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ABSTRACT

The growth of central polynomials for the algebra of n X n matrices in
characterstic zero was studied by Regev in [13]. Here we study the growth
of central polynomials for any finite-dimensional algebra over a field of
characteristic zero. For such an algebra A we prove the existence of two
limits called the central exponent and the proper central exponent of A.
They give a measure of the exponential growth of the central polynomials
and the proper central polynomials of A. We study the range of such
limits and we compare them with the PI-exponent of the algebra.

1. Introduction

Throughout this paper all algebras will be associative and over an algebraically
closed field F' of characteristic zero. Let F'(X) be the free associative algebra
on a countable set X over F' and let A be an F-algebra.
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Recall that a polynomial f € F(X) is a central polynomial of A if for any
ay,...,an € A, f(ar,...,a,) € Z(A), the center of A. In case f takes only the
zero value, f is a polynomial identity (PI) of A whereas if f takes a non-zero
value in Z(A), we say that f is a proper central polynomial.

Even if an algebra has a non-zero center, the existence of proper central poly-
nomials is not granted. Nevertheless a famous conjecture of Kaplansky (see [8])
asserting that the algebra of n X n matrices has proper central polynomials was
proved in the early 70’s independently by Formanek and Razmyslov ([2], [10]).

Here we want to compare the growth of the spaces of central polynomials,
proper central polynomials and polynomial identities of an algebra in the fol-
lowing sense.

Let Id(A) be the T-ideal of polynomial identities of A and, following [13],
we let Id?(A) be the space of central polynomials of A. Notice that Id*(A)
is a T-space, i.e., a vector space invariant under all endomorphisms of F({X).
Clearly Id(A) C Id*(A), and the proper central polynomials correspond to the
quotient space Id*(A)/Id(A).

Regev in [13] introduced the notion of central codimensions as follows. Let

P, be the space of multilinear polynomials in x1,...,z, and set
P, P,
P,(A) = n , P?*(A) = " .
(4) P, Nn1d(A) n(4) P, NId*(A)
The quotient space
P, NId*(A)
An(A) =
(4) P, NId(A)

corresponds to the space of proper central polynomials.
We write ¢,(A) = dim P, (A), ¢Z(A) = dim P?(A) and 6,(A) = dim A, (A),

n

respectively and it is easily seen that
(1) cn(A) = 0n(A) + ¢, (4).

We call ¢, (A),cZ(A) and 6,(A), n = 1,2,..., the sequences of codimensions,
central codimensions and proper central codimensions, respectively.
It is well known that for any Pl-algebra A the sequence ¢, (A), n=1,2,...,

is exponentially bounded ([11]). Moreover, the limit
exp(4) = lim_{/e,(4)

always exists and is a non-negative integer called the Pl-exponent of A ([5]).
Clearly from (1) it follows that if A is a Pl-algebra, the sequences cZ(A) and
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on(A), n=1,2,..., are also exponentially bounded and it is worth asking if the
corresponding limits

(2) exp”(4) = lim {/c;(4), exp’(4) = lim {/6,(A)

exist.

Here we shall prove that for any finite-dimensional algebra A, the central
exponent exp®(A) and the proper central exponent exp®(A) exist and are non-
negative integers. Moreover, they are both the dimension of suitable subalgebras
of A.

What about searching for all allowed values of the limits in (2)? It is well-
known that exp(A) can be any positive integer. Here we show that for any finite-
dimensional algebra A such that exp(A) > 2, the central exponent exp®(A) and
the PI-exponent exp(A) coincide. Concerning the proper central exponent we
prove that for any integer N > 1 there exists a finite-dimensional algebra A
such that exp®(A) # 0 and exp(A) — exp?(A) > N.

2. A general setting

Throughout, A is a finite-dimensional algebra over an algebraically closed field
of characteristic zero. The spaces P, (A), P?(A) and A,,(A) become S,,-modules
via the usual permutation action of the symmetric group Sy: if f(z1,...,2,) €P,
and 0 € Sp, then of(z1,...,2n) = f(Zs(1),--+1To(n)). The corresponding
characters are denoted x,,(A), xZ(A) and x,,(A(A)), respectively.

