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ABSTRACT

We extend results of Videla and Fukuzaki to define algebraic integers in
large classes of infinite algebraic extensions of Q and use these definitions
for some of the fields to show the first order undecidability We also obtain
a structural sufficient condition for definability of the ring of integers over
its field of fractions In particular, we show that the following propositions
hold: (1) For any rational prime ¢ and any positive rational integer m,
algebraic integers are definable in any Galois extension of Q where the
degree of any finite subextension is not divisible by ¢"* (2) Given a prime
q, and an integer m > 0, algebraic integers are definable in a cyclotomic
extension (and any of its subfields) generated by any set {£,¢|¢ € Z>0,p #
q is any prime such that ¢™*1 /(p — 1)} (3) The first order theory of
any abelian extension of Q with finitely many ramified rational primes is
undecidable and rational integers are definable in these extensions

We also show that under a condition on the splitting of one rational
prime in an infinite algebraic extension of Q, the existence of a finitely
generated elliptic curve over the field in question is enough to have a
definition of Z and to show that the field is undecidable
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1. Introduction

The purpose of this paper is to consider the following problems of definability
and decidability for an infinite algebraic extension K, of Q

Question 1 1: Is the ring of integers of Kj,¢ first order definable over Kj,s?
Question 1 2: Is the first order theory of K, decidable?

Questions of this type have a long history, especially as applied to number
fields and in connection to generalizations of Hilbert’s Tenth Problem We will
not attempt to give a full account of the work done in the subject here but
will limit ourselves to pointing out some surveys as well as results specifically
relevant to this paper

Perhaps a good place to start is with the results of J Robinson who proved
in [25] and [26] that in any number field the ring of integers of the number field
as well as the ring of rational integers are first order definable in the language
of rings, and therefore the first order theory of these fields (in the language of
rings) is undecidable In the process of proving these results J Robinson also
proved that integrality at a prime of a number field is existentially definable
in the language of rings over a number field In [27] J Robinson produced a
uniform definition of Z over rings of integers of number fields R Rumely in [30]
improved J Robinson’s results making a definition of valuation rings uniform
across global fields More recently, B Poonen in [22] and J Koenigsmann in
[11] produced new results reducing the number of universal quantifiers used in
definitions of Z over Q, B Poonen to two and J Koenigsmann to one

The desire to reduce the number of universal quantifiers is motivated to a large
extent by the interest in extending Hilbert’s Tenth Problem to Q This would
be accomplished by a purely existential definition of Z over Q Unfortunately
there are serious doubts as to whether such a definition exists See [6], [21] and
[33] for surveys on Hilbert’s Tenth Problem and related questions of definability

A lot of work aiming to prove the decidability of the first order theory has
centered around various infinite extensions of @ (See [6] for a survey of these
results ) One of the more influential results was due to R Rumely in [31],
where he showed that Hilbert’s Tenth Problem is decidable over the ring of all
algebraic integers This result was strengthened by L van den Dries proving in
[40] that the first order theory of this ring was decidable Another remarkable
result is due to M Fried, D Haran and H Vélklein in [9], where it is shown
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that the first order theory of the field of all totally real algebraic numbers is
decidable This field constitutes a boundary of sorts between the “decidable”
and “undecidable”, since J Robinson showed in [27] that the first order theory
of the ring of all totally real integers is undecidable In the same paper, she also
proved that the first order theory of a family of totally real rings of integers is
undecidable and produced a “blueprint” for such proofs over rings of integers
which are not necessarily totally real

Using some ideas of J Robinson, an elaboration of J Robinson’s “blueprint”
by C W Henson (see page 199 of [40]), and R Rumely’s method for defin
ing integrality at a prime, C Videla produced the first order undecidability
results for a family of infinite algebraic extensions of Q in [41], [42] and [43]
More specifically, C Videla showed that the first order theory of some totally
real infinite quadratic extensions, any infinite cyclotomic extension with a single
ramified prime, and some infinite cyclotomic extensions with finitely many ram
ified primes is undecidable C Videla also produced the first result concerning
definability of the ring of integers over an infinite algebraic extension of Q by
generalizing a technique of R Rumely: he showed that if all finite subextensions
are of degree equal to a product of powers of a fixed (for the field) finite set of
primes, then the ring of integers is first order definable over the field

In a recent paper [10], K Fukuzaki, generalizing the quadratic form technique
of Julia Robinson, proved that a ring of integers is definable over an infinite
Galois extension of the rationals such that every finite subextension has odd
degree over the rationals and its prime ideals dividing 2 are unramified He
then used one of the results of J Robinson to show that a large family of totally
real fields contained in cyclotomics (with infinitely many ramified primes) has
an undecidable first order theory

2. The statements of new results and overview of the proofs

The results of this paper can be divided into two categories: definability results,
more specifically defining rings of integers and Z over infinite extensions, and
undecidability results for infinite extensions We discuss our new definability
results first
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21 THE NEW DEFINABILITY RESULTS: ¢ BOUNDEDNESS For the purposes of
our discussion we fix an algebraic closure Q of Q and consider a progression
from Q to its algebraic closure, first through the finite extensions of Q, next
through its infinite extensions fairly “far” from the algebraic closure, and finally
through the infinite extensions of Q fairly “close” to Q

As one gets closer to Q, there is an expectation that the language of rings
would loose more and more of its expressive power It would be interesting
to describe the mile posts signifying various stages of this loss A definitive
description of these mile posts is probably far away, but in this paper we consider
a candidate for an early mile post for the loss of definability, the loss of what we
called “q boundedness” for all rational primes ¢ We define the notion of being
“q bounded” below following the first set of notation

Notation 2 1: (1) Let Kin¢ be an infinite algebraic extension of a number
field G
(2) Let

I = I(G, Kinr) = {K|K is a number field such that G C K C Kin¢}.
(3) For any M € Ig, let
Iny = I (G, King) = {K|K is a number field such that G C M C K C Kint}-

(4) For any M € Ig, let Jy (G, King) be an ordered by inclusion subset of
Iy such that the union of all the fields in Jy; is Kine If pps is a prime
of M, then prime factors of pps in the fields of Jy; generate a tree A
path in such a tree corresponds to a prime ideal of Ok, , the ring of
integers of Ki,y We will refer to Jy; as a field path from M to Kius

(5) If M € Ig and %) is a set of primes of M, then let Ok,,, .7, _ denote

the integral closure of O, o, in Kiyy We let Og,,, denote the ring of

inf
algebraic integers of K¢
(6) If M is a number field, py; is a prime of M, and K € I, then let

€x (par) denote the set of all prime factors of pps in K Let
Guslpar) = | J Cxlpm).
Kelm
We now describe conditions on the primes necessary for our definitions of inte

gers The two diagrams below correspond to the Definition 2 2 of ¢ unbounded

and completely ¢ bounded primes
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A diagram for ¢g-unbounded primes

G v>M 3>K > ... > Kinr
A A A
A4 A4
pcC = puC =P
qlef

A diagram for completely ¢-bounded primes

3 v
G =M > K > > Kint
A A A

pe =l " = pK
ordy (ef)=
Definition 2 2 (¢ unbounded and ¢ bounded primes): Let ¢ be a rational prime
and let pg be a prime of G satisfying the following condition: for any M € I4
there exists K € Ij such that for any py; € €u(pe) and any pr in Cx(par)
we have that

d(px/pm) = e(px/pr) f(Pr/pp) =0 mod g,

where as usual e(px/pas) is the ramification degree of px over pas, f(pr/Par)
is the relative degree of px over pps, and d(px/pasr) is the local degree of px
over py; In this case we call pg g-unbounded (See the diagram above )

If there exists M € I such that for any K € Iy, for any py € € (pe), and
any pr in €k (par) we have that ord, d(px /pa) = 0, we call pg completely
g-bounded (See a diagram above )

If pe is not ¢ unbounded, we call pi g-bounded If every prime in %ine(pe)
is ¢ bounded, we call pg hereditarily g-bounded

If every prime of G is hereditarily ¢ bounded in Kj,¢, and all factors of ¢ are
completely ¢ bounded, then we will call K, itself ¢ bounded

Observe that if a prime is completely ¢ bounded, it is hereditarily ¢ bounded
As is shown below, we need all the primes of G to be hereditarily ¢ bounded,
and we need ¢ to be completely ¢ bounded for our definition method to work
for the ring of integers At the same time the unbounded primes can be used
to define “big subrings”
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Remark 2 3: One can rephrase the definition of a ¢ unbounded prime as follows
A prime pg of G is unbounded if for every n € Z~( there exists a field M € Ig
such that for any pys € G (pe) we have that

e(par/pa)f(par/pc) = d(pa/pe) =0 mod ¢",
where d(par/pa) as above is the local degree [M,,, : Gy, ]

Informally speaking, given an infinite algebraic extension Kj,; of Q we con
sider what happens to the local degrees of primes over Q as we move through
the factor tree within K, A rational prime p is called ¢g-bounded if it lies on
a path through the factor tree in Kj,s where the local degrees of its factors over
Q are not divisible by arbitrarily high powers of ¢ If every descendant of p in
every number field contained in Kj,¢ has the same property, then we say that
p is hereditarily ¢ bounded

For ¢ itself we require a stronger condition: the local degrees along all the
paths of the factor tree should have uniformly bounded order at ¢ If this
condition is satisfied, we say that ¢ (or some other prime in question) is com-
pletely ¢-bounded If all the primes p # ¢ are hereditarily ¢ bounded and ¢
is completely ¢ bounded, we say that the field Kj,s itself is ¢ bounded

The main result of the paper connected to the notion of ¢ boundedness is the
following theorem

THEOREM 1: Let p,q be rational prime numbers, not necessarily distinct Let
H be a number field, and let Hi,s+ be an algebraic extension of H Let .y be
a finite, possibly empty, set of primes of H Assume all primes of H not in
Sy are hereditarily q bounded in Hiy¢, and primes in .y and factors of ¢ are
completely p bounded in Hin,s In this case, the integral closure of Op, v, Iin
H;¢ is first order definable over Hiy¢

This theorem will reappear below with a proof as Theorem 3 14 Rings of
integers are also definable under some modifications of the ¢ boundedness as
sumptions We give an example of a result of this type in Theorem 3 17 We
also show that one can leverage the ¢ unbounded primes for the purposes of
definability, i e , to define rings where only ¢ unbounded primes can appear in
the denominator (See Theorem 3 16 )

Below we explain what new fields our results cover, but perhaps the most im
portant aspect of our definability result is the structural one We suspect that
q boundedness or a similar condition, e g, a somewhat more general condition
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described in Theorem 3 17, is necessary for definability of the ring of integers
While non definability examples are scarce over infinite extensions, we offer the
following ones: the field of all totally real numbers, not satisfying the assump
tions of Theorem 3 17, and decidable by the result of M Fried, H Vélklein, and
D Haran ([9]), has the ring of integers not definable over the field, since it is
undecidable by a result of J Robinson ([26]) Further, the field of real algebraic
numbers and the field of algebraic numbers also do not satisfy the assumptions
of Theorem 3 17, and their rings of integers are not definable over the field by
results of A Tarski ([39])

22 REsuLTs oF C VIDELA AND K FUKUZAKI CONSIDERED WITHIN THE
q BOUNDED FRAMEWORK Proceeding chronologically, we reconsider results of
C Videla first As mentioned above, his results concerned infinite Galois exten
sions of number fields, where all the finite subextensions are of degree divisible
only by primes belonging to a fixed finite set of primes A Consequently, in the
fields considered by C Videla all the primes are completely ¢ bounded for any
q ¢ A, and thus all these fields are certainly ¢ bounded

The first natural extension of C Videla’s result, obtainable from our work,
is the proposition that the integers are definable in any Galois extension where
all the finite subextensions have degree not divisible by a single prime ¢ (while
results of C Videla prohibit divisibility of the degrees by all but finitely many
primes) Further, we can allow finitely many subextensions to be divisible
by ¢ For this reason, while C Videla could show that the ring of algebraic
integers is definable in any cyclotomic extension of Q with finitely many ramified
primes, we can show that the ring of integers is definable in a larger class
of cyclotomic extensions, including extensions with infinitely many ramified
primes For example, for any rational prime ¢ and any m € Z~ we can adjoin
to Q all £ th roots of unity for any positive integer n and for any rational prime
¢ such that ¢™ does not divide ¢ — 1

Turning our attention to K Fukuzaki we note that all the fields he considers
are 2 bounded Further, K Fukuzaki does not allow any ramification of dyadic
ideals and no finite subextensions of even degrees, options we can allow even if
we just consider 2 bounded fields Thus, again as described above, K Fukuzaki’s
results allow him to consider some totally real subfields of cyclotomics with
infinitely many ramified primes but not the cyclotomics themselves
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Further, both C Videla and K Fukuzaki consider only Galois extensions, a
restriction we do not require Many more examples of ¢ bounded fields, some
natural and some less so, can be found in Section 4 Among a set of natural
examples not covered by earlier work are non Galois fields that are towers of
finite subextensions of degrees less than m for some positive integer m We
should also note that the family of fields we consider is closed under any finite
extension, a property not shared by the fields considered by earlier researchers
in the area Finally all our definability results are proved more generally for the
rings of . integers for an arbitrary finite ., with empty . corresponding to
the ring of integers of some number field K

