of connected components of Z0. As above, we have

π0(Z0) � k. Hence we have H2
c (Z0) �

⊕
χ∈k∨ χ as k-representations. We can

easily check that fγ0(α) acts on π0(Z0) trivially, and g(1, 0, η) acts on it as

multiplication by Trk2/k(η). Hence we have

(3.44) Tr(g(1, 0, η)fγ0(α);H
2
c (Z0)) =

∑
χ∈k∨

χ(Trk2/k(η)) =

⎧⎨⎩q if η ∈M,

0 otherwise.

Note that H0
c (Z0) = 0. By (3.43) and (3.44) we obtain

Tr(g(1, 0, η)fγ0(α);H
1
c (Z0)) =

⎧⎪⎪⎨⎪⎪⎩
−q(q − 1) if η = 0,

q if η ∈M \ {0},
0 otherwise.

We have ψ′|M �= 1 by the assumption ψ′ ∈ k∨2 \ k∨. Let H1
c (Z0)[ψ

′] be the

ψ′-isotypic part of H1
c (Z0). By (3.42) we have H1

c (Z0)[ψ
′] � τψ′ . Therefore we

have

Tr τψ′(fγ0(α)) =Tr(fγ0(α); H
1
c (Z0)[ψ

′])

=
1

q2

∑
η∈k2

ψ′−1(η)Tr(g(1, 0, η)fγ0(α);H
1
c (Z0))

=
1

q2

(
− q(q − 1) + q

∑
η∈M\{0}

ψ′−1(η)

)
= −1.

Hence the assertion follows.
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We write μq+1 for the abelian group {x ∈ k×2 | xq+1 = 1}. We regard

χ ∈ μ∨
q+1 as a character of fγ0(k

×
2 ) via the homomorphism

π : fγ0(k
×
2 )→ μq+1; fγ0(x) �→ xq−1.

The kernel of π equals the subgroup k× ⊂ Q. The image of fγ0(k2 \ k) by

π equals μq+1 \ {1}. By (3.41), the action of fγ0(k
×
2 ) on τψ′ |fγ0 (k×2 ) factors

through π. Hence for each γ0 ∈ k2, we have

(3.45) τψ′ |fγ0 (k×2 ) �
⊕

χ∈μ∨
q+1\{1}

χ

as fγ0(k
×
2 )-representations, because both sides have the same trace by Lemma

3.11.

In the sequel, we consider the subgroup Nl ⊂ GFn and describe characters

of it. Note that Nl is abelian. We take a K-embedding K2 ↪→ M2(K). We

have the isomorphism Nl � M2(ol′); 1 + �lx �→ x mod pl
′
. For a character

χ : o → Q
×
� , the conductor exponent of χ means the least integer r ≥ 0 such

that χ|pr = 1. Let ψ : o→ Q
×
� be a character of conductor exponent n. For an

element β ∈ M2(ol′) we consider the character

ψβ : Nl → Q
×
� ; g �→ ψ(Tr(β(g − 1))).

We have the isomorphism

κ : M2(ol′)
∼−→ Hom(Nl,Q

×
� ); β �→ ψβ .

The group GFn acts on M2(ol′) by conjugation. By the above isomorphism, GFn
acts on Hom(Nl,Q

×
� ) by ψβ �→ ψgβ with ψgβ(x) = ψβ(g

−1xg). We have the

commutative diagram

M2(ol′)
κ

∼
�� Hom(Nl,Q

×
� )

��

Ol′
��

��

	 �� Hom(U lK2,n
,Q

×
� ),

where the right vertical arrow is induced by the inclusion U lK2,n
↪→ Nl.

Let ω ∈ (TFn )∨. We take an element β ∈ Ol′ such that ψβ |Ul
K2,n

= ω|Ul
K2,n

.

We define a character σω of O×
nNl by

(3.46) σω(xu) = ω(x)ψβ(u)

for x ∈ O×
n and u ∈ Nl.
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3.4. Cohomology of Xn. In the following, we study the étale cohomology of

Xn by using results in §3.2 and §3.3. Our aim is to show Proposition 3.18.

Now we assume that n ≥ 2. Let t ∈ Bl′ . Recall that Xt
n is open and closed

in Xn. We set

Wt = Hn
c (X

t
n) ⊂ Hn

c (Xn).

Let ζ ∈ k2 \ k. We put

Gn,ζ = O×
nNl′ × TFn ⊂ GFn × TFn ,

where O×
n is regarded as a subgroup of GFn by ιζ as before. We regard ζ as an

element of Bl′ . Recall that pn is GFn × TFn -equivariant. Then Xζ
n admits the

action of Gn,ζ by Lemma 3.6 (2). Hence we can regard Wζ as a representation

of Gn,ζ .

Assume that n is even. By n = 2l′, the action of TFn on Δζ
1,n is simply

transitive by Lemma 3.7. By Lemma 3.8 (1), we have

(3.47) Wζ |O×
n ×TF

n
�
⊕

ω∈(TF
n )∨

ω ⊗ ω−1

as O×
n × TFn -representations. We regard

HomTF
n
(ω−1,Wζ)

as a representation ofO×
nNl′ . This is a character of O

×
nNl′ which is an extension

of ω by (3.47). Hence this is isomorphic to σω. Therefore we have

(3.48) Wζ �
⊕

ω∈(TF
n )∨

σω ⊗ ω−1

as Gn,ζ-representations. By Lemma 3.6 (2), the stabilizer of Wζ in GFn × TFn
equals Gn,ζ . The subspaces {Wt}t∈Bl′ are permuted transitively by GFn × TFn .

Hence, by [Se, Proposition 19 in §7.2], we have isomorphisms

(3.49)

Hn
c (Xn) �

⊕
ω∈(TF

n )∨
Ind

GF
n×TF

n

Gn,ζ
(σω ⊗ ω−1)

�
⊕

ω∈(TF
n )∨

(Ind
GF

n

O×
nNl′

σω)⊗ ω−1

as GFn × TFn -representations.
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We assume that n is odd until (3.59). By (3.25), we have

(3.50) Wζ �
⊕

(P,s)∈Δζ
1,n

H1
c (XP,s) ⊂ Hn

c (Xn) �
⊕

(P,s)∈Δ1,n

H1
c (XP,s).

For an element β ∈M2(ol′), we write β̄ ∈ M2(k) for the image of it by the canon-

ical map M2(ol′) � M2(k). In the following lemma, we understand characters

of Nl′+1 appearing in Wζ .

Lemma 3.12: Let β ∈M2(ol′). Assume that the character ψβ of Nl′+1 appears

in Wζ .

(1) We have β ∈ O×
l′ and β̄ ∈ k2 \ k. The reduction β̄ is conjugate to the

matrix

B =

(
0 1

−Nrk2/k(β̄) Trk2/k(β̄)

)
∈ M2(k).