We decompose such characters into a sum of irreducibles:

Xn(A) = maxa, XA(A) =D mhxa, xa(A(A4) =) mixa,

AbFn AbFn Abn

where Y, is the irreducible character of S,, corresponding to the partition A\ of
n and my, m,, my are the multiplicities. Clearly my = m/, +mf, for all A\ n

and we write

(3) Xn(A) = xn(A(A)) + x5, (A4).

A special algebra, whose properties we shall use in this paper, is the algebra of
upper block triangular matrices UT(d1, . . ., dx). Recall that this is the following
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subalgebra of My, 4...4q, (F)

Al A12 et Alk
A :
UT(dla"'adk): : )
o Ap—wk
0 Ay

where A; = My, (F), 1 < i <k, and Ayj = Mg,xq,(F), the space of d; x d;
matrices over F', 1 <i<j <k.

In the next lemma we shall prove that such an algebra has no proper central
polynomials.

LEMMA 1: If kK > 1, the algebra A = UT(ds,...,d) has no proper central
polynomials.

Proof. Let f be a central polynomial of A and assume, as we may, that

f = f(x1,...,zy) is a multilinear polynomial. Notice that the center of A
is the set of scalar matrices.
Write
f:f1x1+"'+fn$na
where f; is a polynomial in x1,...,2i—1,%i+1,---,%n, 1 < i < n, and con-
sider any evaluation ¢ : F(X) — A such that ¢(x1) € A1z and p(z;) € Ay,
2<i<n. Since A134; = 0, we get that ¢(foxs) = -+ = ¢(fnxs) = 0. Recalling

that ¢(f121) € A12 and f is a central polynomial of A, then we deduce that
©(fir1) = 0. Since fy is evaluated in A; and z7 in A2, by making a suitable
evaluation, we deduce that fi is an identity of A;. It is clear that the above ar-
gument applied to the polynomials fs,..., f,, says that they are all polynomial
identities of A;. Hence f € Id(Ay).

In a similar fashion we can prove that f € ﬂi.:ll Id(A;). Now rewrite f as
f=x191+ -+ Tngn, where for © = 1,...,n, the variable z; does not appear
in g;. By making an evaluation similar to the one above, we deduce that f is
an identity of Ay.

We have proved that f is an identity of A1 ®---&® Ag. But then any non-zero
evaluation of f takes values in J(A), the Jacobson radical of A. Since f is a
central polynomial we deduce that f is an identity of A and we are done.
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3. Computing the exponential growth

Let A be a finite-dimensional algebra over an algebraically closed field of char-
acteristic zero. By the Wedderburn-Malcev theorem we can write A = A + .J,
where A = A; & ---® A,, is a semisimple algebra with the A;’s simple algebras
and J = J(A) is the Jacobson radical of A.

It is clear that if A = J is a nilpotent algebra, then §,(A) = 0, for n large.
Then we may assume that m > 1. In this case we make the following definition.

Definition 1: A semisimple subalgebra B of A is centrally admissible if
B=A;, @ - @A where 4;,,..., 4;, € {A1,..., A} are distinct and there
exists a central polynomial f = f(z1,...,x,) of A such that p(f) # 0 for some
evaluation ¢ with o(z;) € A;;, 1 <j <k.

Notice that even if A is not nilpotent and has proper central polynomials,
centrally admissible subalgebras do not necessarily exist.

For instance, let A = B@® R where B is the subalgebra of M3(F') consisting of
all matrices whose third row is zero and R = F<Fz§$1x1f>]\]lv>+1 . Here F(x1,...,zN)
is the free associative algebra with N generators.

Notice that R is a free nilpotent algebra of index N +1 (RN*! =0, RN #0).
Hence anng(R) = {a € R | aR = Ra = 0} = RN = Z(R). It follows that any
multilinear polynomial of degree N is not a polynomial identity of R and lies
in anngr(R).

Since Z(B) = 0, then Z(A) = Z(R) = RY. It follows that any multilinear
polynomial identity of B of degree N is not a polynomial identity of R and lies
in RN = Z(A). Thus A has proper central polynomials.

On the other hand, let f(z1,...,x)) be a multilinear central polynomial of A
and at least one variable is evaluated in Ma(F) C B. If all the other variables
are evaluated in B, then f vanishes in A since Z(B) = 0. If also at least one
variable is evaluated in R, then f vanishes in A since A = B ® R. Thus A has
no centrally admissible subalgebras.

Recall that for a partition A F n we write xa(1) = dx for the degree of
the irreducible S,,-character corresponding to A. Also, if A = (A1, A2,...) and
= (u1, 2, ...) are two partitions, we write A C p if \; < p;, for all ¢ > 1.