23 OVERVIEW OF THE CONSTRUCTION OF OUR DEFINITION OF INTEGERS
The central part of our construction is a norm equation which has no solutions
if a field element in question has “forbidden” poles (In an effort to simplify ter
minology we transferred some function field terms to this number field setting )
While we are far from being the only or the first practitioners of this method
which originates with J Robinson and R Rumely, we do employ a unique, to
our knowledge, variation of it More specifically, as explained below, we do not
fix the top or the bottom field in the norm equation, but allow these fields to
vary depending on the elements involved As long as the degree of all exten
sions involved is bounded, such a “floating” norm equation is still (effectively)
translatable into a system of polynomial equations over the given field (See
the proof of Theorem 3 14 for the description of this translation )
To set up the norm equation, let

e ¢ be a rational prime number,

e K be a number field containing a primitive ¢ th root of unity,

e px be a prime of K not dividing ¢,

e b c K be such that ord,, b= —1,

e ¢ € K be such that c is integral at px and is not a ¢ th power in the
residue field of pg,

and consider bz? + b? for some € K Note that ordy, (bz? 4 b?) is divisible
by ¢ if and only if ord,, x > 0 Further, if  is an integer, all the poles of
bx? 4+ b? must be poles of b and are divisible by ¢ Assume also that all zeros
of bz? + b% and all zeros and poles of ¢ are of orders divisible by ¢ and ¢ = 1
mod ¢* Finally, to simplify the situation further, assume that either K has no
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real embeddings into Qor q > 2 Now consider the norm equation

(21) N gey/x(y) = bz + b7

Since px does not split in this extension, if x has a pole at px, then
ordp, bz? +b7# 0 mod g,

and the norm equation has no solution y in K (/c) Further, if z is an integer,
given our assumptions, using the Hasse Norm Principle we can show that this
norm equation does have a solution Our conditions on ¢ ensure that the ex
tension is unramified, and our conditions on bz? 4 b? in the case x is an integer
make sure that locally at every prime not splitting in the extension the element
bx? 4+ b is equal to a g th power of some element of the local field times a unit
By the local class field theory, this makes bx?+ b7 a norm locally at every prime

For an arbitrary b and ¢ = 1 mod ¢® in K, we will not necessarily have all
zeros of bx? + b7 and all zeros and poles of ¢ of orders divisible by ¢ For this
reason, given x,b,c € K we consider our norm equation in a finite extension L
of K and this extension L depends on x,b,c and ¢ We choose L so that all
primes occurring as zeros of bx? 4+ b? or as zeros or poles of ¢ are ramified with
ramification degree divisible by ¢ We also take care to split px completely
in L, so that in L we still have that ¢ is not a ¢ th power modulo any factor
pr of pxr  This way, as we run through all b,c € K with ¢ — 1 = 0 mod ¢,
we ‘“catch” all the primes that do not divide ¢ and occur as poles of z The
construction of the field L and the argument concerning the properties of the
primes in question in this field are in Propositions 79 and 7 10

Unfortunately, we will not catch factors of ¢ that may occur as poles in this
manner, because our assumption on c¢ forces all the factors of ¢ to split into
distinct factors in the extension Splitting factors of ¢ into distinct factors
protects us from a situation where such primes may ramify and cause the norm
equation not to have solutions even when z is an integer Elimination of factors
of ¢ from the denominators of the divisors of the elements of the rings we define
will be done separately

The end result of this construction, described in detail in Section 7, is essen
tially a uniform definition of the form Vv3...3 of the ring of 2 integers, with
2 containing factors of ¢, across all number fields containing the ¢ th primitive
roots of unity
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Putting aside for the moment the issue of defining the set of all elements
c integral at ¢ and equivalent to 1 mod ¢, and the related issue of defining
integrality at factors of ¢ in general, we now make the transition to an infinite
¢ bounded extension Kj,¢ by noting the following Let K C K, let px be a
prime of K such that px does not divide ¢, let € K and let ord,, < 0 Since
by assumption pg is ¢ bounded, it lies along a path in its factor tree within
Kint, where the order at ¢ of local degrees eventually stabilizes To simplify the
situation once again, we can assume that it stabilizes immediately past K So
let N be another number field with K € N C Kj,¢ In this case for some prime
pn above px in N, we have that ordg e(pn/pr) = ordg f(pn/pr) = 0 Now,
let b,c € K be as above and observe that c¢ is not a ¢ th power in the residue
field of py while ord,, (bx? + b9) # 0 mod ¢ Thus the corresponding norm
equation with K replaced by N and eventually by Kj,¢ in (2 1) has no solution
Of course when x is an integer and we have a solution to our norm equation in
K, we also have a solution in Kj,¢

Note that for each prime p g of K, at every higher level of the tree we need just
one factor with the local degree not divisible by ¢ to make the norm equation
unsolvable when pyx appears in the denominator of the divisor of x Hence
having one ¢ bounded path per every prime of K is enough to make sure that
no prime of K not dividing ¢ occurs as a pole of any element of K in our set

Unfortunately, if we go to an extension of K inside Kj,f, some primes of K will
split into distinct factors and can occur independently in the denominators of
the divisors of elements of extensions of K Thus, in the extensions of K inside
Kins we have to block each factor separately This is where the “hereditary”
part comes in  We need to require the same condition of ¢ boundedness for
every descendant in the factor tree of every prime of K not dividing ¢, insuring
integrality at all factors of all K primes not dividing ¢

Before we tackle integrality at factors of ¢, we point out that a preliminary
definition of the subring of an infinite extension containing only algebraic num
bers with no poles outside the set of factors of ¢ is in (3 10) Note that ®,(Kin¢)
is precisely the set of all ¢ € Kj,¢ integral at ¢ and equivalent to 1 mod ¢ Once
we have a definition of integrality at factors of ¢, we will also be able to define
(I)q(Kinf)

The main reason that only one ¢ bounded path per prime not dividing ¢
is enough to construct a definition of integers, is that the failure of the norm
equation to have a solution locally at any one prime is enough for the equation
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not to have solutions globally Conversely, in order to have solutions globally,
we need to be able to solve the norm equations locally at all primes As already
mentioned above, the reason we require ¢ to be integral at ¢ and equivalent to
1 mod ¢? is to make sure that factors of ¢ do not ramify when we take the ¢ th
root of ¢ Just making ¢ have order divisible by ¢ at all primes does not in
general guarantee that factors of ¢ do not ramify in such an extension If any
factor of ¢ does ramify, then not all local units at this factor are norms in the
extension, and making sure that the right side of the norm equation has order
divisible by ¢ at all primes might not be enough to guarantee a global solution
Hence we need to control the order of ¢ — 1 at all factors of ¢ at every level of
the factor tree simultaneously, necessitating a stronger assumption on ¢ than
on other primes

Depending on the field we might have a couple of options as far as integrality
at g goes If ¢ happens to be completely p bounded in our infinite extension
for some p # ¢, then we can pretty much use the same method as above with
the p th root replacing the g th root The only difference is that, assuming we
have the primitive p th root of unity in the field, by definition of a complete
p boundedness, we can fix an element ¢ of the field such that ¢ is not a p th
power modulo any factor of ¢ in any finite subextension of K, containing some
fixed number field We can also fix an element b of the field such that the order
of b at any factor of ¢ is not divisible by p in any finite subextension of Kj,¢
containing the same fixed number field as above Using such elements ¢ and b we
can get an existential definition of a subset of the field containing all elements
with the order at any factor of ¢ bounded from below by a bound depending
on b and p (See Proposition 39 ) If ramification degrees of factors of ¢ are
altogether bounded, then we can arrange for this set to be the set of all field
elements integral at factors of ¢, but in a general case the bound from below
will be negative In this case, to obtain the definition of integrality we will need
one more step as described in Lemma 3 10

Before going back to infinite extensions, we would like to make a brief remark
about the sets definable by our methods over number fields First of all, over
any number field all primes are completely p bounded for every p, and the
ramification degree of factors of ¢ is altogether bounded So we can produce
an existential and uniform (with parameters) definition of integrality at all
factors of ¢ Note also that the complement of such a set is also uniformly
existentially definable with parameters using the same method So, in summary,
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we now obtain a uniform definition of the form VV3...3 of the ring of integers
of any number field with a ¢ th primitive root of unity This result is along the
lines of B Poonen’s result in [22], though his method is slightly different from
ours since it uses ramified primes rather than non splitting primes to obtain
integrality formulas and restricts the discussion to ¢ = 2 and quadratic forms
As B Poonen, we can also use ¢ = 2 and thus have a two universal quantifier
formula uniformly covering all number fields, but in this case if K has real
embeddings, we need to make sure that ¢ satisfies some additional conditions
in order for the norm equations to have solutions (below we refer to these
conditions as “making sure that ¢ € Q3(K)”)

Returning now to the case of infinite extensions, we note that, assuming ¢
is p bounded, we now have a uniform first order definition with parameters
of algebraic integers across all ¢ bounded algebraic extensions of Q where ¢
is completely p bounded However, for the infinite case we may require more
universal quantifiers The number of these universal quantifiers will depend on
whether the ramification degree of factors of ¢ is bounded and on whether ¢ has
a finite number of factors

The only case left to consider now is the case where ¢ is not completely
p bounded for any p # ¢ but is completely ¢ bounded This case requires a
somewhat more technically complicated definition than the case where we had
arequisite p In particular, we still need a cyclic extension (once again of degree
q), where all the factors of ¢ will not split Such an extension does exist, but
we might have to extend our field to be in a position to take advantage of it
This construction is executed in Lemma 3 12

24 OVERVIEW OF OUR CONSTRUCTION DEFINING Z USING FINITELY GEN
ERATED ELLIPTIC CURVES AND ONE COMPLETELY ¢ BOUNDED PRIME This
section has an overview of a construction of a definition of a number field K
over an infinite algebraic extension Kjyr of Q using an elliptic curve with a
Mordell Weil group generated by points defined over K This construction also
requires one completely ¢ bounded prime p (which may equal ¢) Once we have
a definition of K, a definition of Z follows from a result of J Robinson The
theorem is stated below and will reappear with a proof as Theorem 6 5

THEOREM 2: Let q be a rational prime and let Ki,s be an infinite algebraic
extension of Q with at least one prime of a number field contained in Kiu¢
completely q bounded Assume also there exists an elliptic curve defined over
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Kint such that its Mordell Weil group has positive rank and is finitely generated
In this case Z is first order definable over this field, and therefore the first order
theory of this field is undecidable

The use of elliptic curves for the purposes of definability also has a long
history, as long as the one for norm equations and quadratic forms We review
some of this history at the beginning of Section 6 Here we briefly dwell on the
construction itself

The main idea of the construction can be described as follows Given an
element x € Ki,f, we write down a statement saying that x is integral at p and
for every n € Z~ we have that x is equivalent to some element of K mod p” By
the weak vertical method, this is enough to “push” = into K (See Proposition
6 3 ) Our elliptic curve is the source of elements of K Any solution to an affine
equation y? = 2% 4 ax + b of our elliptic curve must by assumption be in K
Further, if we let P be a point of infinite order and let the affine coordinates of
[n]P corresponding to our equation be (z,,yy), then the following statements
are true:

(1) Let 2A be any integral divisor of K and let m be a positive integer
Then there exists k € Z-o such that A[0(zxm ), where d(x,) is the
denominator of the divisor of zy,, in the integral divisor semigroup of
K (See Lemma 6 1)

(2) There exists a positive integer m such that for any positive integers k, [,

U(SClm)‘ﬂ( fm_ k2)2
Tklm
in the integral divisor semigroup of K Here 9(z,) as above refers to
the denominator of the divisor of z;, and n([/™ — k?) refers to the
numerator of the divisor of ™ — k? (See Lemma 6 2)

Given u € Kjyr integral at some fixed K prime pg, we now consider a statement
of the following sort: Vz € Ki,¢ there exists z,y,&,9 € Kint st (2,v), (Z,9)
satisfy the chosen elliptic curve equation and both
1 and x(u2 — %)2
zx T
are integral at px implying that

(u

is integral at px
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If u satisfies this formula, then since 7 € K, by the weak vertical method
we have that v € K Further, if u is a square of an integer, this formula can
be satisfied Thus we can proceed to define all integers, followed by all rational
numbers and eventually K Finally, being able to define Z implies undecidability

of the first order theory of the field

25 OVERVIEW OF THE PROOF OF UNDECIDABILITY OF FIELDS VIA UNDECID
ABILITY OF THE RINGS OF INTEGERS AND . INTEGERS Our main undecid
ability results (reappearing later as Theorem 5 5, Corollary 5 7, Theorem 5 3,
and Theorem 5 4 with proofs) are below:

