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ABSTRACT

We establish the equality of classical and tropical curve counts for elliptic

curves on toric surfaces with fixed j-invariant, refining results of Mikhalkin

and Nishinou–Siebert. As an application, we determine a formula for such

counts on P2 and all Hirzebruch surfaces. This formula relates the count of

elliptic curves with the number of rational curves on the surface satisfying

a small number of tangency conditions with the toric boundary. Further-

more, the combinatorial tropical multiplicities of Kerber and Markwig

for counts in P2 are derived and explained algebro-geometrically, using

Berkovich geometry and logarithmic Gromov–Witten theory. As a con-

sequence, a new proof of Pandharipande’s formula for counts of elliptic

curves in P2 with fixed j-invariant is obtained.
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1. Introduction

Let X = X(Σ) be a proper toric surface with fan Σ and let Δ be a convex

polytope giving an equivariant polarization for X . Let N(Δ) denote the num-

ber of elliptic curves E in X having fixed generic j-invariant, lying in the linear

system PΔ, and passing through the expected number of points in general po-

sition. Let N trop(Δ) be the number of tropical genus 1 curves on the surface

Xtrop with toric degree Δ, fixed cycle length, and passing through the expected

number of points in general position, see Definition 2.1. Our first result is a new

correspondence theorem in this setting, extending a result of Mikhalkin [28].

Theorem A: The number N trop(Δ) does not depend on the cycle length or the

point configuration. Furthermore, for j �= 0, 1728 we have N trop(Δ) = N(Δ).

We apply this correspondence theorem in the setting of Hirzebruch surfaces

Fn to count elliptic curves with a fixed j-invariant.

Theorem B: There exists an explicit formula for the number of elliptic curves

with fixed j-invariant of degree (a, b) on Fn through 2b + (n + 2)a − 1 points

in general position in terms of genus 0 counts on Fn with 1 or 2 toric tangency

conditions, together with combinatorial coefficients.

See Theorem 4.8 for a precise statement of the formula. Our work is inspired

by an elegant result of Pandharipande, who computes the number of elliptic

curves in the plane with fixed j-invariant from Kontsevich’s formula for rational

curves in the plane [31]. For Hirzebruch surfaces, the analogous role is played

by counts of rational curves with 1 or 2 prescribed tangency conditions with

the toric boundary.

1.1. Further discussion. We approach Theorem A from the Abramovich–

Chen–Gross–Siebert theory of logarithmic stable maps to toric varieties, which

in turn builds on the framework of Nishinou and Siebert [3, 13, 20, 30]. Our

proof follows a similar line of reasoning as the re-proof of their genus 0 classi-

cal/tropical correspondence theorem due to the second author [34]. The central

idea is that tropical maps encode the combinatorial data in logarithmic special

fibers of degenerating families of algebraic maps. When the degeneration is max-

imal, we explicitly determine the number of logarithmic lifts of this data, and
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the multiplicities resulting from the associated smoothing problem can be com-

puted combinatorially, using analytic domains in a Berkovich space. However,

there is an important subtlety that arises in the present context. For correspon-

dence theorems in other settings, such as those considered in [12, 28, 30, 37],

general position arguments can be used to force the relevant tropical curves to

be realizable by algebraic ones. When fixing the j-invariant however, this is

no longer true, and we must appeal to Speyer’s well-spacedness condition [36,

Theorem 3.4] to understand which tropical curves can be lifted. The result thus

presents the first nontrivial calculation of enumerative invariants in the pres-

ence of superabundant geometries, and outlines a conceptual framework that

we expect to be useful in future applications.

The results of this paper build upon work of Kerber and Markwig [26], who

study tropical elliptic curves of fixed j-invariant in P2
trop. Without the aid

of a correspondence theorem, they observed after the fact that their formulae

agreed with those of Pandharipande [31]. Remarkably, although the counts

agree there does not exist a direct correspondence theorem between classical

curves on P2 and Kerber and Markwig’s tropical curves on P2
trop. It arises from

the analysis in this text that they count superabundant curves with positive

multiplicity that do not satisfy Speyer’s well-spacedness condition, and hence

are non-realizable. Conversely, they assign multiplicity zero to several curves

that do satisfy Speyer’s condition. Nonetheless, one can first show, combinato-

rially, that Kerber and Markwig’s tropical counts are equal to those considered

in this paper, and then apply Theorem A to obtain a new and “purely tropical”

proof of Pandharipande’s formula.

There are a number of related results concerning the enumerative geometry

of Hirzebruch surfaces. Counts of rational curves on F2 were considered by

Abramovich and Bertram [1] and were related to counts on P1×P1. This result

was extended to arbitrary genus by Vakil [39]. In [16] Franz and Markwig pro-

duce a tropical proof of Vakil’s formula. Tropical techniques were then used by

Brugallé and Markwig [11] to give a general formula relating the enumerative

invariants of Fn and Fn+2. Recently, floor diagram calculus on Ftrop
n has been

used to study polynomiality properties of “double” Gromov–Witten invariants

of Hirzebruch surfaces [8], and to relate the (refined) Severi degrees of Hirze-

bruch surfaces to matrix elements in Fock spaces [10]. The connections to Fock

spaces were first recognized by Cooper and Pandharipande [15], and it would be

natural to consider the role of the Fock space formalism in the present setting.
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The enumerative geometry of curves with fixed generic complex structure has

also seen substantial interest, and generalizations of Pandharipande’s results are

known in several other settings. These generalizations are essentially orthogonal

to the results of the present text, but present natural avenues for future inquiry

in tropical and logarithmic geometry. In the late 1990’s, Ionel used analytic

and symplectic methods to deduce formulae for the numbers of elliptic curves in

projective space of any dimension [22]. In the early 2000’s, Zinger gave beautiful

formulae for the number of genus 2 curves with fixed complex structure in P2

and P3, and for genus 3 curves with fixed complex structure in P2; see [40, 41]

and also [25]. Finally, during the preparation of this manuscript, we learned of

work of Biswas, Mukherjee, and Thakre [9] who study the enumerative geometry

of elliptic curves on del Pezzo surfaces with fixed j-invariant. Their method is

to first compute a Gromov–Witten invariant, and then find an exact solution

for the contracted component contribution as an intersection number on M0,n.

We expect that both methods will be useful in the future, possibly in unison.

The overlapping case of F1 yields the same formula; see Corollary 4.10. We

expect that further refinements of the methods here will lead to algebraic and

tropical approaches to many of these results, as well as generalizations to target

toric varieties.
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2. The moduli space of tropical stable maps

Let M be a lattice of rank 2 and T = Spec(C[M ]) the associated torus. Let

M∨ be the dual lattice. Fix a lattice polygon Δ in MR and let Σ denote its

normal fan, defining a toric variety X = X(Σ) with dense torus T .

We assume familiarity with the notions of abstract and parametrized tropical

curves (namely, tropical stable maps) in M∨
R
. See [26, Section 2] or [35, Section

2] for the relevant definitions. We remind the reader that for a parametrized

tropical curve [f : Γ → Σ], the direction of an edge e is the direction vector

of the affine line onto which e maps. The slope w of f upon restriction to e

is called the weight of the edge e. The unbounded edges of a tropical curve

will be referred to as ends. By a tropical stable map of degree Δ we mean a

parametrized tropical curve in Σ whose set of ends is dual to Δ. Any such curve

determines an extended metric graph mapping to the extended tropicalization

Σ of X , whose infinite edges are transverse to the boundary Σ \ Σ.

2.1. The tropical space of maps. Let D be the number of ends of a curve

of degree Δ, and define N = D − 1. Let M′
1,N(Δ) be the set of isomorphism

classes of parametrized tropical curves of genus 1 of type Δ with N marked

points. This space has the structure of a cone complex, obtained by gluing

cones M1,N (Δ)α corresponding to combinatorial types α.

