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ABSTRACT

We use modular symbols to construct p-adic L-functions for cohomological

cuspidal automorphic representations on GL(2n), which admit a Shalika

model. Our construction differs from former ones in that it systematically

makes use of the representation theory of p-adic groups.

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 238

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 241

Notions and Notations . . . . . . . . . . . . . . . . . . . 241

1. Preliminaries on function and distribution spaces 242

1.1. Distributions and measures . . . . . . . . . . . . . 242

1.2. Smooth representations . . . . . . . . . . . . . . . 243

1.3. Lattices and integral resolutions . . . . . . . . . . 244

2. Local distributions . . . . . . . . . . . . . . . . . . . 246

2.1. The map δ . . . . . . . . . . . . . . . . . . . . . . 246

2.2. Weakly ordinary stabilizations . . . . . . . . . . . 249

2.3. Local Shalika models and local distributions . . . . 255

2.4. Computation of modified Euler factors . . . . . . . 259

2.5. The semi-local case . . . . . . . . . . . . . . . . . . 266

3. The global distribution . . . . . . . . . . . . . . . . 267

3.1. Shalika models . . . . . . . . . . . . . . . . . . . . 268

3.2. The global distribution . . . . . . . . . . . . . . . . 270

4. Boundedness of the distribution . . . . . . . . . . . 273

Received July 18, 2016 and in revised form May 8, 2017

237



238 L. GEHRMANN Isr. J. Math.

4.1. Cohomology classes attached to characters . . . . . 274

4.2. Cohomological cuspidal representations . . . . . . 275

4.3. The Eichler Shimura homomorphism . . . . . . . . 278

4.4. The Steinberg module . . . . . . . . . . . . . . . . 281

4.5. Modular symbols . . . . . . . . . . . . . . . . . . . 283

4.6. Cohomological description of the distribution . . . 286

5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . 290

References . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Introduction

Modular symbols and integral formulas for special values of L-functions were

first used by Mazur–Swinnerton–Dyer [MSD74] and Manin [Man73] to construct

p-adic L-functions for cuspidal elliptic eigenforms. Besides generalizing the

construction to automorphic representations on GL2 over other fields than the

rationals (cf. [Man76]) there are several directions in which one can generalize

the method to higher rank groups:

One can study the p-adic behaviour of Rankin–Selberg L-functions associ-

ated to cuspidal automorphic representations on GLn×GLn−1 as has been

done most notably by Schmidt [Sch93], Kazhdan–Mazur–Schmidt [KMS00] and

Januszewski [Jan11], [Jan15]. In [Mah00] Mahnkopf studies the case of the stan-

dard L-function of a cuspidal representation of GL3.

In this paper we consider the standard L-function of a cuspidal automorphic

representation V on GL2n, which admits a Shalika model, over a totally real

field F . The construction of a p-adic L-function in this setting has been carried

out by Ash–Ginzburg [AG94] under the following assumptions:

(A) The cuspidal automorphic representation is cohomological with respect

to the trivial representation.

(B) The local components Vp are spherical and ordinary for all places p

above p.

(C) A certain restriction on the p-class group of F .

The main aim of this article is to relax the above assumptions. In particular, we

get rid of assumption (C) completely and work with a cuspidal representation,

which is cohomological with respect to an arbitrary algebraic representation

Val. Our methods are somewhat different from the ones of Ash and Ginzburg.
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Whereas their arguments are close to the classical ones, i.e., using Hecke rela-

tions to prove the distribution property and the boundedness of the distribu-

tion, we follow the strategy of Spieß in [Spi14], which builds on work of Darmon

(cf. [Dar01]). The two main features of this construction are the following: All

computations, e.g., the distribution and interpolation property, are purely local

and we construct the distribution from a cohomology class in the group coho-

mology of an Sp-arithmetic subgroup of GL2n with values in (Vp⊗Val)∨, where
Vp is the tensor product

⊗
p∈Sp

Vp. The existence of a well-behaved lattice in-

side the locally algebraic representation Vp ⊗ Val then implies the boundedness

of the distribution.

The main results of the paper are:

• Definition of the distribution in Section 3.2.

• Proof of an interpolation property (see Proposition 3.5).

• Proof of rationality of the distribution (see Corollary 4.11).

• Proof of integrality of the distribution (see Corollary 4.12).

Let us explain our results and their proofs in more detail:

The heart of the article is Section 2. We develop a theory of stabilizations

with respect to the standard parabolic subgroup Pn ⊂ GL2n of type (n, n) in

terms of the representation theory of p-adic groups. More precisely, a local

component Vp of V admits a stabilization Θ if it is a quotient of a parabolically

induced representation from Pn. Thus, we can view Vp as the global sections

of a sheaf on the quotient Pn(Fp)\GL2n(Fp). We use the action of the Levi

subgroup of Pn to trivialize this sheaf on an open subset inside the open Bruhat

cell. This yields a map

δΘ : C0
c (GLn(Fp),C) −→ Vp.

In the main Lemma 2.11 we show that δΘ (resp. a variant of it for locally alge-

braic representations) respects integral structures on both sides as long as the

stabilization Θ is weakly ordinary. This weak ordinarity condition is equivalent

to the usual ordinarity condition in the GL2-case but strictly weaker in the

higher rank case. In Section 2.3 we define a modified Euler factor E(Θ, χp, s)

for every character χp : F
∗
p → C∗ by integrating χ ◦ det over the pullback of

the local Shalika functional by δΘ. The modified Euler factors are holomorphic

multiples of the local L-factors, i.e., we have

E(Θ, χp, s) = e(Θ, χp, s) · L(Vp ⊗ χp, s),
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where e(Θ, χp, s) is an entire function. Using explicit formulas for the Shalika

functional we show that the modified Euler factors are the expected ones if Vp

is a twist of an unramified principal series representation by a character.

In the third section we globalize our construction. Let Sp be the set of places

of F above p. Suppose we have given stabilizations Θp of Vp for all places

p ∈ Sp, a critical half integer s+1/2 and a finite set of finite places Σ, which is

disjoint from Sp. Then we construct a distribution μΘΣ,s on the Galois group

Gp of the maximal abelian extension of F unramified outside p and∞ such that

the interpolation property∫
Gp

χ(γ)μΘΣ,s(dγ) =
∏
p∈Sp

e(Θp, χp, s+ 1/2)× LΣ(V ⊗ χ, s+ 1/2)

holds for all continuous characters χ : Gp → C∗.
Finally, in the last section we recast the definition of μΘΣ,s in terms of modular

symbols. As an immediate consequence we get that the distribution takes values

in a finite-dimensional vector space over the field of definition E of the finite part
of V . Using results of Grobner and Raghuram on rationality of Shalika models

(cf. [GR14]) we show the following more refined result: there exist periods Ωε

for all characters ε : F ∗
∞ = (F ⊗ R)∗ → {±1} such that∫

Gp

χ(γ)μΘΣ,s(dγ) ∈ E ′χΩχ∞ .

Here E ′ ⊂ C is the smallest extension of E , over which the stabilizations Θp are

defined, and E ′χ is the field you get by adjoining the image of χ. Assuming that

the stabilizations are weakly ordinary we show that the distributions μΘΣ,s are

p-adically bounded provided that the locally algebraic representation Val ⊗ Vp
admits a lattice L, which has a resolution by compactly induced representations

of finite type (see Definition 1.2 for a precise definition). The two main steps

in proving the boundedness are:

• Arithmetic groups are of type (VFL) (as introduced by Serre in [Ser72]),

and therefore modular symbols with values in the lattice L commute

with flat base change.

• δΘ respects integral structures.

We end the introduction with some comments on the existence of the above

mentioned lattices: By the Breuil–Schneider conjecture the representation

Val⊗Vp should always admit some lattice. In the GL2-case Vignéras has shown
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in [Vig08] that the existence of some lattice is equivalent to the existence of a

lattice, which has a good resolution. In Section 1.3 we list known examples of

locally algebraic representations in the higher rank case, which admit good lat-

tices. Since smooth ordinary principal series representations admit good lattices

by the work of Ollivier (cf. [Oll14]) our construction covers all cases discussed

in [AG94]. In the higher weight case the existence of good lattices is known in

special cases by results of Große-Klönne (see [GK14]).

Acknowledgments. I am grateful to Michael Spieß for sharing his ideas on

the construction of p-adic L-functions. I thank Jan Kohlhaase, Andreas Nickel

and Vytautas Paškūnas for several helpful discussions and Felix Bergunde for
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all past and current members of the Bielefeld arithmetic geometry study group

for the daily all-important coffee break. Finally, I would like to thank the

anonymous referee for a detailed list of remarks, which helped to improve the

exposition of the article.

Notions and Notations. We will use the following notions and notations

throughout the whole article. At the beginning of each section there will be an

additional set of notations which may be only valid for that given section.

The entry in the i-th row and j-th column of a matrix A is denoted by Aij .

We denote the n× n-identity matrix by 1n.

All rings are commutative and have a unit. The group of invertible elements

of a ring R will be denoted by R∗. If M is an R-module, we denote the dual

module HomR(M,R) by M∨.
If R is a ring and G a group, we will denote the group ring of G over R by

R[G]. If G is a topological group, we write G◦ for the connected component

of the identity. Given a closed subgroup H of a locally profinite group G and

an R-linear representation M of H , the (smooth) induction IndG
H M of M

from H to G is the space of all locally constant functions f : G → M such

that f(hg) = hf(g) for all h ∈ H, g ∈ G. The induction IndGH M is an R-

module on which G acts R-linearly via the right regular representation. The

(smooth) compact induction c-indGH M is the R[G]-submodule of IndGH M

consisting of functions which have compact support modulo H . Let χ : G→ R∗

be a character. We write R[χ] for the G-representation, which underlying R-

module is R itself and on which G acts via the character χ. Given a character
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χ : H → R∗ we will often write IndGH χ (resp. c-indGH χ) instead of IndGH R[χ]

(resp. c-indGH R[χ]).

For a set X and a subset A ⊂ X the characteristic function �A : X → {0, 1}
is defined by

�A(x) =

⎧⎨⎩1 if x ∈ A,
0 else.

We fix a prime p and embeddings

C
ι∞←−↩ Q ιp

↪−→ Cp.

We let ordp denote the valuation on Cp (and on Q via ιp) normalized such that

ordp(p) = 1. The valuation ring of Q with respect to ordp will be denoted

by R.

1. Preliminaries on function and distribution spaces

The purpose of this section is twofold. Firstly, we want to fix notations. Sec-

ondly, we want to collect results from the literature which we are going to use

later.

1.1. Distributions and measures. Given two topological spaces X,Y we

will write C(X,Y ) for the space of continuous functions from X to Y . If R is a

topological ring, we define Cc(X,R) ⊆ C(X,R) as the subspace of continuous

functions with compact support. If we consider Y (resp. R) with the discrete

topology, we will often write C0(X,Y ) (resp. C0
c (X,R)) instead.

Since a locally constant map with compact support takes only finitely many

different values, the canonical map

C0
c (X,Z)⊗R −→ C0

c (X,R)(1)

is an isomorphism ofR-modules. For a ringR and anR-moduleN the R-module

of N -valued distributions on X is given by

Dist(X,N) = HomZ(C
0
c (X,Z), N).

By (1) every distribution μ ∈ Dist(X,N) extends uniquely to an R-linear ho-

momorphism

C0
c (X,R) −→ N, f 
−→

∫
X

f dμ.



Vol. 226, 2018 ON SHALIKA MODELS AND p-ADIC L-FUNCTIONS 243

Suppose f : X → Y is a continuous map between compact spaces. Then the

pullback map

C0(Y,R) −→ C0(X,R), g 
−→ g ◦ f
induces a pushforward map on distributions

f∗ : Dist(X,N) −→ Dist(Y,N).(2)

If G is a topological group and H a closed subgroup, G acts on C0(G/H,N)

(resp. C0
c (G/H,R)) via left-multiplication, i.e., (gf)(x) = f(g−1x). This in

turn induces a G-action on Dist(G/H,N) via (gD)(f) = D(g−1f). In case

H is trivial, we can extend the action of G to a G × G-action on C0(G,N)

(resp. C0
c (G,R)) by (g1, g2)f(g) = f(g−1

1 gg2).

