CENTRAL POLYNOMIALS AND GROWTH FUNCTIONS

BY

Antonio Giambruno*

Dipartimento di Matematica e Informatica, Università di Palermo Via Archirafi 34, 90123 Palermo, Italy e-mail: antonio.giambruno@unipa.it

AND

MIKHAIL ZAICEV**

Department of Algebra, Faculty of Mathematics and Mechanics Moscow State University, Moscow, 119992 Russia e-mail: zaicevmv@mail.ru

ABSTRACT

The growth of central polynomials for the algebra of $n \times n$ matrices in characteristic zero was studied by Regev in [13]. Here we study the growth of central polynomials for any finite-dimensional algebra over a field of characteristic zero. For such an algebra A we prove the existence of two limits called the central exponent and the proper central exponent of A. They give a measure of the exponential growth of the central polynomials and the proper central polynomials of A. We study the range of such limits and we compare them with the PI-exponent of the algebra.

1. Introduction

Throughout this paper all algebras will be associative and over an algebraically closed field F of characteristic zero. Let $F\langle X \rangle$ be the free associative algebra on a countable set X over F and let A be an F-algebra.

Received January 3, 2017 and in revised form September 25, 2017

^{*} The first author was partially supported by the GNSAGA of INDAM.

^{**} The second author was supported by the Russian Science Foundation, grant 16-11-10013.

Recall that a polynomial $f \in F\langle X \rangle$ is a central polynomial of A if for any $a_1, \ldots, a_n \in A$, $f(a_1, \ldots, a_n) \in Z(A)$, the center of A. In case f takes only the zero value, f is a polynomial identity (PI) of A whereas if f takes a non-zero value in Z(A), we say that f is a proper central polynomial.

Even if an algebra has a non-zero center, the existence of proper central polynomials is not granted. Nevertheless a famous conjecture of Kaplansky (see [8]) asserting that the algebra of $n \times n$ matrices has proper central polynomials was proved in the early 70's independently by Formanek and Razmyslov ([2], [10]).

Here we want to compare the growth of the spaces of central polynomials, proper central polynomials and polynomial identities of an algebra in the following sense.

Let Id(A) be the T-ideal of polynomial identities of A and, following [13], we let $Id^{z}(A)$ be the space of central polynomials of A. Notice that $Id^{z}(A)$ is a T-space, i.e., a vector space invariant under all endomorphisms of $F\langle X \rangle$. Clearly $Id(A) \subseteq Id^{z}(A)$, and the proper central polynomials correspond to the quotient space $Id^{z}(A)/Id(A)$.

Regev in [13] introduced the notion of central codimensions as follows. Let P_n be the space of multilinear polynomials in x_1, \ldots, x_n and set

$$P_n(A) = \frac{P_n}{P_n \cap Id(A)}, \quad P_n^z(A) = \frac{P_n}{P_n \cap Id^z(A)}.$$

The quotient space

$$\Delta_n(A) = \frac{P_n \cap Id^z(A)}{P_n \cap Id(A)}$$

corresponds to the space of proper central polynomials.

We write $c_n(A) = \dim P_n(A)$, $c_n^z(A) = \dim P_n^z(A)$ and $\delta_n(A) = \dim \Delta_n(A)$, respectively and it is easily seen that

(1)
$$c_n(A) = \delta_n(A) + c_n^z(A).$$

We call $c_n(A), c_n^z(A)$ and $\delta_n(A), n = 1, 2, ...,$ the sequences of codimensions, central codimensions and proper central codimensions, respectively.

It is well known that for any PI-algebra A the sequence $c_n(A)$, n = 1, 2, ..., is exponentially bounded ([11]). Moreover, the limit

$$\exp(A) = \lim_{n \to \infty} \sqrt[n]{c_n(A)}$$

always exists and is a non-negative integer called the PI-exponent of A ([5]). Clearly from (1) it follows that if A is a PI-algebra, the sequences $c_n^z(A)$ and $\delta_n(A), n = 1, 2, \ldots$, are also exponentially bounded and it is worth asking if the corresponding limits

(2)
$$\exp^{z}(A) = \lim_{n \to \infty} \sqrt[n]{c_{n}^{z}(A)}, \quad \exp^{\delta}(A) = \lim_{n \to \infty} \sqrt[n]{\delta_{n}(A)}$$

exist.

Here we shall prove that for any finite-dimensional algebra A, the central exponent $\exp^{z}(A)$ and the proper central exponent $\exp^{\delta}(A)$ exist and are non-negative integers. Moreover, they are both the dimension of suitable subalgebras of A.