(2) The stabilizer {g ∈ GFn | ψgβ = ψβ} equals O×
nNl′ .

Proof. Since n is odd, we have l = l′ + 1 and n = 2l′ + 1. We set β = β0 + β1

with β0 ∈ Ol′ and β1 ∈ C1,l′ . By the former assertion in Lemma 3.9 (2), the

subgroup H0
1,ζ,n acts on Wζ trivially. By the assumption and (3.35), we have

ψβ(1 +�l′+1h) = 1 for any h ∈ C1,l′ . By tr(β0h) = 0, we have

(3.51) ψ(�l′+1 tr(β1h)) = ψ(tr(�l′+1βh)) = ψβ(1 +�l′+1h) = 1

for any h ∈ C1,l′ . We put β1 = h(a, b) with a, b ∈ ol′ in the notation of (2.3).

Assume that β1 �= 0. By ζ ∈ k2 \ k, we can check that the image of the map

C1,l′ → ol′ ; h �→ tr(β1h)

equals the ideal (a, b), and this ideal contains pl
′−1/pl

′
by β1 �= 0. Hence, by

(3.51), we have ψ(pn−1) = 1. Since ψ has conductor exponent n, this is a

contradiction. Hence we have β1=0. Therefore we have β=β0∈Ol′ . By (3.42),

we have an isomorphism

(3.52) H1
c (Z0) �

⊕
χ∈k∨2 \k∨

χ⊕q

as Z(Q) � k2-representations. By (3.52), there exists χ ∈ k∨2 \ k∨ such that

ψβ(1 +�2l′g0) = χ(sζ,1(g0))
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for g0 ∈ M2(k) by Lemma 3.9 (2). By sζ,1(x0) = x0 for x0 ∈ k2, we have

(3.53) ψβ(1 +�2l′x0) = χ(x0)

for x0 ∈ k2. We identify pn−1/pn with k by �n−1x �→ x for x ∈ k. We set

ψ0 = ψ|pn−1/pn	k ∈ k∨ \ {1}.
The left-hand side of (3.53) equals ψ0 ◦ Trk2/k(β̄x0). Hence, by (3.53) and

χ ∈ k∨2 \ k∨, we have β̄ ∈ k2 \ k. We set β̄ = a+ bζ with a, b ∈ k. By β̄ ∈ k2 \ k
we have b ∈ k×. Let M = ( 1 0

a+b(ζ+ζq) b ) ∈ GF1 . Then, Mβ̄M−1 equals B.

Therefore the first assertion follows.

The second assertion follows from the first one and [Sta, §2.1].
The following lemma is a well-known result on representation theory of a

finite Heisenberg group.

Lemma 3.13 ([BF, (8.3.3) Proposition]): Let G be a finite group and N a

normal subgroup such that G/N is an elementary abelian p-group. Let χ be a

character of N , which is stabilized by G. Define an alternating bilinear form

hχ : G/N ×G/N → Q
×
� ; (g1, g2) �→ χ([g1, g2]) = χ(g1g2g

−1
1 g−1

2 ).

Assume that hχ is non-degenerate. Then there exists a unique up to isomor-

phism irreducible representation ρχ such that ρχ|N contains χ. The represen-

tation ρχ has degree [G : N ]1/2 and the restriction ρχ|N is a multiple of χ.

Corollary 3.14 ([Sta, §4.2]): Let ψβ be a character of Nl appearing in Wζ .

Let ψ̃β be a character of U1
K2,n

Nl which is an extension of ψβ . Then there exists

a unique irreducible representation ρ
˜ψβ

of U1
K2,n

Nl′ of degree q containing ψ̃β .

We have

ρ
˜ψβ
|U1

K2,nNl
� ψ̃⊕q

β .

Moreover, every irreducible representation of U1
K2,n

Nl′ containing ψβ has this

form.

Proof. We set G = U1
K2,n

Nl′ , N = U1
K2,n

Nl and χ = ψ̃β . By applying Lemma

3.13 as in [Sta, §4.2] we obtain the assertions.

Definition 3.15: We identify Un−1
K2,n

with k2 by 1 +�n−1x �→ x for x ∈ k2. For

a character ω ∈ (O×
n )

∨, we say that ω is strongly primitive if the restriction

ω|Un−1
K2,n

does not factor through the trace map Trk2/k : k2 → k.
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In this definition, we follow [AOPS, Definition 5.2]. Note that this definition

does not depend on the choice of the uniformizer �. We write (O×
n )

∨
stp for the

set of all strongly primitive characters of O×
n . Note that

|(O×
n )

∨
stp| = q2n−3(q − 1)(q2 − 1).

For a strongly primitive character ω, we consider the restriction

σω |U1
K2,nNl

: U1
K2,nNl → Q

×
�

of σω in (3.46). We obtain the representation ρσω |
U1
K2,n

Nl
of U1

K2,n
Nl′ by Corol-

lary 3.14, for which we simply write ρω. Note that the isomorphism class of ρω

depends only on ω|U1
K2,n

.

Let Δζ : O
×
n → Gn,ζ be the diagonal map in (3.6). We consider (3.50). For

each (P, s) ∈ Δζ
1,n, the subspace H1

c (XP,s) of Wζ is stable under the action of

Δζ(o
×
nU

1
K2,n

) by Lemma 3.8 (1). Recall that k× ⊂ Q acts on XP,s trivially. By

the latter assertion in Lemma 3.8 (2), the restriction Wζ |Δζ(o
×
nU1

K2,n)
is trivial.

We fix the isomorphism

O×
n /o

×
nU

1
K2,n

∼−→ μq+1; α �→ ᾱq−1.

By this, the restriction Wζ |Δζ(O
×
n ) can be regarded as a μq+1-representation.

Recall that

Wζ �
⊕

(P,s)∈Δζ
1,n

H1
c (XP,s).

By Lemma 3.4 (2) we have |Δζ
1,n| = q2(n−2)(q2 − 1). Hence have

|k∨2 \ k∨||Δζ
1,n| = |(TFn )∨stp|.