THEOREM 3: Rational integers are first order definable in any abelian extension
of Q with finitely many ramified primes, and therefore the first order theory of
such fields is undecidable

COROLLARY 4: Rational integers are first order definable in the ring of integers
of any abelian extension of Q with finitely many ramified primes, and therefore
the first order theory of such a ring is undecidable

THEOREM 5: Let q be a rational prime, let m > 0 be an integer and let

Kine = @(COS(27T/TL),TL = prlapl 7_é 1 mod qm’ 8,61, s ’fs € Z>0>a
i=1

where p; range over all primes satisfying the condition pZ1 mod ¢™ In this case

the first order theory of K¢ is undecidable and Z is first order definable Ki.¢

THEOREM 6: Any g bounded totally real field is contained in a totally real field
that has a first order definition of rational integers and thus has an undecidable
first order theory

As K Fukuzaki we obtain first order undecidability results using results of
J Robinson for totally real fields However, we are also able to use existential
definability results previously obtained by the author to show that the first
order theory of fields and rings of integers of any abelian extension with finitely
many ramified primes is undecidable, thus extending results of C Videla We
also extend Videla’s result by constructing a definition of Z in these extensions
(Videla constructed a model of Z to prove his undecidability results ) To be
more specific, a result of J Robinson implies that if a ring of integers has a
certain invariant which C Videla called a “Julia Robinson number”, one can
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define a first order model of Z over the ring The Julia Robinson number s of
a ring R of totally real integers is a real number s or co, such that (0, s) is the
smallest interval containing infinitely many sets of conjugates of numbers of R,
ie, infinitely many « € R with all the conjugates (over Q) in (0,s) A result
of Kronecker implies that s > 4, and therefore if a totally real ring of integers
in question contains the real parts of infinitely many distinct roots of unity,
the Julia Robinson number for the ring is indeed 4, and we have the desired
undecidability result

To use the existential undecidability results for rings, we need to define the
integral closures of the rings of . integers of number fields in infinite exten
sions under consideration This construction is necessary because the existential
undecidability results previously obtained by the author pertain only to these
bigger rings and not to the rings of integers The definitions of bigger rings
require a minor adjustment of our construction above: we have to make ¢ as
above equivalent to 1 not just modulo ¢3 but also modulo all the primes in .¥
Further, as in the case of ¢ and for similar reasons, we need primes in . to be
completely ¢ bounded

26 THE STRUCTURE OF THE PAPER The paper is structured in the following
manner Most of the technical details of no independent interest are in the
appendix (see Section 7) Section 3 constructs first order definitions of the
rings of algebraic integers in specified infinite algebraic extensions of Q, and
Section 4 contains various examples of fields satisfying the requirements for
our definitions Section 5 uses definitions of integers to produce undecidability
results for fields Finally, Section 6 explains how to use finitely generated elliptic
curves to obtain definitions of rational integers

Before we leave this section we establish notation to be used throughout the

paper

Notation and Assumptions 2 4: The following notation is used throughout the
rest of the paper

e Let ¢ be a rational prime number

e Let &, be a primitive ¢ th root of unity

e Let K, F,G, L denote algebraic extensions of QQ

For a number field G, let pg,qq, ta, ac be distinct non archimedean

primes of G
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If K is any finite extension of a number field G, then pg, qx, tx, ax
denote primes above pg, g, tg, ag respectively

For K and G as above, let €k (pe) denote the set of all K primes above
ba

If K is a number field and € K and ord,, « > 0, we say by analogy
with function fields that = has a zero at pg Similarly, if ord,, z < 0,
we say that x has a pole at px

If .7k is a set of non archimedean primes of K, then we let Og o,
denote a subring of K containing all the elements of K without any
poles at primes outside .

Let Q be an algebraic closure of Q

If K is a number field, then for any prime pg, let K, be the completion
of K under the px adic topology

If K is a number field, and

Sk ={p1k-- Pk}

is a finite set of primes of K, then let ©,(K,.”) denote the set of all
elements c of K such that the numerator of the divisor of c—1 is divisible
by the divisor Hizl pi x in the semigroup of the integral divisors of K
If Sk =0, then set ©4(K, k) = K

If K is a number field, let ®,(K) denote the set of all elements ¢ of K
such that the numerator of the divisor of ¢ — 1 is divisible by ¢*

If K is an infinite extension of Q, and .k is a set of valuations of K lying
above finitely many primes of Q, then a K element ¢ is in ©,(K, k)
if and only if for some number field M C K and the set .#; of primes
of M below valuations of .7, we have that ¢ € ©4(M, %) Similarly,
a K element ¢ € ®,(K) if and only if ¢ € ¢,(Q(c))

For an algebraic extension K of Q, let Q3(K) be the set of all the
elements ¢ of K such that for any embedding ¢ of K into Q we have
that o(K) ¢ RN Q implies o(z) > 0 If K has no real embeddings or
q> 2, let Qu(K) =K

3. Defining the ring of integers in infinite extensions of Q.

31 LOCAL DEGREE IN INFINITE EXTENSIONS We start this section with a

definition that will simplify the discussion below
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Definition 3 1: Given a G prime pg and a field path Jo = {G — M; — My---}
from GG to Kiut, as described in Notation 2 1, Part 4, call a path

P ={pc—pm, — P}

through the tree of ps factors g-bounded, if there exists ¢ € Z~( such that
for all integers j > 4, we have that ord,(d(par, /pa)) = ordg(d(par, /pc)) = 1.
Also, call M; a g-bounding field and call n; a ¢-bounding order

Remark 3 2: A ¢ bounding field and a ¢ bounding order also “work” off the field
path where they were defined Indeed, let M and n be a ¢ bounding field and
order defined along some field path Jg, and let N € I In this case for some
pn € En(pe) it is true that ord,(d(pn/pa)) < n Indeed, some field L along
the field path Jg contains M and N and for some p;, € €1 (pc) we have that
ordg(d(pr/pa)) = n Thus, for py = pr NN € En(pe) it is the case that
ordg(d(pn/pa)) < ordg(d(pr/pe)) = n Similarly, for any L € Ips we have that
for some pr, € 6L (par) it is the case that ord, d(pr/pam) =0

LEMMA 3 3: Choose any field path Jg as in Notation 2 1, Part 4 and consider
the corresponding tree of factors for some prime pg of G We claim that p¢g is
q bounded if and only if it lies along a q bounded path

Proof Indeed, suppose pg is ¢ bounded and let n € Z~( be such that for any
M € Jg for some py € G (pe) we have that d(par/pa) # 0 mod ¢" From
the tree of pg factors corresponding to Jg remove all the “nodes” (i e, factors
of pg) with the local degree with respect to pg divisible by ¢" Note that if
a node survives removal, all of its predecessors must survive too Thus, the
tree structure is preserved under the removal of the nodes with the local degree
with respect to pg divisible by ¢ This tree will have arbitrarily long paths
and thus, by Konig’s Lemma, an infinite path Since the order at ¢ of the local
degree along this path is bounded, after some point the degree can grow only
by factors prime to ¢

Conversely, along a ¢ bounded path the order of the local degree at ¢ will be
bounded and therefore we cannot have arbitrarily large powers of ¢ divide the
local degree for all the factors of a prime on such a path

In the case a prime pg is completely ¢ bounded, by definition, there is a ¢
bounding field and a ¢ bounding order that work along all paths through the
factor tree
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Definition 3 4: Let pg be a completely ¢ bounded prime and let M € I be such
that for any K € Iy, for any pyr € Gm(pe), and any prx € €k (par) we have
that ordg d(px/par) =0 In this case call M a completely ¢-bounding field
(for pg) Call maxy,, cey, (pe)(0rdy(d(par/pc))) a completely g-bounding
order (for pg)

Our plan is to deal with all but finitely many primes first This is accom
plished in the section below

32 THE MAIN PART OF THE DEFINITION We will use the following notation
and assumptions in this section

Notation and Assumptions 3 5:

e Let Kj,r be an infinite algebraic extension of Q

e Let G C Kintr be a number field, and let . be a finite, possibly empty
set of primes of G Suppose all the primes of G not dividing ¢ and not
in .7 are hereditarily ¢ bounded in Kj,¢

e Let 2¢ be the set of all factors of ¢ in G

o Let W = YcUZ2¢

e Let Ok, i, OKine, 7, o
OG,W@; OG,.S/’G and OG,QG respectively in K¢

OFKiy, 2k, . denote the integral closure of

PROPOSITION 3 6: If &, € G, b,z € Kiyt, x # 0,029 401 # 0
¢ € Qg(King) N Pg(King) N Og(K, LK 100)s
and there exists y € Li,¢, where
Ly = Kinf(\q/l +z-1 \"/1 + (bax? 4+ b2)~ 1, \"/1 +(c+cHal)
such that
(32) N Lot (9e)/ Lins () = bz + 07,
then there exists a field M € Ig such that for any field K € Iy, for any

non archimedean prime pyi of K not in #k, one of the following conditions
holds:

(1) cis aq th power mod p, or

(2) ordy, x>0, or

(3) gordy, > (¢ —1)ordy, b, or

(4) ordy, b=0 mod g

At the same time, if © € O, w;, _, then (3 2) has a solution y € Lint



Vol 226, 2018 FIRST ORDER DECIDABILITY OF INTEGERS 597

Proof Suppose that (3 2) holds for some x, b, ¢, y as specified above Let M € Ig
be such that

(33) x,b,c € M,
(34) y € Ly (Ve),
where

Ly = M(Y/1+ 271, /14 (bat +b9)~1, /14 (c+ ¢ Va1)
and
(3 5) [Linf(\q/c) : Linf] = [LM(VC) : LM]
In this case, for any K € I)s, we also have that x,b,c € K, y € Lk (/c), where
L =K1+ 21 Y1+ (bt +09)~1, Y1+ (c+ ¢ D)
with
[Lint(¥/c) : Ling] = [Lx (V) : Lk],
and therefore it is also the case
(30 N0/ () = bt 4+,
Now, if for some K prime px such that px & #x we have that none of the
Conditions (1) (4) is satisfied, then by Proposition 7 9 we have that
ordp, (bz?+b7) Z0 mod ¢

and cis not a ¢ th power modulo pr,, Hence by Lemma 7 7 we conclude that the

norm equation (3 6) has no solution in Ly (¢/c) contradicting our assumptions
Suppose now that

x € OKinf7WKinf’

let M € I satisfy assumptions (3 3), (3 5) and be such that
c€ Q(M)NP,(M)NOLM, Snr).

(We can find M satisfying ¢ € Q4(M) by Remark 73 ) We now choose any
K € I and show that (3 6) has a solution y € Li(¥/c) Since (3 5) ensures
that for any y € L (¥/c),

(37) Npweix®) =Nr(ge)/Lm W),
we need to solve

Np (o) () = bzt + b7

only
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Since x € OKinfvainf7 we have that © € Ok, Further, we also have that
c € Q(K)NTHK)NOYK, k),

by definition of these sets and Remark 7 3 In this case by Proposition 7 10, for
every prime ar, not dividing ¢ or any prime in ., we have the following:

e ordg,, (bz?+b7) =0 mod ¢, and

e ordg,, ¢=0 mod ¢
Further, by Lemma 7 8 and by our assumption that ¢ € ®,(K), we know that
factors of ¢ are not ramified in the extension L (¥/c)/Lk, and since the divisor
of ¢ is a ¢ th power in Ly, the extension Lk (¥/c)/ Ly is unramified at all finite
primes by Lemma 7 6

By Hasse’s Norm Principle (see Theorem 32 9 of [24]) this norm equation has
solutions globally (i e, in Lx(c)) if and only if it has a solution locally (i e,
in every completion)

Observe further that locally every unit is a norm in an unramified extension
(see Proposition 6, Section 2, Chapter XIT of [44]), and we do not have to worry
about archimedean primes, given our assumption on ¢ Indeed, if ¢ > 2, then
K has no embeddings into R and therefore all the archimedean completions of
all the fields involved are isomorphic to C If ¢ = 2, then we have to worry
about one possibility only: an archimedean completion of L is isomorphic to
R, while a corresponding archimedean completion of Lk (1/c) is isomorphic to
C However, this case is precluded by Lemma 7 13 and our assumption that
c € Qy(K)

Next we observe that since Ly (¥/c)/Lk is a cyclic extension of prime degree,
by Lemma 7 7 every unramified prime either splits completely or does not split
at all If a prime splits completely, then the local degree is one and every element
of the field below is automatically a norm locally at this prime So the only
primes where we might have elements that are not local norms are the primes
that do not split, or, in other words, the primes where the local degree is ¢
(Note that any factor of ¢ and any factor of a prime in # split completely in
the extension Lx (/c)/Lk by our assumptions on ¢ and Lemmas 76 and 7 8 )