What about searching for all allowed values of the limits in (2)? It is wellknown that $\exp(A)$ can be any positive integer. Here we show that for any finitedimensional algebra A such that $\exp(A) \ge 2$, the central exponent $\exp^{z}(A)$ and the PI-exponent $\exp(A)$ coincide. Concerning the proper central exponent we prove that for any integer $N \ge 1$ there exists a finite-dimensional algebra Asuch that $\exp^{\delta}(A) \ne 0$ and $\exp(A) - \exp^{\delta}(A) > N$.

2. A general setting

Throughout, A is a finite-dimensional algebra over an algebraically closed field of characteristic zero. The spaces $P_n(A)$, $P_n^z(A)$ and $\Delta_n(A)$ become S_n -modules via the usual permutation action of the symmetric group S_n : if $f(x_1, \ldots, x_n) \in P_n$ and $\sigma \in S_n$, then $\sigma f(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$. The corresponding characters are denoted $\chi_n(A), \chi_n^z(A)$ and $\chi_n(\Delta(A))$, respectively.

We decompose such characters into a sum of irreducibles:

$$\chi_n(A) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda, \quad \chi_n^z(A) = \sum_{\lambda \vdash n} m'_\lambda \chi_\lambda, \quad \chi_n(\Delta(A)) = \sum_{\lambda \vdash n} m''_\lambda \chi_\lambda,$$

where χ_{λ} is the irreducible character of S_n corresponding to the partition λ of n and $m_{\lambda}, m'_{\lambda}, m''_{\lambda}$ are the multiplicities. Clearly $m_{\lambda} = m'_{\lambda} + m''_{\lambda}$, for all $\lambda \vdash n$ and we write

(3)
$$\chi_n(A) = \chi_n(\Delta(A)) + \chi_n^z(A).$$

A special algebra, whose properties we shall use in this paper, is the algebra of upper block triangular matrices $UT(d_1, \ldots, d_k)$. Recall that this is the following

subalgebra of $M_{d_1+\cdots+d_k}(F)$

$$UT(d_1, \dots, d_k) = \begin{pmatrix} A_1 & A_{12} & \cdots & A_{1k} \\ & A_2 & & \vdots \\ & & \ddots & A_{k-1k} \\ 0 & & & A_k \end{pmatrix},$$

where $A_i \cong M_{d_i}(F)$, $1 \le i \le k$, and $A_{ij} \cong M_{d_i \times d_j}(F)$, the space of $d_i \times d_j$ matrices over F, $1 \le i < j \le k$.

In the next lemma we shall prove that such an algebra has no proper central polynomials.

LEMMA 1: If k > 1, the algebra $A = UT(d_1, \ldots, d_k)$ has no proper central polynomials.

Proof. Let f be a central polynomial of A and assume, as we may, that $f = f(x_1, \ldots, x_n)$ is a multilinear polynomial. Notice that the center of A is the set of scalar matrices.

Write

$$f = f_1 x_1 + \dots + f_n x_n,$$

where f_i is a polynomial in $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$, $1 \leq i \leq n$, and consider any evaluation $\varphi : F\langle X \rangle \to A$ such that $\varphi(x_1) \in A_{12}$ and $\varphi(x_i) \in A_1$, $2 \leq i \leq n$. Since $A_{12}A_1 = 0$, we get that $\varphi(f_2x_2) = \cdots = \varphi(f_nx_n) = 0$. Recalling that $\varphi(f_1x_1) \in A_{12}$ and f is a central polynomial of A, then we deduce that $\varphi(f_1x_1) = 0$. Since f_1 is evaluated in A_1 and x_1 in A_{12} , by making a suitable evaluation, we deduce that f_1 is an identity of A_1 . It is clear that the above argument applied to the polynomials f_2, \ldots, f_n says that they are all polynomial identities of A_1 . Hence $f \in Id(A_1)$.

In a similar fashion we can prove that $f \in \bigcap_{i=1}^{k-1} Id(A_i)$. Now rewrite f as $f = x_1g_1 + \cdots + x_ng_n$, where for $i = 1, \ldots, n$, the variable x_i does not appear in g_i . By making an evaluation similar to the one above, we deduce that f is an identity of A_k .

We have proved that f is an identity of $A_1 \oplus \cdots \oplus A_k$. But then any non-zero evaluation of f takes values in J(A), the Jacobson radical of A. Since f is a central polynomial we deduce that f is an identity of A and we are done.

3. Computing the exponential growth

Let A be a finite-dimensional algebra over an algebraically closed field of characteristic zero. By the Wedderburn–Malcev theorem we can write $A = \overline{A} + J$, where $\overline{A} = A_1 \oplus \cdots \oplus A_m$ is a semisimple algebra with the A_i 's simple algebras and J = J(A) is the Jacobson radical of A.