Let α be a combinatorial type for a map represented by [f : Γ → Σ] such that

the cycle of Γ is mapped to a line in |Σ|. Subdivide the cone M1,N(Δ)α along

the locus where the map is well-spaced, i.e., the two edges emanating from

the image of the cycle have equal length; see Figure 1. After this subdivision,

define M1,N(Δ) to be the union of cells of dimension at most 2D−1. This gives

the set M1,N(Δ) the structure of a pure dimensional cone complex. See [26,

Section 3] for further details and [12, Section 3] for the analogous construction

for target curves. Generalities on colimits of cone complexes may be found in [2,

Section 2].

2.2. Weights on M1,N (Δ). We now give M1,N(Δ) the structure of a

weighted cone complex, by assigning positive rational weights to its maxi-

mal cells. The weights account for the number of algebraic curves tropicalizing

to a fixed algebraic curve.

Given a tropical stable map [f : Γ → Σ], we define the deficiency of f ,

denoted def([f ]) ∈ {0, 1, 2}, to be the dimension of the smallest affine subspace
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τ

Figure 1. On the left is depicted the 3 dimensional cone cor-

responding to the flat cycle. On the right is the 2-dimensional

slice obtained by normalizing the total edge length to be 1. The

dashed line and the associated cone τ is the locus of well-spaced

curves.

of M∨
R
containing the image of the cycle in Γ. The deficiency is constant within

a combinatorial type, so we define def(α) in the obvious way.

Definition 2.1: Let α be a combinatorial type such that C = M1,N(Δ)α is a

maximal cell of M1,N(Δ), that is, dim(C) = 2N + 1. We associate a weight to

the cell C according to the deficiency of α:

• Deficiency 0. The cell C is full dimensional exactly when α is a

trivalent type. A subset of the coordinates on C are given by the lengths

of the source of Γ. The lengths for edges comprising the cycle cannot

be arbitrary, as the cycle must close. This condition is given by a linear

map

A =

(
a1
a2

)
: Z2+E(G) → Z

2.

Define the weight of C to be the index of the image of A in Z2.

• Deficiency 1. In this case, α is trivalent and has a well-spaced flat

cycle; see Figure 2. By balancing, if another edge emanates from the

cycle, then it must be a marked point. If the weights w′, w′′ on the upper

and lower arc of the cycle are different, or there is a marked point on

the cycle, assign the curve weight gcd(w′, w′′). Otherwise assign weight
1
2 · gcd(w′, w′′) = 1

2w
′ = 1

2w
′′.
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w′

w′′

Figure 2. A tropical stable map with a flat cycle.

• Deficiency 2. If the contracted loop is part of a 5-valent vertex v,

the image of v is dual to a triangle in the Newton subdivision. Assign

this curve weight equal to the number of interior lattice points of the

triangle. If the contracted loop is part of a 4-valent vertex, then the two

other edges emanating from the vertex are parallel due to the balancing

condition; see Figure 3. This line is dual to an edge of the Newton

polygon, and assign the type weight L−1
2 , where L is the lattice length

of the edge. In all other cases assign weight zero.

Figure 3. Two curves with contracted loop edges attached to

(left) 4-valent and (right) 5-valent vertices.

Given a marked end pi, for i ∈ {1, . . . , N}, there is an evaluation morphism

sending [Γ → Σ] to a point of Σ. In addition, there is a “complex” structure

morphism j : M1,N (Δ) → M
trop
1,1 which, for a given parametrized tropical curve

[Γ → Σ], forgets the map, and all but one of the marked points. The choice

of marked point plays no role. We combine these to a single morphism of cone

complexes

J =
∏
i

evi × j : M1,N(Δ) → ΣN ×M
trop
1,1 .

Note that, as a set, the target may be considered as R
2N × R≥0, and this

will suffice for our purposes. Standard arguments in tropical geometry, for

instance [26, 30], show that J generically has finite fibers. The multiplicity of

a tropical curve is defined to be the product of the weight of the associated cell

with the determinant of the linear map obtained by restricting J to the cell.
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When a tropical stable map has positive deficiency, its image naturally de-

termines a genus 0 tropical curve in Σ. The balancing condition uniquely de-

termines the weights on the edges. In such cases, the multiplicity for J can be

expressed in terms of that of the genus 0 curve as we now describe.

Lemma 2.2 (Deficiency 0): Suppose α is a deficiency 0, trivalent type. Then

the multiplicity of α is the determinant of the map

N∏
i=1

evi × j × a1 × a2 : R2+2·E0 → R
n × R≥0 × R× R.

Proof. See [26, Remark 4.8].

Lemma 2.3 (Deficiency 1): Let Γ be a deficiency 1 tropical stable map with

non-zero weight, such that there is no marked point on the flat cycle. Let

w′, w′′ be the weights of the edges forming the cycle, and let Γ′ be the resulting
rational curve. If w′ �= w′′ then Mult(Γ) = 2 ·(w′+w′′)·Mult(Γ′), and otherwise

Mult(Γ) = (w′ + w′′) ·Mult(Γ′).

Proof. Denote

ε =

⎧⎨
⎩
1, w′ �= w′′;
1
2 , w′ = w′′.

Let C ⊆ R2N+3 be the cell of Γ. To compute the determinant of J , we need

to choose a lattice basis for C. Choose a basis for R2N+3 consisting of a unit

vector ue for each bounded edge e, and vectors ux, uy corresponding to a choice

of root vertex (x, y) for Γ in the plane. Let e′, e′′ be the direction vectors of the

arcs forming the cycle. Write e′ = m′ · ẽ and e′′ = m′′ · ẽ with gcd(m′,m′′) = 1

for some vector ẽ. Let e0 = e′+e′′ be the direction vector of the edges on either

sides of the cycle. Finally, let e1, . . . , ek be the direction vectors corresponding

to the rest of the bounded edges, where k = 2N − 3. A lattice basis for the

cell is given by ux, uy, ue1 , . . . , uek , ue0 and ec = m′ · ue′′ +m′ · ue′ . Let A be

the matrix representing J in this basis. The columns of A correspond to each

of the basis vectors above, A has a row corresponding to the j-invariant and a

row corresponding to each of the marked points. The row corresponding to the

j-invariant consists of zeroes except for the ec-column where it is m′ +m′′. It

follows that det(A) is (m′ +m′′) · det(A′), where A′ is the matrix obtained by

removing the j-invariant column and the ec-column. Since there is no marked

point on the cycle, the path to any point beyond it passes through both the
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edges adjacent to the cycle. It follows that by dividing the column corresponding

to these edges by 2, we obtain a matrix A′′ describing the evaluation map for

the curve obtained by replacing the cycle and adjacent edges by a single edge,

namely, Γ′. By [19, Lemma 3.8], det(A′′) equals the multiplicity of Γ′, and we

obtain

Mult(Γ) =ε · gcd(w′, w′′) · det(A)
=2ε · gcd(w′, w′′) · (m′ +m′′) · det(A′′)

=2ε · (w′ + w′′) ·Mult(Γ′).

Lemma 2.4 (Deficiency 2): Let Γ be a deficiency 2 tropical stable map with

non-zero weight. If the loop is adjacent to a trivalent vertex (resp. an edge)

and m is the number of interior lattice points on the dual triangle (resp. edge),

then Mult(Γ) = m · Mult(Γ′), where Γ′ is the rational curve obtained after

contracting the loop.