So let vz, be a prime of local degree ¢ not in #7,, By the argument above
we have that ord,, (bz?+b2) =0 mod ¢ In this case, by the Weak Approxi
mation Theorem, there exists u € Lg such that orde, u=1 and therefore for
some integer m it is the case that u?”(bz? + b?) has order 0 at vz, or in other
words w9 (bx? 4 b?) is a unit at vz,
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As any ¢ th power of an Ly element, u™? is a norm locally since the degree
of the local extension is ¢ by our assumption Therefore, u™?(bz? + b?) is a
norm at vz, if and only if (bz? 4 b?) is a norm at vz, But u™?(bz? + b?) is a
unit at vz, and therefore is a norm Hence bz? + b9 is a norm

COROLLARY 3 7: If§, € G then
Ok, e, =10} U{z € Kinf\{0} Ve € Oy (King, Sk
Vbe King
(b +b = 0) V Iy € Line(Ve) :
N o(9e)/ Lo () = b2 + 59},

)ﬁq)q(Kinf)qu(Kinf)

inf

(38)

In particular, if .Yk, , is empty, then
OkKine 2k, =10} U{z € Kint \ {0} Ve € @q(Kin) N Qq(Kint)
Vb € Kint
((bz? 4+ b2 = 0) V Iy € Lint(¥e) :
N Lo (9e)/Line () = 027 +b9)},
and if additionally q > 2 or Kin,s has no real embeddings, then
Okine,2x, . = 10} U{z € Kint \ {0} Ve € @¢(Kint)
Vb € King
((bz? + b2 =0) V Jy € Lins(Ve) :
N L) /L () = bzt +b7)}.
Proof The only assertion that requires proof is that if © € Ok, = then
there exist b,c¢ € Kin, as specified in (3 8), for which (3 2) has no solution
Y € Lint(¥c)
If # & Ok, 9, . » then for some prime pg(r) & #G(») We have that

(39)

(3 10)

ordpg,, ¢ <0,

pe =pcu) NG &V

and p¢ is herediterily ¢ bounded in Kj,+ Thus, Pa(a) i q bounded in Kj,; Let
M € Ig(,) be any field containing a ¢ bounding field for pg(,) and note that by
the Strong Approximation Theorem there exists

(S ®q(M, yM) n q)q(M) N Qq(M) C Gq(Kinf, YK ) n q)q(Kinf) n Qq(Kinf)

inf
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such that c is not a ¢ th power modulo pys, where pys € Cpr(pi(a)) lies along
the g bounded path for which M is a ¢ bounding field Further, let b € M such
that ord,,, b = —1 and thus gord,,, z < (¢ — 1) ord,,, b Observe further that
for any K € Ij; we also have that

(1) c € Qu(K) NPy (K) NOy(K, k), by definition of sets Q4(K), Py (K),
and O, (K, Yk),

(2) for at least one px € €x(prr) we have that d(px/prr) and therefore
f(px/par) are not divisible by ¢ by definition of a ¢ bounding field, and
therefore ¢ is not a ¢ th power modulo at least one px € € (par),

(3) for the same py as in (2) we also have that e(px /pas) is not divisible by
¢, and therefore ord,, b # 0 mod ¢ while gord,, < (¢ —1)ordy, b

Thus none of Conditions (1) (4) of Proposition 3 6 is satisfied for any K € I,
So M as required by Proposition 3 6 does not exist, and hence (3 2) has no
solution y € Lins

33 INTECGRALITY AT FINITELY MANY PRIMES USING COMPLETE p BOUNDED
NESS FOR p # ¢ We now consider definitions of integrality at finitely many
primes to define O4(Kint, k) Pq(Kins) and their complements One way to
do this is to use a bit of “circular reasoning” by introducing another rational
prime p into the picture and making additional assumptions about our field
(Here “circular reasoning” refers to the fact that we use ¢ to define integrality
at factors of p, and we use p to define integrality at factors of ¢ )

Notation and Assumptions 3 8:

e Let p # g (with ¢ as above) be a rational prime

e Assume §, € G

e Assume factors of ¢ and primes in % are completely p bounded in K¢
and are all prime to p

o Let # = ¢ U {factors of ¢ in G}, as above

o Let M, € Ig be a completely p bounding field for all primes in %5
(Even though completely bounding fields were defined for a single prime,
clearly any finite collection of completely bounded primes has a common
completely bounding field, a field that contains a completely bounding
field for each prime in the set )
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PROPOSITION 3 9: Let d € M, be such that the denominator of its divisor
is divisible by every prime of #);, and d has no other poles Assume further
that for any pa, € W, it is the case that ordy,, d # 0 mod p (Note that
such an element d € M), exists by the Strong Approximation Theorem ) Let
a € ®,(Mp) NQ,(Mp), and let a be equivalent to a non p th power element of
the residue field modulo any prime of #y;, (Existence of a is also guaranteed
by the Strong Approximation Theorem ) Now let

Nint = Kine(Y/14d=1, ¥/1+ (da? + d?)~1, /14 (a + a~1)d~?)
and let

B(Kint,p,a,d) = {x € Kint|3y € Nint(¥/a) : Ny, ( va)/Nowe () = dz? +dP}.

We claim
-1
B(Kint,p,a,d) = {x € Kint|VK € Ing, (2)VPx € Wi :ordy, o > b » ordy, d}.

Proof The proof of the proposition is almost identical to the proof of Proposi
tion 3 6 One should only point out the following two adjustments

(1) By construction, no pole of d in any K € Iy, occurs in the divisor of a,
since a is not a p th power modulo primes of #% Thus, (a +a~1)d™?
has poles at all the primes occurring in the divisor of @ Also, all zeros
of d of orders not divisible by p in K are ramified with ramification
degree p before we adjoin {/1+ (a +a=1)d~!, and therefore in

Nk =KQ/1+d1, /14 (da? +dp)~1, /1 + (a+a1)d1)

all zeros and poles of a have order divisible by p
(2) For any prime px € #x we have that

ordy, (dzP) # ord,, (dP),

since the left order is not equivalent to 0 mod p and the right one is
Thus under these circumstances, ordy, (dz? + d”) = 0 mod p implies
that ordy, (da? + dP) = ordy, (d”) and

-1
(311) ordp, © > P ordy, d > ordy, d.
p

Conversely, if for some K € Iy (,) we have that (3 11) holds for all
K primes above primes of #¢, then ord,, (dz? + d?) = 0 mod p and
x € B(Kint,p,a,d)
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We now use this definition of B(Kjy¢, p, a, d) to obtain a definition of Rk, ; .,
the ring of elements of Kj,¢ integral with respect to primes of #¢ To do this
we note the following

LeMMA 3 10:
Ry, s #ine = {¥ € B(Kint, p, a,d)|Vy € B(Kint, p,a,d) : 2y € B(King, p,a,d)}.

Proof First assume that x € Rg, , %,, C B(Kins, D, a,d) and note that in this
case x has non negative order at all primes of #¢(,) Thus, if for some field
K € Ig(;) and some K prime px above a prime of # we have that

-1
ordy, y > P ordy, d,
p

then
p—1
ordy, xy > ordy, y > » ordy, d.

Conversely, suppose that © € B(Kinf,p,a,d) \ Ri,;#, and note that in
K = M,(z) we must have for some K prime px above a prime of #¢ that

-1
P ordy, d < ord, x < 0.

Therefore there exists an r € Z>; such that
"€ B(Kinfvpa a, d)

but
Z'TJrl Q B(Kinfvpa a, d)
Hence if we set y=x", we see that y €B(Kint, p, a, d) but zy €B(Kint, p, a, d)

34 DEFINING INTEGRALITY AT FINITELY MANY PRIMES USING COMPLETE
¢ BOUNDEDNESS Our next step is to show that we can get away using ¢
boundedness only (without introducing p boundedness for an additional prime

p) The integrality at primes of .k, , can be handled with complete ¢ bounded

inf
ness only using sets B(Kint, q, a, d) for appropriately selected a and d as above,
since the primes of .#) are not factors of ¢ Thus we need to make special
arrangements for factors of ¢ only Since we are going to use g boundedness
exclusively, we now drop Assumptions and Notation 3 8 and introduce the fol

lowing assumptions and notation
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Notation and Assumptions 3 11: We will use the following notation and as

sumptions
e Assume all the primes of #¢ are completely ¢ bounded

Let M, be a completely ¢ bounding field for all primes in #¢
Assume &, € G
Let 2¢ be the set of all factors of ¢ in G

Let fq = maXCIMq €2m, {f(qu /Q)}
e Let F/Q be a totally real cyclic extension of degree ¢/, where ¢ does

not split (Such an extension exists by Lemma 7 16 )

Now cousider a cyclic extension FKin¢/Kins of degree ¢” (this extension is
cyclic of degree equal to a power of ¢ by Lemma 7 17), where 0 < r < f, + 1
We claim that in fact » > 0 Assume the opposite In this case for some
K € Iy, we have that ' C K But the relative degree of any factor of ¢ in K
is at most f,, while the relative degree of all the factors of ¢ in FK is bigger
than f, Thus, r >0

Now let Fins be the unique subfield of FKj,s such that [FKis : Fint] = ¢
and Kiyy C Eins Since & € Eing, we must have F K,y = Eiy(¥/a) for some
a € Eine (this is so by Theorem 6 2, page 288 of [14]) Let 5 € FEiys generate
FEint over Kiny Now let N € Ipy, be such that F C N(/a,3), a € N(f), and
[ is of the same degree over N as over Ki,y Let K € Iy and note that (5 is
of the same degree over K as over N, a € K(3), and F C K(a,3) Further,
KF = K({/a,B)/K is a cyclic extension of degree ¢" for some r > 0, no factor
of ¢ ramifies in this extension (by Proposition 8 of Chapter II, §4 of [13]), and no
factor of ¢ splits in the extension K(/a,)/K(8) by Lemma 7 18 By Lemma
7 20 we can also assume a € Qg (K (b))

Since factors of ¢ in N(3) do not ramify in the extension N(3, ¥/a)/N(5), if

for some factor qy(g) of ¢ in N(3) we have that ord a # 0, we also must

AN (8)

have ord a =0 mod ¢ Thus without loss of generality (multiplying a by

an

q th powers(,ﬁé)f some elements of N(f3), if necessary), we can assume that a has

no occurrences of factors of ¢ in its divisor Note that if ¢ = 2, we would only

be multiplying a by squares and thus not changing the fact that a € Q2(N(8))
Now let /sy € Cn(p)(@) = 2Ny and let d € N(B) be such that for all

primes qy(g) € @n(3) We have that

any d#0 mod g, ordgy, d<—3ordgy., ¢

and d has no other poles As above, such a d exists by the Strong Approximation

ord

Theorem
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The reason for possibly choosing a subset of factors of ¢ is to point out that
in principle we don’t have to treat all the factors of ¢ the same way, ie, we
may want to allow some of the factors in “denominators”, while banning others
The proposition below lets us bound the order of the poles the elements of our
field can have at factors of ¢ in @y s), while imposing no constraints on other

factors of ¢
PROPOSITION 3 12: Let Ei,¢ be defined as above, let
Fug = Eng(V1+d=1, /1 + (da? + d?)~', /14 (a +a1)d 1),
and let
C(Eint; a,d,q) = {z € Kint|3y € Fint(¥a) : Np_ (ga)/p (y) = dz? + d7}.
We claim
C(Bint, a,d,q) = {x € Kint VK € Lo ) Vax €ic sondy,c v > q; Lordy, a}.