It is clear that if A = J is a nilpotent algebra, then $\delta_n(A) = 0$, for *n* large. Then we may assume that $m \ge 1$. In this case we make the following definition.

Definition 1: A semisimple subalgebra B of A is centrally admissible if $B = A_{i_1} \oplus \cdots \oplus A_{i_k}$ where $A_{i_1}, \ldots, A_{i_k} \in \{A_1, \ldots, A_m\}$ are distinct and there exists a central polynomial $f = f(x_1, \ldots, x_n)$ of A such that $\varphi(f) \neq 0$ for some evaluation φ with $\varphi(x_j) \in A_{i_j}, 1 \leq j \leq k$.

Notice that even if A is not nilpotent and has proper central polynomials, centrally admissible subalgebras do not necessarily exist.

For instance, let $A = B \oplus R$ where B is the subalgebra of $M_3(F)$ consisting of all matrices whose third row is zero and $R = \frac{F\langle x_1, \dots, x_N \rangle}{F\langle x_1, \dots, x_N \rangle^{N+1}}$. Here $F\langle x_1, \dots, x_N \rangle$ is the free associative algebra with N generators.

Notice that R is a free nilpotent algebra of index N + 1 $(R^{N+1} = 0, R^N \neq 0)$. Hence $ann_R(R) = \{a \in R \mid aR = Ra = 0\} = R^N = Z(R)$. It follows that any multilinear polynomial of degree N is not a polynomial identity of R and lies in $ann_R(R)$.

Since Z(B) = 0, then $Z(A) = Z(R) = R^N$. It follows that any multilinear polynomial identity of B of degree N is not a polynomial identity of R and lies in $R^N = Z(A)$. Thus A has proper central polynomials.

On the other hand, let $f(x_1, \ldots, x_k)$ be a multilinear central polynomial of Aand at least one variable is evaluated in $M_2(F) \subset B$. If all the other variables are evaluated in B, then f vanishes in A since Z(B) = 0. If also at least one variable is evaluated in R, then f vanishes in A since $A = B \oplus R$. Thus A has no centrally admissible subalgebras.

Recall that for a partition $\lambda \vdash n$ we write $\chi_{\lambda}(1) = d_{\lambda}$ for the degree of the irreducible S_n -character corresponding to λ . Also, if $\lambda = (\lambda_1, \lambda_2, ...)$ and $\mu = (\mu_1, \mu_2, ...)$ are two partitions, we write $\lambda \subseteq \mu$ if $\lambda_i \leq \mu_i$, for all $i \geq 1$.

In the following lemma we assume that A has centrally admissible subalgebras.

LEMMA 2: Let d be the maximal dimension of a centrally admissible subalgebra of A. Then $\delta_n(A) \leq Cn^t d^n$, for some constants C, t.

Proof. Consider the S_n -character $\chi_n(\Delta(A))$ and its decomposition into irreducibles

(4)
$$\chi_n(\Delta(A)) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda$$

We claim that if $\lambda \vdash n$ is such that $m_{\lambda} \neq 0$, then the diagram of λ contains at most s boxes out of the first d rows, where d is the integer defined above, and s is such that $J^s \neq 0$ and $J^{s+1} = 0$.

In fact, let $M_{\lambda} \subseteq P_n \cap Id^z(A)$ be an irreducible S_n -module corresponding to λ such that $M_{\lambda} \not\subseteq P_n \cap Id(A)$. This says that there exists a proper central polynomial f and a tableau T_{λ} such that $M_{\lambda} = FS_n e_{T_{\lambda}} f \subseteq P_n \cap Id^z(A)$. The reader can find in [7] all the basic properties of the representation theory of the symmetric group needed here.

Recall that $e_{T_{\lambda}} = (\sum_{\sigma \in R_{T_{\lambda}}} \sigma)(\sum_{\tau \in C_{T_{\lambda}}} (\operatorname{sgn} \tau)\tau)$ is an essential idempotent of the group algebra FS_n , where $R_{T_{\lambda}}$ and $C_{T_{\lambda}}$ are the subgroups of S_n stabilizing the rows and the columns of T_{λ} , respectively. Hence M_{λ} is also generated by $(\sum_{\tau \in C_{T_{\lambda}}} (\operatorname{sgn} \tau)\tau)e_{T_{\lambda}}f$ and this implies that

$$g = \left(\sum_{\tau \in C_{T_{\lambda}}} (\operatorname{sgn} \tau) \tau\right) e_{T_{\lambda}} f$$

is also a proper central polynomial of A. Notice that the polynomial g is alternating on distinct sets of variables corresponding to the columns of T_{λ} .

