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ABSTRACT

The growth of central polynomials for the algebra of n × n matrices in

characterstic zero was studied by Regev in [13]. Here we study the growth

of central polynomials for any finite-dimensional algebra over a field of

characteristic zero. For such an algebra A we prove the existence of two

limits called the central exponent and the proper central exponent of A.

They give a measure of the exponential growth of the central polynomials

and the proper central polynomials of A. We study the range of such

limits and we compare them with the PI-exponent of the algebra.

1. Introduction

Throughout this paper all algebras will be associative and over an algebraically

closed field F of characteristic zero. Let F 〈X〉 be the free associative algebra

on a countable set X over F and let A be an F -algebra.

∗ The first author was partially supported by the GNSAGA of INDAM.
∗∗ The second author was supported by the Russian Science Foundation, grant 16-

11-10013.

Received January 3, 2017 and in revised form September 25, 2017

15



16 A. GIAMBRUNO AND M. ZAICEV Isr. J. Math.

Recall that a polynomial f ∈ F 〈X〉 is a central polynomial of A if for any

a1, . . . , an ∈ A, f(a1, . . . , an) ∈ Z(A), the center of A. In case f takes only the

zero value, f is a polynomial identity (PI) of A whereas if f takes a non-zero

value in Z(A), we say that f is a proper central polynomial.

Even if an algebra has a non-zero center, the existence of proper central poly-

nomials is not granted. Nevertheless a famous conjecture of Kaplansky (see [8])

asserting that the algebra of n×n matrices has proper central polynomials was

proved in the early 70’s independently by Formanek and Razmyslov ([2], [10]).

Here we want to compare the growth of the spaces of central polynomials,

proper central polynomials and polynomial identities of an algebra in the fol-

lowing sense.

Let Id(A) be the T-ideal of polynomial identities of A and, following [13],

we let Idz(A) be the space of central polynomials of A. Notice that Idz(A)

is a T-space, i.e., a vector space invariant under all endomorphisms of F 〈X〉.
Clearly Id(A) ⊆ Idz(A), and the proper central polynomials correspond to the

quotient space Idz(A)/Id(A).

Regev in [13] introduced the notion of central codimensions as follows. Let

Pn be the space of multilinear polynomials in x1, . . . , xn and set

Pn(A) =
Pn

Pn ∩ Id(A)
, P z

n(A) =
Pn

Pn ∩ Idz(A)
.

The quotient space

Δn(A) =
Pn ∩ Idz(A)

Pn ∩ Id(A)

corresponds to the space of proper central polynomials.

We write cn(A) = dimPn(A), c
z
n(A) = dimP z

n(A) and δn(A) = dimΔn(A),

respectively and it is easily seen that

(1) cn(A) = δn(A) + czn(A).

We call cn(A), c
z
n(A) and δn(A), n = 1, 2, . . ., the sequences of codimensions,

central codimensions and proper central codimensions, respectively.

It is well known that for any PI-algebra A the sequence cn(A), n = 1, 2, . . .,

is exponentially bounded ([11]). Moreover, the limit

exp(A) = lim
n→∞

n
√
cn(A)

always exists and is a non-negative integer called the PI-exponent of A ([5]).

Clearly from (1) it follows that if A is a PI-algebra, the sequences czn(A) and
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δn(A), n = 1, 2, . . ., are also exponentially bounded and it is worth asking if the

corresponding limits

(2) expz(A) = lim
n→∞

n
√
czn(A), expδ(A) = lim

n→∞
n
√
δn(A)

exist.

Here we shall prove that for any finite-dimensional algebra A, the central

exponent expz(A) and the proper central exponent expδ(A) exist and are non-

negative integers. Moreover, they are both the dimension of suitable subalgebras

of A.

What about searching for all allowed values of the limits in (2)? It is well-

known that exp(A) can be any positive integer. Here we show that for any finite-

dimensional algebra A such that exp(A) ≥ 2, the central exponent expz(A) and

the PI-exponent exp(A) coincide. Concerning the proper central exponent we

prove that for any integer N ≥ 1 there exists a finite-dimensional algebra A

such that expδ(A) �= 0 and exp(A)− expδ(A) > N .