By Lemma 3.8 (2), (3.42) and (3.45), the representation Wζ |Δζ(O
×
n ) is isomor-

phic to

(3.54)
⊕

χ∈μ∨
q+1\{1}

χ|(TF
n )∨stp|

as μq+1-representations. We identify Un−1
K2,n

with k2 by 1 + �n−1x �→ x for

x ∈ k2. Let (P, s) ∈ Δζ
1,n. By the latter assertion in Lemma 3.7, we can regard

H1
c (XP,s) as a representation of {1} × Un−1

K2,n
. Note that Wζ |Δζ(U

n−1
K2,n)

is trivial

by (3.54). By the property (b) in Lemma 3.9 (2) and (3.52), we have

H1
c (XP,s) �

⊕
ψ′∈k∨2 \k∨

ψ′q
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as {1}×Un−1
K2,n

-representations. By the former assertion in Lemma 3.7, we have

an isomorphism

(3.55) Wζ |{1}×TF
n
� Ind

TF
n

Un−1
K2,n

H1
c (XP,s) �

⊕
ω∈(TF

n )∨stp

ω⊕q

as TFn -representations. By (3.54) and (3.55), we have an isomorphism

(3.56) Wζ |O×
n ×TF

n
�
⊕

ω∈(TF
n )∨stp

⊕
χ∈μ∨

q+1\{1}
ωχ⊗ ω−1

as O×
n ×TFn -representations, where χ is considered as a character of O×

n through

O×
n → μq+1; α �→ ᾱq−1. For a strongly primitive character ω we put

σ̃ω = HomTF
n
(ω−1,Wζ),

which is regarded as a representation of O×
nNl′ . SinceWζ contains only strongly

primitive characters by (3.56), we have an isomorphism

(3.57) Wζ �
⊕

ω∈(TF
n )∨stp

σ̃ω ⊗ ω−1

as Gn,ζ-representations.

Lemma 3.16: The O×
nNl′ -representation σ̃ω is irreducible and satisfies

• σ̃ω |U1
K2,nNl′ � ρω and

• Tr σ̃ω(ζ
′) = −ω(ζ′) for ζ′ ∈ k2 \ k.

Proof. Let O×
n ⊂ GFn . By (3.56), we have an isomorphism

(3.58) σ̃ω |O×
n
�

⊕
χ∈μ∨

q+1\{1}
wχ.

Let ζ′ ∈ k2 \k. We have
∑

χ∈μ∨
q+1\{1} χ(ζ

′q−1) = −1 by ζ′q−1 �= 1. By (3.58) we

have Tr σ̃ω(ζ
′) = −ω(ζ′). Since σ̃ω is contained in Wζ , there exists β ∈ O×

l′ \ o×l′
such that σ̃ω contains the character ψβ of Nl by Lemma 3.12. By dim σ̃ω = q

and Corollary 3.14, there exists a character ψ̃β of U1
K2,n

Nl which is an extension

of ψβ such that σ̃ω|U1
K2,nNl′ � ρ

˜ψβ
. The irreducibility of σ̃ω follows from the

irreducibility of σ̃ω|U1
K2,nNl′ � ρ˜ψβ

in Corollary 3.14. We have

σ̃ω|U1
K2,nNl

� ρ
˜ψβ
|U1

K2,nNl
� ψ̃⊕q

β .
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By (3.58), we have σ̃ω|U1
K2,n

= ω|⊕q
U1

K2,n

. Hence we have ω|U1
K2,n

= ψ̃β|U1
K2,n

.

Therefore, for x ∈ U1
K2,n

and y ∈ Nl, we have

σω(xy) = ω(x)ψβ(y) = ψ̃β(x)ψβ(y) = ψ̃β(xy).

Hence we obtain σ̃ω|U1
K2,nNl′ � ρω by the uniqueness in Corollary 3.14.

Remark 3.17: See [AOPS, Lemma 5.6], [BH, Proposition in §19.4] and [Sta,

§4.2] for more details on σ̃ω.

By the former assertion in Lemma 3.6 (1), we know that the subspaces

{Wt}t∈Bl′ are permuted transitively by GFn × TFn and the stabilizer of Wζ

equals Gn,ζ . Hence, by (3.57), we have isomorphisms

(3.59) Hn
c (Xn) � Ind

GF
n×TF

n

Gn,ζ
Wζ �

⊕
ω∈(TF

n )∨stp

(Ind
GF

n

O×
nNl′

σ̃ω)⊗ ω−1

as GFn × TFn -representations.

For each ω ∈ (TFn )∨stp we set

(3.60) πω =

⎧⎪⎨⎪⎩
Ind

GF
n

O×
nNl′

σω if n is even,

Ind
GF

n

O×
nNl′

σ̃ω if n is odd.

Note that we have dimπω = qn−1(q − 1). The isomorphism class of πω does

not depend on the embedding ιζ : O
×
n ↪→ GFn . The representation πω is called

a strongly cuspidal representation of GFn in [AOPS, §5]. In the case GL(2),

strongly cuspidal is equivalent to cuspidal by [AOPS, Theorem A]. Hence, in

Introduction, we simply call πω cuspidal. This representation is irreducible.

This class of representations is described also in [Onn, §6.2] and [Sta, §4.2]. Let
Hn

c (Xn)stp be the maximal subspace ofHn
c (Xn) consisting of strongly primitive

characters of TFn .

Proposition 3.18: Let n ≥ 2 be a positive integer. Then we have an isomor-

phism

Hn
c (Xn)stp �

⊕
ω∈(TF

n )∨stp

πω ⊗ ω−1

as GFn × TFn -representations.

Proof. The required assertion follows from (3.49) and (3.59).
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Remark 3.19: (1) If n is odd, as in (3.59), we have Hn
c (Xn)stp = Hn

c (Xn).

On the other hand, if n is even, this does not hold as in (3.49).

(2) The above proposition is regarded as a geometric realization of the cor-

respondence in [AOPS, Theorem 5.10] for GL(2) and o of characteristic

p. The correspondence is a generalization of the Green correspondence

ω ↔ πω in Lemma 3.20 in the case GL(2). See also [AOPS, Introduc-

tion].

(3) Let σ∈Gal(K2/K) be the non-trivial character. Then we have πω�πωσ .

Recall the cohomology ofX1 = ZDL. We regard (k×)∨ as a subgroup of (k×2 )
∨

by the dual of the norm map k×2 → k×. We write H1
c (ZDL)stp for the maximal

subspace on which k×2 acts not factoring through the norm map k×2 → k×. For
any ω ∈ (k×2 )

∨ \ (k×)∨, there exists an irreducible cuspidal representation πω

(cf. [BH, §6.4]). We identify k×2 � TF1 as before. We set

(TF1 )∨stp = (k×2 )
∨ \ (k×)∨.

The following is well-known as the Deligne–Lusztig theory for GL2(Fq), which

gives a geometric realization of the Green correspondence in this case.

Lemma 3.20: We have an isomorphism

H1
c (X1)stp �

⊕
ω∈(TF

1 )∨stp

πω ⊗ ω−1

as GF1 × TF1 -representations.

Proof. This is a special case of the Deligne–Lusztig theory in [DL] (cf. (3.40),

[T2, §4.3] and [Y]).