Let φ be a non-zero evaluation of g in A. Since g is multilinear, we can restrict to evaluations of g on a basis of A that is the union of bases of the simple components and the Jacobson radical. Since $\varphi(g)$ takes a non-zero central value in A, by the definition of d, every alternating set of variables of g can be evaluated in at most d basis elements of \overline{A} and the remaining elements in the basis of J. Since the sets on which g is alternating correspond to the columns of T_{λ} , this says that the number of variables evaluated in J is greater than or equal to the number of boxes of λ out of the first d rows. Since $J^{s+1} = 0$, this says that there are at most s boxes out of the first d rows of λ . This proves the claim.

By (3) we have that $\chi_n(\Delta(A)) \leq \chi_n(A)$, i.e., the multiplicity of every irreducible χ_λ appearing in $\chi_n(\Delta(A))$ is less than or equal to the multiplicity of χ_{λ} in $\chi_n(A)$. Since these last multiplicities are polynomially bounded ([1, Theorem 16]), we get that also the m_{λ} 's in (4) are polynomially bounded and let $m_{\lambda} \leq Cn^q$.

Recall that if $\lambda \subseteq \mu$ are two partitions such that $\lambda \vdash n$ and $\mu \vdash n + s$, then $d_{\mu} \leq n^{s} d_{\lambda}$ (see [7, Lemma 6.2.4]).

Let us write $H(n,d) = \{\lambda = (\lambda_1, \lambda_2, \ldots) \vdash n \mid \lambda_{d+1} = 0\}$ for the set of partitions of n in at most d parts and recall that $\sum_{\lambda \in H(n,d)} d_{\lambda} \leq C' n^t d^n$, for some constants C', t ([7, Lemma 6.2.5]).

We have

$$\delta_n(A) = \sum_{\lambda \vdash n} m_\lambda d_\lambda \le C n^q \sum_{\lambda \in H(n,d) \cup S} d_\lambda$$
$$\le C'' n^{q+s} \sum_{\mu \in H(n,d)} d_\mu$$
$$\le C_1 n^l d^n,$$

for some constants C_1, l , where $H(n, d) \cup S$ is the set of partitions containing at most s boxes out of the first d rows. This proves the lemma.

Now we can prove the main result of this section.

THEOREM 1: Let A be a finite-dimensional algebra over an algebraically closed field of characteristic zero.

- (1) If A has no proper central polynomials or has no centrally admissible subalgebras, then $\delta_n(A) = 0$, for all n large enough.
- (2) If A has centrally admissible subalgebras, then

$$C_1 n^{t_1} d^n \le \delta_n(A) \le C_2 n^{t_2} d^n,$$

for some constants $C_1 > 0, C_2, t_1, t_2$, where d is the maximal dimension of a centrally admissible subalgebra of A.

Proof. (1) If A has no proper central polynomials, then clearly $\delta_n(A) = 0$, for all $n \ge 1$.

Suppose that A has proper central polynomials but no centrally admissible subalgebras. Let s be such that $J^s = 0$, where J is the Jacobson radical of A. Clearly any proper central polynomial has non-zero evaluations only on elements of J. This implies that its degree is less than s and $\delta_n(A) = 0$ whenever $n \geq s$. (2) Now suppose that A has centrally admissible subalgebras. In this case an upper bound for $\delta_n(A)$ is given in Lemma 2. Let B be a centrally admissible subalgebra of A of maximal dimension. We may clearly assume that $B = A_1 \oplus \cdots \oplus A_k$ and let $f = f(x_1, \ldots, x_k, x_{k+1}, \ldots, x_{k+m})$ be a central polynomial of A such that $0 \neq f(a_1, \ldots, a_k, b_1, \ldots, b_m) \in Z(A)$, with $a_1 \in A_1, \ldots, a_k \in A_k$. Let $A_i = M_{d_i}(F)$ so that dim $A_i = d_i^2$.

Let $G_t(w_1, \ldots, w_{t^2}, w'_1, \ldots, w'_{t^2})$ denote the Regev central polynomial for $M_t(F)$ which is alternating on w_1, \ldots, w_{t^2} and on w'_1, \ldots, w'_{t^2} ([3, Theorem 16]).