In the following lemma we assume that A has centrally admissible
subalgebras.
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LEMMA 2: Let d be the maximal dimension of a centrally admissible subalgebra
of A. Then §,(A) < Cn'd™, for some constants C,t.

Proof. Consider the S,-character x,(A(A)) and its decomposition into irre-
ducibles

(4) Xn(A(4)) = maxa.

An
We claim that if A F n is such that m) # 0, then the diagram of A contains at
most s boxes out of the first d rows, where d is the integer defined above, and
s is such that J* # 0 and J*+! = 0.

In fact, let M, C P, N Id*(A) be an irreducible S,,-module corresponding
to A such that My € P, N Id(A). This says that there exists a proper central
polynomial f and a tableau Ty such that My = FSper, f C P, N 1d*(A). The
reader can find in [7] all the basic properties of the representation theory of the
symmetric group needed here.

Recall that er, = (ZUERTA U)(ZTECTA (sgn 7)7) is an essential idempotent of
the group algebra F'S,,, where Rr, and Cr, are the subgroups of S,, stabilizing
the rows and the columns of T), respectively. Hence M) is also generated by
(ZTECTA (sen)7)er, f and this implies that

g= < Z (sgn7)r> er, f
T€Cr,
is also a proper central polynomial of A. Notice that the polynomial g is alter-
nating on distinct sets of variables corresponding to the columns of T).

Let ¢ be a non-zero evaluation of g in A. Since g is multilinear, we can restrict
to evaluations of g on a basis of A that is the union of bases of the simple
components and the Jacobson radical. Since ¢(g) takes a non-zero central
value in A, by the definition of d, every alternating set of variables of g can be
evaluated in at most d basis elements of A and the remaining elements in the
basis of J. Since the sets on which g is alternating correspond to the columns
of T, this says that the number of variables evaluated in J is greater than or
equal to the number of boxes of A out of the first d rows. Since J°*! = 0, this
says that there are at most s boxes out of the first d rows of A. This proves the
claim.

By (3) we have that x,(A(A)) < xn(4), ie., the multiplicity of every ir-
reducible x, appearing in x,(A(A)) is less than or equal to the multiplicity
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of xx in xn(A). Since these last multiplicities are polynomially bounded ([1,
Theorem 16]), we get that also the my’s in (4) are polynomially bounded and
let my < Cnfi.

Recall that if A C u are two partitions such that A - n and p - n + s, then
d, < n°dy (see [7, Lemma 6.2.4]).

Let us write H(n,d) = {A = (A1, A2,...) b n | Agy1 = 0} for the set of
partitions of n in at most d parts and recall that Z)\GH(nﬁd) dy < C'ntd™, for
some constants C’, ¢ ([7, Lemma 6.2.5]).

We have

5n(A) :Zm)\d)\ S qu Z d)\

Abn AEH (n,d)US
.. q+s
<C"n Z du
neH (n,d)
SClnldn,

for some constants Cq,1, where H(n,d) U S is the set of partitions containing
at most s boxes out of the first d rows. This proves the lemma.

Now we can prove the main result of this section.

THEOREM 1: Let A be a finite-dimensional algebra over an algebraically closed
field of characteristic zero.

(1) If A has no proper central polynomials or has no centrally admissible
subalgebras, then 0,,(A) = 0, for all n large enough.
(2) If A has centrally admissible subalgebras, then

Cintrd™ < §,(A) < Con'2d",

for some constants C; > 0,C4,t1,t2, where d is the maximal dimension
of a centrally admissible subalgebra of A.

Proof. (1) If A has no proper central polynomials, then clearly 4,,(A) = 0, for
all n > 1.

Suppose that A has proper central polynomials but no centrally admissible
subalgebras. Let s be such that J° = 0, where J is the Jacobson radical of A.
Clearly any proper central polynomial has non-zero evaluations only on elements
of J. This implies that its degree is less than s and J,,(A) = 0 whenever n > s.
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(2) Now suppose that A has centrally admissible subalgebras. In this
case an upper bound for 4, (A) is given in Lemma 2. Let B be a centrally
admissible subalgebra of A of maximal dimension. We may clearly assume
that B = A1 & --- ® Ay and let f = f(z1,..., Tk, Tht1,- .-, Tkem) e a cen-
tral polynomial of A such that 0 # f(a1,...,ak,b1,...,bn) € Z(A), with
a; € Ay, ...,a € Ag. Let A; = My, (F) so that dim A; = d7.