Remark 3.21: (1) As in Remark 3.19 (2), we have πω�πωσ for ω∈(TF1 )∨stp.
(2) See [BH, §6.4] for more details on cuspidal representations of GF1 .

4. Deligne–Lusztig variety for O×
2n−1

We use the same notation for the quaternion algebra D at the beginning of §2.2.
In this section, we define a closed subvariety of the Deligne–Lusztig variety for

O×
2n−1 and compute its cohomology. Analysis in this section is very analogous

to the one in §3. Our main result in this section is Proposition 4.12.
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4.1. Deligne–Lusztig variety for O×
2n−1 and its subvariety. Let n be

a positive integer. Let G′
n be the group consisting of all 2 × 2 matrices ( a bc d )

such that c ∈ �õn−1 and a, d ∈ õ×n and b ∈ õn−1. We regard this as an affine

variety over kac. By �õn−1 ⊂ õn we have a determinant map

det : G′
n → õ×n .

Let

Vn = õn ⊕ õn−1, V ′
n = �õn−1 ⊕ õn, V ′′

n = õ⊕2
n .

These Vn and V ′
n admit actions of G′

n by right multiplication. We have the

canonical surjective map V ′′
n � Vn and the injective map V ′

n ↪→ V ′′
n . Let {e1, e2}

be the canonical basis of V ′′
n . Let F be as in (3.1). We define morphisms

F ′ : Vn → V ′
n; xe1 + ye2 �→ �F (y)e1 + F (x)e2,

F ′ : G′
n → G′

n; g �→ ϕ′F (g)ϕ′−1
,

where ϕ′ = ( 0 1
� 0 ). Explicitly, we have

F ′(g) =

(
F (d) F (c)�−1

�F (b) F (a)

)
for g =

(
a b

c d

)
∈ G′

n.

Note that we have

detF ′(g) = F (det g) for g ∈ G′
n,

F ′(vg) = F ′(v)F ′(g) in V ′
n for v ∈ Vn and g ∈ G′

n.

On the other hand, for elements v ∈ Vn and w ∈ V ′
n, we define an element

v ∧w in
∧2

V ′′
n � õn(e1 ∧ e2) by ṽ ∧w for any lifting ṽ ∈ V ′′

n of v. This is well-

defined. In the same manner, for elements v ∈ Vn and w ∈ �Vn, by considering

�Vn ⊂ V ′′
n , we can define v ∧w ∈ ∧2

V ′′
n .

We set

TFn =

{(
t 0

0 F (t)

)
∈ G′

n

∣∣∣ t ∈ O×
n

}
and fix an isomorphism

(4.1) O×
n � TFn ; t �→

(
t 0

0 F (t)

)
.

This group TFn equals the one defined before and is denoted by the same letter.

Let U ′
n be the group of upper triangular matrices in G′

n with 1’s on the diagonal.
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Then we set

XD
n = {g ∈ G′

n | F ′(g)g−1 ∈ U ′
n},

which we call the Deligne–Lusztig variety for O×
2n−1 (cf. [Lus, §2]). Let G′F ′

n

denote the set of F ′-fixed points in G′
n. Then we have

G′F ′
n =

{
[a, b] =

(
a F (b)

�b F (a)

)
∈ G′

n

∣∣∣ a ∈ O×
n , b ∈ On−1

}
.

Recall that aϕ = ϕF (a) for a ∈ On. We fix an isomorphism

G′F ′
n

∼−→ O×
2n−1; [a, b] �→ a+ ϕb.

Let O×
2n−1 × TFn act on XD

n by x �→ txd for x ∈ XD
n and (d, t) ∈ O×

2n−1 × TFn .

The reduced norm map NrdD/K : D× → K× induces

NrdD/K : O×
2n−1 → o×n .

Lemma 4.1: (1) We have

XD
n =

{
g =

(
x y

�F (y) F (x)

)
∈ G′

n

∣∣∣ det g ∈ o×n

}
� SD

n = {v = (x, y) = xe1 + ye2 ∈ Vn | v ∧ F ′(v) ∈ o×n (e1 ∧ e2)};
g �→ e1g.

(2) Let O×
2n−1× TFn act on SD

n through the isomorphism in 1. For t ∈ TFn ,

v ∈ SD
n and d ∈ O×

2n−1, we have

vd ∧ F ′2(vd) = NrdD/K(d)(v ∧ F ′2(v)),

tv ∧ F ′2(tv) = t2(v ∧ F ′2(v)).

Proof. The claims follow from direct computations. We omit the details.

Note that we have dimXD
n = n. As before, we set l = [(n + 1)/2] and

l′ = [n/2].

Definition 4.2: (1) We set

Y Dn = {v ∈ SD
n | v ∧ F ′2(v) = 0} ⊂ SD

n � XD
n .

(2) Let pDn : XD
n → XD

l be the canonical projection. Then we put

XD
n = (pDn )

−1(Y Dl ).
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Let

(x, y) =

( n−1∑
i=0

xi�
i,

n−2∑
i=0

yi+1�
i

)
∈ SD

n .

Explicitly, Y Dn is defined by

x0 ∈ k×2 , xi, yi ∈ k2 for 1 ≤ i ≤ n− 1.

Hence, this variety is 0-dimensional and consists of q4(n−1)(q2−1) closed points.

By Lemma 4.1 (2), the variety Y Dn is stable under the action of O×
2n−1 × TFn .

It equals the image of G′F ′
n ⊂ XD

n by the isomorphism XD
n

∼−→ SD
n . Hence, the

O×
2n−1-action on it is simply transitive. We consider the surjective map

νDn : Y Dn → BDn = On−1; (x, y) �→ y/x.

Let O×
2n−1 act on BDn by

(4.2) a+ bϕ : BDn → BDn ; t �→ F (a)t+ F (b)

�bt+ a

for a+ϕb ∈ O×
2n−1, where a is regarded as an element of On−1 by the canonical

map On → On−1. Let TFn act on BDn trivially. Then νDn is O×
2n−1 × TFn -

equivariant. For t ∈ BDn we set

Y Dn,t = (νDn )−1(t) ⊂ Y Dn .
The scheme XD

n admits an action of O×
2n−1 × TFn , because pDn is compatible

with the canonical homomorphism O×
2n−1×TFn � O×

2l−1×TFl and Y Dl is stable

under the action of O×
2l−1 × TFl . Let

(x, y) =

( n−1∑
i=0

xi�
i,

n−2∑
i=0

yi+1�
i

)
∈ Vn.

The variety XD
n is defined by

(4.3)

i∑
j=0

xqjxi−j −
i∑

j=1

yqjyi+1−j ∈ k for 1 ≤ i ≤ n− 1,

x0 ∈ k×2 , xi, yi ∈ k2 for 1 ≤ i ≤ l − 1.