Starting with f we construct a sequence of polynomials f_t , t = 1, 2, ..., as follows. Set $f_1 = f$ and define

$$f_2 = f_2(z_{1,2}, \dots, z_{k,2}, y_1, \dots, y_m) = \text{Alt}_1 \text{Alt}_2 f_1(z_{1,2}, \dots, z_{k,2}, y_1, \dots, y_m)$$

where

$$z_{1,2} = x_1 G_{d_1}(u_{1,1}, \dots, u_{d_1^2, 1}, v_{1,1}, \dots, v_{d_1^2, 1})$$

$$\vdots$$

$$z_{k,2} = x_k G_{d_k}(u_{1,k}, \dots, u_{d_{1-k}^2}, v_{1,k}, \dots, v_{d_{1-k}^2}).$$

Here Alt₁ is alternation on the set $\{u_{1,1}, \ldots, u_{d_1^2,1}, \ldots, u_{1,k}, \ldots, u_{d_k^2,k}\}$ and Alt₂ is alternation on the set $\{v_{1,1}, \ldots, v_{d_1^2,1}, \ldots, v_{1,k}, \ldots, v_{d_k^2,k}\}$.

Since f_1 is a central polynomial of A, also f_2 is central. Now, every G_{d_i} has an evaluation φ_i in $A_i = M_{d_i}(F)$ such that $\varphi_i(G_{d_i})$ is a non-zero scalar matrix. Moreover, if we exchange two variables belonging to distinct polynomials, say, G_{d_i} and G_{d_j} , the corresponding evaluation is zero since $A_iA_j = 0$ for $i \neq j$. It follows that we can extend the evaluations φ_i to an evaluation φ of f_2 in A, $\varphi(x_j) = a_j, 1 \leq j \leq k, \varphi(y_l) = b_l, 1 \leq l \leq m$, such that $\varphi(f_2) \neq 0$. Hence f_2 is a proper central polynomial of A. Notice that

deg
$$f_2 = 2 \sum_{i=1}^{k} d_i^2 + k + m = 2d + k + m.$$

By repeatedly applying this procedure we can construct a sequence of polynomial f_2, f_3, \ldots with the following properties: for any $t \ge 2$, f_t is a proper central polynomial of A of degree 2(t-1)d + k + m depending on $x_1, \ldots, x_k, y_1, \ldots, y_m$ and 2(t-1) alternating sets of variables each of order d. Moreover, there exists a non-zero evaluation of f_t in A such that all variables of the 2(t-1) alternating sets take values in $A_1 \oplus \cdots \oplus A_k$.

Next we shall compute a lower bound of $\delta_n(A)$ when n = 2td + k + m, any $t \ge 1$. Now, since f_{t+1} is a proper central polynomial of A,

$$f_{t+1} \in P_n \cap Id^z(A) \setminus P_n \cap Id(A)$$

Let the symmetric group S_{2td} act on the variables of P_n belonging to the 2tsets on which f_{t+1} is alternating. We consider the S_{2td} -module generated by f_{t+1} . As in the proof of Lemma 2, it turns out that in the decomposition of the S_{2td} -character of $\Delta_n(A)$ into irreducibles, the characters $\chi_{((2t)^d)}$ appears with non-zero multiplicity. Hence $\delta_n(A) = \dim \Delta_n(A) \ge \deg \chi_{((2t)^d)}$.

An asymptotic estimate of deg $\chi_{((2t)^d)}$ was done in [12]. For our purpose here we make the following computation.

Denote $n_0 = 2td$. Then by the hook formula giving the dimension of an irreducible representation of the symmetric group we have

$$\deg \chi_{((2t)^d)} > \frac{(2td)!}{((2t)!)^d} \cdot \frac{1}{n_0^{d^2}}.$$

Noticing that $\frac{(2td)!}{((2t)!)^d}$ is a generalized binomial coefficient and n = 2td + k + m, we get

$$\frac{(2td)!}{((2t)!)^d} > \frac{d^{n_0}}{(n_0+1)^d} > \frac{1}{d^{m+k}} \cdot \frac{1}{n^d} d^n.$$

Hence

(5)
$$\delta_n(A) \ge \alpha_0 n^{q_0} d^n,$$

where $\alpha_0 = d^{-m-k}, q_0 = -d^2 - d$, for all $n = 2td + k + m, t \ge 1$.

Now suppose that n is such that k+m+2td < n < k+m+2(t+1)d, for some t. Clearly, if we replace x_1 with x_1x_{n+1} in f_{t+1} , then the resulting polynomial f'_{t+1} will also be a proper central polynomial since A_1 is an unitary algebra. Hence $\delta_{N+1}(A) \geq \delta_N(A)$ for all $N \geq \deg f$. Denote p = n - (k + m + 2td). Then p < 2d and by (5) we have

$$\begin{split} \delta_n(A) &\geq \alpha_0 (n-p)^{q_0} d^{n-p} \\ &> \alpha_0 (n-2d)^{q_0} d^{n-2d} \\ &= \alpha_0 d^{-2d} (n-2d)^{-d-d^2} d^n > \alpha_1 n^{q_1} d^n \end{split}$$

for all *n* large enough where $\alpha_1 = \alpha_0 d^{-2d}$ and $q_1 = -d - d^2 - 1$.