Let Gi(wi,...,we,wy,...,w;,) denote the Regev central polynomial for
M;(F) which is alternating on wy, ..., w;2 and on wf, ..., w), ([3, Theorem 16]).
Starting with f we construct a sequence of polynomials f;, t = 1,2,..., as

follows. Set f; = f and define

Jo=folz12, -y 2k2, 01, - Um) = Alt1Alto f1 (212, - 28,2, Y15 - -+ Ym),

where

2172 :«TlGdl (U171, e ,ud%l,vljl, e avd%,l)

zk2 =2kGa, (U1, - - - s Ug2 oy VLks - - - Udi,k)-
Here Alt; is alternation on the set {uq 1,. .. U2 15 ULk - - - ,udi,k} and Alt,
is alternation on the set {v11,... VG2 15 ULk - - - ,’Udi,k}.

Since f; is a central polynomial of A, also fy is central. Now, every Gg4, has
an evaluation ¢; in A; = My, (F) such that ¢;(Gg4,) is a non-zero scalar matrix.
Moreover, if we exchange two variables belonging to distinct polynomials, say,
G4, and Gy,, the corresponding evaluation is zero since A4;A; = 0 for i # j. It
follows that we can extend the evaluations p; to an evaluation ¢ of fy in A,
olxj) =a;, 1 <5<k, p(y) ="0b,1<1<m,such that ¢(f2) # 0. Hence f5 is
a proper central polynomial of A. Notice that

k
degfo =2 di +k+m=2d+k+m.
i=1

By repeatedly applying this procedure we can construct a sequence of polyno-
mial fo, f3,... with the following properties: for any ¢ > 2, f; is a proper central
polynomial of A of degree 2(t — 1)d+ k+m depending on 1, ..., Tk, Y1, - - -, Ym
and 2(t — 1) alternating sets of variables each of order d. Moreover, there exists
a non-zero evaluation of f; in A such that all variables of the 2(¢—1) alternating
sets take values in A1 @ --- @ Ap.
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Next we shall compute a lower bound of §,,(4) when n = 2td + k + m, any
t > 1. Now, since f;11 is a proper central polynomial of A,

for1 € Py N Id*(A)\ P, N Id(A).

Let the symmetric group Sa:q act on the variables of P,, belonging to the 2t
sets on which f;y1 is alternating. We consider the Ssig-module generated by
ft41- As in the proof of Lemma 2, it turns out that in the decomposition of the
Sara-character of A, (A) into irreducibles, the characters x((as)¢) appears with
non-zero multiplicity. Hence d,,(A) = dim A, (A) > deg x((21)4)-

An asymptotic estimate of deg x((24)4) Was done in [12]. For our purpose here
we make the following computation.

Denote ng = 2td. Then by the hook formula giving the dimension of an
irreducible representation of the symmetric group we have

degr > DL
(2t)) ’ :
()¢

Noticing that (gi?!))!d is a generalized binomial coefficient and n = 2td + k + m,

we get
(2td)! o dne o 1 1 o
((2t)) (ng+1)4 = dmtk pd= -
Hence
(5) 0n(A) > agniod™,

where ag =d~" % g9 = —d?> —d, for all n = 2td + k +m, t > 1.

Now suppose that n is such that k+m+2td < n < k+m+2(¢t+1)d, for some t.
Clearly, if we replace 1 with 12,41 in f;41, then the resulting polynomial f/,
will also be a proper central polynomial since A; is an unitary algebra. Hence
On+1(A) > 6n(A) for all N > deg f. Denote p = n — (k + m + 2td). Then
p < 2d and by (5) we have

on(A) Zao(n —p)d"?
>ap(n — 2d)%°d" 2
=apd 24 (n — 2d)" T dm > ayn®d”
for all n large enough where a; = apd=2¢ and ¢; = —d — d? — 1.

As a consequence of Theorem 1 we get the following two corollaries.
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COROLLARY 1: If A is a finite-dimensional algebra, then the proper central
exponent exp’(A) exists and is a non-negative integer.

COROLLARY 2: Let A be a finite-dimensional algebra. Then the sequence
o0n(A), n = 1,2,..., is either polynomially bounded or grows as an exponen-
tial function a™ with a > 2.