Now, let X be a profinite topological space and E a p-adic field, i.e., E is

a field of characteristic 0 which is complete with respect to an absolute value

| · | : E → R whose restriction to Q is the usual p-adic absolute value. Until the

end of this subsection R will denote the valuation ring of E.

Let V be a finite-dimensional E-vector space and L ⊂ V a lattice. The space

Distb(X , V ) of bounded distributions is defined as the image of the inclusion

Dist(X , L)⊗ E −→ Dist(X , V ).

The definition does not depend on the choice of lattice. Any bounded V -valued

distribution μ can uniquely be extended to a continuous E-linear homomor-

phism

C(X , E) −→ V, f 
−→
∫
X
f dμ.

We say that a C-valued distribution μ ∈ Dist(X ,C) is a p-adic measure if

there exists a Dedekind ring R ⊂ R such that the image of C0(X ,Z) under μ is

contained in a finitely generated R-submodule of C. Let Lμ,R be the smallest

such R-submodule of C. In this case μ defines a bounded distribution with

values in L̃μ := Lμ,R ⊗R Cp.

1.2. Smooth representations. Let G be a locally profinite group and E a

field of characteristic 0. A G-representation on an E-vector space V is smooth

if the stabilizer of v in G is open for all v ∈ V We write Csm
E (G) for the category

of smooth G-representations on E-vector spaces.

Lemma 1.1: Let K ⊂ G be a compact, open subgroup. Then c-indGK P is a

projective object in Csm
E (G) for every K-representation P ∈ Csm

E (K).
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Proof. As a consequence of Frobenius reciprocity the compact induction functor

sends projective objects to projective objects. But Csm
E (K) is a semi-simple

abelian category (see, for example, Chapter 2.2 of [BH06]) and thus every object

in Csm
E (K) is projective.

1.3. Lattices and integral resolutions. Let E be a field, R ⊂ E a subring

and G a locally profinite group. A G-representation on an E-vector space V

is called R-integral if there exists a locally-free G-stable R-submodule L ⊂ V

such that V = L ⊗R E. In this case we call L an R[G]-lattice in V . For

example, C0
c (G,R) is a R[G × G]-lattice in C0

c (G,E). There is also a twisted

variant of this: Suppose we have a character χ : G→ E∗ and a compact, open

subgroup K ⊂ G such that χ(K) ⊂ R∗. Then, the R-module

C0
c (G,R)⊗R χ := c-indG×K

K×K(C0(K,R)⊗R R[χ])(3)

defines a R[G×K]-lattice in C0
c (G,E)⊗E E[χ].

The second kind of examples we are interested in will be lattices in locally

algebraic representations of reductive groups over p-adic fields: Let F/Qp be a

finite extension with ring of integers OF and n ≥ 1 a fixed integer. We write Gn

for the group of F -rational points of GLn with the p-adic topology and Z ⊂ Gn

for its center. Further, we fix a finite extension E ⊂ Cp of Qp such that every

embedding F ↪→ Cp factors through E We will denote the valuation ring of E

by R.

Definition 1.2: Let V be a representation of Gn on an E-vector space. An

R[Gn]-lattice L inside V is called homologically of finite type if there exists

a resolution of finite length

0 −→ Cm −→ · · · −→ C0 −→ L −→ 0(4)

of R[Gn]-modules with the following properties: Each Ci is of the form

Ci = c-indGZK[i]
Li

with compact, open subgroups K[i] ⊂ Gn and R[ZK[i]]-modules Li, which are

free R-modules of finite rank. We say that V is homologically integral if V

admits a lattice which is homologically of finite type.
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Remark 1.3: (i) The significance of the notion of homological integrality

will be made apparent in the proof of Proposition 4.9.

(ii) It is easy to see that the property of being homologically integral is

preserved under twisting by finite order characters.

An irreducible locally Qp-rational representation of Gn on an E-vector space

is a tensor product V = Vsm⊗Val, where Vsm ∈ Csm
E (Gn) is irreducible and Val is

an irreducible E-rational representation of the algebraic group ResF/Qp
(GLn,F ).

The following proposition shows that being homologically integral is rather com-

mon.

Proposition 1.4 (Vignéras): Let V be an irreducible, locally Qp-rational rep-

resentation of G2 on an E-vector space. Then V is integral if and only if V is

homologically integral.

Proof. The locally algebraic case is the content of Proposition 0.4 of [Vig08].

The locally Qp-rational case is proved in exactly the same way.

Definition 1.5: Suppose that F = Qp. An irreducible algebraic representation

Val is said to have p-small weights if it fulfills the following two conditions:

• The reduction mod p of one (and thus every) R[GLn(Zp)]-lattice of Val

is absolutely irreducible.

• We have 〈μ + ρ, β̌〉 ≤ p for every positive root β. Here μ denotes the

highest weight of Val with respect to the Borel subgroup of upper trian-

gular matrices and ρ is half of the sum of all positive roots. Equivalently,

if we write μ = (μ1, . . . , μn), the above condition translates into

μi − μi−1 + 1 ≤ p
for all 1 ≤ i ≤ n− 1.

Theorem 1.6 (Große-Klönne): Let V be an irreducible, locally Qp-rational

representation of Gn on an E-vector space and assume further that

• F = Qp,

• Val has p-small weights,

• Vsm is an irreducible, unramified principal series representation,

• the central character of V takes values in Z∗
p and

• the (twisted) Hecke-eigenvalues of V are integral.

Then V is homologically integral.
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Proof. By the results in Section 3 of [Kat81] our situation is just a special case

of [GK14], Theorem 1.1 (iii).

Definition 1.7: A principal series representation V ∈Csm
E (Gn) is called ordinary

if there exists a character χ : Bn → R∗ on a Borel group Bn ⊂ Gn such that

V ∼= IndGn

Bn
E[χ].

Theorem 1.8 (Ollivier): Suppose V ∈ Csm
E (Gn) is an ordinary irreducible prin-

cipal series representation. Then V is homologically integral.

Proof. Given a character χ : Bn → R∗ as in the definition of ordinarity we can

consider the lattice

IndGn

Bn
R[χ] ⊂ V.

By the work of Ollivier (cf. [Oll14]) this lattice is homologically of finite type.

Note that Ollivier only considers representations over fields in loc. cit. but her

methods carry over verbatim to our situation.

2. Local distributions

Throughout this section let F be a finite extension of Qp, O its ring of integers

with maximal ideal p = (�) and q the cardinality of its residue field. We denote

the group of units of O by U and put U (m) = {u ∈ U | u ≡ 1 mod pm}. We

denote by ν the normalized additive valuation on F (i.e., ν(�)=1) and by |x|
the modulus of x ∈ F ∗ (i.e., |�| = q−1).

Let Gr (resp. Kr) denote the group of invertible (r × r)-matrices over F

(resp. O) and let d∗g denote the Haar measure on Gr (normalized such that

Kr has volume 1). We denote by K
(m)
r the principal congruence subgroup of

Kr of level m, i.e., the kernel of the reduction map from Kr to GLr(O/pm).

The Borel subgroup of upper triangular matrices in Gr will be denoted by Br.

If r = 2n is even, we let Pn denote the standard parabolic subgroup of G2n of

type (n, n). Finally, we fix a character ψ : F → Q
∗
of conductor O.

2.1. The map δ. In this section we construct a map δ (depending on several

choices) from the space of locally constant functions on Gn to smooth repre-

sentations of G2n which are parabolically induced from Pn. It will be used in

Section 2.3 to define the local part of our global distribution. The map δ was

first studied by Spieß for n = 1 in [Spi14].
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Let us fix an irreducible representation π ∈ Csm
E (Gn × Gn) over a field E

of characteristic 0. We can write π as a tensor product π1 ⊗E π2, where

π1, π2 ∈ Csm
E (Gn) are irreducible representations. They are uniquely deter-

mined up to isomorphism by π. We consider π as a representation of Pn via

the projection Pn � Gn ×Gn.

For every element ρ ∈ π we define the E-linear map

δ = δρ : C
0
c (Gn, E) −→ IndG2n

Pn
π(5)

as follows: if g ∈ G2n is of the form

g =

(
g1 ∗
0 g2

)(
0 1n

1n 0

)(
1n u

0 1n

)
with g1, g2, u ∈ Gn, we put

δ(f)(g) = f(u) · π(g1, g2u)ρ
and otherwise we set δ(f)(g) = 0.

The groupGn×Gn acts on C0
c (Gn, E) as in Section 1.1 and on IndG2n

Pn
through

the diagonal embedding of Gn ×Gn into G2n.

Lemma 2.1: Let D ⊂ Gn be the subgroup given by D = {g ∈ Gn | (g, g)ρ = ρ}.
Then δ is Gn ×D-equivariant.
Proof. Let

g =

(
g1 ∗
0 g2

)(
0 1n

1n 0

)(
1n u

0 1n

)
∈ G2n

with g1, g2, u ∈ Gn and (h1, h2) ∈ Gn ×D. For every f ∈ C0
c (Gn, E) we have((

h1 0

0 h2

)
δ(f)

)
(g) = δ(f)

((
g1 ∗
0 g2

)(
0 1n

1n 0

)(
1n u

0 1n

)(
h1 0

0 h2

))

= δ(f)

((
g1h2 ∗
0 g2h1

)(
0 1n

1n 0

)(
1n h−1

1 uh2

0 1n

))
= f(h−1

1 uh2) · π(g1h2, g2h1h−1
1 uh2)ρ

= f(h−1
1 uh2) · π(g1, g2u)π(h2, h2)ρ

= f(h−1
1 uh2) · π(g1, g2u)ρ

= δ((h1, h2)f)(g)

and thus the claim follows.
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Pulling back linear functionals on IndG2n

Pn
π along δ yields E-valued distribu-

tions on Gn, i.e., given λ : IndG2n

Pn
π → E we define

μλ := λ ◦ δ ∈ Dist(Gn, E).(6)

For every element ϕ ∈ IndG2n

Pn
π we let ξλϕ : G2n → E be the function given by

ξλϕ(g) = λ(gϕ).

If C is a compact, open subgroup of Gn, we put ξλC = ξλδ(�C).

Lemma 2.2: Let λ : IndG2n

Pn
π → E be a linear functional and C ⊂ Kn a com-

pact, open subgroup. Then for all f ∈ C0
c (Gn, E), which are C-invariant under

right multiplication, we have∫
Gn

f(g)μλ(dg) = [Kn : C]
∫
Gn

f(g) ξλC

((
g 0

0 1

))
d∗g.

Proof. It is enough to prove the formula in the case f = �AC = (A, 1n)�C with

A ∈ Gn. In this case we have∫
Gn

f(g)μλ(dg) =

∫
Gn

(A, 1n)�C(g)μλ(dg)

= ξλC

((
A 0

0 1n

))
= [Kn : C]

∫
Gn

�C(g) ξλC

((
Ag 0

0 1n

))
d∗g

= [Kn : C]
∫
Gn

f(g) ξλC

((
g 0

0 1n

))
d∗g,

which is exactly what we claimed.

Besides the multiplicative equivariance properties of the map δ there is an

additional additive equivariance. We let Mn(F ) act on C
0
c (Mn(F ), E) by

(X � f)(g) = f(g +X)

and on IndGL2n

Pn
π via the embedding

Mn(F )→ G2n, X 
→
(
1n X

0 1n

)
.
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Lemma 2.3: Let A ∈ Gn be a matrix and D ⊂ Gn a compact, open subset

such that ρ is stable under {1n} × D. Then we have

δ(X � f) =

(
1n X

0 1n

)
δ(f)

for all f ∈ C0(AD, E) and all matrices X ∈Mn(F ) with AD +X = AD.
Proof. It is convenient to introduce an untwisted version of the map δ. For

every ρ′ ∈ π we define the Mn(F )-equivariant map

∂ρ′ : Cc(Mn(F ), E) −→ IndGL2n

Pn
π

as follows: if g ∈ G2n is of the form

g =

(
g1 ∗
0 g2

)(
0 1n

1n 0

)(
1n u

0 1n

)
with g1, g2 ∈ Gn and u ∈Mn(F ), we put

∂ρ′(f)(g) = f(u) · π(g1, g2)ρ′

and otherwise we set ∂ρ′(f)(g) = 0.