Proof. Assume first that the loop is adjacent to a 4-valent vertex. As in the

proof of Lemma 2.3, we choose a lattice basis for J consisting of two unit vectors

for the root vector, a single vector for the edges on either side of the loop (as

they are parallel and have equal length) and a unit vector for any other edge

of the graph. By definition, the multiplicity of Γ is m
2 · detA, where A is the

matrix representing J in the chosen basis. The j-invariant row of A consists

of a single entry 1 in the column corresponding to the loop. In addition, since

there are no marked points on the loop, every path to a point beyond it passes

through both of the edges adjacent to the loop. As in the proof of Lemma 2.3,

by dividing this column by 2 and removing the j-invariant row and the row

corresponding to the loop, we obtain a matrix A′′ corresponding to the rational

curve Γ′. This produces the formula

Mult(Γ) =
m

2
· detA =

m

2
· 2 · detA′′ = m ·Mult(Γ′).

The proof when the loop is based at a 5-valent vertex follows from similar

arguments.

2.3. Invariance of multiplicity. We adapt Urakawa’s notion of a harmonic

morphism between graphs to the polyhedral setting.

Definition 2.5: Let φ : P → Q be a map between weighted cone complexes of

the same dimension, where the weight function of P is denoted w. Let C be
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a co-dimension 1 cell of P mapping surjectively onto a co-dimension 1 cell C ′

of Q. Let M ′ be a maximal cone adjacent to C′, and let M1, . . . ,Mk be the

maximal cells adjacent to C that are mapped to M ′. Then φ is said to be

harmonic of degree d at C if the sum

k∑
i=1

w(Mi) deg(φ|Mi)

does not depend on M .

If Q is connected through codimension 1 and pure dimensional, then being

harmonic at every co-dimension one cell implies that the number of elements in

the fibers of φ, counted with multiplicity, is a constant function.

Theorem 2.6: The map J : M1,N(Δ) → ΣN ×M
trop
1,1 is harmonic. In particu-

lar, the number of elliptic curves of a fixed j-invariant passing through a generic

configuration of points does not depend on the configuration or the j-invariant.

The theorem follows from Theorem A combined with the fact that the anal-

ogous algebraic count does not depend on the point configuration or the j-

invariant. Nonetheless we include a tropical proof, which, in conjunction with

Theorem A, provides a combinatorial proof for the algebraic invariance state-

ment.

Proof (sketch). When an element of ΣN ×M
trop
1,1 corresponds to a point config-

uration in general position in R2, its preimage by J is in the interior of maximal

cells of M1,N(Δ). As J is linear in the interior of maximal cells, its determi-

nant is locally constant, and so is the multiplicity. It remains to check that the

multiplicity does not vary when crossing a wall between maximal cells, namely

a co-dimension 1 cell. The possible co-dimension 1 cells are as follows:

• defα = 0, α is of genus 1, and has one 4-valent vertex (besides the

3-valent vertices);

• defα = 1, and α has two 4-valent vertices;

• defα = 1, and α has one 5-valent vertex;

• defα = 2, and α has three 4-valent vertices;

• defα = 2, and α has one 5-valent and one 4-valent vertex;

• defα = 2, and α has one 6-valent vertex.

The proof that the multiplicity remains invariant when crossing a wall is almost

identical to the proof of [26, Theorem 5.1], with minor adjustments for our
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P

v

Figure 4. Local picture of a deficiency 2 tropical curve with a

6-valent vertex , its dual polygon, and possible resolutions.

weights. We deal with the last case in full detail, and leave the remaining cases

as an exercise for the reader.

Assume that α corresponds to curves whose vertices are all trivalent apart

for a 6-valent vertex with a loop. We will exhibit a bijection, up to a constant,

between resolutions of such a curve and rational curves. The result then follows

from the local invariance of rational curves [18, Theorem 4.8]. Note that a

deficiency 0 or 1 tropical curve with no contracted edge does not degenerate

to a curve with a loop. Therefore, resolutions of the curve in question are

obtained by removing the loop, replacing the vertex v with an edge, and either

placing a loop back on the edge, or a contracted edge between two crossing

edges; see Figure 4. These types correspond to subdivisions of the polygon P

dual to v having at least one inner lattice point. When the loop is at a vertex

dual to a triangle, the multiplicity is the number of interior lattice points of

the triangle times the multiplicity of the rational curve obtained by removing

the loop by Lemma 2.4. If there is a contracted edge between crossing edges,

then the multiplicity equals that of the rational curve times the area of the

parallelogram dual to the crossing; see [26, Lemma 4.11].
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It is straightforward to check that the contribution of curves coming from

each subdivision is equal to the total number of interior lattice points of P

times the multiplicity of the rational curve corresponding to the subdivision, as

claimed.

3. Logarithmic stable maps and tropical curves

Our approach to the proof of classical/tropical correspondence is based on the

Abramovich–Chen–Gross–Siebert [3, 13, 20] theory of logarithmic stable maps.

The analysis we carry out is, in spirit, closely related to that of Nishinou and

Siebert [30] for rational curves, but is modeled on more recent approaches to cor-

respondence theorems using Berkovich spaces and logarithmic geometry [12, 34].

We refer the reader to K. Kato’s seminal article [23] and the surveys [4] for

background on logarithmic geometry. We also require certain notions from the

theory of Berkovich spaces, in particular the construction of a skeleton of a

toroidal embedding. We refer the reader to [5, 38] for these details. The ana-

lytifications of all moduli spaces appearing will be taken over C, endowed with

the trivial valuation. Note however that by definition, the points of an ana-

lytified moduli space over such a field will parametrize objects over nontrivially

valued field extensions of C. In particular, the tropicalizations of curves will

have nontrivial topology. A reader who is primarily concerned with the enumer-

ative geometry of Hirzebruch surfaces may skip this section, taking Theorem A

as a black box.

3.1. Overview. Continue to fix a toric surface X = X(Σ) with polarization Δ.

Intuitively, each tropical stable map Γ → Σ is meant to encode a degeneration

of a one-parameter family of logarithmic stable maps to X(Δ). Each tropical

multiplicity then encodes the number of ways in which these degenerate curves

smooth to the main component of the space of logarithmic maps to X . We then

calculate the number of elliptic curves by counting tropical maps, weighted by

the appropriate combinatorial multiplicities. The subtleties in carrying this out

are twofold:

(A) Not every tropical stable map arises as a degeneration of a 1-parameter

family of algebraic maps, i.e., not every degenerate map smooths.

(B) A single tropical stable map can encode degenerations of logarithmic

stable maps into distinct degenerate loci.
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The phenomenon (A) is related to logarithmic obstructedness of stable maps,

which manifests tropically as superabundance, while (B) is related to the

weights of combinatorial types.

3.2. Logarithmic stable maps. We provide a rapid working introduction to

the basic ideas in logarithmic Gromov–Witten theory, in our setting, referring

the reader to [3, 13, 20], where the theory is fully developed. A logarithmic

stablemap toX over a logarithmic scheme (S,MS) is a diagram in the category

of fine and saturated logarithmic schemes

(C,MC) (X,MX)

(S,MS)

such that the underlying map of schemes is a family of ordinary stable maps.

In the non-degenerate setting, such a diagram is equivalent to a proper map of

pairs

(C, p1, . . . , pk) → (X, ∂X),

whose image is disjoint from the codimension 2 toric strata of X , such that the

orders of contact of C with the boundary along each marked point pi is locally

constant. Here, the logarithmic structure is superfluous to the scheme theoretic

information. However, when this data degenerates, for instance, if the contact

orders become more degenerate, or if the curve falls into the toric boundary,

the logarithmic structure encodes nontrivial information which allows one to

interpret contact orders appropriately in this setting.

One may form a moduli stack over the category of fine and saturated log-

arithmic schemes by mimicking the usual definition above. However, in order

to work geometrically with the space, it is necessary to form a stack over the

category of schemes. In other words, given a map from a test scheme S to the

moduli space, one needs a universal way to place a logarithmic structure on S.