As a consequence of Theorem 1 we get the following two corollaries.

COROLLARY 1: If A is a finite-dimensional algebra, then the proper central exponent $\exp^{\delta}(A)$ exists and is a non-negative integer.

COROLLARY 2: Let A be a finite-dimensional algebra. Then the sequence $\delta_n(A)$, n = 1, 2, ..., is either polynomially bounded or grows as an exponential function a^n with $a \ge 2$.

4. A few examples

In this section we shall give some examples of non semisimple algebras A with proper central polynomials and we shall compare the three sequences $c_n(A)$, $c_n^z(A)$, $\delta_n(A)$, n = 1, 2, ...

Let F[z] be the algebra of polynomials over F in the variable z and let $F[z]_0$ be its subalgebra of polynomials with zero constant term. Define the quotient algebras

$$T = F[z]/(z^{2t^2})$$
 and $Q = F[z]_0/(z^{2t^2}),$

where (z^{2t^2}) is the ideal generated by z^{2t^2} .

In $M_t(T)$, the algebra of $t \times t$ matrices over T, t > 1, we consider the subalgebra

$$A = B + M_t(Q)$$

where B is the semisimple algebra of diagonal matrices $\operatorname{diag}(\theta_1, \ldots, \theta_t)$ with $\theta_1, \ldots, \theta_t \in F$, and $M_t(Q) = J(A)$ is the Jacobson radical of A. Recalling that $G_t(x_1, \ldots, x_{t^2}, y_1, \ldots, y_{t^2})$ denotes the Regev central polynomial of $M_t(F)$, we have the following.

LEMMA 3: The polynomial G_t is a proper central polynomial of A.

Proof. Since G_t is a central polynomial of $M_t(F)$ and $M_t(T) \simeq M_t(F) \otimes T$, then also G_t is a central polynomial of A. Let v_1, \ldots, v_t denote the diagonal matrix units e_{11}, \ldots, e_{tt} and let v_{t+1}, \ldots, v_{t^2} denote the matrices $ze_{ij}, 1 \leq i, j \leq t, i \neq j$. Then, since the polynomial G_t evaluated on any basis of $M_t(F)$ gives a non-zero scalar value, we get

$$G_t(v_1,\ldots,v_{t^2};v_1,\ldots,v_{t^2}) = \alpha z^{2t^2-2t} E,$$

for some non-zero scalar $\alpha \in F$, where E is the identity matrix. Thus G_t is a proper central polynomial of A.

COROLLARY 3: $\exp^{\delta}(A) = \exp(A) = t$. Hence, for any integer $t \ge 2$ there exists a finite-dimensional algebra A with $\exp^{\delta}(A) = t$.

Proof. Recalling the Wedderburn–Malcev decomposition of $A = B + M_t(Q)$, we see that B is a maximal centrally admissible subalgebra of A, hence by Theorem 1, $\exp^{\delta}(A) = t$. Also $\exp(A) = t$ since A is a reduced algebra (see [7, Definition 9.4.2]).

We know by (1) that for any PI-algebra A, $\exp(A) \ge \exp^{\delta}(A)$. Next we want to show that the difference between the two exponents can be any positive integer. To this end we modify the previous construction, recalling that $T = F[z]/(z^{2t^2})$ and $Q = F[z]_0/(z^{2t^2})$ we set

$$R = F + M_t(Q)$$

a subalgebra of $M_t(T)$, where F is identified with the subalgebra of $M_t(T)$ of scalar matrices isomorphic to F.

Then define

$$A_1 = UT(p,q) \oplus R,$$

where UT(p,q) is the algebra of upper block triangular matrices with diagonal blocks of size p and q respectively, and we require that $p + q \leq t$.

The algebra A_1 has proper central polynomials. In fact we prove the following.

LEMMA 4: The polynomial G_t is a proper central polynomial of A_1 whose values lie in R.

Proof. Since $R \subseteq M_t(T)$, then $G_t = G_t(x_1, \ldots, x_{t^2}, y_1, \ldots, y_{t^2})$ is a central polynomial for both UT(p, q) and R.