Let f be a function in C0(AD, E). Then by assumption we have

δρ(X � f) = ∂(1,A)ρ(X � f)

=

(
1n X

0 1n

)
∂(1,A)ρ(f)

=

(
1n X

0 1n

)
δρ(f),

which proves the assertion.

2.2. Weakly ordinary stabilizations. Using the map discussed in the pre-

vious section we want to construct maps from function spaces to irreducible

locally algebraic representations of G2n. The main aim of this section is to give

a criterion on when these maps respect integral structures.

Let E be a field of characteristic 0 and R ⊂ E a subring with field of fractions

E, which is integrally closed in E. We are mostly interested in the case that p

is not invertible in R.
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Definition 2.4: Let V ∈ Csm
E (G2n) be an irreducible representation.

(i) A stabilization Θ = (π, ρ, ϑ) of V consists of

• an irreducible representation π ∈ Csm
E (Gn ×Gn),

• a non-zero element ρ ∈ π and

• a non-zero G-equivariant homomorphism ϑ : IndG2n

Pn
π → V .

(ii) Let Θ = (π, ρ, ϑ) be a stabilization of V . Write π as a tensor prod-

uct π1 ⊗ π2 of irreducible representations π1, π2 ∈ Csm
E (Gn). We put

α := αΘ := ω2(�), where ω2 denotes the central character of π2. The

stabilization Θ is called R-integral if α−1 ∈ R.
Remark 2.5: (i) The exact value of α does depend on the choice of uni-

formizer � if ω2 is ramified. But changing the uniformizer changes α

only by a root of unity. Hence, the integrality condition for stabiliza-

tions is independent of the choice of uniformizer.

(ii) If n = 1, the existence of a stabilization is equivalent to V not being

supercuspidal.

Example 2.6: (i) Our guiding example will be the case of unramified prin-

cipal series representations. Let χ1, . . . , χr : F
∗ → E∗ be unramified

characters. They induce a character

χ : Br −→ E∗ via b 
−→
r∏

i=1

χi(bii).

We will write IndGr

Br
(χ1, . . . , χr) for the smooth representation IndGr

Br
χ.

Now, assume that r = 2n and that V = IndG2n

B2n
(χ1, . . . , χ2n) is irre-

ducible. We will call Θur = (πur, ρur, ϑur) with

• πur = IndGn

Bn
(χ1, . . . , χn)⊗ IndGn

Bn
(χn+1, . . . , χ2n)

• ρur the unique normalized Kn ×Kn-fixed vector in π

• ϑur the canonical isomorphism

the unramified stabilization of V with respect to (χ1 . . . χ2n). The un-

ramified stabilization is integral if α−1 =
∏2n

i=n+1 χi(�)−1 ∈ R. Note

that we get different models of V and hence different unramified sta-

bilizations by reordering (and normalizing) the characters χi. This

amounts to
(
2n
n

)
different unramified stabilizations for each irreducible

unramified principal series representation. Each of these stabilizations

is defined over a finite extension of the field of definition of V , which

can be made explicit in terms of Hecke eigenvalues.
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(ii) For r ≥ 1 let Str denote the Steinberg representation of Gr. Then St2n

has a canonical stabilization of the form ΘSt = (Stn⊗ Stn, ρ ⊗ ρ, ϑ),

where ρ ∈ Stn is the normalized Iwahori-fixed vector. The Steinberg

stabilization is defined over Q and is Z-integral since α = 1.

(iii) Assume we have given an irreducible representation V ∈ CE(G2n) to-

gether with a stabilization Θ = (π, ρ, ϑ). Let χ : F ∗ → E∗ be a continu-

ous finite order character. After choosing a non-zero element e ∈ E[χ],

we can define the twisted stabilization Θ ⊗ χ = (π ⊗ χ, ρ ⊗ e, ϑχ)) of

V ⊗ χ, where ϑχ is given by the composition

IndG2n

Pn
π ⊗ χ ∼=−→ IndG2n

Pn
π ⊗ χ ϑ⊗id−−−→ V ⊗ χ.

The twisted stabilization Θ ⊗ χ is weakly ordinary if and only if Θ is

weakly ordinary.

Given a stabilization Θ = (π, ρ, ϑ) of V we can precompose ϑ with the map

δρ of the previous section to obtain

δΘ = ϑ ◦ δρ : C0
c (Gn, E) −→ V.

The following lemma explains the notion of integrality of stabilizations. It

(resp. its locally algebraic counterpart below) is one of the main ingredients to

prove that the distributions we construct in Section 3 are bounded.

Lemma 2.7: Let V ∈ Csm
E (G2n) be irreducible and R-integral and let L ⊂ V

be a G2n-stable lattice. If Θ = (π, ρ, ϑ) is an R-integral stabilization of V , then

there exists a non-zero constant c ∈ E∗ such that

c · δΘ : C0
c (Gn, R) −→ L ⊂ V.

Proof. In fact, we prove a stronger statement: Let Q ⊂ G2n be the subgroup

Q =

{(
g u

0 1n

)
∈ G2n | g ∈ Gn, u ∈Mn(F )

}
and let m ≥ 1 be a natural number such that {1n}×K(m)

n is in the stabilizer of

ρ. Then the image of C0
c (Gn, R) under δ = δρ is contained in the R[Q]-module

generated by δ(�
K

(m)
n

).

For this, let A ∈ Q be the matrix given by

A =

(
�1n (� − 1)1n

0 1n

)
.
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It is the product of the two matrices

A0 =

(
1n (� − 1)1n

0 1n

)
and A1 =

(
�1n 0

0 1n

)
.

In the following, we will abbreviate a scalar matrix with a ∈ F on its diagonal

simply by a. Using Lemma 2.1 we get

Aδ(�
K

(r)
n

)(g) = A0A1δ(�K
(r)
n

)(g)

= A0δ(A1�K
(r)
n

)(g)

= A0δ(�
K
(r)
n

)(g)

= �

K

(r)
n

(u+� − 1) · π(g1, g2(u+� − 1))ρ

= �

K

(r)
n

(u+� − 1) · α · π(g1, g2)ρ
= α · �

K
(r+1)
n

(u) · π(g1, g2)ρ
= α · �

K
(r+1)
n

(u) · π(g1, g2u)ρ
= α · δ(�

K
(r+1)
n

)(g)

for all r ≥ m and

g =

(
g1 ∗
0 g2

)(
0 1n

1n 0

)(
1n u

0 1n

)
∈ G2n

with gi, u ∈ Gn. Therefore, the claim follows by induction.

In the remainder of this subsection we want to discuss locally algebraic ver-

sions of the previous results. In particular, E ⊂ Cp will be a finite extension

of Qp with valuation ring R. We assume that every embedding σ : F → Cp

factors through E. Let Z[Hom(F,E)] be the free abelian group on the set of

field homomorphisms from F to E. We identify

a =
∑

aσσ ∈ Z[Hom(F,E)]

with the group homomorphism

a : F ∗ → E∗, x 
→
∏
σ

σ(x)aσ .

Given a =
∑
aσσ and b =

∑
bσσ we write a ≤ b if and only if aσ ≤ bσ for all σ.

Further, we fix an irreducible smooth representation Vsm ∈ Csm
E (G2n) and

an irreducible, finite-dimensional Qp-rational representation Val of GL2n,F on a

finite-dimensional E-vector space. By definition there exist irreducible
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E-rational representations Vσ of GL2n,E for all embeddings σ : F → E and

a G-equivariant isomorphism

Val ∼=
⊗

σ : F→E

Vσ.

Here G acts on Vσ through the embedding σ : F → E. We will denote the

highest weight of Vσ with respect to the Borel subgroup of upper triangular

matrices by μσ = (μσ,1, . . . , μσ,2n). We set eσ = μσ,1 + · · ·+ μσ,n and define

eal =
∑

σ∈Hom(F,E)

eσσ.

Definition 2.8: Let V = Vsm ⊗ Val be as above.

(i) A stabilization Θ of V is just a stabilization of its smooth part Vsm.

(ii) We say that a stabilization Θ of V is weakly ordinary (with respect

to Val) if α
−1
Θ eal(�)−1 ∈ R.

(iii) A critical point Vs of V is a one-dimensionalGn×Gn-subrepresentation

of Val.

Remark 2.9: (i) The notion of weak ordinarity can be seen as an auto-

morphic version of Panchishkin’s p-ordinarity condition of motives (see

Section 5 of [Pan94]).

(ii) Every irreducible unramified principal series representation, which is

ordinary in the sense of Definition 1.7, has a weakly ordinary stabiliza-

tion.

(iii) On the notion of critical points: We will see in Section 4.2 that critical

points of L-functions of global automorphic representations correspond

to certain one-dimensional subrepresentations of Val.

Given a stabilization Θ and a critical point Vs ⊂ Val of V we define

δΘ,s : C
0
c (Gn, E)⊗ Vs δϑ⊗id−−−−→ Vsm ⊗ Vs ↪→ V.

As an immediate consequence of Lemma 2.1 we get

Lemma 2.10: The map δΘ,s is Gn ×D-equivariant, where D ⊂ Gn is the open

subgroup given by D = {g ∈ Gn | (g, g)ρ = ρ}.
There is also a version of the integrality Lemma 2.7 in this setup. Let χs be

the character of the one-dimensional Gn×Gn-representation Vs. After choosing
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an isomorphism E[χs] ∼= Vs we can consider the lattice

C0
c (G,R)⊗R χs ⊂ C0

c (Gn, E)⊗ Vs
as defined in (3).

Lemma 2.11: Suppose V is R-integral and let L ⊂ V be a G2n-lattice. If Θ is

a weakly ordinary stabilization of V and Vs is a critical point of V , then there

exists a non-zero constant c ∈ E∗ such that

c · δΘ,s : C
0
c (Gn, R)⊗R χΘ → L ⊂ V.

Proof. Let u ∈ G2n be the matrix

u =

(
1n −1n
0 1n

)
and ν : Gm → GL2n the cocharacter which sends t ∈ Gm to the diagonal matrix

ν(t) with ν(t)ii = t if 1 ≤ i ≤ n and ν(t)ii = 1 if n + 1 ≤ i ≤ 2n. We

put ν′ = uνu−1. Then the matrix A we considered in the proof of Lemma

2.7 is nothing but ν′(�). We can view Val as a ResF/Qp
(Gm,F )-representation

via μ′ and hence it has a weight space decomposition, i.e., there exists a basis

(v1, . . . , vk) of Val and elements e1, . . . , ek ∈ Z[Hom(F,E)] such that

Avl = el(�)vl ∀1 ≤ l ≤ k.
From the proof of Lemma 2.7 we see that there exists an integer m ≥ 1 such

that

δΘ(�K
(r+1)
n

)⊗ vl = α−1
Θ el(�)−1 ·A(δΘ(�K

(r)
n

)⊗ vl)
for r ≥ m and all 1 ≤ l ≤ k. After multiplication with a non-zero constant

we might assume that δΘ(�K
(m)
n

) ⊗ vl ∈ L for all 1 ≤ l ≤ k. By definition we

have el ≤ eal for all 1 ≤ l ≤ k. Thus, by the ordinarity assumption on Θ we

inductively get

δΘ(�K
(r+1)
n

)⊗ vl ∈ L
for all r ≥ m. Multiplying the vi with appropriate non-zero constants we can

assume that R[χs] ⊂ Vs is a submodule of the R-span of v1, . . . , vk and the

claim follows.

For the sake of clarity let us work out the conditions of the preceding lemma

in the case F = Qp, n = 1, Val = Symk(Q2
p)

∨ and Vsm = IndG2

B2
(χ1, χ2) an

irreducible principal series representation. We set α = χ2(p) and α′ = χ1(p).