2. A general setting

Throughout, A is a finite-dimensional algebra over an algebraically closed field

of characteristic zero. The spaces Pn(A), P
z
n (A) and Δn(A) become Sn-modules

via the usual permutation action of the symmetric group Sn: if f(x1, . . . , xn)∈Pn

and σ ∈ Sn, then σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). The corresponding

characters are denoted χn(A), χ
z
n(A) and χn(Δ(A)), respectively.

We decompose such characters into a sum of irreducibles:

χn(A) =
∑
λ�n

mλχλ, χz
n(A) =

∑
λ�n

m′
λχλ, χn(Δ(A)) =

∑
λ�n

m′′
λχλ,

where χλ is the irreducible character of Sn corresponding to the partition λ of

n and mλ,m
′
λ,m

′′
λ are the multiplicities. Clearly mλ = m′

λ +m′′
λ, for all λ 	 n

and we write

(3) χn(A) = χn(Δ(A)) + χz
n(A).

A special algebra, whose properties we shall use in this paper, is the algebra of

upper block triangular matrices UT (d1, . . . , dk). Recall that this is the following
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subalgebra of Md1+···+dk
(F )

UT (d1, . . . , dk) =

⎛
⎜⎜⎜⎜⎜⎝

A1 A12 · · · A1k

A2

...
. . . Ak−1k

0 Ak

⎞
⎟⎟⎟⎟⎟⎠

,

where Ai
∼= Mdi(F ), 1 ≤ i ≤ k, and Aij

∼= Mdi×dj (F ), the space of di × dj

matrices over F , 1 ≤ i < j ≤ k.

In the next lemma we shall prove that such an algebra has no proper central

polynomials.

Lemma 1: If k > 1, the algebra A = UT (d1, . . . , dk) has no proper central

polynomials.

Proof. Let f be a central polynomial of A and assume, as we may, that

f = f(x1, . . . , xn) is a multilinear polynomial. Notice that the center of A

is the set of scalar matrices.

Write

f = f1x1 + · · ·+ fnxn,

where fi is a polynomial in x1, . . . , xi−1, xi+1, . . . , xn, 1 ≤ i ≤ n, and con-

sider any evaluation ϕ : F 〈X〉 → A such that ϕ(x1) ∈ A12 and ϕ(xi) ∈ A1,

2≤ i≤n. Since A12A1 = 0, we get that ϕ(f2x2) = · · · = ϕ(fnxn) = 0. Recalling

that ϕ(f1x1) ∈ A12 and f is a central polynomial of A, then we deduce that

ϕ(f1x1) = 0. Since f1 is evaluated in A1 and x1 in A12, by making a suitable

evaluation, we deduce that f1 is an identity of A1. It is clear that the above ar-

gument applied to the polynomials f2, . . . , fn says that they are all polynomial

identities of A1. Hence f ∈ Id(A1).

In a similar fashion we can prove that f ∈ ⋂k−1
i=1 Id(Ai). Now rewrite f as

f = x1g1 + · · · + xngn, where for i = 1, . . . , n, the variable xi does not appear

in gi. By making an evaluation similar to the one above, we deduce that f is

an identity of Ak.

We have proved that f is an identity of A1⊕· · ·⊕Ak. But then any non-zero

evaluation of f takes values in J(A), the Jacobson radical of A. Since f is a

central polynomial we deduce that f is an identity of A and we are done.
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3. Computing the exponential growth

Let A be a finite-dimensional algebra over an algebraically closed field of char-

acteristic zero. By the Wedderburn–Malcev theorem we can write A = Ā+ J ,

where Ā = A1 ⊕ · · · ⊕Am is a semisimple algebra with the Ai’s simple algebras

and J = J(A) is the Jacobson radical of A.

It is clear that if A = J is a nilpotent algebra, then δn(A) = 0, for n large.

Then we may assume that m ≥ 1. In this case we make the following definition.

Definition 1: A semisimple subalgebra B of A is centrally admissible if

B = Ai1 ⊕ · · · ⊕ Aik where Ai1 , . . . , Aik ∈ {A1, . . . , Am} are distinct and there

exists a central polynomial f = f(x1, . . . , xn) of A such that ϕ(f) �= 0 for some

evaluation ϕ with ϕ(xj) ∈ Aij , 1 ≤ j ≤ k.