Let φ be an evaluation of G_t in a basis of A_1 . If for all $1 \leq i \leq t^2$, $\varphi(x_i), \varphi(y_i) \in UT(p,q)$, then by Lemma 1 we have that $\varphi(G_t) = 0$. If there are two variables of G_t that are evaluated, one in UT(p,q) and the other in R, then also in this case we get $\varphi(G_t) = 0$ since UT(p,q)R = RUT(p,q) = 0. Hence we must have $\varphi(G_t) \in R$.

Now consider an evaluation φ such that

$$\varphi(x_1) = \varphi(y_1) = E \in F, \quad \varphi(x_i) = \varphi(y_i) = ze_{ii} \in M_t(Q), \quad 2 \le i \le t,$$

and the remaining $\varphi(x_k) = \varphi(y_k)$ are equal to distinct ze_{ij} , with $i \neq j$, $t+1 \leq k \leq t^2$. Since the elements $E, e_{22}, \ldots, e_{tt}, e_{ij}, 1 \leq i, j \leq t, i \neq j$ form a basis of $M_t(F)$, we have that $0 \neq \varphi(G_t) = \lambda z^{2t^2-1}E \in M_t(Q)$, and we are done.

COROLLARY 4: $\exp^{\delta}(A_1) = 1$ whereas $\exp(A_1) = p^2 + q^2$. Hence, for any integer $N \ge 0$ there exists a finite-dimensional algebra C such that $\exp^{\delta}(C) \ne 0$ and $\exp(C) - \exp^{\delta}(C) > N$.

Proof. By the basic properties of the PI-exponent,

$$\exp(A_1) = \exp(UT(p,q)) = p^2 + q^2$$

(see [7, Section 6.2]).

In order to compute $\exp^{\delta}(A_1)$, we notice that $M_p(F) \oplus M_q(F)$ is isomorphic to a maximal semisimple subalgebra of UT(p,q). Hence a maximal semisimple subalgebra of R is isomorphic to $M_p(F) \oplus M_q(F) \oplus B$ where B = F.

Let f be a proper central polynomial of A_1 . If φ is an evaluation in A_1 , then as in Lemma 4, either $\varphi(f) \in UT(p,q)$ or $\varphi(f) \in R$.

If the first case occurs, then $\varphi(f)=0$ by Lemma 1. In the second case we notice that only B=F can be a centrally admissible subalgebra of A_1 . By Lemma 4, B is centrally admissible and by Theorem 1 the proof is complete.

5. Relations among codimensions

In this section we shall compare for any finite-dimensional algebra the sequence of codimensions and the sequence of central codimensions. We have the following.

THEOREM 2: For any finite-dimensional algebra A with $\exp(A) \ge 2$, the central exponent $\exp^{z}(A)$ exists and is a non-negative integer. Moreover,

$$\exp^z(A) = \exp(A).$$

Proof. Suppose $\exp(A) = d \ge 2$. Then by [5], there are constants $C_1 > 0$, C_2 , t_1, t_2 such that

$$C_1 n^{t_1} d^n \le c_n(A) \le C_2 n^{t_2} d^n,$$

holds for all n. By (1) we then have that

(6)
$$c_n^z(A) \le C_2 n^{t_2} d^n.$$

On the other hand, by [6, Lemma 2], A contains a subalgebra B isomorphic to $UT(d_1, \ldots, d_m)$, for some d_1, \ldots, d_m with $d_1^2 + \cdots + d_m^2 = d = exp(B)$. Moreover $c_n(B) \ge C_0 n^{t_0} d^n$, for some constants $C_0 > 0, t_0$ (see [4, Theorem 3]).

Suppose first that m > 1 and let $N = c_n(B)$. Let f_1, \ldots, f_N be multilinear polynomials in x_1, \ldots, x_n linearly independent modulo the T-ideal $Id(B) \supseteq Id(A)$. If $f = \lambda_1 f_1 + \cdots + \lambda_N f_N + g \in Id^z(A)$, with $g \in Id(B)$, for some scalars $\lambda_1, \ldots, \lambda_N$, then $\bar{f} = \lambda_1 f_1 + \cdots + \lambda_N f_N$ is a central polynomial of B. But then by Lemma 1, \bar{f} is an identity of B and this says that $\lambda_1 = \cdots = \lambda_N = 0$. Thus

(7)
$$c_n^z(A) \ge N = c_n(B) \ge C_0 n^{t_0} d^n.$$

Now let m = 1. This says that $B = M_{d_1}(F)$, $d_1 \times d_1$ matrices over F and $d = d_1^2$. Consider m copies of Regev central polynomial f_1, \ldots, f_m in distinct sets of variables and let $f = f_1 \cdots f_m$. Then f generates an irreducible S_n -module M where n = 2md with character $\chi(M) = \chi_\lambda$, $\lambda = ((2m)^d)$. If y is another variable, f' = fy is not a central polynomial and generates an irreducible S_{n+1} -module whose character is χ_μ , where $\mu = (2m + 1, (2m)^{d-1})$. It is not difficult to check that $d_\mu \ge C_0(n+1)^t d^{n+1}$. Hence $c_{n+1}^z(A)$ satisfies the same inequality as in (7).