Vol. 226, 2018 ON SHALIKA MODELS AND p-ADIC L-FUNCTIONS 255

The highest weight of Val is given by μ = (0,−k). The existence of a lattice in

V = Vsm ⊗ Val implies that

(i) αα′p−k ∈ R∗,
(ii) α ∈ R and pα′ ∈ R.

The associated unramified stabilization is ordinary if and only if α−1 ∈ R. So

the weak ordinarity hypothesis together with the existence of a lattice implies

that α is a unit in R. Vice versa, it is easy to see that the representation V has

a lattice if α ∈ R∗ and condition (i) holds.

2.3. Local Shalika models and local distributions. The Shalika sub-

group S of G2n is given by

S =

{(
h 0

0 h

)(
1n X

0 1n

)
|h ∈ Gn, X ∈Mn(F )

}
.

We fix a locally constant character η :F ∗→C∗. It induces a character ηψ:S→C∗

via (
h 0

0 h

)(
1n X

0 1n

)

→ η(det(h))ψ(tr(X)).

Definition 2.12: An irreducible representation V ∈ Csm
C (G2n) has a (local)

(η, ψ)-Shalika model if there exists a non-zero functional λ : V → C such

that

λ(sϕ) = ηψ(s)λ(ϕ) ∀s ∈ S, ϕ ∈ π.
The functional λ is called a (local) (η, ψ)-Shalika functional.

Remark 2.13: (i) Suppose V has an (η, ψ)-Shalika functional λ. Let

χ : F ∗ → C∗

be a locally constant character and e ∈ C[χ] a non-zero element. Then

λχ : V ⊗ C[χ]→ C, v ⊗ e 
→ λ(v)

defines a (ηχ2, ψ)-Shalika functional on V ⊗ χ.
(ii) If η is the trivial character, Jacquet and Rallis have shown in [JR96]

that Shalika functionals are—if they exist—unique up to multiplication

by a constant. An elementary proof of this fact can be found in [Nie09].

Using the first remark one gets the uniqueness of (η, ψ)-Shalika func-

tionals if η is a square.
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(iii) If η is a finite order character, Ash and Ginzburg have proven the

uniqueness of Shalika functionals for unramified, irreducible principal

series representations under a technical condition on the induction pa-

rameter (see Lemma 1.7 of [AG94]).

In view of the above remarks we make the following

Assumption 1: We assume that local Shalika functionals are—if they exist—

unique up to multiplication by a non-zero scalar.

Suppose we have given a stabilization Θ = (π, ρ, ϑ) of an irreducible repre-

sentation V ∈ Csm
C (G2n), which has a Shalika functional λ. Let

μΘ := μλ◦ϑ ∈ Dist(Gn,C)

be the distribution defined in (6).

Lemma 2.14: Assume that V is generic and that there exists t ∈ C such that

V ⊗ | det |t is unitary. For every continuous character χ : F ∗ → C∗ the integral

E(Θ, χ, s) :=

∫
Gn

χ(det(g))| det(g)|s−1/2 dμΘ(g)(7)

converges absolutely for Re(s) large. There is a factorization

E(Θ, χ, s) = e(Θ, χ, s) · L(V ⊗ χ, s),(8)

where e(Θ, χ, s) is an entire function. Hence, E(Θ, χ, s) can be extended to a

meromorphic function on C.

Proof. Let C ⊆ Kn be an open subgroup, which is contained in the kernel of

χ ◦ det. By Lemma 2.2 we have the following equality:

E(Θ, χ, s) = [Kn : C]
∫
Gn

χ(det(g))| det(g)|s−1/2 ξλ◦ϑC

((
g 0

0 1n

))
d∗g.

The function ξλ◦ϑC is an element of the Shalika model of V . Hence the claim

follows from [FJ93] Proposition 3.1.

Remark 2.15: In the case n = 1, the vector ρ of the stabilization Θ is determined

uniquely up to a constant and therefore the modified Euler factor essentially

does not depend on ρ. If n > 1, there are different choices of ρ yielding a priori

different modified Euler factors.
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The modified Euler factors E(Θ, χ, s) behave well under twisting. Using

Remark 2.13 (i) a straightforward calculation gives

Lemma 2.16: Let χ′ : F ∗ → C∗ be a continuous character. Then the equality

E(Θ⊗ χ′, χ, s) = E(Θ, χ′χ, s)

holds.

Let us take a closer look at the spherical example: Fix unramified characters

χ1, . . . , χ2n such that

V = IndG2n

B2n
(χ1, . . . , χ2n)

is irreducible and has a unitary twist. Assume that V has a (η, ψ)-Shalika

model. Then by Proposition 1.3 of [AG94] we know that η is unramified and we

may assume that χi = ηχ−1
2n−i+1 (which we will do in the following). Conversely,

every such unramified principal series representation has a Shalika model. More

precisely: Write

βi = χi(�)qn−i+1/2 = αiq
n−i+1/2

for the Satake parameters of V and let | · |∞ be the standard norm on C. If we

assume that |βiβj |∞ < 1 for all 1 ≤ i < j ≤ n, then by [AG94], Lemma 1.4, the

following absolutely convergent integral gives the Shalika functional:

λ(ϕ)=

∫
Kn

∫
Mn(F )

ϕ

((
0 1n

1n 0

)(
g 0

0 g

)(
1n X

0 1n

))
η−1(det(g))ψ−1(tr(X))dXd∗g.

Here dX denotes an additive Haar measure on Mn(F ). If βiβj �= η±1(�) for

all 1 ≤ i < j ≤ n, then the Shalika functional can be defined via analytic

continuation of the above integral (see the proof of [AG94], Proposition 1.3).

Let

Θur = (πur, ρur, ϑur)

be the unramified stabilization of V with respect to (χ1, . . . χ2n). We can write

ρur = ρ1 ⊗ ρ2,

where ρ1 ∈ IndGn

Bn
(χ1, . . . , χn) and ρ2 ∈ IndGn

Bn
(χn+1, . . . , χ2n) are normalized

such that ρi(k) = 1 for i = 1, 2 and all k ∈ Kn.
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Proposition 2.17: Let V = IndG2n

B2n
(χ1, . . . , χ2n) be an irreducible unramified

principal series as above with Shalika functional λ. Assume that βiβj �= η±1(�)

for all 1 ≤ i < j ≤ n. Then we have∫
Gn

f(g)μΘur(dg) =

∫
Mn(F )

�Gn(X)ρ2(X)f(X)ψ−1(tr(X)) dX(9)

for all f ∈ C0
c (Gn,C) which are invariant under conjugation by Kn.

As a special case we get: For every continuous character χ : F ∗ → C∗ we have

E(Θur, χ, s)=

∫
Mn(F )

�Gn(X)ρ2(X)χ(det(X))| det(X)|s−1/2ψ−1(tr(X)) dX(10)

for Re(s) large.

Proof. For every s ∈ C we define

V s = IndGn

Bn
(χ1| · |s, . . . , χ2n| · |s)

and let

ρs1 ∈ IndGn

Bn
(χ1| · |s, . . . , χn| · |s) resp. ρs2 ∈ IndGn

Bn
(χn+1| · |−s, . . . , χ2n| · |−s)

be the normalized spherical vectors, i.e., ρsi (k) = 1 for all k ∈ Kn, i = 1, 2. We

write δs for the corresponding maps

δs : C0
c (Gn,C)→ IndG2n

B2n
(χ1| · |s, . . . , χn| · |s, χn+1| · |−s, . . . , χ2n| · |−s) =: πs

and λs for the Shalika functional of V s. Since the map s 
→ λs(δs(f)) is analytic

we can compute the left-hand side of (9) as the analytic continuation to s = 0

of the integral∫
Kn

∫
Mn(F )

δs(f)

((
0 1n

1n 0

)(
g 0

0 g

)(
1n X

0 1n

))
η−1(det(g))ψ−1(tr(X)) dXd∗g

=

∫
Kn

∫
Gn

ρs1(g)ρ
s
2(gX)f(X)η−1(det(g))ψ−1(tr(X)) dXd∗g

=

∫
Kn

∫
Gn

ρs1(g)ρ
s
2(Xg)f(g

−1Xg)η−1(det(g))ψ−1(tr(g−1Xg)) dXd∗g

=

∫
Gn

ρ2(X)| det(X)|−sf(x)ψ−1(tr(X)) dX.

The claim follows since f has compact support inside Gn.
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2.4. Computation of modified Euler factors. We are going to evaluate

the Euler factors E(Θur, χ, s) of Proposition 2.17. Using the Iwasawa decom-

position we can reduce the integral over Gn to sums of integrals over explicit

compact open subsets of Gn. Most of these integrals vanish by orthogonality of

characters applied either to the fixed additive character ψ or the multiplicative

character χ.

A fair amount of the computations work in a more general setup: We fix an

irreducible representation V ∈ CC(G2n), which admits a Shalika functional λ

and a stabilization Θ = (π, ρ, ϑ). Let I
(r)
n ⊂ Kn denote the Iwahori subgroup of

Level pr, i.e., the set of all matrices inKn, which are upper triangular modulo pr

and write Ĩ
(m)
n ⊂ I(m)

n for the subgroup of matrices which are unipotent upper

triangular modulo pm. We assume that ρ is stabilized by the group {1n}× I(1)n .

In particular, αΘ is independent of the choice of a local uniformizer. We are

going to use the following two properties:

(I) K
(m)
n ⊂ I(1)n for all m ≥ 1 and

(II) det : I
(1)
n → U is surjective.

Definition 2.18: The order ord(A) of a matrix A ∈ Mn(F ) is the minimum of

the ν(Aij), 1 ≤ i, j ≤ n.
It is a straightforward calculation to show that

ord(AB) ≥ ord(A) + ord(B)

for all A,B ∈Mn(F ). In particular, we get an equality if one of the matrices is

in Kn.

Lemma 2.19: Let A∈Gnbe a matrix andm∈Z an integer with 1≤m<−ord(A).
We have the following equality:∫

Gn

�
AK

(m)
n

dμΘ = 0.

Proof. Choose k, l ∈ {1, . . . , n} such that ord(A) = ν(Akl). By assumption,

there exists b ∈ F ∗ with ν(b) = −ν(Akl) − 1 and ψ(Aklb) �= 1. Define the

matrix B ∈ �mMn(O) via

Bij =

⎧⎨⎩b if i = l, j = k,

0 else.
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The indicator function on the set AK
(m)
n is clearly invariant under addition by

matrices in A�mMn(O). Hence, by Lemma 2.3 and property (I) we get∫
Gn

�AKm
n
dμΘ = λ(δΘ(�AK

(m)
n

))

= λ(δΘ(AB � �
AK

(m)
n

))

= λ

((
1n AB

0 1n

)
δΘ(�AK

(m)
n

)

)
= ψ(tr(AB))λ(δΘ(�AK

(m)
n

))

= ψ(Aklb)

∫
Gn

�
AK

(m)
n

dμΘ.

Since ψ(tr(Aklb)) �= 1 the claim follows.

Corollary 2.20: Let χ : F ∗ → C∗ be a character of conductor f(χ) = pm with

m ≥ 0 and let A ∈ Gn with ord(A) < −max(m, 1). Then we have∫
Gn

(χ ◦ det) · �AKn dμΘ = 0.

Proof. Let m′ = max(m, 1). We can rewrite the integral as∫
Gn

(χ ◦ det) · �AKn dμΘ =
∑

k∈Kn/K
(m′)
n

χ(det(Ak))

∫
Gn

�
AkK

(m′)
n

dμΘ.

Using the fact that ord(Ak) = ord(A) for all k ∈ Kn the claim follows from

Lemma 2.19.

Lemma 2.21: Let χ : F ∗ → C∗ be a character of conductor f(χ) = pm with

m ≥ 1 and let A ∈ Gn be a matrix with ord(A) > −m. We have the following

equality: ∫
Gn

(χ ◦ det) · �AKn dμΘ = 0.