4. A few examples

In this section we shall give some examples of non semisimple algebras A with
proper central polynomials and we shall compare the three sequences ¢, (A),
cz(A), 0n(A), n=1,2,....

Let F[z] be the algebra of polynomials over F' in the variable z and let F[z]g
be its subalgebra of polynomials with zero constant term. Define the quotient

algebras
T=F[/(z*) and Q= Fllo/(*"),
where (22°) is the ideal generated by 22"
In M;(T), the algebra of ¢ x ¢t matrices over T, t > 1, we consider the subal-
gebra
A =B+ M/(Q)
where B is the semisimple algebra of diagonal matrices diag(6s,...,6;) with

01,...,0; € F, and M(Q) = J(A) is the Jacobson radical of A. Recalling that
Ge(1,...,Te2,41,- .., Ys2) denotes the Regev central polynomial of M (F'), we
have the following.

LEMMA 3: The polynomial Gy is a proper central polynomial of A.

Proof. Since G is a central polynomial of My (F) and My(T') ~ M;(F)®T, then
also G is a central polynomial of A. Let v, ...,v; denote the diagonal matrix
units eqq, ..., ey andlet vey1, ..., vz denote the matrices ze;;, 1 < 4,7 < t,7 # j.
Then, since the polynomial G; evaluated on any basis of M;(F') gives a non-zero
scalar value, we get

. _ L 2tt -2t
Ge(v1, ..., 02501, ..., 02) = QZ E,

for some non-zero scalar o € F, where F is the identity matrix. Thus G; is a
proper central polynomial of A.
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COROLLARY 3: exp®(A) = exp(A) = t. Hence, for any integer t > 2 there
exists a finite-dimensional algebra A with exp®(A) = t.

Proof. Recalling the Wedderburn—Malcev decomposition of A = B + M(Q),
we see that B is a maximal centrally admissible subalgebra of A, hence by
Theorem 1, exp®(A) = t. Also exp(A) =t since A is a reduced algebra (see [7,
Definition 9.4.2]).

We know by (1) that for any Pl-algebra A, exp(A) > exp®(A4). Next we
want to show that the difference between the two exponents can be any pos-

itive integer. To this end we modify the previous construction, recalling that
T = F[2]/(2%") and Q = F|z]o/(z%") we set

R=F+ M/(Q)

a subalgebra of M;(T), where F is identified with the subalgebra of M;(T) of
scalar matrices isomorphic to F'.
Then define
A1 =UT(p.q) & R,
where UT (p, q) is the algebra of upper block triangular matrices with diagonal
blocks of size p and ¢ respectively, and we require that p + g < t.
The algebra A; has proper central polynomials. In fact we prove the following.

LEMMA 4: The polynomial G is a proper central polynomial of A; whose values
lie in R.

Proof. Since R C M;(T), then Gy = G¢(z1,...,22,Y1,...,Y2) is a central
polynomial for both UT'(p, ¢) and R.

Let ¢ be an evaluation of G; in a basis of A;. If for all 1 < i < t2,
o(x;),o(y;) € UT(p, q), then by Lemma 1 we have that ¢(Gt) = 0. If there are
two variables of G; that are evaluated, one in UT (p, ¢) and the other in R, then
also in this case we get ¢©(Gt) = 0 since UT (p,q)R = RUT (p,q) = 0. Hence we
must have ¢(Gt) € R.

Now consider an evaluation ¢ such that

p(r1) =) =Ee€F, o) =¢y) = zes € Mi(Q), 2<i<t,
and the remaining p(zi) = ¢(yx) are equal to distinct ze;;, with i # j,
t+1 <k <t Since the elements E,ea, ... e, €15, 1 < i,j < t,i # j form
2
a basis of M;(F), we have that 0 # ¢(Gt) = A\z?"" ~'E € M(Q), and we are
done.
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COROLLARY 4: exp®(A;) = 1 whereas exp(A;) = p>+¢*. Hence, for any integer
N > 0 there exists a finite-dimensional algebra C such that exp®(C) # 0 and
exp(C) — exp®(C) > N.

Proof. By the basic properties of the PI-exponent,

exp(A1) = exp(UT (p,q)) = p° + ¢*

(see [7, Section 6.2]).