Proof The proof of this proposition is almost identical to the proof of Propo
sition 3 9 except that it relies on Proposition 7 11 and Proposition 7 12 in lieu
of Proposition 7 9 and Proposition 7 10

As above, Lemma 3 10 allows us to use the definition of C'(Fiut,a,d,q) to
obtain a definition Ry, , o, With the definition of Rk, , o, in mind, we now
modify slightly the definition in Corollary 3 7 to replace

(I)q(Kinfv yKinf) N (I)q(Kinf)

with an expression involving Ry, , #,, We also state the corresponding defini
tions of Of,,, .7, for the case where /¢ N 2 =0, and Ok,,, Let w,w € G

be such that

inf

(1) ordgq, w = 3ordg, ¢ for any q¢ € ¢c(q),
(2) ordy, w =1 for any pg € 74,

(3) w has no other zeros,

(4) ordg, W = 3ordg, ¢ for any q¢ € ¢c(q),
(5) w has no other zeros

(As above, such elements w and  exist by the Strong Approximation Theorem )
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COROLLARY 3 13:
(1) = €0k, wc, T # 0
c—1
( w )GRK;nf,Winf/\CEQq(Kinf)>
Vb € King((bx? + b7 = 0) V Iy € Lint () :

N Lo () Ling () = b2+ 7).
(2) © €0k, s, T # 0

RS RKinﬁQinf

& Ve such that (

-1
A Ve such that ((c w ) € Rk, NCE Qq(Kinf))
Vb € King((bx? + 07 =0) V Iy € Line(c) :

NLinf( \q/C)/Linf (y) = bzq + bq)
(3) T EOKinfa x 7£ 0

RS RKinﬁQinf

A Ve such that ((c Zi} b € Ri,.;. 2.0 NCE Qq(Kinf))
Vb € King((bx? + 02 =0)V Iy € Line(Yc) :
NL;nf( Yc)/Lint (y) =bz? + bq)'
Proof We show that the first formula defines the right set The argument for
the other two definitions is similar It is enough to observe the following In
any K € Iy the numerator of the divisor of ¢ — 1 is divisible by the numerator
of the divisor of ¢ and by every px in Y% Thus ¢ € O4(K, k) N ®,(K)
Conversely, if ¢ € ©4(K, %K) NP4 (K), then the divisor ¢ — 1 is divisible by the
numerator of the divisor of ¢* and by every px in .#% and therefore C:Ul does
not have any poles at primes of #f, so that
(C w 1) S RKinf,"/Vinf-

THEOREM 3 14: Let p,q be rational prime numbers, not necessarily distinct
Let H be a number field, and let Hi,s be an algebraic extension of H Let .y
be a finite, possibly empty, set of primes of H Assume all primes of H not in
Sy are hereditarily q bounded in Hiy¢, and primes in .y and factors of q are
completely p bounded in Hins In this case, the integral closure of Og, v, in
H;¢ is first order definable over Hiy¢
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Proof Given an arbitrary number field H and an algebraic extension Hins of
H, not necessarily containing any roots of unity required above, we have to
show that the norm equations we have been using in our definitions can be
rewritten as polynomial equations with relevant solutions in Hi,s Below we
present an informal outline of this rewriting process For a more general and
formal discussion of the rewriting techniques we refer the reader to the section
on coordinate polynomials in [34] Let G = H(&4,&p), Kint = Hint(§4,&p)

We start with rewriting the norm equation itself If T is any field of charac
teristic 0 and c € T\ TY9, uy,...,uq, 2z € T,y =1, az\/c(Z 1 , then

q—1 q
(i-1)j a (i=1)
Norcyeyr(y —Z—HZU€ Ve -z
(312) 7=0 i=1
=N(u1,...,uq,¢ 2) € Llu,. .., uq ¢, 2],

and the coefficients of N(Uy, ..., Uy, C, Z) depend on ¢ only
If c,weT,c=w?, then for any z € T the equation N(Uq,...,U,, ¢, z)=0 has
solutions u,...,uq € T'(§,) Indeed, consider the following system of equations:

El Oulw =z,
Zizouiééjw =1, j=1,...,q— 1.

This is a nonsingular system with a matrix (§éjwi), 1=0,...,q—1,5=0,...,q—1
having all of its entries in T'(§,) Since the vector (z,1,...,1) also has all of its

entries in T'(¢;), we conclude that the system has a unique solution in T'(&,)
Thus, N(Un,...,Uq, ¢, 2z) = 0 has solutions ui,...,uq € T(§,) if and only if z
is a norm of an element of T'(§,, ¥/c) (including the case where the extension
T(&qs /) /T (&) is trivial)
So if we, for example, consider N ¢/, .(y) = br? + b? with potential
solutions y ranging over Liy¢(/c), then we can conclude that this norm equation
is equivalent to a polynomial equation

(313) N(u1,...,ug,c,bx?+5b7) =0
with coefficients in Z and potential solutions
UL, ..y Ug € Ling = King( \/1—1—:10_1 \/1+ b + b))~ \/1+ (c+c L)1),

We now would like to replace (3 13) by an equivalent equation but with solutions
in
Loint = King(V1+ 271, /1 + (bat + b9)~1).
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We have to consider two options: either there exists v € La ins such that
(314) Y =14 (c+c Ha™?

and in this case all the solutions w1, ...,uq € Lajns, or 1 + (¢ + ¢ 1)a™1 is not
a ¢ th power in Lo iy so that u; = Z?;é u; ;77, where 7 is as in (3 14) and
u;; € Lo ins In the latter case we can rewrite (3 13) first as

q—1 qg—1
(315) N(Zulﬂj,...,Zuqﬂj,c,bzq+bq) =0,
j=0

j=0
and then as a system of equations over Lj ins using the fact that the first ¢ — 1
powers of v are linearly independent over Laiys In other words, we rewrite
(3 15) first as

q—1
(316) Z Ni(ui05. .- uqq-1,¢b,2)y" =0,
=0

where NN, are polynomials in listed variables with coefficients in Z, by system

atically replacing 74 via 1 + (¢ + ¢ 1)z~ !

and clearing the denominators (i e,
clearing ¢ from denominators by multiplying through by a sufficiently high power
of ¢), and then as a system

qg—1

(3 17) /\ Ni(uLo,...,uq,q_l,c,b,:v) =0.
=0

Note that, even if v € La in, we can still replace (3 13) by (3 17) To see this
reconsider (3 15) as

q—1 q—1
(318) N(ZUl,jrj,...,ZUq,jrj,C, BXq+Bq> =0,
j=0 j=0
with U; j, X, C, B, T algebraically independent over Q, and produce a system of
equations
q—1
(319) N\ NiU0,--.,Ugq1,C, B, X) =0
i=0

by the process described above, first systematically replacing I'? by
1+ (C+CcHx—

clearing the denominators (this time removing C' from denominators), and then
treating the first ¢ — 1 powers of I" as linearly independent over the polynomial
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ring @[Um, X, X1 C,C71, B] Observe that the left side of (3 18) is equivalent
to

qg—1
> Ni(Uro,--,Ugg-1,C, B, X)T"
=0

modulo the ideal (I'" — 1 — (C' + C~1)X 1) in the ring
QXx, X', c,c ', U;;,B,T).

In other words, for any values of U, ;, X # 0,C # 0,B in Q satisfying the
system (3 19), we have that (3 18) will be satisfied as long as I' is set to a value
v € Q satisfying (3 14), where ¢ and x are the Q values assigned to C' and X

respectively Hence, if (3 17) has solutions w19, ..., uq,q—1 i Lo inf, then (3 13)
has solutions wu,...,us—1 in Lins whether or not the extension Liy/La inf is
trivial

Conversely, if (3 13) has solutions in Lg jnf, we can set u; o = u; and u; ; =0
for 7 > 0 and satisfy (3 17) over Lo in¢
Thus for any ¢, b,z € Kir we can conclude that (3 13) has solutions

UL, ..., Ug € Ling

if and only if there exist u1 g, ..., uqq—1 € Lo inf satisfying (3 15)

Proceeding in the same fashion we can eventually obtain an equivalent system
of equations with potential solutions in Kj,¢ Now if a given field H;yr does not
contain &, or &, then we can rewrite all the equations one more time so that
the final system has solutions and coefficients in Hj,¢

We can also separate out results concerning integrality at finitely many primes

THEOREM 3 15: The following statements are true

(1) If a G prime pg is completely q bounded, M is a ¢ bounding field for
pa, b € Kyt is such that for some pyrp) € Crp)(pa) we have that
ordp,,,, b 0 mod g Aordy,,, b <0, and b has no other poles, then
the set of all elements x € K, such that OrdpM(m,b) T > q;1 OrdpM(m,b) b
for all prr(zp) € Cri(v,z)(Pr(p)) is existentially definable (For future
reference in Section 6 denote this set by Int(b, pas(s),q) )

(2) If ramification degrees over G of all factors of pg in number fields con
tained in Ig are uniformly bounded, then the integral closure of the
valuation ring of pg in Ky is existentially definable
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We now make use of unbounded primes

THEOREM 3 16: Let . U{ factors of ¢} be a completely ¢ bounded in Kius fi

nite set of primes of G, and let Rin¢ ., be a subring of Kin¢ such that x € Ring,
if and only if in G(x) the poles of x are either factors of q or primes of ¢, or
are at primes that are ¢ unbounded In this case Rins v, is first order definable
over Kins

Proof It is enough to consider what happens to the solvability of the norm
equation below for ¢ chosen so that factors of ¢ and primes in .%¢ split and =
has poles only at the primes described in the statement of the theorem So let
K € I and consider

(3 20) Ni (o) nx(y) = ba? + b7

As above, since factors of ¢ and primes in .% split, this equation will be solvable
locally at these primes Now as far as unbounded primes are concerned, we can
always consider the norm equation over a field K large enough so that factors
of the unbounded primes occurring with a non zero order in the divisor of the
right side of (3 20) either ramify with ramification degree divisible by ¢ or their
relative degree goes up by a factor divisible by ¢ Over this K, either these
factors split completely when we adjoin the ¢ th root of ¢ or the right side of
(3 20) has order divisible by ¢ at the factors of these ¢ unbounded primes Thus,
in any case of large enough K, the norm equation is solvable at all the factors
of unbounded primes

One can prove a few more variations of such results The theorem below is
another example Its proof is completely analogous to the proofs above

THEOREM 3 17: Let P = {p1,...,px} be a finite set of rational primes such
that each prime of G not dividing any element of P is herediterily p; bounded
in Kins with respect to some p;, and each p; is completely p; bounded in Kin¢
for some p; In this case Ok, is first order definable over Kiu¢

4. Examples of infinite extensions of Q where the ring of integers is
first-order definable

In this section we describe a sample of fields to which our methods apply Some
of these examples will be pretty straightforward while others are more esoteric
We start with the more straightforward examples
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Example 4 1 (Fields with uniformly bounded local degrees): Perhaps the sim

plest example of a ¢ bounded infinite extension of rationals is an infinite ex

tension where the local degrees of all primes are uniformly bounded In such
a field every prime is completely ¢ bounded for any prime ¢ An example of
such an extension is an infinite Galois extension generated by all extensions of
degree p (for a fixed prime p) of Q contained in cyclotomics More examples of
such fields can be found in [1] Most of such examples where the field is Galois
over Q were already covered by definability results of Videla with respect to the
ring of integers However, one can construct many non Galois examples of such
fields It is enough to take a collection {K;} of number fields which are Galois
but not abelian over Q, linearly disjoint over Q, of degree less than or equal
to some fixed n over Q, and consider a collection of number fields {V;}, where
N; C K; and N; is not Galois over Q Now let Njys be the compositum of all
N; inside Q If Kiy¢ is the compositum of all K; inside @, then Nins C Kinr and
[Kint : Nint] = 0o Thus, while Videla’s results give us a first order definition of
Ok,,, over Kiu, they do not give us a first order definition of Oy, , over Niy,
obtainable by our methods

Example 4 2 (Galois extensions without cyclic subextensions of degree divisible
by arbitrarily high powers of ¢): If Ki,r is a Galois extension of a number field
G such that for any Galois field K € I, we have that [K : G] Z#0 mod ¢, then
Ok
definable over Ki.¢

..c and the integral closure of any ring of .7 integers in Kjy¢ is first order

It is not hard to see that in this case ramification and relative degrees in
all finite subextensions are prime to ¢ and thus all the primes are completely
q bounded This example covers cyclotomic extensions with finitely many rami
fied primes, i e , extensions of the form Q( plre e pi,f € Z~o) where py,...,px
are rational primes, and all their subfields that include all abelian extensions
with finitely many ramified primes (The definability of rings of integers in
these extensions follows from Videla’s results )

Given a prime ¢, and an integer m > 0, our method also applies to the case
of a cyclotomic extension (and any of its subfields) generated by the set

{&pell € Z~o,p # q is any prime such that g™ fp - 1)}

(In other words we need to omit primes occurring in the arithmetic sequence
kg™t 41,k € Z~o, and by increasing m we can make the density of the omitted
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primes arbitrary small ) This example generalizes an example of Fukuzaki where
he defined integers over the field Q({cos(27/¢™) : £ € A,n € Z~o}) and any of
its Galois subextensions, and where A is the set of all prime integers which are
congruent to 1 modulo 4

On top of such a cyclotomic field we can also add a field generated by any
subset of p th roots of algebraic numbers contained in this cyclotomic field, with

m+1

p as above not equivalent to 1 modulo ¢ Clearly, many more examples of

Galois extensions of this sort can be generated

As we pointed out above, being Galois is not required for our method to work
Thus we have some obvious examples of non Galois extensions where we can
define integers

Example 4 3 (Extensions that are not necessarily Galois): If K, is a tower of

finite extensions of degree less than some positive integer m, then O, , and

inf
the integral closure of any ring of .% integers in Kj,¢ are first order definable
over Kiys Observe that a field of this sort can have primes of arbitrarily large
or infinite local degree, and thus this example is a non trivial generalization of
the first example

If the extension is Galois, we are looking at a field discussed in the second
example So the new cases will come from extensions that are not Galois
Observe that in such a field, for any ¢ > m all the primes are completely

q bounded

It is more difficult to describe examples where primes are not necessarily
completely ¢ bounded