Proof. Firstly, let us assume we are in the case m ≥ 2. We are going to prove

the stronger statement:∫
Gn

(χ ◦ det) · �
AK

(m−1)
n

dμΘ = 0.
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We have AB ∈ Mn(O) for every B ∈ �m−1Mn(O). Therefore, using Lemma

2.3 and property (I) we have

∫
Gn

(χ ◦ det) · �
AK

((m−1)
n

dμΘ = λ(δρ((χ ◦ det) · �AK
(m−1)
n

))

= λ

((
1n AB

0 1n

)
δρ((χ ◦ det) · �AK

(m−1)
n

)

)
= λ(δρ(AB � ((χ ◦ det) · �

AK
(m−1)
n

))).

Taking the average over all B ∈ �m−1Mn(O) yields∫

m−1Mn(O)

(AB � ((χ ◦ det) · �
AK

(m−1)
n

))(Ak) dB

=

∫

m−1Mn(O)

χ(det(Ak +AB)) dB

=χ(det(Ak))

∫

m−1Mn(O)

χ(det(1n + k−1B)) dB

=χ(det(Ak))

∫

m−1Mn(O)

χ(det(1n +B)) dB

=χ(det(Ak))

∫
K

(m−1)
n

χ(det(k′)) dk′

for every k ∈ K(m−1)
n . Since det : K

(m−1)
n → U (m−1) is surjective, the character

χ ◦ det : K(m−1)
n → C∗ is non-trivial. Hence by orthogonality of characters the

last integral vanishes.

The case m = 1 can be proven in the same manner using property (II).

Definition 2.22: Let χ : F ∗ → C∗ be a quasicharacter of conductor f(χ) = pm

with m ≥ 0 and a ∈ F ∗ with ν(a) = −m. We define the Gauss sum of χ (with

respect to ψ) as

τ(χ) := τ(χ, ψ) := [U : U (m)]

∫
U

χ(ag)ψ(ag)d∗g.

For r = (r1, . . . , rn) ∈ Zn we let Tr ∈ Gn be the diagonal matrix given by

(Tr)ii = �ri for 1 ≤ i ≤ n.
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Lemma 2.23: Let χ : F ∗ → C∗ be a character of conductor f(χ) = pm with

m ≥ 1 and r = (r1, . . . , rn) ∈ Zn. If ri = −m for all 1 ≤ i ≤ n, we have∫
Gn

χ · �
TrI

(m)
n

dμΘ = τ(χ)n(α q(n−n2)/2)−mq
n2+n

2 λ(ϑ(∂ρ(�Ĩ
(1)
n

)))

and otherwise we have ∫
Gn

χ · �
TrI

(m)
n

dμΘ = 0.

Proof. In the following we will identify elements ε = (ε1, . . . , εn) ∈ (U/U (m))n

with the corresponding diagonal matrices in GLn(O/pm) (resp. with represen-

tatives in Kn). We have∫
Gn

χ · �
TrI

(m)
n

dμΘ =
∑

ε∈(U/U(m))n

∫
Gn

χ · �
TrεĨ

(m)
n

dμΘ

=
∑

ε∈(U/U(m))n

n∏
i=1

χ(�riεi)

∫
Gn

�
TrεĨ

(m)
n

dμΘ.

Applying (2.3) with the matrix Tr(ε− 1n) yields∫
Gn

χ · �
TrI

(m)
n

dμΘ =
∑

ε∈(U/U(m))n

n∏
i=1

χ(�riεi)ψ(�
ri(εi − 1))

∫
Gn

�
Tr Ĩ

(m)
n

dμΘ

=

n∏
i=1

ψ(−�ri)
∑

εi∈U/U(m)

χ(�riεi)ψ(�
riεi)

∫
Gn

�
Tr Ĩ

(m)
n

dμΘ.

Lemma 2.21 in the case n = 1 implies that the sum∑
εi∈U/U(m)

χ(�riεi)ψ(�
riεi)

vanishes unless ri = −m for all i.

So let us assume for the rest of the proof that ri = −m for all i. By the

definition of the Gauss sum we get∫
Gn

χ · �
TrI

(m)
n

dμΘ = τ(χ)nψ(−�−m)n
∫
Gn

�
Tr Ĩ

(m)
n

dμΘ.

The invariance property of Shalika functionals implies that the distribution

λ ◦ ϑ ◦ ∂ρ′ : Cc(Mn(F ),C) −→ C
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is a multiple of the distribution ψ ·dX for every ρ′ ∈ π. Thus the transformation

law of dX under linear transformations gives

ψ(1−�−m)n
∫
Gn

�
Tr Ĩ

(m)
n

dμΘ = ψ(�−m)nλ(ϑ(δρ(�Tr Ĩ
(m)
n

)))

= ψ(�−m)nλ(ϑ(∂(1,Tr)ρ(�Tr Ĩ
(m)
n

)))

= α−mψ(�−m)nλ(ϑ(∂ρ(�Tr Ĩ
(m)
n

)))

= α−mqmn2

λ(ϑ(∂ρ(�Ĩ
(m)
n

)))

= α−mqmn2

[Ĩ(1)n : Ĩ(m)
n ]−1λ(ϑ(∂ρ(�Ĩ

(1)
n

)))

and therefore we can conclude that∫
Gn

χ · �
TrI

(m)
n

dμΘ = α−mqmn2

[Ĩ(1)n : Ĩ(m)
n ]−1λ(ϑ(∂ρ(�Ĩ

(1)
n

)))

= τ(χ)n(α q(n−n2)/2)−mq
n2+n

2 λ(ϑ(∂ρ(�Ĩ
(1)
n

))).

Now let us return to the situation of Proposition 2.17. In particular, we

have fixed the unramified stabilization Θur = (πur, ρur, ϑur) associated to the

unramified irreducible principal series representation V = IndG2n

B2n
(χ1, . . . , χ2n)

with χi = ηχ−1
2n−i+1 for all 1 ≤ i ≤ n. Hence we know that

α = αΘur =

2n∏
i=n+1

χi(�).

As before, we write βi = χi(�)qn−i+1/2 = αiq
n−i+1/2 for the Satake parameters

of V .

Theorem 2.24: Let χ : F ∗ → C∗ be a character of conductor f(χ) = pm. If

the complex norm |χ(�)|∞ is sufficiently small, we have

E(Θur, χ, 1/2) = c τ(χ)n ×
⎧⎨⎩(α q(n−n2)/2)−m if m ≥ 1,∏n

i=1

1−β−1
n+iχ(
)−1q−1/2

1−βn+iχ(
)q−1/2 if m = 0,

where c is a non-zero rational constant independent of χ.
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Proof. We first treat the case m ≥ 1. By Corollary 2.20 and Proposition 2.17

we have

(11)

E(Θur, χ, 1/2) =

∫
Gn

χ dμΘur =

∫
Fm

χ dμΘur

=

∫
Fm

ρ(X)χ(det(X))ψ−1(tr(X)) dX

=
∑

A∈Fm/Kn

∫
AKn

ρ(X)χ(X)ψ−1(tr(X)) dX,

where Fm ⊂ Gn is the set of matrices A with ord(A) ≥ −m. By the Iwasawa

decomposition every coset AKn ∈ Fm/Kn has a representative of the form

Tr(AKn) + N with r(A) ∈ Zn and N a nilpotent upper triangular matrix with

entries in p−m. The diagonal matrix Tr(AKn) is uniquely determined by the

coset AKn. For a fixed r ∈ Zn we define

Fm
r = {A ∈ Fm | r(AKn) = r}.

A complete set of representatives of Fm
r /Kn is given by {Tr+N}, where N are

nilpotent upper triangular matrices with entries Nij running through a set of

representatives of p−m/pri for all j > i. If we let the Nij run through a set of

representatives of p−m/pri+m instead, we get exactly qm(n2−n)/2 representatives

for each equivalence class in Fm
r . Therefore, we get

∑
A∈Fm

r /Kn

∫
Kn

χ(det(Ag))ψ(tr(Ag))d∗g

=
1

qm(n2−n)/2

∑
N

∫
Kn

χ(det(Trg))ψ(tr(Trg))ψ(tr(Ng))d
∗g

=
1

qm(n2−n)/2

∫
Kn

χ(det(Trg))ψ(tr(Trg))
∑
N

ψ(tr(Ng))d∗g.

By orthogonality of characters the sum∑
N

ψ(tr(Ng)) =
∑

Nij∈p−m/pri+m

∏
j>i

ψ(Nijgji)

=
∏
j>i

∑
Nij∈p−m/pri+m

ψ(Nijgji)
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is zero unless ν(gji) ≥ m for all j > i. Therefore, using the proof of Lemma

2.23 most of the terms in (11) vanish and we are left with

E(Θur, χ, 1/2) =

∫
Gn

χ · �T(−m,...,−m)
I(m)
n dμΘ.

The claim now follows by using Lemma 2.23 once again.

Now let χ be unramified. Corollary 2.20 and Proposition 2.17 give

E(Θur, χ, 1/2) =

∫
F1

χ dμΘur =

∫ 1

F
ρ(X)χ(det(X))ψ−1(tr(X)) dX.

Invoking the Iwasawa decomposition and the comparison between multiplicative

and additive Haar measures we get

E(Θur, χ, 1/2) = lim
k→∞

∑
(ri)∈Zn

−1≤ri≤k

n∏
i=1

q−rinαri
n+iχ(�

ri)
∑

A∈F1
r

∫
Kn

ψ(tr(Ag)) d∗g.

As in the case m ≥ 1 we see that∑
A∈F1

r

∫
Kn

ψ(tr(Ag)) d∗g =
n∏

i=1

q(1+ri)(n−i)

∫
I
(1)
n

ψ(tr(Trg)) d
∗g.

The integral on the right-hand side of the equality is equal to vol(I
(1)
n ) if ri ≥ 0

for all 1 ≤ i ≤ n. Otherwise a computation with diagonal matrices like before

shows that ∫
I
(1)
n

ψ(tr(Trg) d
∗g = vol(I(1)n )

n∏
i=1

ri=−1

(
− 1

q − 1

)
.

Therefore, we get that

E(Θur, χ, 1/2) = vol(I(1)n )

n∏
i=1

− 1

q − 1
α−1
n+iχ(�)−1qn + qn−i

∞∑
k=0

(αn+iχ(�)q−i)k

= vol(I(1)n )

n∏
i=1

− 1

q − 1
α−1
n+iχ(�)−1qn + qn−i 1

1− αn+iχ(�)q−i

= vol(I(1)n )
n∏

i=1

qn−i+1

q − 1

1− α−1
n+iχ(�)−1qi−1

1− αn+iχ(�)q−i

= vol(I(1)n )[U : U (1)]−nq
n2+n

2

n∏
i=1

1− β−1
n+iχ(�)−1q−1/2

1− βn+iχ(�)q−1/2
.

The constants appearing in all the cases are equal, which proves the claim.
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2.5. The semi-local case. All the previous constructions can be easily gen-

eralized to the semi-local case. We change our notations slightly. Let F1, . . . , Fg

be finite extensions of Qp. We put F = F1× · · ·×Fg and O = OF1 × · · ·×OFg .

For every r ∈ N we define Gr = GLr(F ) and Kr = GLr(O).
Further, we fix a subfield E ⊂ Cp which is a finite extension of Qp such that

every embedding of every Fi into Cp factors through E for all 1 ≤ i ≤ g (or, an

arbitrary field E of characteristic 0 in the smooth case).

Definition 2.25: Let Vi be irreducible locally Qp-rational GL2n(Fi)-representa-

tions on E-vector spaces for every 1 ≤ i ≤ g.
(i) A stabilization Θ of the G2n-representation

V =

g⊗
i=1

Vi

is a tuple Θ = (Θi)1≤i≤g, where Θi is a stabilization of Vi for 1 ≤ i ≤ g.
(ii) A stabilization Θ of V is weakly ordinary if each of the Θi is weakly

ordinary.

(iii) A critical point Vs of V is a tensor product of the form

Vs =

g⊗
i=1

Vs,i,

where Vs,i is a critical point of Vi for all 1 ≤ i ≤ g.
The map given by

r⊗
i=1

C0
c (GLn(Fk), E) −→ C0

c (Gn, E),

f1 ⊗ . . .⊗ fg 
−→ [(g1, . . . , gn) 
→ f1(g1) · . . . · fn(gn)]

gives an isomorphism of Gn × Gn-representations. Therefore, every data of a

stabilization Θ and a critical point Vs of a representation V gives rise to a map

δΘ,s : C
0
c (Gn, E)⊗ Vs 
−→ V.(12)

If Vi is smooth for all 1 ≤ i ≤ g, then Vs is automatically trivial. All the local

results from Section 2.2 carry over verbatim to the semi-local case.