This is known as the minimal logarithmic structure, and is an explicit con-

dition on the characteristic monoids of the base of a family (S,MS): at every

geometric point s of S, the dual monoid of the characteristic at s is isomorphic

to the appropriate cone of tropical curves, determined by the fiber. Minimal-

ity is discussed in detail in all of the references given on the subject, and the

reader may find a working definition in [35, Remark 2.1.1 & Section 2.3]. We

summarize the results of Abramovich–Chen–Gross–Siebert, as follows.



364 Y. LEN AND D. RANGANATHAN Isr. J. Math.

Theorem 3.1: There exists a proper moduli stack L1,N(Δ), with a logarith-

mic structure, over the category of schemes parametrizing minimal logarithmic

stable maps [C → X ] with fixed numerical data (contact orders, genus, curve

class, and degree).

3.3. Tropical curves from logarithmic stable maps. Let L1,N(Δ) be

the moduli space of minimal logarithmic stable maps from curves of arithmetic

genus 1 to X . We assume that the curves meet the boundary of Δ transversely

at labeled marked points. There are N additional marked points having contact

order 0, i.e., over the interior of the main component of L1,N(Δ) these points

map to the dense torus. Let Spec(C) → L1,N (Δ) be a point of the moduli space.

By pulling back the universal curve, map, and minimal logarithmic structure,

we obtain the following diagram:

C U X

Spec(P → C) L1,N (Δ).

Choose a monoid homomorphism P → N, and consider the induced pull back

from the above diagram giving rise to a logarithmic stable map [f : C → X ]

over Spec(N → C). This data gives rise to a tropical stable map, i.e., an

integer point in M1,N(Δ), the tropicalization of f , of which we now remind

the reader. It will suffice for our purposes to consider curves that have integer

edge lengths and vertex coordinates, so we restrict to this case.

Source Graph. Let Γ be the dual graph of C, consisting of a vertex for each

irreducible component of C, and an edge between two vertices for each node

that the corresponding components share. Labeled infinite edges are placed at

vertices in correspondence with marked points on the corresponding compo-

nents. The logarithmic structure determines lengths on the edges. Let e be an

edge corresponding to a node q. Set the length �(e) equal to the element in N

corresponding to the smoothing parameter for the node q. This determines an

abstract tropical curve Γ with integer edge lengths.
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Map to Σ. Let Cv be a component of C corresponding to a vertex v of Γ.

Assume that the generic point of Cv is mapped to the torus orbit of X corre-

sponding to a cone σ ∈ Σ. Since f is a logarithmic map over Spec(N → C),

the stalk of the characteristic sheaf of C at the generic point is N. By virtue

of f : C → X being a logarithmic map, we obtain a homomorphism Sσ → N,

where Sσ is the character lattice of the relevant torus orbit. This homomor-

phism is equivalent to the choice of a lattice element f trop(v) ∈ σ.

Let e be an edge adjacent to vertices u and v, and q the corresponding node.

The stalk of the characteristic sheaf of C at q is given by the monoid push-out

Pq = N⊕N N
2, where the map from N to the first factor is the homothety given

by multiplication by �(e). Assume that q maps to a torus orbit associated to

σ and let Mq be the corresponding character lattice. Since f is a logarithmic

map, we obtain a map Sσ → Pq. By the discussion in [20, Section 1.4], the data

of such a map is equivalent to the choices of f trop(u), f trop(v), and a natural

number cq such that f trop(u)− f trop(v) = cqeq. This determines a map on the

edge e with expansion factor (weight) equal to cq.

In particular, let R = C[[t]] and consider a map

Spec(R) → L1,N(Δ);

the special point is naturally isomorphic to Spec(N → C) and thus gives rise

to a tropical map as above. However, not every Spec(N → C)-valued point of

L1,N (Δ) arises in this fashion, because the moduli space is not logarithmically

smooth. This brings us to the notions of superabundance and well-spacedness.

3.4. Superabundant curves and functorial tropicalization. We recall

Speyer’s well-spacedness condition for parametrized tropical genus 1 curve in

R2. Let f : Γ → R2 be a parametrized tropical curve. If the image of the cycle

Γ is not contained in any proper affine subspace R2, then Γ → Rn is realizable.

Otherwise the curve is said to be superabundant. Let A be an affine line

containing the cycle of f(Γ). Let W be the multiset of lattice distances from

the image of the cycle to points where the cycle leaves the plane. The curve

Γ → R
n is said to be well-spaced when the minimum of the elements of W

occurs at least twice for any affine line A as above.

All well-spaced curves of genus 1 arise as degenerations of one-parameter fam-

ilies of logarithmic stable maps, from a family of curves with smooth generic

fiber. In all the cases considered here, it is known that all such families give



366 Y. LEN AND D. RANGANATHAN Isr. J. Math.

rise to well-spaced curves as well. The sufficiency of well-spacedness follows

from work of Speyer [36, Theorem 3.4]. In equicharacteristic 0, and for the

superabundant curves appearing in this paper, the necessity of well-spacedness

can also be deduced from Speyer’s arguments in [36, Proof of Proposition 9.2]

or directly from Katz’ techniques [24, Proposition 4.1]. See also work of Nishi-

nou [29, Theorems 45 and 52] and Tyomkin [37, Theorem 6.2].

For our purposes, the calculations in loc. cit. are sufficient, but in order to

the verify the statements, the reader would have to carefully read the proofs

and extract results that are not explicitly stated. To avoid this, we choose to

prove Theorem A by placing these results on well-spacedness in the context of

maps to the Artin fan and the functorial tropicalization results of [35], which

we briefly recall. The reader is informed that Corollary 3.6 is the necessary

ingredient to continue to the proofs of the main theorems.

Let A denote the Artin fan of X , i.e., logarithmic algebraic stack [X/T ].

Let L1,N (A ) be the moduli space of prestable logarithmic maps to the Artin

fan A with the same discrete data as the maps to X considered previously.

The following result is [35, Theorem 2.6.2] stated in the present context, and

establishes the relationship between the tropical moduli space of maps and the

skeleton of the space of maps to the Artin fan.

Theorem 3.2: The stack L1,N(A ) is toroidal and there is a commutative

diagram of continuous morphisms

L1,N(A )� M′
1,N(Δ)

S(L1,N(A )),

trop

pL tropΣ

where (1) the map pL is the projection to the toroidal skeleton and (2) the

map

tropΣ : S(L1,N(A )) → M′
1,N(Δ)

is a finite morphism of generalized extended cone complexes that is an isomor-

phism upon restriction to any cell of the source.

There is a natural map L1,N(Δ) → L1,N(A ), and by applying the formal

fiber functor (·)� and composing with the map trop above, we obtain a contin-

uous tropicalization

trop : L1,N(Δ)� → M′
1,N(Δ).
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We may now rephrase the discussion of superabundant tropical curves as

follows.

Proposition 3.3: The image of the map

trop : L1,N(Δ)� → M′
1,N(Δ)

is the locus M1,N(Δ) of well-spaced tropical curves.

We require a slightly more refined version of this result, stated below. Fix

a logarithmic stable map [f : C → X ] of combinatorial type Θ = [Γ → Σ].

Let [f : C → A ] be the induced map to the Artin fan. Let σΘ be the cone of

tropical curves of type Θ. Let UσΘ be the associated affine toric variety. As

explained in [35, Section 2], the toroidal structure of L1,N(A ) guarantees the

existence of toric charts. In other words, there is a smooth neighborhood U of

[f ] and an étale morphism

U → UσΘ .

Thus, there are natural local monomial coordinates on U corresponding to the

deformation parameters of the nodes of C, which are, in turn, in bijection with

the edges of Γ. Thus, any path in P of edges Γ determines a monomial function

(up to scalars) in these coordinates, which we will denote ξP .