In order to compute exp®(A;), we notice that M,(F) @ M,(F) is isomorphic
to a maximal semisimple subalgebra of UT(p, ¢). Hence a maximal semisimple
subalgebra of R is isomorphic to M,(F') & My(F') & B where B = F.

Let f be a proper central polynomial of A;. If ¢ is an evaluation in Ay, then
as in Lemma 4, either ¢o(f) € UT(p, q) or ¢(f) € R.

If the first case occurs, then ¢(f)=0 by Lemma 1. In the second case we notice
that only B=F can be a centrally admissible subalgebra of A;. By Lemma 4,
B is centrally admissible and by Theorem 1 the proof is complete.

5. Relations among codimensions

In this section we shall compare for any finite-dimensional algebra the sequence
of codimensions and the sequence of central codimensions. We have the follow-

ing.

THEOREM 2: For any finite-dimensional algebra A with exp(A) > 2, the central
exponent exp®(A) exists and is a non-negative integer. Moreover,

exp”(A) = exp(A).

Proof. Suppose exp(A) = d > 2. Then by [5], there are constants C; > 0, Ca,
t1, to such that

Ot d® < en(A) < Coynt2d™,
holds for all n. By (1) we then have that
(6) cZ(A) < Con'2d".

On the other hand, by [6, Lemma 2], A contains a subalgebra B isomorphic to
UT(d1,...,dn), for someds,...,dy, with d3+---+d? = d = exp(B). Moreover
cn(B) > Contod™, for some constants Co > 0,tg (see [4, Theorem 3]).
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Suppose first that m >1 and let N=¢,,(B). Let fi,..., fy be multilinear poly-
nomials in z1,..., 2, linearly independent modulo the T-ideal Id(B)2DId(A).
If f=Mfi+t - +Avfv+g € Id*(A), with g € Id(B), for some scalars
A,..., AN, then f = A\ f1 +---4+ An fn is a central polynomial of B. But then
by Lemma 1, f is an identity of B and this says that A\; = --- = Ay = 0. Thus

(7) cZ(A) > N = ¢, (B) > Con'od™.

Now let m = 1. This says that B = My, (F), di x d; matrices over F' and d = d3.
Consider m copies of Regev central polynomial f1,..., f,, in distinct sets of
variables and let f = fi--- f;,. Then f generates an irreducible S,-module
M where n = 2md with character x(M) = xx, A = ((2m)%). If y is another
variable, f’ = fy is not a central polynomial and generates an irreducible Sy, 1-
module whose character is x,,, where u = (2m + 1, (2m)4=1). It is not difficult
to check that d,, > Co(n+1)*d"*!. Hence 7, (A) satisfies the same inequality
as in (7).
The relations (6) and (7) imply that exp®(A) exists and exp®(A)=exp(A).

When exp(A) = 0, then A is nilpotent and exp®(A) = 0. In case exp(4) = 1,
then either exp®(A4) = 1 or exp(A) = 0. If exp(A) = 1, then A is not nilpotent
and the sequence of codimensions is polynomially bounded. Clearly the same
holds for the sequence of central codimensions. Thus exp?(A) = 1 provided
¢z (A) # 0 for all n.

The case when ¢Z(A) = 0 can be characterized as follows.

PROPOSITION 1: Let A be a finite-dimensional algebra such that exp®(A) = 0.
Then A = A} @& Ay where A; is a nilpotent algebra and As is a commutative
algebra.

Proof. If ¢ (A) = 0 for some n > 2, then any monomial of degree n is a central
polynomial of A. In particular, x; - - - x, is central.
Consider the Wedderburn—-Malcev decomposition A = B + J where

B=B & ---® B,

is the sum of simple components and J is the Jacobson radical. Since z7 -- -z,
is central, all By, ..., B,, are one dimensional and central subalgebras. Denote
by e the unity of By. Then J = Jy & J; where ze = ex = 0 if © € Jy and
ye=ey=yify € J;. Also B;J; =0 for all i = 2,...,m since eB; = 0. Hence
A= (B1+41)® B2+ -+ By + Jo). Moreover, By + J; is commutative
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since y = e® !y lies in the center of A for any y € J;. Repeating this procedure
weget A=C1®---@Cp, @1 where all Cy,...,C,, are commutative and [ C J
is nilpotent.

(1]
2]
(3]
(4]
(5]
[6]

(7]

8

(9]

(10]
(11]
(12]

(13]
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