Suppose we are in the smooth case. Let KΘ = KΘ,1×· · ·×KΘ,g ⊂ Kn be the

maximal open subgroup such that δΘ is 1 ×KΘ-equivariant. For an arbitrary
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ring R, which contains the central character ω of Vsm, and an R-module N we

define

IC0
ω(Kn, R) = c-indGn×Gn

Z(Kn×KΘ) ω ⊗ C0
c (Kn, R)

and

IDist(Kn, N) = c-indGn×Gn

Z(Kn×KΘ) ω
−1 ⊗Dist(Kn, N),

where Z is the center of G2n, which we view as a subgroup of Gn ×Gn via the

diagonal embedding. By Frobenius reciprocity the map δΘ induces a map

IC0
ω(Kn, E) 
−→ V,(13)

which we also denote by δΘ.

3. The global distribution

We will use the following notations throughout the rest of the article. We fix a

totally real algebraic number field F of degree d with ring of integers O. For a
non-zero ideal a ⊂ O we set N(a) = �(O/a). Given a place l of Q we denote by

Sl the set of places of F above l. Let σ1, . . . , σd denote the distinct embeddings

of F into R and ∞1, . . . ,∞d the corresponding Archimedean places. Via the

fixed embedding ι∞ : Q→ C we can and will view the σi as embeddings into Q.

If v is a place of F , we denote by Fv the completion of F at v. If q is a finite

place, we let Oq denote the valuation ring of Fq and ordq the additive valuation

such that ordq(�) = 1 for any local uniformizer � ∈ Oq. For an arbitrary

place let | · |v be the normalized multiplicative norm, i.e., | · |∞i = |σi(·)| for
i = 1, . . . , d and | · |q = N(q)− ordq(·) if q is a finite place. We denote by Uv the

invertible elements of Ov if v is a finite place and the group of positive elements

of Fv if v is a real place. For a finite place q we let

U
(m)
p = {x ∈ Uq|x ≡ 1 mod qm}.

Let A be the ring of adeles of F and I the idele group of F . We denote by

| · | : I→R∗ the absolute modules, i.e., |(xv)v|=
∏

v |xv|v for (xv)v∈I. For a finite

set S of places of F we define the “S-truncated adeles” AS (resp. “S-truncated

ideles” IS) as the restricted product of all completions Fv (resp. F ∗
v ) with v /∈ S

and put FS =
∏

v∈S Fv. We also set US =
∏

v∈S Uv and US =
∏

v/∈S Uv and

similarly we define U
(m)
S . If I is a finite set of places of Q, we often write AI

instead of A∪v∈ISl , UI instead of
∏

v∈I USl
etc.
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A (left) Haar measure of a locally compact group G will be denoted by dg.

We fix a non-trivial character ψ : A → S1 which is trivial on F . For a place v

let ψv be the restriction of ψ to Fv ⊂ A. We assume that the conductor of ψp is

Op for all places p ∈ Sp. Let dx (resp. dxv) denote the self-dual Haar measure

of Mr(A) (resp. Mr(Fv)) associated to the character ψ ◦ tr (resp. ψv ◦ tr). It

follows that dx =
∏

v dxv. We normalize the multiplicative Haar measure d∗xv
on GLr(Fv) by d

∗xv = mv
dxv

|xv|v , where mv = 1 if v is real and mv is chosen such

that GLr(Ov) has volume 1 if v is finite. For a linear algebraic group G over

F , a character χ : G(A)→ C∗ and a place v we let χv : G(Fv) ↪→ G(A)
χ−→ C∗

be the local component of χ at v. Further, we write PG for the quotient of

G by its center. Given an algebraic character d: G → Gm,F we denote by

G(F∞)+⊂G(F∞) the subgroup of elements which have totally positive image

under d. Similarly, we define G(F )+ etc. In the case G⊂GLr the superscript +

is always meant with respect to the determinant. Finally, we write Gp for the

Galois group of the maximal abelian extension of F unramified outside p and∞.

3.1. Shalika models. In this section we recall the basics on global Shalika

models and their connection to L-functions. The main reference is [FJ93].

Until the end of the article we denote by G the algebraic group GL2n and by Z

its center. We write B for the Borel subgroup of upper triangular matrices in

G. We view H = GLn × GLn as an algebraic subgroup of G via the diagonal

embedding. For m1,m2 ∈ Z we define the morphism of algebraic groups

detm1,m2 : H −→ Gm, (g1, g2) 
−→ det(g1)
m1 det(g2)

m2 .

The Shalika subgroup S of G is defined as

S =

{(
h 0

0 h

)(
1n X

0 1n

)
|h ∈ GLn, X ∈Mn

}
.

For the rest of this article we fix a continuous character η : I/F ∗ → C∗. It

induces a character ηψ : S(A)→ C∗ via(
h 0

0 h

)(
1n X

0 1n

)

→ η(det(h))ψ(tr(X)).

Let V = ⊗vVv be a cuspidal automorphic representation of G(A) with central

character ω = ηn.
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Definition 3.1: The cuspidal representation V has a (global) (η, ψ)-Shalika

model if there exist Φ ∈ V and g ∈ G(A) such that the following integral does

not vanish:

ΞΦ(g) =

∫
Z(A)S(F )\S(A)

(π(g)Φ)(s)(ηψ(s))−1ds.

The integral is well-defined since Φ is a cusp form. The global Shalika func-

tional Λ: V → C is defined by

Λ(Φ) = ΞΦ(1).

By a simple change of variables we see that Λ(sΦ) = ηψ(s)Λ(Φ) holds for all

s ∈ S(A) and Φ ∈ V . We will assume from now on that V has a (η, ψ)-Shalika

model.

Example 3.2: (i) If n = 1, a Shalika functional is the same as a Whittaker

functional. Thus, every cuspidal automorphic representation of GL2(A)

has a Shalika model.

(ii) Let V be a cuspidal representation of GL2(A), which is neither of di-

hedral nor of tetrahedral type. Then, by the work of Kim and Shahidi

(cf. [KS02]) the symmetric cube lift Π = Sym3(V ) is cuspidal. It is well-

known that in this case Π has a Shalika model (see, for example, [GR14],

Proposition 8.1.1).

Proposition 3.3: Let f : I/F ∗ → C be a locally constant function, Φ an ele-

ment of V and s ∈ C. Then the integral

Ψ(Φ, f, s) =

∫
Z(A)H(F )\H(A)

Φ(h)| det1,−1(h)|s−1/2f(det1,−1(h))η−1(det0,1(h))dh

converges absolutely and defines a holomorphic function in s. If Re(s) is suffi-

ciently large, it equals the following absolutely convergent integral:

Z(Φ, f, s) =

∫
GLn(A)

ΞΦ

((
g 0

0 1n

))
f(det(g))| det(g)|s−1/2d∗g.

Proof. If f = χ : I/F ∗ → C∗ is a character and V is unitary, this is precisely

Proposition 2.3 of [FJ93]. By twisting with a character we may assume that V

is unitary. Since the locally constant characters form a basis of C0(I/F ∗,C) the
claim follows.
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The global Shalika functional factors as a product of local Shalika functionals

in the following sense: There exist non-zero functionals λv : Vv → C for every

place v of F such that

Λ(Φ) =
∏
v

λv(ϕv)

holds for all pure tensors Φ =
⊗

v ϕv ∈ V =
⊗
Vv. Hence we have the equality

ΞΦ =
∏
v

ξλv
ϕv

(see Lemma 2.2 for the definition of ξλv
ϕv
). Moreover, we have

λv(svϕv) = ηvψv(sv)λv(ϕv)

for all ϕ ∈ Vv and sv ∈ S(Fv). Thus, λv is a local Shalika functional of Vv as in

Definition 2.12 for every finite place v.

Proposition 3.4: Let v be a finite place, ϕv ∈ Vv and χv : F
∗
v → C∗ a charac-

ter. Then for every complex number s ∈ C with sufficiently large real part the

following local zeta integral converges absolutely:

ζv(ϕv, χv, s) =

∫
GLn(Fv)

ξλv
ϕv

((
g 0

0 1n

))
χv(det(g))| det(g)|s−1/2

v d∗g.

There exists ϕv ∈ Vv such that

L(Vv ⊗ χv, s) = ζv(ϕv, χv, s)

holds for Re(s) large enough and all unramified characters χv : F
∗ → C∗. More-

over, if Vv is unramified, this equality holds for a spherical vector. By our choice

of Haar measure on GL2n(Fv) we can choose the normalized spherical vector

for almost all v.

Proof. See Proposition 3.1 and Proposition 3.2 of [FJ93] for the unitary case.

The non-unitary case follows by twisting with an appropriate character.

3.2. The global distribution. The goal of this section is to construct the

global distribution and show that it fulfills the right interpolation property in

the nearly spherical case.

Let V =
⊗

v Vv be a cuspidal automorphic representation of G(A) having a

(η, ψ)-Shalika model. Further, we assume that we have given a stabilization Θ

of the semi-local representation Vp =
⊗

p∈Sp
Vp. Finally, we fix a finite set Σ of

finite places of F , which is disjoint from Sp.
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For every integer m ≥ 1 we define Φ∞
m,Σ =

⊗
v�∞ ϕm,Σ,v ∈

⊗
v�∞ Vv to be the

following pure tensor:

• Case v /∈ Sp ∪ Σ: ϕv = ϕm,Σ,v is chosen as in the end of Proposition

3.4. Especially, it is independent of m.

• Case v ∈ Σ: ϕv,Σ = ϕm,Σ,v is chosen such that

ζv(ϕv,Σ, χv, s) = 1

holds for all s and all unramified characters χv. See Section 3.9.3 of

[GR14] for an explicit construction of such a vector.

• Case p ∈ Sp: we define ϕm,p = ϕm,Σ,p = [GLn(Op) : K
(m)
n,p ]·δΘp (�K

(m)
n,p

),

where K
(m)
n,p is the m-th principle congruence subgroup of GLn(Op).

The choice of a vector Φ∞ at infinity will be discussed at the end of Section

4.2. For now, we fix an arbitrary vector Φ∞ = ⊗ϕv ∈
⊗

v|∞ Vv and put

Φm,Σ = Φ∞
m,Σ⊗Φ∞. If f : I/F ∗ → C is a locally constant function, there exists

some integer m ≥ 1 such that f factors through I/F ∗U (m)
Sp

. For every s ∈ C the

integral ∫
I/F∗

f(x)|x|sμΘΣ(dx) := Ψ(Φm,Σ, f, s+ 1/2)

converges absolutely by Proposition 3.3 and defines a holomorphic function in s.

It is easy to see that the integral is independent of the choice of m.

By class field theory the Artin map rec: I/F ∗→Gp is continuous and surjective.

Hence, for every s∈C we can define a distribution μΘΣ,s∈Dist(Gp,C) by∫
Gp

f(γ)μΘΣ,s(dγ) =

∫
I/F∗

f(rec(x))|x|sμΘΣ(dx)

for all f ∈ C0(Gp,C). In the following, we always identify a character on the

Galois group Gp with the corresponding idele class character.