Definition 3.4: Let Θ be a superabundant combinatorial type in M′
1,N(Δ) and

let A be an affine line containing the loop L. Let P1, . . . , Pk be the paths

from L to those vertices of Γ, where L leaves the affine hyperplane. The well-

spacedness function of (Θ, A) is defined to be the sum

ξP1 + · · ·+ ξPk
.

If a type is non-superabundant, the well-spacedness function is defined to be 0.

In particular, note that the bend locus in σΘ of the tropicalization of a well-

spacedness function cuts out the locus of well-spaced curves. Note also that in

all the combinatorial types outlined in Section 2, there is a unique affine line A

containing the loop that imposes a nontrivial condition, so each combinatorial

type determines at most one nonzero well-spacedness function. After passing

to smooth covers and working locally, the moduli space L1,N(Δ) can be cut

out of L1,N(Δ) by explicit equations. This brings us to the next proposition,

which describes this precisely.
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Proposition 3.5: Let [f : C → X ] be a minimal logarithmic stable map

and let [f : C → A ] be the associated map to the Artin fan. Let ζΘ be the

well-spacedness function in a neighborhood U of [f ] and let V = V (ζΘ) be its

vanishing locus. Then the base change morphism π below

LV L1,N (Δ)

V L1,N (A )

π

is smooth.

Proof. The result can be proved by mimicking a calculation of Hu and Li for

maps to projective space [21, Section 4], but for the benefit of the reader we

outline how to deduce the necessary calculation from loc. cit. with careful ref-

erences to the literature. If Θ is non-superabundant, then L1,N(Δ) is smooth

near [f ]. To see this, consider the logarithmic tangent-obstruction complex for

[f ]

· · · → H1(C, T log
C ) → H1(C, f�T log

X ) → Ob([f ]) → 0.

Note that the first term encodes the infinitesimal logarithmic deformations of

C, the second encodes obstructions to deforming the map fixing the curve, and

the final term is the absolute obstructions of the map and curve. By [14, Section

4], the non-superabundance of Θ means that the first arrow is surjective, and

by exactness the obstruction group vanishes, so the moduli space is logarith-

mically smooth in a neighborhood of [f ]. Thus, we henceforth assume Θ to be

superabundant.

Our first step is a reduction of dimension for the target. Consider a logarith-

mic stable map [f ] as in the statement of the proposition and let A be the affine

space containing the loop. The affine space A determines a subtorus Gm(A) of

the dense torus of X . After replacing X with a toric modification, the quotient

by Gm(A) induces a morphism

X → P
1,

and a logarithmic prestable map [g : C → P
1]. Note that such a toric modifi-

cation does not change the logarithmic deformation theory of [f ] by the results

of [7]. Let Def(f) and Def(g) denote the logarithmic deformation spaces of f

and g respectively. First, we note that the map Def(f) → Def(g) is smooth.

To see this, observe that by projecting onto any subtorus complementary to
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Gm(A), the loop is not contracted, and smoothness follows from well-known

calculations; see [14] or [21, Section 2]. Thus, it suffices to prove the proposi-

tion with X replaced by P1.

To complete the proof, we consider the logarithmic map [g : C → P1]. Let

X be a chain of P1’s and consider a logarithmic stable map to [g′ : C′ → X ],

such that (1) no component of C ′ is contracted to a node of X , and (2) the

composition π◦g′ is the logarithmic stable map [g]. That the conditions (1) and

(2) can be achieved is a standard fact in relative Gromov–Witten theory; see,

for instance, [30]. The logarithmic deformation theory of [g] and [g′] coincide
via the contraction to the main component X → P

1, by the results of [6].

Since Θ was superabundant, there is a subcurve of C′ of arithmetic genus 1

that is contracted to a smooth point of the expanded target X . Since the

complement of this contracted subcurve is a union of curves of arithmetic genus

0 the obstructions to deformations are local on the target X , near this point

to which the subcurve is contracted. The statement is now reduced to [21,

Corollary 4.14].

In particular, we require the following corollary.

Corollary 3.6: Let σ → M1,N(Δ) be a cone of well-spaced tropical curves.

The preimage of σ under the tropicalization map

trop : L1,N(Δ)� → M1,N(Δ)

is an analytic domain of the source.

Proof. The cone σ is contained in the relative interior of a unique smallest cone

of M′
1,N(Δ), which we denote by σΘ. Let [f ] be a minimal logarithmic stable

map to X with combinatorial type σ′ and let [f ] be the associated map to the

Artin fan. Let UσΘ be the toric neighborhood (in the smooth topology) of [f ]

as discussed above. In all the combinatorial types relevant to the enumerative

problem, the well-spacedness equation ζΘ is a binomial equation, since it forces

the lengths of two paths to be equal to each other. In particular, if ζΘ is the well-

spacedness function associated to Θ, the vanishing locus V (ζΘ) is the closure

of a subtorus in UσΘ . Thus, applying the preceding proposition and working

étale locally, trop−1(σ) is the preimage of a cone under tropicalization of a toric

variety, and thus is, essentially by definition, a polyhedral analytic domain, in

the sense of [33].
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3.5. Proof of Theorem A. As we have seen previously, every logarithmic

stable map comes with a tropical type. In order to prove the main theorem, we

will have to reverse this, and determine how many logarithmic lifts there exist

for a given tropical type. To guide the reader in the proof, we point out that

the multiplicity of a tropical curve in the previous section was a weight factor,

multiplied by a determinant of a map of lattices. In the analysis to come, this

weight factor answers the question of how many logarithmic lifts there exist

of a tropical curve, while the determinant will arise as an analytically local

contribution to the degree of map.

To analyze the weights, we need the notion of an unsaturated map. Let

ξ = [f : C → X ] be a minimal logarithmic stable map over Spec(P → C). As

explained in [34, Section 3.6], one may associate to this another logarithmic

stable map ξus, the unsaturated map, over Spec(Q → C), in the category

of fine but not necessarily saturated logarithmic structures. The monoid

Q need not be saturated, but its saturation is P . We refer to loc. cit. for

the precise construction, but record that the unsaturated morphism has the

following important property [34, Proposition 3.6.3].

Proposition 3.7: Let ξ1 and ξ2 be two minimal logarithmic stable maps over

the same base such that the underlying ordinary stable maps ξ
1
and ξ

2
coincide,

and the combinatorial types of the tropical maps associated to ξ1 and ξ2 also

coincide. Then there is a canonical isomorphism ξus1
∼= ξus2 .

We prove the theorem by considering the natural morphism

L1,N (Δ) → XN ×M1,1,

evaluating the positions of the N marked points, and recording the j-invariant.

The enumerative invariant we are interested in is the number of elements in the

fiber of this map that smooth to the main component of L1,N(Δ), counted with

multiplicity. The morphism L1,N(Δ) → XN ×M1,1 is logarithmic and by [35,

Theorem D] there is an induced morphism

J : M1,N (Δ)trop → ΣN ×M
trop
1,1 .

Fix a combinatorial type Θ and a single minimal logarithmic stable [f ] with

combinatorial type Θ. Let σ be a cone of well-spaced tropical stable maps in

M1,N (Δ)trop parametrizing maps with type Θ. By Corollary 3.6, trop−1(σ)

is a polyhedral domain U� in L �
1,N (Δ). The cone σ maps to a cone τ in
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ΣN × M
trop
1,1 . The preimage of τ under tropicalization in (X ×M1,1)

� gives a

compact polyhedral domain V �, containing J�([f ]). The contribution of [f ]

of our enumerative count is the degree of the resulting morphism of analytic

domains

J� : U� → V �.

Note that since we work with stacks, this degree is computed by passing to

Galois covers to kill automorphisms, computing the degree on these covers, and

dividing out by automorphisms. After passing to such a cover, this is a map of

polyhedral domains, by [33, Section 6], so the degree of this morphism is equal

to the determinant of the map of cones σ → τ .