Notice that even if A is not nilpotent and has proper central polynomials,

centrally admissible subalgebras do not necessarily exist.

For instance, let A = B⊕R where B is the subalgebra of M3(F ) consisting of

all matrices whose third row is zero andR = F 〈x1,...,xN〉
F 〈x1,...,xN〉N+1 . Here F 〈x1, . . . , xN 〉

is the free associative algebra with N generators.

Notice that R is a free nilpotent algebra of index N +1 (RN+1 = 0, RN �= 0).

Hence annR(R) = {a ∈ R | aR = Ra = 0} = RN = Z(R). It follows that any

multilinear polynomial of degree N is not a polynomial identity of R and lies

in annR(R).

Since Z(B) = 0, then Z(A) = Z(R) = RN . It follows that any multilinear

polynomial identity of B of degree N is not a polynomial identity of R and lies

in RN = Z(A). Thus A has proper central polynomials.

On the other hand, let f(x1, . . . , xk) be a multilinear central polynomial of A

and at least one variable is evaluated in M2(F ) ⊂ B. If all the other variables

are evaluated in B, then f vanishes in A since Z(B) = 0. If also at least one

variable is evaluated in R, then f vanishes in A since A = B ⊕ R. Thus A has

no centrally admissible subalgebras.

Recall that for a partition λ 	 n we write χλ(1) = dλ for the degree of

the irreducible Sn-character corresponding to λ. Also, if λ = (λ1, λ2, . . .) and

μ = (μ1, μ2, . . .) are two partitions, we write λ ⊆ μ if λi ≤ μi, for all i ≥ 1.

In the following lemma we assume that A has centrally admissible

subalgebras.
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Lemma 2: Let d be the maximal dimension of a centrally admissible subalgebra

of A. Then δn(A) ≤ Cntdn, for some constants C, t.

Proof. Consider the Sn-character χn(Δ(A)) and its decomposition into irre-

ducibles

(4) χn(Δ(A)) =
∑
λ�n

mλχλ.

We claim that if λ 	 n is such that mλ �= 0, then the diagram of λ contains at

most s boxes out of the first d rows, where d is the integer defined above, and

s is such that Js �= 0 and Js+1 = 0.

In fact, let Mλ ⊆ Pn ∩ Idz(A) be an irreducible Sn-module corresponding

to λ such that Mλ �⊆ Pn ∩ Id(A). This says that there exists a proper central

polynomial f and a tableau Tλ such that Mλ = FSneTλ
f ⊆ Pn ∩ Idz(A). The

reader can find in [7] all the basic properties of the representation theory of the

symmetric group needed here.

Recall that eTλ
= (

∑
σ∈RTλ

σ)(
∑

τ∈CTλ
(sgn τ)τ) is an essential idempotent of

the group algebra FSn, where RTλ
and CTλ

are the subgroups of Sn stabilizing

the rows and the columns of Tλ, respectively. Hence Mλ is also generated by

(
∑

τ∈CTλ
(sgn τ)τ)eTλ

f and this implies that

g =

( ∑
τ∈CTλ

(sgn τ)τ

)
eTλ

f

is also a proper central polynomial of A. Notice that the polynomial g is alter-

nating on distinct sets of variables corresponding to the columns of Tλ.

Let ϕ be a non-zero evaluation of g in A. Since g is multilinear, we can restrict

to evaluations of g on a basis of A that is the union of bases of the simple

components and the Jacobson radical. Since ϕ(g) takes a non-zero central

value in A, by the definition of d, every alternating set of variables of g can be

evaluated in at most d basis elements of Ā and the remaining elements in the

basis of J . Since the sets on which g is alternating correspond to the columns

of Tλ, this says that the number of variables evaluated in J is greater than or

equal to the number of boxes of λ out of the first d rows. Since Js+1 = 0, this

says that there are at most s boxes out of the first d rows of λ. This proves the

claim.