We put

(4.4) si =

[(i−1)/2]∑
j=0

xqjxi−j −
[i/2]∑
j=1

yqjyi+1−j for l′ ≤ i ≤ n− 1.
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Let

I = {i ∈ Z | l ≤ i ≤ 2(l − 1)}.
By (4.3), for l′ ≤ i ≤ n− 1, we can check that

(4.5) sqi + si =

⎧⎨⎩
∑i
j=0 x

q
jxi−j −

∑i
j=1 y

q
jyi+1−j − xq+1

i/2 if i is even,∑i
j=0 x

q
jxi−j −

∑i
j=1 y

q
jyi+1−j + yq+1

(i+1)/2 if i is odd.

Hence we have si ∈ k2 for all i ∈ I by (4.3). We set

(4.6) Δ2,n = Y Dl × kI2 .

We obtain the surjective map

pDn : XD
n → Δ2,n; x �→ (pDn (x), (si(x))i∈I).

We can check that Δ2,n admits the action of O×
2n−1 × TFn such that pDn is

O×
2n−1 × TFn -equivariant. We set

ZDP,s = (pDn )
−1(P, s) for (P, s) ∈ Δ2,n.

Lemma 4.3: We have

XD
n =

∐
(P,s)∈Δ2,n

ZDP,s

and an isomorphism

ZDP,s �
⎧⎨⎩Al−1 × Z0 if n is even,

Al−1 if n is odd.

Proof. We prove only the case where n is even. We have l = l′ and n = 2l. By

(4.5) we have

sq2l−1 + s2l−1 − yq+1
l ∈ k.

By setting

(4.7) X =
s2l−1

xq+1
0

, Y =
yl
x0
,

we have Xq +X − Y q+1 ∈ k. By (4.4) and (4.7), there exists an upper matrix

AP,s ∈Ml−1(k2) and aP,s ∈ kl−1
2 such that

(4.8) (xl, . . . , x2l−2) = (Y, yl+1, . . . , y2l−2)AP,s + aP,s.



914 T. ITO AND T. TSUSHIMA Isr. J. Math.

By (4.7) and (4.8) there exists a vector (al+1, . . . , a2l−2, b1, b2, c) ∈ kl+1
2 such

that

(4.9) x2l−1 =

2l−2∑
i=l+1

aiyi + b1X + b2Y + c.

By (4.7), (4.8) and (4.9), we know that the morphism

ZP,s → Al−1 × Z0;

( 2l−1∑
i=0

xi�
i,

2l−2∑
i=0

yi+1�
i

)
�→ ((yi)l+1≤i≤2l−1, (X,Y ))

is an isomorphism. Hence the required assertion follows.

Remark 4.4: Compare Lemma 4.3 with Lemma 3.5. For varieties X and Y over

kac, we write X ∼ Y if X � Y ×Ai with some non-negative integer i. Let n > 1

be an integer. By the lemmas we have

ZP,s ∼
⎧⎨⎩Z0 if n is odd,

Spec kac if n is even,
for (P, s) ∈ Δ1,n,

ZDP,s ∼
⎧⎨⎩Z0 if n is even,

Spec kac if n is odd,
for (P, s) ∈ Δ2,n.

This is asymmetric with respect to the parity of n. This causes the asymmetry

mentioned in [BH, §54.8].
For t ∈ BDn , we put

Δt
2,n = Y Dl,t × kl−1

2 ⊂ Δ2,n,

XD,t
n = (pDn )

−1(Δt
2,n) ⊂ XD

n .

Let

XD
P,s =

⎧⎨⎩Spec kac if n is odd,

Z0 if n is even,

X(Δ2,n) =
∐

δ2∈Δ2,n

XD
P,s.

(4.10)

By Lemma 4.3 we have the projections

ZDP,s → XD
P,s,

XD
n → X(Δ2,n).(4.11)
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We can check that X(Δ2,n) admits the action of O×
2n−1 × TFn such that (4.11)

is O×
2n−1 × TFn -equivariant. We set d2 = dimX(Δ2,n). Since (4.11) is an affine

bundle of relative dimension l − 1, we have an isomorphism

Hn−1
c (XD

n ) � Hd2
c (X(Δ2,n))

as O×
2n−1 × TFn -representations.

4.2. Group action on XD
n . We study group action on XD

n similarly as in

§3.2. Let O×
2n−1×TFn act on Y Dl and BDl through the canonical homomorphism

O×
2n−1 × TFn → O×

2l−1 × TFl .

Lemma 4.5: The action of O×
2n−1 on B

D
l is transitive. The stabilizer of 0 ∈ BDl

in O×
2n−1 equals O×

nU
2l−1
D .

Proof. The group O×
2l−1 acts on Y Dl transitively. Since νDl is an O×

2l−1-equi-

variant surjective map, O×
2l−1 acts on BDl transitively. By (4.2), we can know

the stabilizer of 0.

Since TFn acts on BDl trivially, the stabilizer of Δ0
2,n in O×

2n−1 × TFn equals

O×
nU

2l−1
D × TFn .

Lemma 4.6: The action of TFn on Δ0
2,n is transitive. For (P, s) ∈ Δ0

2,n, its

stabilizer in TFn equals U2l−1
K2,n

.

Proof. The group TFl acts on Y Dl,0 transitively. Hence, to prove the first asser-

tion, it suffices to show that, for each P ∈ Y Dl,0, the subgroup U lK2,n
⊂ TFn acts

on the subset kI2,P = {P}×kI2 ⊂ Δ0
2,n transitively (cf. the proof of Lemma 3.7).

Let P ∈ Y Dl,0 and t ∈ U lK2,n
. We put

t = 1 +
n−1∑
i=l

ai�
i with ai ∈ k2,

s = (si)i∈I , a = (ai)i∈I ∈ kI2 .
We can check that there exists an upper triangular matrix BP ∈ GLl−1(k2)

such that t acts on kI2,P by

(4.12) kI2,P → kI2,P ; (P, s) �→ (P, s + aBP ).

Hence U lK2,n
acts on kI2,P transitively. Therefore the first assertion follows. If t

stabilizes (P, s) ∈ Δ0
2,n, we have a = 0 by (4.12). Hence the latter assertion

follows.
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By definition, we have

(4.13) yi = 0 for 1 ≤ i ≤ l − 1

on XD,0
n .

Lemma 4.7: (1) The action of the subgroup O×
n in O×

2n−1 on Δ0
2,n equals

the one of TFn .

(2) Assume that n is even. For α ∈ O×
n and (P, s) ∈ Δ0

2,n we have the

commutative diagram

ZDP,s
(α,α−1) ��

��

ZDP,s

��
XD
P,s

g(ᾱ,0,0) �� XD
P,s.