To establish the result, it remains to add the contributions over the preimages

of all analytic domains obtained over cones contributing to our enumerative

invariant. More precisely, given a combinatorial type Θ, we must find the

number of minimal logarithmic stable maps of type Θ, with the same underlying

stable map. By Proposition 3.7 above, this is the same as the degree of the

saturation map for the type Θ. Each saturated map will give one analytic

domain in the corresponding type, and since the map tropΣ of the previous

subsection is an isomorphism on every face of the skeleton of L1,N(A ), different

saturations of the same map yield the same contribution to the degree of J . Our

task is to show that the degree of this saturation map is equal to the weight in

Definition 2.1. Summing these determinants over all the combinatorial types,

the result will follow. We now analyze the weights, based on the deficiency.

Deficiency 2. We need to relate the multiplicities of the genus 1 maps to

those of genus 0 maps, and apply Lemma 2.4. Consider a minimal logarithmic

map [f : C → X ] whose tropicalization [f trop : Γ → Σ] has deficiency 2, and

meets general point and j-invariant constraints. The source curve has a single

self-nodal component D corresponding to a vertex vD supporting a loop. By

general position considerations, the loop must be adjacent to a 4- or 5-valent

vertex in the source graph Ctrop. When vD has valence 5, the arithmetic genus

of f(D) is equal to the number of interior lattice points in the triangle dual to

the star of f trop(vD) in f trop(Γ). Call this number PD. Normalize the self node

of D to obtain a new map [f̃ : C̃ → X ]. Since the length of the loop is fixed,

the cone of tropical curves associated to [f̃ ] coincides with the one associated to

[f ]. Given a map [f̃ : C̃ → X ] from a genus 0 curve, there exist PD maps from



372 Y. LEN AND D. RANGANATHAN Isr. J. Math.

arithmetic genus 1 curves, by choosing a node of the image to not separate.

This recovers the multiplicity of Lemma 2.4.

Now assume vD is attached at the interior of an edge of Ctrop. We consider

the number of minimal logarithmic stable maps that can have the prescribed

tropicalization and compare it to the number of maps from genus 0 curves. Let

w be the weight of the edge to which the loop contracts. The component D has

a self node and maps onto its image as D → P1, a w-fold cover fully ramified

over two points. Normalizing the node, we obtain a map P1 → D → P1, which is

a w-fold cover. All possible maps from D are formed by choosing two preimages

on this cover and gluing them. There are precisely w(w−1)
2 ways to make this

choice. However, there is an overall action of Z/wZ acting on the cover by roots

of unity which give automorphisms of the map. To compute the degree of the

map of stacks, we simply quotient by this group and, as above, we recover the

desired multiplicity.

Deficiency 1. Consider logarithmic stable maps having a fixed underlying

map [C → X ] and fixed combinatorial type with deficiency 1. This implies

that any two unsaturated maps with this data coincide, say with ξus, and to

prove the result we must show that the weight in Definition 2.1 coincides with

the number of ways in which to saturate ξus. The source curve C has two

components meeting at precisely two points, giving a double edge to the dual

graph. Ignoring other nodes, the logarithmic deformation space for this local

geometry is non-normal: it is isomorphic to Spec(C�x, y�/(xm1 = ym2)); see,

for instance, [12, Section 4.2] or [20, Example 1.17(2)]. Here, the parameters

x and y are deformation parameters for the two nodes of the source curve.

An unwinding of definitions shows that each of these parameters, raised to the

ramification orders at the corresponding node, is equal to the pullback of the

same monomial function on X . The multiplicity of this tropical curve, which

is the number of saturations of ξus, is precisely the number of branches in the

normalization of this local geometry. A direct computation then shows that this

is in turn equal to gcd(m1,m2), so we recover the weight from Definition 2.1.

Deficiency 0. The deficiency 0 case is very similar to the case above, but it

is easier due to the lack of the well-spacedness condition. Let [f : C → X ] be

a logarithmic stable map such that f trop has deficiency zero and meets gen-

eral tropical point and j-invariant conditions. It follows that the combinatorial

type α of f trop is trivalent with associated cone M1,N(Δ)α. Since f trop has
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deficiency 0 and lies in R2, the cone of tropical maps in the combinatorial type

α has expected dimension and, in particular, f trop is non-superabundant. As

explained in the proof of Proposition 3.5, this means that L1,N(Δ) is logarithmi-

cally smooth at the point [f ]. Thus, L1,N (Δ) is étale locally at [f ], isomorphic

to the toric variety given by the stalk of the characteristic of L1,N(Δ) at [f ].

Let α be the combinatorial type of [f trop]. By [20, Remark 1.21], this toric

variety is precisely the one defined by the cone M1,N(Δ)α.

We must compute the number of minimal logarithmic stable maps with a fixed

tropicalization and fixed underlying stable map. By the above proposition, the

number of logarithmic lifts of [f ] that have combinatorial type α is equal to the

index of the unsaturated characteristic of [f ] in the saturation. By dualizing and

using [20, Remark 1.21], we see that the rank of this saturation coincides with

the index of the length constraint equations
(
a1

a2

)
associated to the cycle in the

type α. For each fixed logarithmic lift, its contribution to our enumerative count

is equal to the determinant of the induced map J :M1,N(Δ)→ΣN×M
trop
1,1 . Thus,

the multiplicity of α is equal to the index of
(
a1

a2

)
times the determinant of the

map J . This recovers the multiplicity of Lemma 2.2. The result follows.

4. Curves on Hirzebruch surfaces

For this section, fix X to be the Hirzebruch surface Fn = P(OP1 ⊕O(n)). Let Σ

be its fan and Δ a polytope polarizing the surface. The Picard group of X is

free of rank 2, generated by a fiber class f and the class s of the unique section

having self-intersection −n. A curve C has bidegree (a, b) if C · f = a and

C · s = b. Since Fn is toric, this data determines a unique Chow cohomology

class in A1(Fn), for instance, by applying Fulton–Sturmfels results on the Chow

cohomology of toric varieties [17]. A tropical curve Γ of bidegree (a, b) on Fn

will be a tropical curve in |Σ| whose set of infinite ends is{
a ·

(
n

1

)
, b ·

(
1

0

)
, a ·

(
0

−1

)
, (an+ b) ·

(−1

0

)}
.

In other words, under the canonical isomorphism between the Minkowskiweights

of codimension 1 on ΣFn and A1(Fn), the recession fan of Γ represents a curve

of bidegree (a, b).

Definition 4.1: A string of a tropical curve is a subgraph homeomorphic to

either S1 or R, that does not contain any marked points.
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Figure 5. A curve of degree (2, 1) through 9 points on F2 and

its Newton polygon.

In what follows, we will show that requiring the j-invariant to be very large

imposes strong conditions on the combinatorial type of a tropical curve. The

formula in Theorem B will then follow by degenerating to a large j-invariant

and computing the multiplicities of such types.

Lemma 4.2: Let Γ be a tropical curve with a large j-invariant passing through

a point configuration P in general position. Then one of the following is true.

(1) Γ has a contracted edge. See Figure 6.

j

Figure 6. A curve with a contracted edge.

(2) Γ has a string that can be moved to the right. The string is dual

to a triangle with vertices (0, 0), (1, 0), (0, n), and k edges emanating

from (1, 0) towards the opposite edge, and two of the bounded edges

emanating from the string are part of the cycle. See Figure 7.
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Γk

jΓ0

Figure 7. A curve with a string.

(3) The same as the previous case, except that the cycle is flat and adjacent

to one of the bounded edges emanating from the string. See Figure 8.

Γ0

hk

Γk

Figure 8. A curve with a string and a flat cycle.