By (3) we have that χn(Δ(A)) ≤ χn(A), i.e., the multiplicity of every ir-

reducible χλ appearing in χn(Δ(A)) is less than or equal to the multiplicity
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of χλ in χn(A). Since these last multiplicities are polynomially bounded ([1,

Theorem 16]), we get that also the mλ’s in (4) are polynomially bounded and

let mλ ≤ Cnq.

Recall that if λ ⊆ μ are two partitions such that λ 	 n and μ 	 n + s, then

dμ ≤ nsdλ (see [7, Lemma 6.2.4]).

Let us write H(n, d) = {λ = (λ1, λ2, . . .) 	 n | λd+1 = 0} for the set of

partitions of n in at most d parts and recall that
∑

λ∈H(n,d) dλ ≤ C ′ntdn, for

some constants C ′, t ([7, Lemma 6.2.5]).

We have

δn(A) =
∑
λ�n

mλdλ ≤ Cnq
∑

λ∈H(n,d)∪S

dλ

≤C′′nq+s
∑

μ∈H(n,d)

dμ

≤C1n
ldn,

for some constants C1, l, where H(n, d) ∪ S is the set of partitions containing

at most s boxes out of the first d rows. This proves the lemma.

Now we can prove the main result of this section.

Theorem 1: Let A be a finite-dimensional algebra over an algebraically closed

field of characteristic zero.

(1) If A has no proper central polynomials or has no centrally admissible

subalgebras, then δn(A) = 0, for all n large enough.

(2) If A has centrally admissible subalgebras, then

C1n
t1dn ≤ δn(A) ≤ C2n

t2dn,

for some constants C1 > 0, C2, t1, t2, where d is the maximal dimension

of a centrally admissible subalgebra of A.

Proof. (1) If A has no proper central polynomials, then clearly δn(A) = 0, for

all n ≥ 1.

Suppose that A has proper central polynomials but no centrally admissible

subalgebras. Let s be such that Js = 0, where J is the Jacobson radical of A.

Clearly any proper central polynomial has non-zero evaluations only on elements

of J . This implies that its degree is less than s and δn(A) = 0 whenever n ≥ s.
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(2) Now suppose that A has centrally admissible subalgebras. In this

case an upper bound for δn(A) is given in Lemma 2. Let B be a centrally

admissible subalgebra of A of maximal dimension. We may clearly assume

that B = A1 ⊕ · · · ⊕ Ak and let f = f(x1, . . . , xk, xk+1, . . . , xk+m) be a cen-

tral polynomial of A such that 0 �= f(a1, . . . , ak, b1, . . . , bm) ∈ Z(A), with

a1 ∈ A1, . . . , ak ∈ Ak. Let Ai = Mdi(F ) so that dimAi = d2i .

Let Gt(w1, . . . , wt2 , w
′
1, . . . , w

′
t2) denote the Regev central polynomial for

Mt(F ) which is alternating on w1, . . . , wt2 and on w′
1, . . . , w

′
t2 ([3, Theorem 16]).

Starting with f we construct a sequence of polynomials ft, t = 1, 2, . . . , as

follows. Set f1 = f and define

f2 = f2(z1,2, . . . , zk,2, y1, . . . , ym) = Alt1Alt2f1(z1,2, . . . , zk,2, y1, . . . , ym),

where

z1,2 =x1Gd1(u1,1, . . . , ud2
1,1

, v1,1, . . . , vd2
1,1

)

...

zk,2 =xkGdk
(u1,k, . . . , ud2

k,k
, v1,k, . . . , vd2

k,k
).

Here Alt1 is alternation on the set {u1,1, . . . , ud2
1,1

, . . . , u1,k, . . . , ud2
k,k

} and Alt2

is alternation on the set {v1,1, . . . , vd2
1,1

, . . . , v1,k, . . . , vd2
k,k

}.
Since f1 is a central polynomial of A, also f2 is central. Now, every Gdi has

an evaluation ϕi in Ai = Mdi(F ) such that ϕi(Gdi) is a non-zero scalar matrix.

Moreover, if we exchange two variables belonging to distinct polynomials, say,

Gdi and Gdj , the corresponding evaluation is zero since AiAj = 0 for i �= j. It

follows that we can extend the evaluations ϕi to an evaluation ϕ of f2 in A,

ϕ(xj) = aj , 1 ≤ j ≤ k, ϕ(yl) = bl, 1 ≤ l ≤ m, such that ϕ(f2) �= 0. Hence f2 is

a proper central polynomial of A. Notice that

deg f2 = 2

k∑
i=1

d2i + k +m = 2d+ k +m.