The relations (6) and (7) imply that $\exp^{z}(A)$ exists and $\exp^{z}(A) = \exp(A)$.

When $\exp(A) = 0$, then A is nilpotent and $\exp^{z}(A) = 0$. In case $\exp(A) = 1$, then either $\exp^{z}(A) = 1$ or $\exp(A) = 0$. If $\exp(A) = 1$, then A is not nilpotent and the sequence of codimensions is polynomially bounded. Clearly the same holds for the sequence of central codimensions. Thus $\exp^{z}(A) = 1$ provided $c_{n}^{z}(A) \neq 0$ for all n.

The case when $c_n^z(A) = 0$ can be characterized as follows.

PROPOSITION 1: Let A be a finite-dimensional algebra such that $\exp^{z}(A) = 0$. Then $A = A_1 \oplus A_2$ where A_1 is a nilpotent algebra and A_2 is a commutative algebra.

Proof. If $c_n^z(A) = 0$ for some $n \ge 2$, then any monomial of degree n is a central polynomial of A. In particular, $x_1 \cdots x_n$ is central.

Consider the Wedderburn–Malcev decomposition A = B + J where

$$B = B_1 \oplus \cdots \oplus B_m$$

is the sum of simple components and J is the Jacobson radical. Since $x_1 \cdots x_n$ is central, all B_1, \ldots, B_m are one dimensional and central subalgebras. Denote by e the unity of B_1 . Then $J = J_0 \oplus J_1$ where xe = ex = 0 if $x \in J_0$ and ye = ey = y if $y \in J_1$. Also $B_i J_1 = 0$ for all $i = 2, \ldots, m$ since $eB_i = 0$. Hence $A = (B_1 + J_1) \oplus (B_2 + \cdots + B_m + J_0)$. Moreover, $B_1 + J_1$ is commutative since $y = e^{n-1}y$ lies in the center of A for any $y \in J_1$. Repeating this procedure we get $A = C_1 \oplus \cdots \oplus C_m \oplus I$ where all C_1, \ldots, C_m are commutative and $I \subset J$ is nilpotent.

References

- A. Berele and A. Regev, Applications of Hook Young diagrams to P.I. algebras, Journal of Algebra 82 (1983), 559–567.
- [2] E. Formanek, Central polynomials for matrix rings, Journal of Algebra 23 (1972), 129– 132.
- [3] E. Formanek, A conjecture of Regev about the Capelli polynomial, Journal of Algebra 109 (1987), 93–114.
- [4] A. Giambruno and M. Zaicev, On Codimension growth of finitely generated associative slgebras, Advances in Mathematics 140 (1998) 145–155.
- [5] A. Giambruno and M. Zaicev, Exponential codimension growth of P.I. algebras: An exact estimate, Advances in Mathematics 142 (1999) 221–243.
- [6] A. Giambruno and M. Zaicev, Minimal varieties of algebras of exponential growth, Advances in Mathematics 174 (2003) 310–323.
- [7] A. Giambruno and M. Zaicev, Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, Vol. 122, American Mathematical Society, Providence, RI, 2005.
- [8] I. Kaplansky, Problems in the theory of rings, in Report of a Conference on Linear Algebras, June 6–8, 1956, Long Island, New York, National Research Council Publication, Vol. 502, National Academy of Sciences-National Research Council, Washington, 1957, pp. 1–3.
- [9] A. R. Kemer, T-ideals with power growth of the codimensions are Specht, Sibirskii Matematicheskii Zhurnal 19 (1978), 54–69; English translation: Siberian Mathematical Journal 19 (1978), 37–48.
- [10] Ju. P. Razmyslov, A certain problem of Kaplansky, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 37 (1973), 483–501.
- [11] A. Regev, Existence of identities in $A \otimes B$, Israel Journal of Mathematics **11** (1972), 131–152.
- [12] A. Regev, The representations of S_n and explicit identities for P.I. algebras, Journal of Algebra 51 (1978), 25–40.
- [13] A. Regev, Growth of the central polynomials, Communications in Algebra 44 (2016), 4411-4421.