Proof. Consider the map J : M1,N(Δ) → R2n×M1,1. We will show that for cells

that do not correspond to one of the types listed above, the intersection of their

image with {P} × M
trop
1,1 is bounded. Since there are finitely many maximal

dimensional cells, the result follows. Note first that since the restriction of

{P} ×M
trop
1,1 to each cell is linear and P is in general position, the preimage of

{P} ×M
trop
1,1 is one-dimensional and connected.

Assume for the sake of contradiction that there is a cell of M1,N(Δ) which

does not correspond to one of the types above, and such that the j-invariant

is not bounded. Starting from a tropical curve Γ, we may deform it using the

fact that J−1({P} × M1,1) is connected to obtain a higher j-invariant, while

fixing the points. As shown during the proof of [27, Proposition 4.49], the only

way to deform a curve while maintaining the point condition is by moving a

string. We claim that the curve has precisely one string. Otherwise, Γ moves in

a two-dimensional family, which contradicts our assumption. Since we assume

that the j-invariant is unbounded, and the only way to deform the curve is by

moving the string, it cannot be a cycle. Moreover, all the vertices of Γ must
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be on one side of the string. Otherwise, the string cannot move indefinitely

without changing combinatorial type.

Denote the edges of the string e1, . . . , ek, and the bounded edges emanating

from them h1, . . . , hk−1. Arguing as in [16, Lemma 2.10], the string and the

edges emanating from it are dual to a subdivision of a polygon whose bound-

ary edges correspond to e1, ek and h1, . . . , hk−1, such that the edges dual to

h1, . . . , hk−1 are concave. For each i, j, denote êi, ĥj the edge of the polygon

dual to ei, hj (see Figure 9). As e1 and ek are ends of Γ, the edges ê1, êk are

boundary edges of Δ.

ê1

ê2

êk

ĥk

ĥ1

Figure 9. Polygon with a concave side.

We claim that the direction vectors of ê1, êk are, in fact, (1, 0) and (−1, n).

Suppose otherwise. The polygonal path ĥ1, . . . , ĥk−1 is concave, so the vertices

separating the segments are in the triangle spanned by the edges dual to e1, ek.

If those edges are different from (1, 0) and (−1, n), the triangle does not contain

any integer points, and k must equal 2. But then there is only a single edge of

weight zero emanating from the string and, in particular, the j-invariant cannot

be changed by moving the string.

From the discussion, we see that e1, ek are in directions
(

0
−1

)
,
(
1
n

)
, and the

triangle spanned by ê1, êk is as shown in Figure 10. In particular, h1, . . . , hk−1

are horizontal. The cycle is formed by either two edges emanating from the

string or a flat cycle connected to the string by an edge, and the j-invariant

varies by translating the string.

In what follows, we will make use of rational curves in a very general position,

namely simple curves [28, Definition 4.2].
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ê1

êk

ĥ1

ĥk

Figure 10. The polygon dual to the string.

Definition 4.3: A tropical curve is called simple if its dual subdivision contains

only triangles and parallelograms.

Given a map from a tropical elliptic curve of type (1) in Lemma 4.2, we may

remove the contracted edge to obtain a rational curve passing through the same

point configuration. When the curve is simple, the number of ways of doing

this, counted with multiplicity, has a simple combinatorial description. For a

lattice polygon P in R2 we denote its number of interior lattice points by
◦
#P .

Proposition 4.4: Let Γ′ be a simple rational curve passing through a config-

uration of N points in general position, and let L be a large real number (in

the sense of Lemma 4.2). Then the sum of the multiplicities of elliptic curves

with j-invariant L, obtained from Γ′ by adding a contracted bounded edge, is

◦
#Δ ·Mult(Γ′).

Proof. The proof is an adaptation of Lemma 6.2 in [26] with the modified

weights used here. Let Γ be an elliptic curve obtained from Γ′ by adding an

edge. By the balancing condition, together with the fact that Γ′ is simple, such

an edge can either connect two crossing edges of Γ′ or be the loop.

In the first case, the crossing edges are dual to a parallelogram P in Δ,

and [26, Lemma 4.11] implies that the multiplicity of Γ equals the multiplicity

of Γ′ multiplied by the area of P . By Pick’s theorem [32], the area of P is

A(P ) =
◦
#(P ) +

b

2
+ 1,

where b is the number of lattice points in the interior of the edges of P .
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Now, assume that Γ has a contracted loop. If the loop is adjacent to a 5-

valent vertex of Γ′, then Lemma 2.4 shows that the multiplicity of Γ is Mult(Γ′)
times the number of interior lattice points of the triangle dual to the vertex.

Finally, if the loop is attached to an edge of Γ′, the multiplicity equals the

number of interior lattice points on the dual edge of the Newton polygon times

Mult(Γ′). In conclusion, the total sum of the multiplicities of all the possible

elliptic curves Γ giving rise to Γ′ is

∑
P

( ◦
#(P ) +

b

2
+ 1

)
+
∑
T

◦
#(T ) +

∑
E

◦
#(E),

where the first and second sums are taken over all the parallelograms and tri-

angles in the Newton subdivision of Δ respectively. The third sum is taken

over the interior edges in the Newton subdivision, where we identify opposite

edges of a parallelogram. Denote IΔ the number of interior lattice points of

Δ that appear as vertices of the subdivision. Since Γ′ is simple, and its genus

is zero, the number of parallelograms in the subdivision equals IΔ. The above

sum becomes

∑
P

( ◦
#(P ) +

b

2

)
+
∑
T

◦
#(T ) +

∑
E

◦
#(E) + IΔ.

Every interior lattice point of Δ appears in the sum exactly once, therefore, it

equals
◦
#Δ.

4.1. Rational curves with contact orders. Our argument below will

require us to consider rational curves with certain tangency conditions with the

boundary. Therefore, we make the following definition:

Definition 4.5: Let w ≥ 1. We denote Δw(a, b) the degree of tropical curves

whose multiset of ends is{
a ·

(
n

1

)
, (b− w) ·

(
1

0

)
, 1 ·

(
w

0

)
, a ·

(
0

−1

)
, (an+ b) ·

(−1

0

)}
.

Similarly, for w′, w′′ ≥ 1 let Δw′,w′′
(a, b) be the degree of curves whose multiset

of ends is{
a ·

(
n

1

)
, (b−w′ −w′′) ·

(
1

0

)
, 1 ·

(
w′

0

)
, 1 ·

(
w′′

0

)
, a ·

(
0

−1

)
, (an+ b) ·

(−1

0

)}
.
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We denote Nw(a, b) (resp. Nw′,w′′
(a, b)) the number of rational curves of

type Δw(a, b) (resp. Δw′,w′′
(a, b)) passing through 2b + (n + 2)a − w (resp.

2b+ (n+ 2)a− w′ − w′′ + 1) points in general position.

We now set up some notation that will be useful in the sequel. Let Γ be a curve

corresponding to type (2) of Lemma 4.2. Then Γ has a string, and the curve

obtained by removing it is a union of rational curves. One of them, denoted Γ0,

is connected to the string via two horizontal edges which are part of the cycle

of Γ. Denote these edges h′
0 and h′′

0 . Denote Γ1, . . . ,Γk the other connected

components, and h1, . . . , hk respectively the horizontal edges connecting them

to the string. Let w′
0, w

′′
0 , w1, . . . , wk be the weights of the horizontal edges. For

each i, let ei be the edge of the string whose upper vertex meets hi, and let

vi be that vertex. Similarly, let e′0, e
′′
0 be the edges meeting h′

0, h
′′
0 at vertices

v′0, v
′′
0 . See Figure 11 for the case k = 1.

e′0

e′′0

e1

h1
Γ1

h′
0

h′′
0

Γ0

Figure 11. A curve with a cycle connected to a string.