By repeatedly applying this procedure we can construct a sequence of polyno-

mial f2, f3, . . . with the following properties: for any t ≥ 2, ft is a proper central

polynomial of A of degree 2(t− 1)d+ k+m depending on x1, . . . , xk, y1, . . . , ym

and 2(t− 1) alternating sets of variables each of order d. Moreover, there exists

a non-zero evaluation of ft in A such that all variables of the 2(t−1) alternating

sets take values in A1 ⊕ · · · ⊕Ak.
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Next we shall compute a lower bound of δn(A) when n = 2td + k +m, any

t ≥ 1. Now, since ft+1 is a proper central polynomial of A,

ft+1 ∈ Pn ∩ Idz(A) \ Pn ∩ Id(A).

Let the symmetric group S2td act on the variables of Pn belonging to the 2t

sets on which ft+1 is alternating. We consider the S2td-module generated by

ft+1. As in the proof of Lemma 2, it turns out that in the decomposition of the

S2td-character of Δn(A) into irreducibles, the characters χ((2t)d) appears with

non-zero multiplicity. Hence δn(A) = dimΔn(A) ≥ degχ((2t)d).

An asymptotic estimate of degχ((2t)d) was done in [12]. For our purpose here

we make the following computation.

Denote n0 = 2td. Then by the hook formula giving the dimension of an

irreducible representation of the symmetric group we have

degχ((2t)d) >
(2td)!

((2t)!)d
· 1

nd2

0

.

Noticing that (2td)!
((2t)!)d

is a generalized binomial coefficient and n = 2td+ k +m,

we get

(2td)!

((2t)!)d
>

dn0

(n0 + 1)d
>

1

dm+k
· 1

nd
dn.

Hence

(5) δn(A) ≥ α0n
q0dn,

where α0 = d−m−k, q0 = −d2 − d, for all n = 2td+ k +m, t ≥ 1.

Now suppose that n is such that k+m+2td < n < k+m+2(t+1)d, for some t.

Clearly, if we replace x1 with x1xn+1 in ft+1, then the resulting polynomial f ′
t+1

will also be a proper central polynomial since A1 is an unitary algebra. Hence

δN+1(A) ≥ δN(A) for all N ≥ deg f . Denote p = n − (k + m + 2td). Then

p < 2d and by (5) we have

δn(A) ≥α0(n− p)q0dn−p

>α0(n− 2d)q0dn−2d

=α0d
−2d(n− 2d)−d−d2

dn > α1n
q1dn

for all n large enough where α1 = α0d
−2d and q1 = −d− d2 − 1.

As a consequence of Theorem 1 we get the following two corollaries.
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Corollary 1: If A is a finite-dimensional algebra, then the proper central

exponent expδ(A) exists and is a non-negative integer.

Corollary 2: Let A be a finite-dimensional algebra. Then the sequence

δn(A), n = 1, 2, . . ., is either polynomially bounded or grows as an exponen-

tial function an with a ≥ 2.

4. A few examples

In this section we shall give some examples of non semisimple algebras A with

proper central polynomials and we shall compare the three sequences cn(A),

czn(A), δn(A), n = 1, 2, . . ..

Let F [z] be the algebra of polynomials over F in the variable z and let F [z]0

be its subalgebra of polynomials with zero constant term. Define the quotient

algebras

T = F [z]/(z2t
2

) and Q = F [z]0/(z
2t2),

where (z2t
2

) is the ideal generated by z2t
2

.

In Mt(T ), the algebra of t× t matrices over T , t > 1, we consider the subal-

gebra

A = B +Mt(Q)

where B is the semisimple algebra of diagonal matrices diag(θ1, . . . , θt) with

θ1, . . . , θt ∈ F , and Mt(Q) = J(A) is the Jacobson radical of A. Recalling that

Gt(x1, . . . , xt2 , y1, . . . , yt2) denotes the Regev central polynomial of Mt(F ), we

have the following.