Proof. We simply write α′ for (α, α−1) ∈ O×
n × TFn . We have

α′∗x = x, α′∗y = (F (α)/α)y.(4.14)

By this, yF (y) is fixed by the action of α′. Hence si for i ∈ I is so. Hence the

first assertion follows.

We prove the second assertion. We assume that n is even. By the above

argument s2l−1 is also fixed by α′. By (4.13) and (4.14) we have α′∗yl = ᾱq−1yl,

and hence

α′∗X = X, α′∗Y = ᾱq−1Y

by (4.7). Hence the required assertion follows.

Let H0
2,n ⊂ H2,n be as in §2.2. Explicitly, we have

H0
2,n = 1 + pnK2

+ pl
′
K2

C2 ⊂ H2,n = 1 + pn−1
K2

+ pl−1
K2

C2 ⊂ U2l−1
D .

Lemma 4.8: Let (P, s) ∈ Δ0
2,n.

(1) The stabilizer of (P, s) in O×
2n−1 equals⎧⎨⎩H0

2,n if n is odd,

H2,n if n is even.

(2) Assume that n is even. The group H2,n acts on ZDP,s factoring through

H2,n → H2,n/H
0
2,n. Let H2,n/H

0
2,n act on XD

P,s = Z0 through the
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isomorphism φ2 : H2,n/H
0
2,n � Q0 in (2.14). For each d ∈ H2,n/H

0
2,n,

we have the commutative diagram

ZDP,s

��

d �� ZDP,s

��
XD
P,s

φ2(d) �� XD
P,s.

Proof. Let (x, y) ∈ XD
P,s and

d = 1 +�la+ ϕ2l−1b ∈ U2l−1
D with a, b ∈ O.

We have

d∗x = x+�l(ax + by), d∗y = y +�l−1(F (b)x+�F (a)y).(4.15)

For i ∈ I, by (4.13), we have si =
∑[(i−1)/2]

j=0 xqjxi−j . We set

a =
∞∑
i=0

ai�
i ∈ O, s = (si)i∈I , a = (ai)i∈I ∈ kI2 .

Then, by (4.13) and (4.15), there exists an upper triangular matrix

AP ∈ GLl−1(k2) such that the action of d on kI2,P is given by

(4.16) kI2,P → kI2,P ; (P, s) �→ (P, s+ aAP ).

Assume that d ∈ O×
2n−1 stabilizes (P, s). Since d stabilizes P we have d ∈ U2l−1

D .

By (4.16), we must have a = 0. Hence, we obtain the first assertion.

We prove the second assertion. Assume that n is even. Let

d = 1 +�2l−1a+ ϕ2l−1b ∈ H2,n with a =

∞∑
i=0

ai�
i, b =

∞∑
i=0

bi�
i ∈ O

and (x, y) ∈ ZDP,s. By (4.15), we have

d∗xi = xi for l ≤ i ≤ 2l− 2,

d∗x2l−1 = x2l−1 + b0yl + a0x0, d∗yl = yl + bq0x0.

Note that sn−1 =
∑l−1
i=0 x

q
ix2l−1−i. Therefore, by (4.7), we have

d∗X = X + b0Y + a0, d∗Y = Y + bq0.

Hence the required assertion follows.

Corollary 4.9: The action of O×
2n−1 on Δ2,n is transitive.
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Proof. We take an element δ2 ∈ Δ0
2,n. Assume that n is even. By Lemma 4.8

(1) we have the injective map

(4.17) H2,n\O×
2n−1 ↪→ Δ2,n; H2,nd �→ δ2d.

By

|H2,n\O×
2n−1| =|O×

2l′−1||U2l′−1
D /H2,n|

=|O×
2l′−1||Ol′−1|

=q3(n−2)(q2 − 1) = |Δ2,n|
the map (4.17) is surjective. Hence we obtain the claim.

Assume that n is odd. By Lemma 4.8 (1) and

|H0
2,n\O×

2n−1| = |Δ2,n| = q3(n−1)(q2 − 1)

we obtain the claim in the same way as above.

4.3. Cohomology of XD
n . In the sequel, we describe characters of the abelian

subgroup UnD ⊂ O×
2n−1 similarly as in the end of §3.3. We fix an isomorphism

On−1
∼−→ UnD; x �→ 1 + ϕnx. Fix a non-trivial additive character ψ : o → Q

×
�

of conductor exponent n. Let TrdD/K : D → K be the reduced trace map. For

any β ∈ On−1, let

ψDβ : UnD → Q
×
� ; x �→ ψ(TrdD/K(β(x − 1))).

We have the isomorphism κ : On−1 � Hom(UnD,Q
×
� ); β �→ ψDβ . Then we have

the commutative diagram

On−1
κ

∼
�� Hom(UnD,Q

×
� )

��

Ol′
��

��

	 �� Hom(U lK2
,Q

×
� ),

where the right vertical arrow is induced by the inclusion U lK2
↪→ UnD. Let

ω ∈ (TFn )∨. We write ψβ with some β ∈ Ol′ for the restriction ω|Ul
K2

. Then we

obtain a character ψDβ of UnD. We define a character ω of O×
nU

n
D by

(4.18) σDω (xu) = ω(x)ψDβ (u)

for x ∈ O×
n and u ∈ UnD. See also [BF, (6.5.2)].
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For each t ∈ BDn we set

WD
t = Hn−1

c (XD,t
n ) ⊂ Hn−1

c (XD
n ).

First, we consider the case where n is odd. In the same way as (3.48), by

using Lemma 4.6 and Lemma 4.7 (1), we have an isomorphism

WD
0 |O×

nUn
D×TF

n
�
⊕

ω∈(TF
n )∨

σDω ⊗ ω

as O×
nU

n
D×TFn -representations, where ω is the character of O×

nU
n
D in (4.18). In

the same way as (3.49), by Lemma 4.5, we obtain an isomorphism

(4.19) Hn−1
c (XD

n ) �
⊕

ω∈(TF
n )∨

(Ind
O×

2n−1

O×
nUn

D

σDω )⊗ ω

as O×
2n−1 × TFn -representations.

Secondly, we consider the case where n is even. In the sequel we analyze the

cohomology Hn−1
c (XD

n ). We have an isomorphism

Hn−1
c (XD

n ) �
⊕

(P,s)∈Δ2,n

H1
c (X

D
P,s).

We have dimHn−1
c (XD

n ) = q3n−4(q − 1)(q2 − 1).

By Lemmas 4.6 and 4.8 (2) we have an isomorphism

WD
0 |{1}×TF

n
�
⊕

ω∈(TF
n )∨stp

ω⊕q.