Proposition 3.5 (Interpolation property): For every character χ : Gp → C∗

we have (up to a non-zero scalar) the following equality:∫
Gp

χ(γ)μΘΣ,s(dγ) =
∏
p∈Sp

e(Θp, χp, s+ 1/2)× LS∞∪Σ(π ⊗ χ, s+ 1/2)

×
∏

v∈S∞

ζv(ϕv, χv, s+ 1/2).
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Proof. Since both sides of the equation are holomorphic in s it is enough to

show that the equality holds for Re(s) large. For m large enough we get∫
Gp

χ(γ)μΘΣ,s(dγ) =Ψ(Φm,Σ, χ, s+ 1/2)

=Z(Φm,σ, χ, s+ 1/2)

=
∏
v

ζv(ϕm,Σ,v, χv, s+ 1/2)

=
∏

v/∈Sp,∞∪Σ

L(πv ⊗ χv, s+ 1/2)
∏

p∈Sp,∞

ζv(ϕm,p, χp, s+ 1/2)

by using Proposition 3.4 and by our choice of ϕm,p for p /∈ Sp,∞. Using Lemma

2.2 we see that

ζp(ϕm,p, χp, s+ 1/2) =

∫
GLn(Fp)

ξλp◦ϑp
ϕm,p

((
g 0

0 1n

))
χp(det(g))| det(g)|spd∗g

=

∫
GLn(Fp)

χp(det(g))| det(g)|spμϑp(dg)

=E(Θp, χp, s+ 1/2)

=e(Θp, χp, s+ 1/2) L(Vp ⊗ χp, s+ 1/2)

holds for all p ∈ Sp.

Now let us assume that for all p ∈ Sp the local representation Vp is of the

form

Vp = V ur
p ⊗ χ′

p,

where V ur
p is a spherical representation and χ′

p : F
∗
p → C∗ is a character. The

representation V ur
p is isomorphic to an unramified principal series representation

for all p ∈ Sp. As in Section 2.3, we can choose χi,p : F
∗
p → C∗ for all 1 ≤ i ≤ 2n

and all p ∈ Sp such that

• V ur
p = Ind

G(Fp)

B(Fp)
(χ1, . . . , χ2n) and

• χi,p = ηpχ
−1
2n−i+1,p.

Let Θur
p = (πur

p , ρ
ur
p , ϑ

ur
p ) be the unramified stabilizations of V ur

p associated to

these data, i.e., :

• πur
p = Ind

GLn(Fp)

Bn(Fp)
(χ1, . . . , χn)⊗ Ind

GLn(Fp)

Bn(Fp)
(χn+1, . . . , χ2n),

• ρurp is the unique normalized spherical vector in πur
p ,

• ϑur is the canonical isomorphism.
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The local Satake parameters of Vp are given by βi,p = χi,p(�)N(p)n−i+1/2,

where � is a local uniformizer at p. We set αp =
∏2n

i=n+1 χi,p(�). As in

Section 2.3 we assume that the technical condition βi,pβj,p �= η±1(�) holds for

all 1 ≤ i < j ≤ n and all p ∈ Sp.

We consider the stabilization Θur ⊗ χ′ of Vp, whose local components are

given by Θur
p ⊗ χ′

p. For a character χ : Gp → C∗ we define

f(χ′χ) =
∏
p∈Sp

f(χ′
pχp)

and similarly

τ(χ′χ) =
∏
p∈Sp

τ(χ′
pχp, ψ

−1
p ).

As an immediate consequence of Lemma 2.16, Proposition 3.5 and Theorem 2.24

we get

Corollary 3.6 (Interpolation property—the nearly spherical case): Under the

assumptions above we have that for every character χ : Gp → C∗ the following

equality holds (up to a non-zero scalar):∫
Gp

χ(γ)μΘur
Σ ⊗χ′,s(dγ) =N(f(χ′χ))nsτ(χ′χ)n

∏
p∈Sp

e′(Θur
p ⊗ χ′

p, χp, s+ 1/2)

× LS∞∪Σ(π ⊗ χ, s+ 1/2)
∏

v∈S∞

ζv(ϕv, χv, s+ 1/2),

where the modified Euler factor e′(Θur
p ⊗ χ′

p, χp, s+ 1/2) is equal to⎧⎨⎩
∏n

i=1(1− βiχ(�)q−s−1/2)(1 − β−1
n+iχ(�)−1qs−1/2) if ordp(f(χ

′χ)) = 0,

(N (p)
n2−n

2 αp)
− ordp(f(χ

′χ)) if ordp(f(χ
′χ)) > 0.

4. Boundedness of the distribution

For a cohomological cuspidal representation and a critical half-integer s + 1/2

we are going to recast the definition of the distribution in terms of group co-

homology. As an immediate consequence the rationality of the distribution

follows. Further, we show that the weak ordinarity condition combined with

the existence of lattices, which are homologically of finite type, implies the

boundedness of the distribution. Let us fix a cuspidal automorphic representa-

tion V of G(A) with central character ω : I/F ∗ → C∗. We put Vp = ⊗p∈SpVp

and V∞ = ⊗v∈S∞Vv.
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4.1. Cohomology classes attached to characters. Before attaching co-

homology classes to automorphic forms we attend to the simpler question of how

to give a cohomological description of distributions and characters.

Let R be a ring. The Artin reciprocity map induces a surjective map

I∞/Up,∞ → Gp,

which yields an isomorphism H0(F ∗
+, Ind

I∞
U∞(C0(Up, R))) → C0(Gp, R). The

pairing

C0(Up, R)×Dist(Up, N) −→ N

induces a cap product

H0(F ∗
+, Ind

I∞
U∞(C0(Up, R)))×H0(F

∗
+, c-ind

I∞
U ′ (Dist(Up, N)))

∩−→H0(F
∗
+, c-ind

I∞
U ′ N) ∼=

⊕
N

∑
−→ N

for every subgroup U ′ ⊂ U∞ of finite index and every R-module N. The direct

sum decomposition H0(F
∗
+, c-ind

I∞
U N) ∼= ⊕N follows from Shapiro’s Lemma

and a strong approximation type argument. This in turn yields a map

∂ : H0(F
∗
+, c-ind

I∞
U ′ (Dist(Up, N))) −→ Dist(Gp, N).(14)

Let χ : I/F ∗ → C∗ be an algebraic Hecke character. It is of the form χ′| · |s,
where χ′ is a finite order character and s ∈ Z, and thus its finite part takes

values in a finite extension E of Q. Let R be the valuation ring of E with

respect to ordp. Then the finite part of ω away from p takes values in R∗.
Let us fix an F -rational algebraic group G and an algebraic character

d: G→ Gm,F .

For every s ∈ Z we write Vs[d] for the Q-rational representation (resp. its base

change to E) given by

ResF/Q G
d−→ ResF/QGm,F

N−s−−−→ Gm,Q,

where N is the norm character. Let K ⊂ G(A∞) be a compact, open subgroup,

which lies in the kernel of the G(F )-invariant character

χ ◦ d: G(A)→ C∗.
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We define the cohomology class

(15)
[dχ] ∈ H0(G(F )+, C(G(A∞)/K, Vs(d))) via

[dχ](g
∞) = χ(d(g∞)) ∀g∞ ∈ G(A∞).

Let R be the completion of R and E its field of fractions. Assume that K can

be written as KpKp with Kp ⊂ G(Ap,∞) and Kp ⊂ G(Fp). We view Vs(d)⊗EE
as a G(Fp)-representation, whose underlying vector space is E. We write Ls(d)

for the Kp-stable lattice R ⊂ E = Vs(d) ⊗E E. It is easy to see that the image

of [dχ] under the standard isomorphism

C(G(A∞)/K, Vs(d)⊗E E)
∼=−→ C(G(Ap,∞)/Kp, Ind

G(Fp)
Kp

Vs(d)⊗E E)

is contained in H0(G(F )+, C(G(Ap,∞)/Kp, Ind
G(Fp)
Kp

Ls(d))).

4.2. Cohomological cuspidal representations. For every Archimedean

place v we define Kv ⊂ G(Fv) ∼= G(R) as the product of the maximal com-

pact subgroup O(2n) and the center Z(Fv) = Z(R) of G(Fv). We denote by

gv the complexification of the Lie algebra of G(Fv) and similarly we write kv

for the complexification of the Lie algebra of Kv. We put K∞ =
∏

v|∞K∞,

k∞ =
⊕

v|∞ kv and g∞ =
⊕

v|∞ gv.

Let us recall that the (g∞,K◦
∞)-cohomology of a (g∞,K◦

∞)-module W can

be computed by the Chevalley–Eilenberg complex:

Hj((g∞,K◦
∞),W ) = Hj(HomK◦∞(Λ•(g∞/k∞),W )).

(See the book [BW00] of Borel and Wallach for the basics on (gv,K
◦
v )-modules

and their cohomology.) Note that there is a Künneth rule for (g∞,K◦∞)-

cohomology, i.e., if W =
⊗

vWv, where each Wv is a (gv,K
◦
v )-module, we

have

Hj((g∞,K◦
∞),W ) =

⊕
∑

jv=j

⊗
v|∞

Hjv ((gv,K
◦
v ),Wv).(16)

The representation Vv is a (gv,K
◦
v )-module for all v ∈ S∞. Given dominant

weights μv = (μ1,v, . . . , μ2n,v) ∈ Z2n for all v ∈ S∞ we let Vμv be the com-

plexification of the irreducible Fv-rational representation of G(Fv) of highest

weight μv. (As always, highest weight is meant with respect to the Borel group

of upper triangular matrices.) We put Vμ =
⊗

v∈S∞ Vμv . This is a C-rational

representation of the algebraic group ResF/Q GL2n.
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Definition 4.1: The representation V is cohomological of weight μ if there

exists an integer j ∈ N such that the (g∞,Ko∞)-cohomology group

Hj((g∞,K◦
∞), V∞ ⊗ V ∨

μ )

does not vanish.

From now on we assume that V is cohomological of weight μ and put Val = Vμ.

By the work of Clozel (cf. [Clo90] Lemma 4.9) it is known that there exists an

integer w—the purity weight of V—such that

μi,v + μ2n−i+1,v = w

holds for all 1 ≤ i ≤ n and v ∈ S∞.

Remark 4.2: (i) If V has a (η, ψ)-Shalika model, then it follows from the

proof of [GR13, Theorem 5.3] that ηv = sgnw | · |w for all v ∈ S∞.

(ii) The central character of a cohomological representation is always an

algebraic Hecke character.

We define q0 = n2 + n − 1 and set q = dq0. By the discussion in [GR14],

Section 3.4, the cohomology group Hqv ((gv,K
◦
v ), Vv ⊗ V ∨

μv
) is 2-dimensional if

qv = q0 and vanishes if qv > q0 for every v ∈ S∞. Hence by the Künneth

formula (16) we see that

Hq((g∞,K◦
∞), V∞ ⊗ V ∨

al ) =
⊕
qv=q0

⊗
v|∞

Hqv ((gv,K
◦
v ), Vv ⊗ V ∨

μv
)

∼=
⊕
qv=q0

⊗
v|∞

C2.

Moreover, there is a natural K∞/K◦
∞-action on Hq((g∞,K◦

∞), V∞ ⊗ V ∨
al ). The

ε-eigenspace of this action is one-dimensional for every character ε of K∞/K◦
∞.

We fix generators [V∞]ε of these eigenspaces. By Section II.3.4 of [BW00] we

have a canonical inclusion

Hj(g∞,K◦
∞, V∞ ⊗ V ∨

al ) ⊂ HomK◦∞(Λj(g∞/k∞), V ⊗ V ∨
al ).

Thus, after choosing a basis (X∗
i ) of (gv/kv)

∨ and a basis b∨v,d of V ∨
μv

we can

write [V∞]ε =
⊗

v∈S∞ [Vv]
εv as

[Vv]
εv =

∑
i=(i1,...,iq0 )

dimV ∨
μv∑

l=1

X∗
i ⊗ ϕεv

v,i,l ⊗ b∨v,l.
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Here ϕεv
v,i,l are elements of Vv and (X∗

i ) = X∗
i1
∧ · · · ∧X∗

iq0
for i = (i1, . . . , iq0).

Finally, we set

[Vv] :=
⊕
εv

[Vv]
εv

and

[V∞] :=
⊕
ε

[V∞]ε.

Our aim is to show that the distribution μΘ,s defined in the previous section

is a p-adic measure provided that s+1/2 ∈ C is a critical point of π. We do not

want to recall the definition of criticality of a point here. It is enough to know

the following two facts: Firstly, by [GR14, Proposition 6.1.1] the set of critical

points of V is given by

Crit(π) = {s+ 1/2 ∈ Z+ 1/2 | −μn,v ≤ s ≤ −μn+1,v ∀v ∈ S∞}.