Lemma 3: The polynomial Gt is a proper central polynomial of A.

Proof. Since Gt is a central polynomial of Mt(F ) and Mt(T ) � Mt(F )⊗T , then

also Gt is a central polynomial of A. Let v1, . . . , vt denote the diagonal matrix

units e11, . . . , ett and let vt+1, . . . , vt2 denote the matrices zeij , 1 ≤ i, j ≤ t, i �= j.

Then, since the polynomial Gt evaluated on any basis of Mt(F ) gives a non-zero

scalar value, we get

Gt(v1, . . . , vt2 ; v1, . . . , vt2) = αz2t
2−2tE,

for some non-zero scalar α ∈ F , where E is the identity matrix. Thus Gt is a

proper central polynomial of A.
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Corollary 3: expδ(A) = exp(A) = t. Hence, for any integer t ≥ 2 there

exists a finite-dimensional algebra A with expδ(A) = t.

Proof. Recalling the Wedderburn–Malcev decomposition of A = B + Mt(Q),

we see that B is a maximal centrally admissible subalgebra of A, hence by

Theorem 1, expδ(A) = t. Also exp(A) = t since A is a reduced algebra (see [7,

Definition 9.4.2]).

We know by (1) that for any PI-algebra A, exp(A) ≥ expδ(A). Next we

want to show that the difference between the two exponents can be any pos-

itive integer. To this end we modify the previous construction, recalling that

T = F [z]/(z2t
2

) and Q = F [z]0/(z
2t2) we set

R = F +Mt(Q)

a subalgebra of Mt(T ), where F is identified with the subalgebra of Mt(T ) of

scalar matrices isomorphic to F .

Then define

A1 = UT (p, q)⊕R,

where UT (p, q) is the algebra of upper block triangular matrices with diagonal

blocks of size p and q respectively, and we require that p+ q ≤ t.

The algebraA1 has proper central polynomials. In fact we prove the following.

Lemma 4: The polynomialGt is a proper central polynomial of A1 whose values

lie in R.

Proof. Since R ⊆ Mt(T ), then Gt = Gt(x1, . . . , xt2 , y1, . . . , yt2) is a central

polynomial for both UT (p, q) and R.

Let ϕ be an evaluation of Gt in a basis of A1. If for all 1 ≤ i ≤ t2,

ϕ(xi), ϕ(yi) ∈ UT (p, q), then by Lemma 1 we have that ϕ(Gt) = 0. If there are

two variables of Gt that are evaluated, one in UT (p, q) and the other in R, then

also in this case we get ϕ(Gt) = 0 since UT (p, q)R = RUT (p, q) = 0. Hence we

must have ϕ(Gt) ∈ R.

Now consider an evaluation ϕ such that

ϕ(x1) = ϕ(y1) = E ∈ F, ϕ(xi) = ϕ(yi) = zeii ∈ Mt(Q), 2 ≤ i ≤ t,

and the remaining ϕ(xk) = ϕ(yk) are equal to distinct zeij, with i �= j,

t+ 1 ≤ k ≤ t2. Since the elements E, e22, . . . , ett, eij , 1 ≤ i, j ≤ t, i �= j form

a basis of Mt(F ), we have that 0 �= ϕ(Gt) = λz2t
2−1E ∈ Mt(Q), and we are

done.
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Corollary 4: expδ(A1) = 1 whereas exp(A1) = p2+q2. Hence, for any integer

N ≥ 0 there exists a finite-dimensional algebra C such that expδ(C) �= 0 and

exp(C)− expδ(C) > N .

Proof. By the basic properties of the PI-exponent,

exp(A1) = exp(UT (p, q)) = p2 + q2

(see [7, Section 6.2]).

In order to compute expδ(A1), we notice that Mp(F )⊕Mq(F ) is isomorphic

to a maximal semisimple subalgebra of UT (p, q). Hence a maximal semisimple

subalgebra of R is isomorphic to Mp(F )⊕Mq(F )⊕B where B = F .

Let f be a proper central polynomial of A1. If ϕ is an evaluation in A1, then

as in Lemma 4, either ϕ(f) ∈ UT (p, q) or ϕ(f) ∈ R.