Example 4 4 (Less natural fields): Let ¢ be a rational prime and let {p1,...}
be a listing of all rational primes omitting ¢ Let m; = H;Zl p; Let G be any
number field and let {pi,...} be a listing of all primes of G not lying above
qg We construct a tower of fields starting with G where all factors of ¢ are
completely ¢ bounded, all the other primes of G and any finite extension of
G are ¢ bounded but not completely ¢ bounded and are p unbounded for any
other prime p Let Ky = GG and assume we have constructed Ki,..., K, for
some n > 0 We now construct K, in three steps

First we construct an extension M, ; of K,, of degree m,,, where all the primes
above p1, ..., p, will have ramification degrees divisible by 7, and all the primes
above ¢ split completely (Such an extension always exists For example, take
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an element a of Ok, such that ordp,, e =1fori=1,...,n and a = 1 mod q and
adjoin %/a to K, ) This step ensures that the ramification degree of factors
of any prime of G not dividing ¢ will eventually be divisible by arbitrarily high
powers of rational primes distinct from ¢

We now construct a non trivial extension M, o of M,, ; where all the factors of
P1,...,pn and q in My, 1 split completely into distinct factors (For example, we
can adjoin ¥/b, where p is prime to py,...,p, and gand b =1 mod (gp;...p,) )
This step allows us to produce ¢ bounded and ¢ unbounded paths above every
prime

Finally K, 41 is an extension of M, o of degree ¢ satisfying the following
requirements:

(1) All the factors of ¢ split completely

(2) For each i = 1,...,n and each t; that is a factor of some p; in M, 1,
if t;1,...,t,, are factors of t; in M, » under some ordering, then t;
splits completely into distinct factors and t; 2, ..., t;  do not split in the
extension K, y1/Mp 2

To construct such an extension, by Lemma 7 8, we can take a ¢ th root of an
algebraic integer of M,, o such that it is equivalent to 1 mod ¢ and modulo t; 1,
and to a non g th power modulo t; j,5 > 2 In this step we construct the next
level of ¢ bounded and ¢ unbounded paths At the “end” of the construction,
every prime of any K, not dividing ¢ will lie along the “left most” ¢ bounded
path and the “right most” ¢ unbounded path (In fact, every prime not dividing
g will lie along infinitely many ¢ bounded and ¢ unbounded paths )
We now let

King = G K;.
i=1

It is easy to see that for all K € Ig every factor of ¢ is unramified and of
relative degree 1 At the same time, for any p # ¢, any positive integer m, and
any p; prime to g, there is a field K € Ig where all the factors of p; have a
ramification degree over p; divisible by p™

Further, for i € Z-q, let d; = maprHlE(gKiH(pi){ordq(d(pKi+1/pi))}, and
note that for any p;, for any K € I there exists a K factor px of p; such that
ord,(d(pk/pi)) < d;, while at the same time for any m € Zs, there exist a

field M € I and an M factor pys of p; such that f(pas/p;) =0 mod ¢™
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We can also produce an example where one would need Theorem 3 17 The
construction is similar to the one above and, in particular, the existence of
extensions we need can be justified by similar arguments

Example 4 5 (Also not very natural fields): Let Q@ = {q1,...,qm} be a finite
collection of rational primes Let {p1,...} be a listing of all rational primes
excluding the primes in Q Let

7
T, — Hpj.
j=1

Let G be any number field and divide all the primes of G not lying above any
prime of @ into m classes with {p; j,i=1,...,m,j€Z~o} We now construct
a tower of fields {K;} with Kj,¢, as above, being the union of the tower Let
Ky=G and assume that K, for some n >0 has been constructed We construct
K41 in m+1 steps First let My ,,/K, be an extension of degree m,41 such
that:

(1) All the primes above primes of @ split completely
(2) All the primes in the set {p; ;i = 1,...,m,j = 1,...,n + 1} ramify
completely

Next we construct M; ,,/M;_1,, for i =1,...,m First of all, the degree of the
extension will be ¢; Secondly, all the primes above the primes of @ and all
the primes above the primes in the set {p; ;,j =1,...,n+ 1} split completely
Thirdly, all the primes in the set {p,,;,r = 1,...,m,r #4,j = 1,...,n+ 1}
remain prime Finally, K41 = My,

It is not hard to see that for each ¢ = 1,...,m the primes {p; ;,j =1,...,} of
G are completely ¢; bounded and these primes are p unbounded for any prime
p # q; Further, all the primes above primes of @ are completely ¢ bounded
for any prime ¢ Thus we need to use Theorem 3 17 here to get the desired
definitions

We should finish this section with a listing of some obvious fields which are
not ¢ bounded: the algebraic closure of @@, the maximal abelian extension of
Q, the field of all totally real numbers, the field of real algebraic numbers In
general, examples of such fields are also not hard to generate We remind the
reader that one would expect the field of all totally real numbers not to be
q bounded since, as has been noted above, the first order theory of the field of



614 A SHLAPENTOKH Isr J Math

all totally real integers is decidable, while this is not the case for the ring of
integers of this field Thus, the ring of integers of the field of all totally real
integers does not have a first order definition over its fraction field

5. From undecidability of rings to undecidability of fields

We start with reviewing results we are going to use due to L. Kronecker,
J Robinson and the author of this paper We first review the results of Julia
Robinson from [27]

THEOREM 5 1 (JR): The natural numbers can be defined arithmetically in any
totally real algebraic integer ring R such that there is a smallest interval (0, s),
s real or co, that contains infinitely many sets of conjugates of numbers of R,
i e, infinitely many x € R with all the conjugates (over Q) in (0, s)

J Robinson showed in [27] that certain infinite towers of totally real quadratic
extensions have rings of integers with s = co and thus the first order theory of
these rings is undecidable C Videla used this result in [41] to show that the
Pythagorean hull of Q is undecidable Further, J Robinson ([27]), C Videla
(|42]), and K Fukuzaki (|10]) make use of the following proposition which is a
consequence of a result by L Kronecker from [12]

PROPOSITION 5 2 (Kronecker): The interval (0,4) contains infinitely many sets
of conjugates of totally real algebraic integers, and no sub interval of (0,4) does

An immediate consequence of Theorems 5 1 and 5 2 is that in any ring of
totally real integers containing a set of the form {cos %:va € Z} with & an
infinite set of positive integers, one can give a first order definition of integers
Thus, extending results of K Fukuzaki, we now have the following theorems

THEOREM 5 3: Let g be a rational prime, let m > 0 be an integer and let

Kinf = Q<COS(27T/TL)7TL = prlapz % 1 mod qmvsvéla' "765 S Z>0>7

=1

where p; range over all primes satisfying the condition p 1 mod ¢™ In this
case the first order theory of Ki,s is undecidable and Z is first order definable
in Kinf
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Since the ring of all totally real integers is undecidable, every ring of totally
real integers is trivially contained in an undecidable ring However, this is
not automatically clear for the fields, since the first order theory of the field
of all totally real numbers is decidable While we cannot show that the first
order theory of any ¢ bounded totally real field is undecidable, we can show the
following

THEOREM 5 4: Any q bounded totally real field is contained in a totally real
field that has a first order definition of rational integers and thus has an unde
cidable first order theory

Proof Let K, be a ¢ bounded field and observe that Ki,¢(cos(27/p"), k€ Z~)
for some p # ¢ is also ¢ bounded, since we will introduce at most a finite
number of subextensions of degree divisible by ¢ (In other words, the increase
in divisibility by ¢ of relative or ramification degrees can come only from adding
the extension Q(cos 27 /p) of degree (p — 1)/2 over Q ) But the ring of integers
of the extended field is now undecidable and has a first order definition of the
rational integers, by the discussion above Thus, since the extended field is
still ¢ bounded, we have that the extended field has a first order definition of
rational integers and an undecidable first order theory

We now turn our attention to non real fields In [42], C Videla showed that
the ring of integers is definable in infinite Galois extensions of Q where the degree
of every finite subextension is a product of a fixed finite set of primes Further,
as mentioned above, in [43], Videla proved using a theorem of J Robinson
that the ring of integers of Q(&,r,r € Z~¢) is undecidable Combining the two
results, he also obtained the first order undecidability of Q(&,r,r € Zxg)

Below we prove the following theorem
THEOREM 5 5: Rational integers are first order definable in any abelian ex
tension of Q with finitely many ramified primes, and therefore the first order
theory of such fields is undecidable

Rather than relying on the result of J Robinson, we use existential definability
and undecidability results from [35] and [32], where the following result was
proven
THEOREM 5 6: Let Ajn¢ be an abelian (possibly infinite) extension of Q with
finitely many ramified primes Then for any number field A C Ajy¢ and any
finite non empty set .4 of its primes, we have that Z is existentially definable
in the integral closure of O4, o, in Aint
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Now Theorem 5 5 follows from the fact that any abelian extension with finitely
many ramified primes must, by L Kronecker’s Theorem, be a subfield of a
cyclotomic extension with finitely many ramified primes, i e , an extension where
prime divisors of the degrees of all finite subextensions come from a finite set
of primes Such an extension is ¢ bounded for any odd ¢ not occurring in the
above mentioned finite set of primes, by Example 4 2 Further, all the primes
of Q are completely ¢ bounded for such a ¢ Thus, the integral closure of any
ring of . integers is first order definable over any abelian extension of Q with
finitely many ramified primes Therefore by Theorem 56 we conclude that
rational integers are first order definable over any abelian extension of Q with
finitely many ramified primes Since the set of non zero integers is definable
over any ring of algebraic integers, we can “simulate” the field over the ring of
integers, and therefore obtain the following corollary:

COROLLARY 5 7: Rational integers are first order definable in the ring of in
tegers of any abelian extension of QQ with finitely many ramified primes, and
therefore the first order theory of such a ring is undecidable

6. Using elliptic curves with finitely generated groups

In this section we show that over the fields with finitely generated elliptic curves,
assuming there exists at least one completely ¢ bounded prime, we can define Z
and conclude that the first order theory is undecidable In [15] it was shown by
B Mazur and K Rubin that there are large classes of infinite algebraic exten
sions of Q satisfying the elliptic curve and a complete ¢ boundedness condition
at the same time

The use of elliptic curves to investigate definability and decidability has a
long history Perhaps the first mention of elliptic curves in the context of the
first order definability belongs to R Robinson in [28] and in the context of
existential definability to J Denef in [4] Using elliptic curves B Poonen has
shown in [19] that if for a number field extension M/K we have an elliptic
curve E defined over K, of rank one over K, such that the rank of E over
M is also one, then Ok (the ring of integers of K) is Diophantine over O/
G Cornelissen, T Pheidas and K Zahidi weakened somewhat assumptions of
B Poonen’s theorem Instead of requiring a rank 1 curve retaining its rank in
the extension, they require existence of a rank 1 elliptic curve over the bigger
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field and an abelian variety over the smaller field retaining its positive rank in
the extension (see [2]) Further, B Poonen and the author have independently
shown that the conditions of B Poonen’s theorem can be weakened to remove
the assumption that the rank is one and require only that the rank in the
extension is positive and the same as the rank over the ground field (see [36]
and [18]) In [3], G Cornelissen and the author of this paper used elliptic
curves to define a subfield of a number field using one universal and existential
quantifiers

Elliptic curves specifically of rank 1 have been used in several papers in
connection to discussions of definability and decidability over big subrings of
number fields (i e, subrings where infinitely many, though not all, primes are
inverted) See [20], [23], [7], [17], [8] and [38]

Following J Denef in [5], as has been mentioned above, the author also con
sidered the situations where elliptic curves had finite rank in infinite extensions
and showed that when this happens in a totally real field one can existentially
define Z over the ring of integers of this field and the ring of integers of any
extension of degree 2 of such a field (see [37])

Recently, in [16], B Mazur and K Rubin showed that if the Shafarevich
Tate conjecture held over a number field K, then for any prime degree cyclic
extension M of K, there existed an elliptic curve of rank one over K, keeping
its rank over M Combined with B Poonen’s theorem, this new result shows
that the Shafarevich Tate conjecture implied HTP is undecidable over the rings
of integers of any number field

C Videla also used finitely generated elliptic curves to produce undecidability
results His approach, as discussed above, was based on an elaboration by
C W Henson of a proposition of J Robinson and results of D Rohrlich (see
[29]) concerning finitely generated elliptic curves in infinite algebraic extensions

The main ideas for the proof below have been articulated in [3] for the number
field case Here only a minor adjustment is required We start with reviewing
two technical lemmas which can be found in [19] Let E be an elliptic curve
defined over a number field K and fix an affine Weierstrass equation for the
curve Let P € E(K) be a point of infinite order, let n € Zo, and let (z,,yn)
be the coordinates corresponding to [n]P under the chosen Weierstrass model
Given z € K, let n(z) be the integral divisor which is the numerator of the
divisor of x in K Further let 0(x) = n(z~!)
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LEMMA 6 1: Let® be any integral divisor of K and let m be a positive integer
Then there exists k € Z~q such that A[0(xg,,) In the integral divisor semigroup
of K

LeMMA 6 2: There exists a positive integer m such that for any positive integers
k.1,

Lim, 2 2

a(xlm)m(% k ) .
PROPOSITION 6 3: Let N/K be a number field extension of degree n Let
be a prime of K and let q1,...,q,, be all the primes of N lying above Q Let
u € N be integral at Q Assume further there exists a sequence {(k;,y;)} where
ki € Zo, kiv1 > ki, yi € K with ordg, y; > 0 for all i and j, and such that for

all i, j we have that ordg; (u —y;) > k; Thenu c K

Proof Let a« € N be a generator of N over K such that « is integral with
respect to Q Let D be the discriminant of the power basis of @ Using this
power basis we can represent any w € N in the following form:

n—1
w = E bra”
=0

with Db, € K and integral at Q Note that for some ag, a1, ...,a,-1 € K we
have that

n—1
u—y; = (ao—y:) +Y_ara’
r=1
and
ordg; (w —y;) > ki, j=1,...,m.