Proposition 4.6: With notation as above,

Mult(Γ) = 2w′
0 · w′′

0 ·Mult(Γ0) ·
k∏

i=1

wi ·Mult(Γi).

Proof. We use Lemma 2.2 to compute the multiplicity and construct a matrix

representing the map J . Fix a point in Γ0 and consider the matrix whose

columns correspond to the edges of Γ, and rows correspond to the marked

points, the maps a1, a2 and the j-invariant.

For each marked point, choose a path leading to it from the root vertex, and

the entries in each column of the corresponding row are the length of the edges

traversed along this path. The row corresponding to the j-invariant consists of

the lengths of the edges along the cycle, and the rows representing the maps

a1, a2 consist of the entries of the vectors along the cycle.
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For a marked point in Γ0 we may choose the path so that it only contains

edges of Γ0, and for every marked point on Γi with i > 0 we may choose a path

that is supported on Γ0,Γi, h′
0, hi and the part of the string between v′0 and

vi. Therefore, the column corresponding to the length of hi is non-zero only in

rows corresponding to a marked point on Γi. In this case, the two entries are(−wi

0

)
. Similarly, the cycle consists only of edges of Γ0, h′

0, h
′′
0 , and the part of

the string between v′0 and v′′0 . We see that the column corresponding to h′′
0 has

entry w′′
0 in the row corresponding to the j-invariant, and a

(−w′′
0

0

)
in the rows

corresponding to the cycle.

We add each column of hi multiplied by
w′

0

wi
and the column of h′′

0 multiplied

by
w′

0

w′′
0

to the h′
0 column, making it zero everywhere, except for a 2w′

0 on the

j-invariant row. The determinant is 2w′
0 multiplied by the determinant of the

matrix obtained by removing the h′
0 column and the j-invariant row.

Notice that the rows corresponding to a point in Γi for some i are non-zero

only in columns corresponding to edges in Γ0, hi and edges in Γi. Similarly, the

rows corresponding to the cycle are non-zero only at columns corresponding to

edges in Γ0 and h′′
0 . As a result, we may rearrange the order of the rows and

columns to obtain a lower diagonal block matrix having: (1) block Bi for each i

whose rows correspond to the points in Γi, and columns correspond to the edges

in Γi, and (2) a block B′′ whose columns correspond to e′′0 , h
′′
0 , and the rows

correspond to the cycle. The determinant of Bi is wi times the multiplicity of

the curve Γi, with a root vertex at the point where hi meets the rest Γi. The

determinant of B′′ is w′′
0 . The determinant of the full matrix is the product of

the determinants of B1, . . . , Bk and B′′, which gives the desired result.

We next deal with curves Γ as in part 3. By removing the string, we are again

left with a union of rational curves. One of them, denoted Γ0, is connected to

the string via a horizontal edge with a flat cycle. Denote the weights of the edges

of the cycle by w′
0, w

′′
0 . Let Γ

1, . . . ,Γk be the other connected components, and

w0, . . . , wk be the weights of the horizontal edges connecting them to the string.

Proposition 4.7: If w′
0 �= w′′

0 then

Mult(Γ) = 2 ·
k∏

i=0

wi ·Mult(Γi).

If w′
0 = w′′

0 then

Mult(Γ) =
k∏

i=0

wi ·Mult(Γi).
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Proof. Denote

ε =

⎧⎨
⎩
1, w′ �= w′′;
1
2 , w′ = w′′.

By Lemma 2.3, the multiplicity of Γ equals 2ε times the multiplicity of the

rational curve Γ′ obtained by flattening the cycle. Let A′ be the matrix whose

determinant equals the multiplicity of Γ. Then arguing as in the proof of Propo-

sition 4.6, we rearrange the columns of A′ to obtain a block matrix such that

the determinant of every block Bi equals wi times the multiplicity of Γi, and

the formula follows.

Fixing the notation as above, we arrive at our main result of the section.

Theorem 4.8: The number of elliptic curves of degree (a, b) through

2b+ (n+ 2)a− 1 points in general position equals

N(a, b) =
◦
#Δ ·N0(a, b)

+2·
∑(

N

N0, N1, . . . , Nk

)
(w′

0 ·w′′
0N

w′
0,w

′′
0 (a0, b0))

( k∏
j=1

wjN
wj (aj , bj)

)

+
∑(

N

N0, N1, . . . , Nk

) k∏
j=0

wjN
wj (aj , bj).

The sum in the second row is over all partitions w′
0+w′′

0+w1+· · ·+wk = n with

w1 ≥ · · · ≥ wk and w′
0 ≥ w′′

0 , and over all choices of aj summing to a−1, choices

of bj summing to b+n (where j = 0, . . . , k), andN0 = 2b0+(n+2)a0−w′
0−w′′

0+1,

Ni = 2bi + (n+ 2)ai − wi.

The sum in the last row is over all partitions w0 + w1 + · · · + wk = n with

w1 ≥ · · · ≥ wk, and partitions w0 = w′
0 + w′′

0 , choices of aj, bj summing to

a− 1,
∑

bj = b+ n respectively, and Ni = 2bi + (n+ 2)ai − wi.

Proof. Observe that
∑

Ni = N . Since the number of elliptic curves passing

through the points is independent of the j-invariant, we may assume that it is

large in the sense of Lemma 4.2, and so we only count curves Γ belonging to

one of the three types in the lemma.

In the first case, we may assume by [28, Proposition 4.11] (possibly after

perturbing the points) that the curve Γ′ obtained by removing the contracted

edge is simple. Now, Proposition 4.4 implies that the number of curves satisfying

the point condition equals the first summand.
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In the second case, by removing the string we obtain a collection of rational

curves, with possibly weighted ends, Γ0, . . . ,Γk passing through the chosen

points. Let the degrees of these curves be

Δw′
0,w

′′
0 (a0, b0),Δ

w1(a1, b1), . . . ,Δ
wk(ak, bk).

Then
∑

aj = a − 1,
∑

bj = b + n and w′
0 + w′′

0 + · · · + wk = n. On the other

hand, starting with any collection of such rational curves, we obtain an elliptic

curve of type Δ(a, b) by attaching a string to the horizontal weighted ends. By

counting the number of ways to do that and applying Proposition 4.6 we obtain

the second summand. The third case follows similarly, using Proposition 4.7.

Note that in this case, we did not require that w′
0 ≥ w′′

0 , and as a result,

when the two weights are different, each curve is being double counted. We

compensate for that by counting each such curve with a factor of 1
2 .

We finish by examining two special cases of our formula. By fixing a = d and

b = 0 we recover Pandharipande’s enumerative formula for P2:

Corollary 4.9: The number of plane elliptic curves of degree d and fixed

j-invariant passing through 3d− 1 points in general position in the plane is
(
d− 1

2

)
·N0(d),

where N0(d) is the number of rational curves of degree d through the same

number of points.

As was stated in the introduction, Biswas, Mukherjee, and Thakre use sym-

plectic techniques to compute enumerative invariants for del-Pezzo surfaces [9,

Theorem 1.2] . When n = 1, the Hirzebruch surface F1 is del-Pezzo. In that

case, it is straightforward to verify that our results agree and yield the following

formula.

Corollary 4.10: The number of plane elliptic curves of degree (a, b) and fixed

j-invariant passing through 2b+ 3a− 1 points in general position on F1 is

(a2 + 2ab− 3a− 2b+ 2

2

)
·N0(a, b),

where N0(a, b) is the number of rational curves of degree (a, b) through the same

number of points.
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Proof. Since n = 1, there is no choice of positive weights as in the second and

third summands of Theorem 4.8. Therefore, the number of curves in ques-

tion equals the first summand. On F1, the number of internal lattice points

in the Newton polygon of a curve of degree (a, b) is a(a−1)
2 , which equals

a2+2ab−3a−2b+2
2 , and the result follows.
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