If the first case occurs, then ϕ(f)=0 by Lemma 1. In the second case we notice

that only B=F can be a centrally admissible subalgebra of A1. By Lemma 4,

B is centrally admissible and by Theorem 1 the proof is complete.

5. Relations among codimensions

In this section we shall compare for any finite-dimensional algebra the sequence

of codimensions and the sequence of central codimensions. We have the follow-

ing.

Theorem 2: For any finite-dimensional algebra A with exp(A) ≥ 2, the central

exponent expz(A) exists and is a non-negative integer. Moreover,

expz(A) = exp(A).

Proof. Suppose exp(A) = d ≥ 2. Then by [5], there are constants C1 > 0, C2,

t1, t2 such that

C1n
t1dn ≤ cn(A) ≤ C2n

t2dn,

holds for all n. By (1) we then have that

(6) czn(A) ≤ C2n
t2dn.

On the other hand, by [6, Lemma 2], A contains a subalgebra B isomorphic to

UT (d1, . . . , dm), for some d1, . . . , dm with d21+· · ·+d2m = d = exp(B). Moreover

cn(B) ≥ C0n
t0dn, for some constants C0 > 0, t0 (see [4, Theorem 3]).
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Suppose first thatm>1 and letN=cn(B). Let f1, . . . , fN be multilinear poly-

nomials in x1, . . . , xn linearly independent modulo the T-ideal Id(B)⊇Id(A).

If f = λ1f1 + · · · + λNfN + g ∈ Idz(A), with g ∈ Id(B), for some scalars

λ1, . . . , λN , then f̄ = λ1f1 + · · ·+λNfN is a central polynomial of B. But then

by Lemma 1, f̄ is an identity of B and this says that λ1 = · · · = λN = 0. Thus

(7) czn(A) ≥ N = cn(B) ≥ C0n
t0dn.

Now let m = 1. This says that B = Md1(F ), d1×d1 matrices over F and d = d21.

Consider m copies of Regev central polynomial f1, . . . , fm in distinct sets of

variables and let f = f1 · · · fm. Then f generates an irreducible Sn-module

M where n = 2md with character χ(M) = χλ, λ = ((2m)d). If y is another

variable, f ′ = fy is not a central polynomial and generates an irreducible Sn+1-

module whose character is χμ, where μ = (2m+ 1, (2m)d−1). It is not difficult

to check that dμ ≥ C0(n+1)tdn+1. Hence czn+1(A) satisfies the same inequality

as in (7).

The relations (6) and (7) imply that expz(A) exists and expz(A)=exp(A).

When exp(A) = 0, then A is nilpotent and expz(A) = 0. In case exp(A) = 1,

then either expz(A) = 1 or exp(A) = 0. If exp(A) = 1, then A is not nilpotent

and the sequence of codimensions is polynomially bounded. Clearly the same

holds for the sequence of central codimensions. Thus expz(A) = 1 provided

czn(A) �= 0 for all n.

The case when czn(A) = 0 can be characterized as follows.

Proposition 1: Let A be a finite-dimensional algebra such that expz(A) = 0.

Then A = A1 ⊕ A2 where A1 is a nilpotent algebra and A2 is a commutative

algebra.

Proof. If czn(A) = 0 for some n ≥ 2, then any monomial of degree n is a central

polynomial of A. In particular, x1 · · ·xn is central.

Consider the Wedderburn–Malcev decomposition A = B + J where

B = B1 ⊕ · · · ⊕Bm

is the sum of simple components and J is the Jacobson radical. Since x1 · · ·xn

is central, all B1, . . . , Bm are one dimensional and central subalgebras. Denote

by e the unity of B1. Then J = J0 ⊕ J1 where xe = ex = 0 if x ∈ J0 and

ye = ey = y if y ∈ J1. Also BiJ1 = 0 for all i = 2, . . . ,m since eBi = 0. Hence

A = (B1 + J1) ⊕ (B2 + · · · + Bm + J0). Moreover, B1 + J1 is commutative
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since y = en−1y lies in the center of A for any y ∈ J1. Repeating this procedure

we get A = C1 ⊕ · · ·⊕Cm⊕ I where all C1, . . . , Cm are commutative and I ⊂ J

is nilpotent.
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