Let ¢ be a positive integer and choose 7 such that k; > n(¢ + ordg D) In this
case

w—y; =0 mod Qfordal
in the integral closure of the valuation ring of Q in N Let B € K be such that
ordq B = /{ + ordq D.

Observe that “”* is integral at Q, and therefore D% is integral at Q implying
that ordg a, > ¢ for r =1,...,n —1 Since ¢ can be arbitrarily large, a, = 0,
r=1,....n—1land u e K
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We now use our results on defining integrality at a single number field prime
to obtain the following theorem

THEOREM 6 4: Let pg be a prime of G completely q bounded in Ky, If there
exists an elliptic curve E defined over G such that rank(E(Kius)) > 0 and
E(Kint) = E(G), then G is first order definable over Kiys with only one variable
in the range of the universal quantifier

Proof Fix an affine Weierstrass equation y2 = 22 4+ ax + ¢ for E and identify
non zero points of E(Kiys) with pairs of solutions to the Weierstrass equations
as above Let b € Ki,+ be such that it satisfies conditions of Theorem 3 15,
Part 1 with respect to all prime factors of pg in M(b), ie, ordy, , b < 0
and ordy,, , b # 0 mod g for all py;) € €rrr)(Pc), where M is a completely
bounding field for p; Let u € Ky be such that ub € Int(b,pg, q) and

Vz € Kinfﬂ(al,bl),(ag,bg) S E(Kinf) :

(6 ].) b2
€ Int(b,pe,q) N (u— a“ )2a; € Int(b,pa, q).
zay ag

We claim that if the formula is true for some u€ N =M (b, u), then, by Propo
sition 6 3, we have that v € G Indeed, given a z € N and Zb; € Int(b,pa,q),
we have that for all py lying above pg,

b? -1
ordy a0, > (q . )orde b
implying

q—1

1
—ordy, z4ordy u > ( ‘
1

1
72> ordy, b= (717 ) ordy b > —ord,, b > 0.
q

Hence

1
ordy a > ordy, 2 — ordy, b > ordy, 2.

The second part of the conjunction in (6 1) now implies

ap\ 2 q—1
d (— ) > oy b,
ordy, (u o ax ‘ ordy
ax qg—1 1
2o1dy (u— ") > dpy b+ ord
ordy, (u a q ordy, b+ ordpy a

-1
>4 ordy, b —ordy, b+ ordy, 2 > ordy, 2.
q

Since z can be any element of N and Z; € G, it follows at once from Proposition
6 3 that u e G
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Now assume that v = k? with &k € Z Let (z1,591) € E(G) be the affine
coordinates with respect to a chosen Weierstrass equation of a point P € E(G)
of infinite order, as above Then by Lemma 6 2 there exists a positive integer
m such that for any positive integer [,

D(xlm)h‘t( Him k2)2
Tkim
in the integral divisor semigroup of G Further, by Lemma 6 1 we have that for
any positive C, for some r we have that ordy, =, < —C for any py So given
az € King, let a1 = Ty, a2 = Tgprm with 7 chosen so that 9(b%)n(2)[0(2m)
in the integral divisor semigroup of G(b, z), and observe that the first part of
the conjunction (6 1) is satisfied Next we note that for N = G(b, z), since
ordy b < 0, we have that ord,, z,, < 0, and since
el T~ #)
Lkrm
we also must have that
ordy (( Lrm k2>2$7‘m) >0
Tkrm
and thus the second part of the conjunction (6 1) is satisfied

Finally we note that any positive integer can be written as a sum of four
squares, and any element of G can be expressed as a linear combination of some
basis elements with rational coefficients The resulting formula for G is of the
form 3...3v3...3P, where P is a polynomial equation

In view of the theorem above we now have the following

THEOREM 6 5: Let q be a rational prime and let Ki,+ be an infinite algebraic
extension of Q with at least one prime of a number field contained in Kiut
completely q bounded Assume also there exists an elliptic curve defined over
Kins such that its Mordell Weil group has positive rank and is finitely generated
In this case Z is first order definable over this field, and therefore the first order
theory of this field is undecidable

This theorem provides another way to improve results due to C Videla in
[43], where finitely generated elliptic curves are used over cyclotomics with one
ramified rational prime to generate a model of Z using results of Julia Robinson
Using these elliptic curves as described above we would also get the first order
definition of Z as a subset
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Another example of a family of infinite extensions of QQ where one can find
finitely generated elliptic curves can be found in [37] where the curves are used
to prove existential undecidability of rings of integers One should note that
the fields described in that paper are all ¢ bounded with respect to almost
all rational primes and thus one could also derive the results on the first order
undecidability of these fields using the norm equation method above In general,
the full strength of the elliptic curves method is unknown since we don’t have
the complete picture concerning elliptic curves in infinite algebraic extensions
of Q

In principle, one can also use Theorem 6 5 to obtain information about exis
tence of finitely generated curves in infinite extensions If an infinite extension
of Q with a completely ¢ bounded prime has a decidable first order theory, then
our theorem implies that any elliptic curve defined over the field either has rank
0 or is not finitely generated Unfortunately (or fortunately), to the best knowl
edge of the author, we already know, via number theoretic methods, what the
ranks of elliptic curves are over all fields where the first order theory is known
to be decidable

7. Appendix: Some algebraic number theory

In this section we show how to define a set of elements of a number field con
taining all integers and such that all non integers in the set have negative orders
(poles) of order divisible by a given prime number ¢ only We start with some
notation

Notation and Assumptions 7 1: The following notation is used throughout this
section For x,b,d,a,c € K \ {0} such that bx? 4 b7 # 0,dz? 4+ d? # 0, let

L1 =K ({/1+z71),
Lo =Ly ({/1+ (bat + b7)-1),
L =Ly({/1+ (c+cVz1),
F =K ({/14d1),
Fy =Fi ({/1+ (da? 4 d9)~1),
F=Fy (/14 (a+a-1)d1),
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and observe that L depends on K, ¢, z, b, ¢, while F' depends on K, q,a,x,d For
the rest of this section we will assume that x,b,d, a, c take values in K so that
all the fields above are defined

The proof of the lemma below follows from the Hasse Minkowski Theorem
and the fact that over a local field a quaternary form is universal

LEMMA 7 2: If H is any algebraic extension of Q, then the set
{x € H|321,29,23,24 € H: v =23 + 23 + 23 + 23}

is exactly the set of all elements of H such that for any embedding o of H into
Q with o(H) € RN Q we have that o(x) >0

Remark 7 3: If K/M is an algebraic extension and ¢ € Q5(M), then ¢ € Qy(K)
However, Q2 (K)NM # Q3(M) in all cases, since there can be an embedding of
K into Q which is not real but the restriction to the image of M is real At the
same time, if K, is an infinite algebraic extension of M and ¢ € Qo (Kins) N M,
then for some finite extension N of M with N C K., for all K such that
N C K C Kint, we have ¢ € Qo(K)

Next we state Hensel’s lemma and its corollary which play an important role
in our use of the Hasse Norm Principle

LEMMA 7 4: If K is a number field, f(X) € K, [X] has coefficients integral at
px, and for some a € K, integral at pr we have that ord,, f(o)>2ord,, f'(a),
then f(X) has a root in K,, (See [13, Proposition 2, Section 2, Chapter II] )

COROLLARY 7 5: If K is a number field, x € K is integral at all factors of q,
x =1 mod ¢3, and qx is any prime of K dividing q, then x is a q th power in
K

qK

Proof Let f(X)= X% — x and observe that by our assumption on x we have
the following;:

ordg, f(1) =ordg, (1 —z) = 3e(qr/q).

At the same time ordg, f/'(1) = ordg, ¢ = e(qx/q) and therefore

ordg, f(1) > 2ordg, f'(1).

Hence, by Hensel’s lemma f(x) has a root in K, , making x a ¢ th power

9K
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The two lemmas below, stated without a proof, list some basic number
theoretic facts

LEMMA 7 6: If F' is a number field containing &,;, b € F and b is not a ¢ th
power in F', then the following statements are true:
(1) If ordy, ¢ = ordy, b = 0, then pp does not ramify in the extension
F(Yb)/F
(2) Iford,, b=0, b is not a q th power mod pr, and pr does not divide q,
then pr does not split (i e , has only one prime above it) in the extension
F(¥/b)/F
(3) Ifordy, b =0, pr does not divide ¢, and b is a ¢ th power mod pr, then
pr splits into distinct factors in the extension F(¥/b)/F
(4) If ordy, b # 0 mod ¢, then pr ramifies completely in the extension
F(Yb)/F
The second lemma, deals with norms and primes in cyclic extensions of de
gree ¢

LEMMA 7 7: Let G/F be a cyclic extension of degree q of number fields If pp
is not ramified in the extension, then either it splits completely (in other words,
into q distinct factors) or it does not split at all Further, if w = N¢/p(z2) for
some z € (G, and pr does not split in the extension, then

ordy, w=0 mod g.

The following lemma provides a way to avoid ramification of factors of ¢ while
taking a ¢ th root

LEmMMA 7 8: If K is a number field containing &,, a K prime qx is a factor of
q, and
ordg, (¢ —1) > 3ordg, ¢,

then qg splits completely in the extension K (/c)/K

Proof By Corollary 7 5 the polynomial X?—c has aroot in qx adic completion
of K, and since the field contains the primitive ¢ th root of unity, the polynomial
has ¢ distinct roots Thus, the local degree is one for all the factors above qx

The next two propositions explain the purpose of introducing extension

L=K(Y1+z1, 1+ bzt +b1)~1, Y1+ (c+c Lz D).



624 A SHLAPENTOKH Isr J Math

(1) all primes that are zeros of x and bz? + b7 ramify unless the order of
these zeros is divisible by ¢;

(2) all primes that are zeros and poles of ¢ ramify unless the order of ¢ at
these primes is divisible by ¢;

(3) we avoid ramifying primes in the cyclic extension obtained by taking
the ¢ th root of ¢, where we are going to solve norm equations;

(4) we make sure that zeros of 2 do not have any influence on whether the
norm equation has solutions

PROPOSITION 7 9: If K is a number field containing &,, and for some elements
b,c € K and some K prime pg the following assumptions are true:

(1) px is not a factor of q,
(2) ¢ is not a g th power modulo py (note that this assumption includes
the assumption that ord,, ¢ =0),
(3) ordy, x <0,
(4) ordy, b# 0 mod g,
(5) gordy, = < (¢ —1)ordy, b,
then for every prime factor py, of px in L we have that
(1) ordy, x <0,

(2) cisnot a g th power modulo p;, and thus not a ¢ th power in L, and
(3) ordy, (bx?+b?) #0 mod ¢

Proof First, by properties of primes and Assumption 3, we have that ord,, x <0
By Assumption 4, we have that ord,, b # 0 mod ¢ Next we note that
ordy, (z7') > 0, and therefore by Lemma 7 6, Part 3 we have that px splits
completely into distinct factors in the extension L;/K (We remind the reader
that L; = K(¥/1+42~1)) Thus, in L; we have that ordy, = <0,ordy,, b#0
mod ¢, and ¢ is not a ¢ th power modulo p;,, We now note that by Assump
tion 5 we have that gordy, x + ord,, b < gord,, b, and therefore

ordy, (bxr?+b?) =ordy, b+ qord,, x<O0.

Further, by Assumption 4 we have that ordy, (bz?+b?%) #0 mod ¢ Applying
Lemma 7 6, Part 3 again, this time over the field

Ly = Li(¥/1+ (bad + b9)—1),
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we see that in the extension Lo/L;, the Ly prime pr, splits completely into
distinct factors and thus c is not a ¢ th power modulo any pr,, while

ordy,, (ba? +b9) Z0 mod ¢ and ord,,, (bz?+b?) <O0.

Since, by assumption, ordy, ¢ = 0 and therefore ordy,, ¢ = 0, by Lemma
76, Part 3 one more time, pr, will split completely into distinct factors in
the extension L/Lo and, as before, this would imply that ¢ is not a ¢ th
power in L or modulo any p; above px  Here we remind the reader that
L=Ls(/1+(c+c 1)x~1). Finally, we also have ord,, (bz? + b7) 0 mod q.