Hence, by Lemma 4.7, we obtain

WD
0 |O×

n ×TF
n
�
⊕

ω∈(TF
n )∨stp

⊕
χ∈μ∨

q+1\{1}
χω ⊗ ω

as O×
n × TFn -representations. Here, χ ∈ μ∨

q+1 is regarded as a character of O×
n

by O×
n → μq+1; a �→ āq−1.

For a strongly primitive character ω we set

σ̃Dω = HomTF
n
(ω,WD

0 ).

Lemma 4.10: The representation σ̃Dω is irreducible and satisfies

• σ̃Dω |U1
K2,nU

n
D

is a q-multiple of the character σDω |U1
K2,nU

n
D

and

• Tr σ̃Dω (ζ) = −ω(ζ) for ζ ∈ k2 \ k.
Proof. The required assertion is proved in the same way as Lemma 3.16.



920 T. ITO AND T. TSUSHIMA Isr. J. Math.

Remark 4.11: See [BF, §9] or [BH, Lemma 2 in §54.6 and §54.8] on σ̃Dω .

We have

WD
0 �

⊕
ω∈(TF

n )∨stp

σ̃Dω ⊗ ω

as O×
nU

n−1
D × TFn -representations. By Lemma 4.5, we obtain

(4.20)

Hn−1
c (XD

n ) �Ind
O×

2n−1×TF
n

O×
nU

n−1
D ×TF

n

WD
0

�
⊕

ω∈(TF
n )∨stp

(Ind
O×

2n−1

O×
nU

n−1
D

σ̃Dω )⊗ ω

as O×
2n−1 × TFn -representations.

We set

(4.21) ρDω =

⎧⎪⎨⎪⎩
Ind

O×
2n−1

O×
nU

n−1
D

σ̃Dω if n is even,

Ind
O×

2n−1

O×
nUn

D

σDω if n is odd.

We have dim ρDω = qn−1.

Proposition 4.12: Let n ≥ 1 be a positive integer. We have an isomorphism

Hn−1
c (XD

n )stp �
⊕

w∈(TF
n )∨stp

ρDω ⊗ ω

as O×
2n−1 × TFn -representations.

Proof. The required assertion follows from (4.19) and (4.20).

Remark 4.13: Similarly as in Remark 3.19, we note that

Hn−1
c (XD

n )stp = Hn−1
c (XD

n )

when n is even.

In the lemma below, we check that ρDω is irreducible by formal arguments

on the basis of known results. As a result, we know that the isomorphism

in Proposition 4.12 gives an irreducible decomposition of Hn−1
c (XD

n )stp as an

O×
2n−1 × TFn -representation.

Lemma 4.14: The representation ρDω is irreducible.
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Proof. We have the surjective homomorphism

g : K×
2 O×

D = K×O×
D → O×

2n−1; �mx �→ x̄ with x ∈ O×
D,

where x̄ denotes the image of x by O×
D → O×

2n−1. We consider the commutative

diagram

K×
2 O×

D

g �� O×
2n−1

K×
2 U

n
D

g′ ��
��

��

O×
nU

n
D,

��

��

where g′ is the restriction of g to K×
2 U

n
D. Assume that n is even. Let σ̃′D

ω be

the inflation of σ̃Dω by g′. It is known that IndD
×

K×
2 U

n
D
σ̃′D
ω is irreducible by [BH,

Proposition (1) in §54.4]. We set ρ̃′ = Ind
K×

2 O×
D

K×
2 U

n
D

σ̃′D
ω . Since ρ̃′ is semisimple, this

is irreducible. Let ρ̃Dω be the inflation of ρDω by g. By the Frobenius reciprocity,

we have

HomK×
2 O×

D
(ρ̃′, ρ̃Dω ) � HomO×

2n−1
(ρDω , ρ

D
ω ) �= 0.

Since ρ̃′ is irreducible, we have an injective K×
2 O×

D-equivariant homomorphism

ρ̃′ → ρ̃Dω . Since both sides have the same dimension, this is an isomorphism.

Hence ρ̃Dω is irreducible and ρDω is so. Also in the case where n is odd, we can

show that ρDω is irreducible in the same manner.

5. Conjecture on stable reduction of Lubin–Tate curve

Let X(pn) be the Lubin–Tate curve with Drinfeld level pn-structures. In this

section, we state a conjecture on “unramified components” in the stable reduc-

tion of X(pn)C. See Introduction for these components. The cohomology of

these components is related to cupspidal representations of GL2(K) which are

constructed from admissible pairs (K2/K, ξ), where ξ is some smooth character

of K×
2 , in the sense of [BH, Theorem in §20.2]. These cuspidal representations

are called unramified in [BH, §20.1]; which we recall the definition in §5.2. In

this sense, we call these irreducible components unramified. To state a conjec-

ture, we construct a curve based on X(Δ1,n) and X(Δ2,n) in §5.1. The curve

is very similar to a stable curve considered in [W1].
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5.1. Construction of curve. Let n ≥ 1 be a positive integer. We set

l = [(n+ 1)/2] and l′ = [n/2] as before. Recall that we set

Δ1,n = Yl′ × kl′2 , Δ2,n = Y Dl × kl−1
2

in (3.15) and (4.6) respectively. We set

Gn = GFn ×O×
2n−1.

Let X(Δ1,n) and X(Δ2,n) be as in (3.23) and (4.10) respectively. We write TF1,n
(resp. TF2,n) for TFn acting on X(Δ1,n) in §3 (resp. X(Δ2,n) in §4). Note that

TF1,n and TF2,n are the same group (cf. (3.2) and (4.1)).

We consider the product X(Δ1,n)×X(Δ2,n) having the action of

Gn × TF1,n × TF2,n.
Let Δ: O×

n ↪→ TF1,n × TF2,n be the anti-diagonal map defined by t �→ (t, t−1) for

t ∈ O×
n . Let

Yn = (X(Δ1,n)×X(Δ2,n))/Δ(O×
n ).

Let Xn = (Xn × XD
n )/Δ(O×

n ) be as in Introduction. Then, as mentioned

there, the projection Xn → Yn is an affine bundle. Let O×
n act on Yn as

(t, 1) ∈ TF1,n×TF2,n for t ∈ O×
n . Then the curve Yn admits the action ofGn×O×

n .

We consider the quotient

Δn = (Δ1,n ×Δ2,n)/Δ(O×
n ).

The action of Δ(O×
n ) on Δ1,n×Δ2,n is free by Lemmas 3.7 and 4.6, because of

max{2l′, 2l− 1} ≥ n. Hence we have

(5.1) |Δn| =
⎧⎨⎩1 if n = 1,

q4n−7(q − 1)(q2 − 1) if n ≥ 2.

Specifically, Yn is a disjoint union of |Δn| copies of the curve

Zn =

⎧⎨⎩ZDL if n = 1,

Z0 if n ≥ 2.

The action of Gn on Δn is transitive by Corollaries 3.10 and 4.9. We take an

element ζ ∈ k2 \ k. Let
• δ1 = (P, s) ∈ Δζ

1,n such that tl′,0(P, s) = 0; see (3.36), and

• δ2 ∈ Δ0
2,n.
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We write δ for the image of (δ1, δ2) ∈ Δ1,n × Δ2,n under the canonical map

Δ1,n×Δ2,n →Δn. By Lemmas 3.9 (1) and 4.8 (1), the group L×ζ,n−1 stabilizes

δ. Hence we have the surjective map

L×ζ,n−1\Gn →Δn; L×
ζ,n−1g �→ δg.

This map is bijective, because of |L×ζ,n−1\Gn| = |Δn| by (2.12) and (5.1). Hence

the stabilizer of (δ1, δ2) in Gn equals L×ζ,n−1. Let L×
ζ,n−1 act on Zn through

the homomorphism (2.11). Let Zδ1,δ2 be the open and closed subscheme in Yn

labeled by (δ1, δ2). By the property (c) in Lemma 3.9 (2) and Lemma 4.8 (2),

we have an L×
ζ,n−1-equivariant isomorphism Zn � Zδ1,δ2 . Since the stabilizer of

Zδ1,δ2 in Gn is L×ζ,n−1, we have an isomorphism

(5.2) Yn =
∐

(δ′1,δ
′
2)∈Δn

Zδ′1,δ′2 � Zn ×L×
ζ,n−1

Gn.

The right hand side of this is similar to Ind X when E/F is an unramified

quadratic extension in the notation of [W1, §5.1].
For a non-archimedean local field L, let WL be the Weil group of L. Let

IL ⊂ WL be the inertia subgroup of L. Let aL : W
ab
L

∼−→ L× be the the Artin

reciprocity map normalized such that a geometric Frobenius is sent to a prime

element. Composing this with the canonical map IabL → W ab
L induces the

surjective map a0L : I
ab
L � O×

L . For each n ≥ 1 we consider the composite

a0K2,n : IK � IK2

can.−−→ IabK2

a0
K2−−→ O× can.−−→ O×

n .

We regard Yn as a variety with Gn × IK-action via the map

1× a0K2,n : Gn × IK → Gn ×O×
n .

Theorem 5.1: Let n ≥ 1 be a positive integer. Let the notation be as in (3.60)

and (4.21).

(1) We have an isomorphism

H1
c (Yn) �

⊕
ω∈(O×

n )∨stp

(πω ⊗ ρDω−1)⊗ ω−1

as Gn × IK-representations.

(2) We have an isomorphism

H1
c (Yn) � IndGn

L×
ζ,n−1

H1
c (Z0)

as Gn-representations.
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Proof. We show the first assertion. By Remarks 3.19 (1) and Remark 4.13, we

have H1
c (Yn)stp = H1

c (Yn). The claim follows from Proposition 3.18, Lemma

3.20 and Proposition 4.12.

The second assertion follows from (5.2).

5.2. Conjecture. Let π be an irreducible cuspidal representation of GL2(K).

We say that π is unramified if there exists a non-trivial unramified smooth

character φ of K× such that π ⊗ (φ ◦ det) � π (cf. [BH, §20.1]).
LetX(pn) be the Lubin–Tate curve with Drinfeld level pn-structures (cf. [Ca]).

This is a rigid analytic curve over K̃. Then, {X(pn)}∞n=1 makes a projective

limit. The wide open curve X(pn) has a stable covering (cf. [CMc, Theorem

2.40]). We state a conjecture on unramified components in the stable reduction

of X(pn), whose cohomology realizes the local Langlands correspondence and

the local Jacquet–Langlands correspondence for unramified cuspidal represen-

tations of GL2(K). For 1 ≤ i ≤ n, let pn,i : X(pn) → X(pi) be the projection.

A morphism of affinoid rigid analytic varieties f : X→ Y induces the morphism

of affine schemes f̄ : X→ Y. Let C be as in Introduction. For a rigid analytic

variety X over F̃ , let XC denote the base change of it to C.

Conjecture 5.2: For integers n ≥ 1 and 1 ≤ i ≤ n, there exist Gn-stable

affinoid subdomains Yn,i in X(pn) such that

• Yn,i ∩Yn,j = ∅ if i �= j,

• there exists a Gn × IK-equivariant isomorphism Yn,n,C � Yn,
• pn,i(Yn,i) = Yi,i, and

• the map pn,i : Yn,i,C → Yi,i,C is a purely inseparable map compatible

with Gn × IK → Gi × IK .

Remark 5.3: (1) If the conjecture is true, an isomorphism

H1
c (Yn,i,C) � H1

c (Yi)

as Gi × IK -representations holds.

(2) If this conjecture is true, the curve Yn actually appears as an open

subscheme of a disjoint union of irreducible components of the stable

reduction of X(pn)C by [IT, Proposition 7.11].
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(3) In a representation theoretic viewpoint, Yn,i (i < n) is less interesting

than Yn,n. However, these components Yn,i actually appear in the

stable reduction of X(pn)C (cf. the stable reduction of X(p2)C in [T1]).

To give a more precise description of the stable reduction, we consider

these Yn,i (i < n) above.

Remark 5.4: For n = 1, this is a special case of [Y]. For general n, a family of

affinoids is studied in [T2].
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298 (2005), 271–318.

[Se] J. P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics,

Vol. 42, Springer, New York–Heidelberg, 1977.

[Sta] A. Stasinski, The smooth representations of GL2(O), Communications in Algebra

37 (2009), 4416–4430.

[Sta2] A. Stasinski, Extended Deligne–Lusztig varieties for general and special linear groups,

Advances in Mathematics 226 (2011), 2825–2853.

[T1] T. Tsushima, On the stable reduction of the Lubin–Tate curve of level two in the

equal characteristic case, Journal of Number Theory 147 (2015), 184–210.

[T2] T. Tsushima, On non-abelian Lubin–Tate theory for GL(2) in the odd equal charac-

teristic case, preprint, arXiv:1604.08857.

[Y] T. Yoshida, On non-abelian Lubin–Tate theory via vanishing cycles, in Algebraic and

Arithmetic Structures of Moduli Spaces (Sapporo 2007), Advanced Studied in Pure

Mathematics, Vol. 58, Mathematical Society of Japan, Tokyo, 2010, pp. 361–402.

[W1] J. Weinstein, Explicit non-abelian Lubin–Tate theory for GL(2), preprint,

arXiv:0910.1132v1.

[W2] J. Weinstein, The local Jacquet–Langlands correspondence via Fourier analysis, Jour-
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