PROPOSITION 7 10: If K is a number field containing &,, and z,c,b € K, L are
as in Proposition 7 9, then for any L prime aj, that is not a factor of ¢ and is
not a pole of x, the following statements hold:

(1) ordq, ¢ =0 mod g;

(2) ordg, (bz? 4 b?) =0 mod g;

(3) ordy, x =0 mod ¢

Proof We again proceed by applying Lemma 7 6 three times In the extension
Li/K, where L; = K(¥/1+2~1), all the primes that are zeros of x of order
not divisible by ¢ are ramified by Lemma 7 6, Part 4, since for any K prime ag
such that ordg, x > 0 we have that ord,, (1 + 27 1) = ordg, (z71) <0

In the extension Lo/L1, where Ly = Li(/1+ (bx? 4 b7)~1), as before, we
ramify all the primes ar, such that

ordg, (br?+b?) >0 and ord,, (bz?+b?)#0 mod q.

Further, if az, is a pole of bx? 4+ b? but not a pole of z, then it is a pole of b
and therefore ord,, (bz?+b?) = qord,, b

Finally, (c+c 1)z ~! has poles at all primes occurring in the divisor of ¢ and
not poles of z Since in L, and therefore in Lo, all zeros of x are of order
divisible by ¢, if ¢ has a pole or a zero of degree not divisible by ¢, and the
prime in question is not a pole of x, it follows that (¢ + ¢~!)z~! has a pole
of degree not divisible by ¢ at this prime, forcing it to ramify in the extension
Lo(¢/1+ (c+c1)a=1)/Ly Thus, ords, ¢ = 0 mod g for any prime ar, not
dividing ¢ and not a pole of z

We now consider what happens to factors of ¢ under cyclic extensions of
degree ¢
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PROPOSITION 7 11: If for some elements x,d, a of a number field K containing
&q and some K prime qx the following assumptions are true:

(1) gk Is a factor of q,

) qx does not split in the extension K (¥a)/K,

) ordg, x <0,

4) ordg, d #0 mod ¢,

) ordg, d < —3ordg, q,

) ordg, a =0,

7) gordg, x < (¢ —1)ordg, d,

then for every prime factor qp of qx in F' we have that
(1) ordg, z <0,
(2) qr does not split in the extension F(¢/a)/F, and
(3) ordg,(dz?+d?) #0 mod ¢

Proof First of all we note that
F=K/1+d', Y1+ (dat +d9)~1, /1 + (a+a-1)d1).

Next we observe that over the qx adic completion K4, of K, a ¢ th root of
a generates an unramified extension of degree ¢ Further, if G/K is a finite
extension, where qx has a local degree one (ie, e = f = 1) factor q¢, then
Gqo = Ky, and a ¢ th root of a generates an unramified extension of degree ¢
over Gy, where qg does not split

Now note that by Assumption 5, we have that ordq, d < —3ordy, ¢, and
therefore by Lemma 7 8 we have that qx splits completely into distinct factors
in the extension F; /K (We remind the reader that Fy = K (/1 +d~1)) Thus,
in F1 we have that ordg, @ <0, ordg, d # 0 mod g and qF, has a factor of
relative degree ¢ in the extension generated by adjoining /a to Fj for any
qr, € 6r, (qx) Further, by Assumption 7,

gordg, = +ordg, d < gordg, d < —3qordg, q,
and therefore
ordg, (dz? 4 d?) = ordg, d+ gordg, x < —3qordg, ¢ <0.

Further, by Assumption 4 we have that ord,, (dz?+d?) #0 mod ¢ Applying
Lemma 7 8 again, this time over the field Fy = Fy (/1 + (da + d9)~1), we see
that in the extension Fy/Fy, the F; prime qp, splits completely into distinct
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factors Consequently, any qr, has a factor of relative degree ¢ in the exten
sion generated by adjoining ¢a to F,, while ordg, (dz? 4+ d?) # 0 mod g and
ordgy, (dz? 4 d?) < 0.

Since, by assumption, ordg, a = 0 and therefore ord,,, a = 0, by Lemma 7 8
one more time, qg, will split completely into distinct factors in the extension
F/Fy, (here we remind the reader that F = Fy({/1+ (a+a~1)d-!)) and, as
before, this would imply that any qr will have a factor of relative degree ¢ in the
extension generated by adjoining ¢/a to F, while ord,, (dz? + d?) # 0 mod g.
So in particular, a is not a ¢ th power in F’

Now a ¢ “analog” of Proposition 7 10

ProprosiTION 7 12: Under the assumptions of Proposition 7 11, for any F
prime ap that is not a pole of d and is not a pole of x, the following statements
hold:

(1) ordq,. d=0 mod g;
(2) ordq, a=0 mod g;
(3) ordgy (dz? 4 d?) =0 mod ¢

Proof We again proceed by applying Lemma 7 6 three times In the extension
Fi/K, where Fy = K(~/1 +d-1), all primes that are zeros of d not of order
divisible by ¢ are ramified by Lemma 7 6, Part 4, since for any K prime ay
such that ord,, d > 0 we have that orda, (1 +d~1) <0

In the extension Fb/Fy, where Fy = Fy({/1+ (dv? + d?)~1), as before, we
ramify all the primes ap, such that ord,,, (dz?+d?) > 0 and ordg,, (dz?+d?) # 0
mod ¢. Further, if ax is a pole of dx? 4+ d? but ax is not a pole of d, then
ordg, (dz%4d?) =qord,, x, and if for some pole qx of d we have that ordy, = >0,
then

ordg, (dz? + d?) = gordy, d.

Finally, (a+a~!)d~! has poles at all primes occurring in the divisor of a and
not poles of d Further, in Fy all zeros of d are of orders divisible by ¢ Thus if
a has a pole or a zero of degree not divisible by ¢, it follows that (a +a~!)d !
has a pole of degree not divisible by ¢ at this prime, forcing it to ramify in the
extension Fy(¢/1+ (a +a=1)d=1)/F, Thus, ords, a =0 mod g for any prime
ag as described in the statement of the proposition

The lemma below considers some archimedean completions of a number field
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LEMMA 7 13: Ifc € Qo(K) and M = K (y/c), then any archimedean completion
of M is isomorphic to the corresponding archimedean completion of K

Proof Let o be an embedding of M into Q If (M) C QN R, then the
archimedean completion of o(M) is isomorphic to R, and the completion is
isomorphic to C otherwise Therefore to prove the lemma, it is enough to show
that whenever o(K) ¢ Q NR, we also have o(M) € QR This implication
follows from the fact that whenever ¢(K) C Q NR, we have o(c) > 0 and
therefore \/o(c) € R

We will need the two lemmas below when analyzing what happens to factors
of ¢ in number field extensions of degree ¢

LEMMA 7 14: If U/K is a Galois extension of number fields, F/U is a cyclic
number field extension, and the extension F/K is Galois, then there are infin
itely many primes of U not splitting in the extension F/U and lying above a
prime of K splitting completely in U

Proof 1If o is a generator of Gal(F/U), then any prime of F' whose Frobenius
over K is

o € Gal(F/U) C Gal(F/K)

will have the desired property Now the Tchebotarev Density Theorem tells us
that there are infinitely many such primes

LEMMA 7 15: Let F/U be a cyclic extension of number fields such that for
some rational prime q we have that [F: U] =0 mod ¢"™ Let N be the unique
subfield of F containing U such that [N : U] = ¢™ Let pp be a prime of F
and let py be the U prime below it If o is the Frobenius automorphism of pp
and o is not a q th power in Gal(F/U), then py does not split in the extension
N/U

Proof Observe that Gal(F/N) is the set of all elements of the Galois group
that are ¢"™ th powers Thus, since o is not a ¢ th power in Gal(F/U), we must
have that ¢™ is the smallest positive power r of o such that ¢” € Gal(F/N)
Therefore, we have that o) has order ¢™ and thus generates the Galois group
of N over U Hence, the decomposition group of pr N N = py is the Galois
group of N/U, and py does not split in the extension N/U
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We now construct a cyclic extension of degree equal to a power of ¢, where ¢
can have an arbitrarily high relative degree and no ramified factors

LEMMA 7 16: If q is a rational prime, m € Z~, then there exists a totally real
cyclic extension of Q of degree ¢ where q does not split

Proof Let ¢ be a rational prime satisfying the following conditions:

(1) ¢ splits completely in Q(&m)/Q

(2) Factors of £ in Q(§,m) do not split in the extension Q(&gm, ¢/q)/Q({gm)
(Observe that by Lemma 7 14 there are infinitely many such £’s) It follows
that £ = 1 mod ¢™, but ¢ is not a ¢ th power mod ¢ Indeed, since both
bases {1,&,,..., ,5‘1‘1>qu1} and {1, ¢/q,..., {/q7"'} are integral bases with
respect to £ and all of its factors, the factorization of ¢ and its factors in the
extensions Q({gm )/Q and Q(&gm, ¢/q)/Q(&,) corresponds to the factorization of
the respective minimal polynomials modulo ¢ Consequently, Z/¢ contains a
g™ th root of unity, so that ¢™|(¢ — 1), and the polynomial T'? — ¢ has no roots
modulo any factors ¢ in Q(&,)

Now consider the extension Q(&)/Q and note that it is of degree divisible
by ¢™ 1If 7 is the Frobenius of ¢, then 7(&§) = &/ and 7 is not a ¢ th power in
Gal(Q(&,)/Q) Indeed, suppose T = ¢ for some o € Gal(Q(&,)/Q) Let r be a
positive integer such that o (&) = & and therefore

& =1(&) =0"&) =¢",

implying ¢ = r¢ mod /¢ in contradiction to our assumption on ¢ and ¢ There
fore, by Lemma 7 15, we conclude that ¢ will not split in the unique degree ¢""
extension of Q contained in Q(&)

We now use the lemma above to construct a cyclic extension of a number
field where ¢ has relative degree ¢ and no ramified factors We do this in two
steps The first step is the lemma below

LEMMA 7 17: If G is algebraic over Q, H a number field with H/Q cyclic, then
GH/G is cyclic with [GH : G]|[H : Q]

Proof If A= GnN H, then, since H/Q is Galois, [H : A] = [GH : G] and thus
[GH : G] divides [H : Q]. Indeed, let & € H generate H over Q and therefore
also GH over G, and let ag+a1T+---+T" be the monic irreducible polynomial
of o over G Since all the conjugates of a over Q are in H, all the conjugates
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of « over G are in H, and thus ag,...,a,—1 € H and hence in A So the degree
of a over GG is at least as large as the degree of a over A Since A C G, these
degrees must be equal

Further, H/A is again a cyclic extension, and all the conjugates of o over A
and over GG are the same Hence,

Gal(GH/G) =2 Gal(H/A)
and we can conclude that the extension GH/G is cyclic

This is the second step of our construction

LEMMA 7 18: Let G be a number field such that for some prime pg of G lying
above a rational prime pgy we have that ord,(f(pa/pg)) = m Suppose now that
H is a cyclic extension of Q of degree ¢" with r > m, where pg does not split
Let GH be the field compositum of G and H inside the chosen algebraic closure
of Q Under these assumptions, there exists a field G such that G C G c GH
and GH/ Gisa cyclic extension of degree q where no factor of py splits

Proof Consider the following field diagram:

por € GH < pe €G
A A

pg € H< pp € Q

and observe that f(pcu/po) > ¢, while ord,(f(pe/pg)) = m < r Conse
quently,

ord,(f(pcr/pc)) > 1

and thus f(pgr/pc) > 1 By Lemma 717, the extension GH/G is cyclic of
degree that is a power of ¢ Further, by Proposition 8, of Chapter II, §4 of
[13], GH/G is unramified at all the factors of pg Let o be a generator of
the Gal(GH/G) and observe that for some positive integer i, the Frobenius
automorphism of any factor pgy of pe over G is o? =#id and must be of order
divisible by ¢ Now, if G #+GH is the fixed field of ¢°™d o'/ 7 we have that any
factor p of pg in G will not split in the extension GH/G and [GH : G]=¢

Since for any G and H as above, the field G satisfying G C G c GH and
[GH : G] = ¢ is unique, we have the following corollary
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COROLLARY 7 19: Let GG, H be as in Lemma 7 18, and assume additionally
that for any G prime pg lying above a rational prime pg we have that

ordg f(pc/po) < [H : Q].

Let G be a subfield of GH such that G C G and [GH : G] = q In this case no
G factor of pg splits in the extension GH/G

We now consider the case when ¢ = 2 and examine generators of GH over G

LeMMA 7 20: Let G, G, H be as in Corollary 7 19, let ¢ = 2, and assume H is
totally real Suppose HG = G‘(\/a), a € G In this case, if o : G — QNR is
an embedding of G, then o(a) > 0

Proof Since H is totally real, for any embedding o : HG —» Q, we have that
oc(HG) CR < o(G) CR.
If o(G) CR, then ¢(G)CR and o(HG) CR implying /o (a) €R and o(a)>0
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