Secondly, if s+1/2 is critical, then for all v ∈ S∞ there is a unique 1-dimensional

H(C)-stable subrepresentation Vs,v of Vμv which is isomorphic to the represen-

tation given by the character det−s,s+w. This is proven in [GR14, Proposition

6.3.1] for the case s = 0. The other cases follow by twisting the representation

with an integral power of the determinant.

When we defined the distribution in Section 3.2, we had not specified the

vector at infinity. We will catch up with this now. Let hQ be the Lie algebra

of the algebraic group H over Q and k′Q the Lie subalgebra of the Q-rational

algebraic subgroup H ∩ Z SO2n. The dimension of hQ/k
′
Q is exactly q0. We

fix a Q-basis T1, . . . , Tq0 of hQ/k
′
Q and denote by Ti,v the image of Ti in gv/kv

for every Archimedean place v. Additionally, we fix a generator xs,v of the

subspace Vs,v ⊂ Vμv for every critical point s+1/2 of V and every place v ∈ S∞.

Evaluation of

[Vv] =
∑

i=(i1,...iq0 )

dimV ∨
μv∑

d=1

X∗
i ⊗ ϕv,i,d ⊗ b∨v,d

at (T1,v, . . . , Tq0,v, xs,v) yields an element ϕs,v ∈ πv. We will choose

Φs,∞ =
⊗
v|∞

ϕs,v
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as the vector at infinity in the definition of the distribution μΘ,s. It is important

to know that the complex numbers

c(V∞, χ∞, s+ 1/2) =
∏
v|∞

ζ(ϕs,v , χv, s+ 1/2)

do not vanish for any character χ∞ : F ∗∞ → {±1}. Otherwise, the distribution

μΘ,s would trivially be zero. Luckily, the non-vanishing is known by the work

of Sun (cf. [Sun11]). In particular, we have that for every critical point s+ 1/2

and every locally constant character χ∞ the equality

c(V∞, χ∞, s+ 1/2) = L(π∞ ⊗ χ∞, s+ 1/2)

holds up to a non-zero constant.

4.3. The Eichler Shimura homomorphism. In the following we are going

to explain the (adelic) Eichler–Shimura map: Let Xv = G(Fv)
+/K◦

v be the

symmetric space associated to G(Fv) for v ∈ S∞. We put X =
∏

v∈S∞ Xv

and denote by e the image of the unit element under the canonical projection∏
v∈S∞ G(Fv)

+ → X . We can naturally identify the tangent space TX,e of X

at e with g∞/k∞. The Eichler–Shimura map for an integer j ≥ 0 is a G(A∞)-

equivariant homomorphism

Hq((g∞,K◦
∞), V ⊗ V ∨

al )→ H0(G(F )+, C0(G(A∞),Ωq
fd,har(V

v
al))),

where Ωq
fd,har(V

∨
al ) is the space of fast decreasing harmonic q-differential forms

on X with values in V ∨
al as defined by Borel (cf. [Bor81]). It is given as follows:

By definition V is a subrepresentation of the right regular representation on

C∞(G(F )\G(A)). Given η ∈ HomK∞(Λj(g∞/h∞), V ⊗ V ∨
al ) we can evaluate it

on a j-tuple (Y1, . . . , Yj) of tangent vectors at e and get

η(Y1, . . . , Yj) ∈ C∞(G(F )\G(A), V ∨
al ).

For an element (x, g∞) ∈ X × G(A∞) choose g∞ ∈
∏

v∈S∞ G(Fv) such that

g∞e = x. Let Dg∞ be the differential of the action of g∞ on X . Sending

tangent vectors Y1, . . . , Yj at a point x ∈ X to

η̃(g∞)x(Y1, . . . , Yj) = g−1
∞ (η((Dg∞)−1Y1, . . . , (Dg∞)−1Yj)(g∞, g∞))

defines a differential form η̃(g∞) on X with values in V ∨
al . Since cusp forms are

fast decreasing, we see that we get in fact a fast decreasing differential form. It

follows from Section II.3 of [BW00] that every differential form in the image of

the Eichler–Shimura map is closed and harmonic.
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The choice of an element

[V∞] ∈ Hj((g∞,K◦
∞), V∞ ⊗ V ∨

al )

made at the end of Section 4.2 yields a map

ES:
⊗
v�∞

Vv −→ H0(G(F )+, C0(G(A∞),Ωq
fd,har(V

v
al))).

Definition 4.3: Let S be a finite set of finite places and R a ring which contains

the image of IS∪S∞ under ω. We fix an algebraic subgroup A ⊂ G, which con-

tains the center of G. For every R[A(F )+]-module M and every compact, open

subgroup K ⊂ G(AS∪S∞) we define CSω (A,K,M) to be the R-module of func-

tions f : A(AS∪S∞) → M such that f(gkz) = w(z)f(g) for all g ∈ A(AS∪S∞),

k ∈ K ∩A(AS∪S∞) and z ∈ Z(AS∪S∞). If S is the empty set, we omit it from

the notation.

If Φ ∈⊗v�∞ Vv is invariant under some compact, open subgroupK ⊂ G(A∞),

we see that

ES(Φ) ∈ H0(PG(F )+, Cω(G,K,Ωq
fd,har(V

v
al))).

In fact, we need a slight variant of the above construction. Given

Φp ∈
⊗
v�p,∞

Vv

invariant under some compact, open subgroup Kp ⊂ G(Ap,∞) we define

ESp(Φp) ∈ H0(PG(F )+, CSp
ω (G,Kp,Hom(Vp,Ω

q
fd,har(V

v
al))))

by

ESp(Φp)(gp, ϕp) = ES(Φp ⊗ ϕp)(g
p, 1)

for ϕp in Vp. Evaluation at an element ϕp of Vp, which is invariant under some

compact, open subgroup Kp ⊂
∏

p∈Sp
G(Fp), induces a PG(F )+-equivariant

map

CSp
ω (G,Kp,Hom(Vp,Ω

q
fd,har(V

v
al)))

ev(ϕp)−−−−→ Cω(G,KpKp,Ω
q
fd,har(V

v
al))

such that ev(ϕp)(ES
p(Φp)) = ES(Φp ⊗ ϕp).

Let X̄ the Borel–Serre bordification of X with boundary ∂X as constructed

in [BS73]. It is a smooth manifold with corners, and contains X as an open

submanifold. The embedding X ⊂ X̄ is a homotopy equivalence. The operation
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of G(F )+ can be extended naturally to X̄. If M is a smooth manifold with

corners, we let Csing
• (M) be the complex of singular chains in M and Csm• (M)

the subcomplex of smooth chains. By Lemma 5 of [Whi34] continuous chains

can be approximated by smooth chains. Hence by a standard argument the

inclusion Csm
• (M) ⊂ Csing

• (M) is a quasi-isomorphism (see Chapter 16 of [Lee03]

for a detailed proof in the case of smooth manifolds without corners). Using

this fact for both X̄ and its boundary ∂X , we see that the complex

Csm
• (X̄, ∂X) := Csm

• (X̄)/Csm
• (∂X)

is quasi-isomorphic to the complex of relative singular chains Csing
• (X̄, ∂X).

Note that these are in fact quasi-isomorphisms of complexes of G(F )+-modules.

For every integer j ≥ 0 there is a PG(F )+-equivariant pairing

Ωj
fg(V

∨
al )× Csm

j (X̄, ∂X)→ V ∨
al

given as follows: We denote by Δj the standard simplex of dimension j. If

f : Δj → X̄ is a smooth chain and η a fast decreasing differential form, we

take the integral of the pullback f∗η over the pre-image of X under f . If the

differential form is closed, it vanishes on the image of the boundary map

Csm
j+1(X̄, ∂X)→ Csm

j (X̄, ∂X)

by Stokes’ Theorem.

Therefore we get a G(F )+-equivariant morphism of co-complexes

Ωj
fd,har(V

∨
al )[−j]→ Hom(Csm

• (X̄, ∂X), V ∨
al ),

which induces the following maps in (hyper-)group cohomology:

H0(PG(F )+, Cω(G,K,Ωj
fd,har(V

v
al)))

−→Hj(PG(F )+, Cω(G,K,Hom(Csm
• (X̄, ∂X), V ∨

al )))

and

H0(PG(F )+,CSp
ω (G,Kp,Hom(Vp,Ω

q
fd,har(V

v
al))))

−→Hj(PG(F )+, CSp
ω (G,Kp,Hom(Vp,Hom(Csm

• (X̄, ∂X), V ∨
al )))).

We will denote the image of ES(Φ) (resp. ESp(Φp)) under the above map for

j = q by EScoh(Φ) (resp. ES
p
coh(Φ

p)).
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4.4. The Steinberg module. In this section we recall some standard facts

about the Steinberg module of an algebraic group and about Borel–Serre duality.

Let G be a connected split reductive group over F of semi-simple F -rank l ≥ 1

and I the set of proper maximal F -rational parabolic subgroups of G(F ). For

τ ∈I let Pτ be the corresponding parabolic group. A subset S={τ0, . . . , τk}⊂I
of cardinality k+1 is called a k-simplex if Pτ1∩· · ·∩Pτk is a parabolic subgroup.

Let Stk be the free abelian group generated by the k-simplices on I. Taking the

associated simplicial complex we get a sequence of G(F )-modules

Stl−1 → Stl−2 → · · · → St0 → Z→ 0.(17)

Definition 4.4: The Steinberg module StG of G(F ) is the kernel of the map

Stl−1 → Stl−2 (where we set St−1 = Z if l = 1).

Let Pk be the set of proper F -rational parabolic subgroups of semi-simple

F -rank l − 1 − k containing a fixed Borel subgroup B(F ) of G(F ). Then for

0 ≤ k ≤ l − 1 there is a natural isomorphism of G(F )-modules⊕
P∈Pk

c-ind
G(F )
P(F ) Z

∼=−→ Stk .

The homology of the complex (17) can be identified with the reduced homology

of the spherical building associated to G(F ). Since the reduced homology of the

building vanishes outside the top degree (see, for example, [BS76]) the following

complex of G(F )-modules is exact:

0→ StG → Stl−1 → · · · → St0 → Z→ 0.

Remark 4.5: Because every parabolic subgroup of G contains the center Z of

G, we see that StG and StG/Z are canonically isomorphic.

The choice of a Borel subgroup B with maximal torus T gives us the element

τG =
∑

w∈WG

w ⊗ ε(w) ∈ StG ⊂ Z[G(F )]⊗Z[B(F )] Z,

where WG denotes the Weyl group of G with respect to T and ε : WG → Z∗

is the sign character corresponding to B. Now let P be a parabolic subgroup

containing B and let L be the Levi-factor containing the torus T. There exists

an L(F ) equivariant map

StL → StG(18)

which maps τL to τG (see Proposition 1.1 of [Ree90]).
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By [BS73] every arithmetic subgroup Γ ⊂ G(F ) is a virtual duality group

with duality module StG. Let ν = ν(Γ) be the virtual cohomological dimension

of Γ. It is independent of the choice of the arithmetic subgroup. Since StG is

Z-free it follows from [Bro82], Chapter VIII.10, that the map

BSΓ : H•(Γ,Hom(StG,M))
∩e−→ Hν−•(Γ, StG⊗Hom(StG,M))

ev−→ Hν−•(Γ,M)

is an isomorphism for every Γ-module M as long as Γ is torsion-free. Here

e ∈ Hν(Γ, StG) ∼= Z is a fundamental class (see [Bro82, VIII.6]) and ev is

the map induced by the evaluation map StG⊗Hom(StG,M) → M . Now let

K ⊂ G(A∞) be a compact, open subgroup. After passing to a subgroup of finite

index we may assume that G(F )∩gKg−1 is torsion-free for all g ∈ G(A∞). For

every K-module M and every subgroup G(F )′ ⊂ G(F ) of finite index we get

an isomorphism

BSG: H
•(G(F )′, IndG(A∞)

K Hom(StG,M))
∼=−→Hν−•(G(F )′, c-indG(A∞)

K M)(19)

as follows: By strong approximation the quotient G(F )′\G(A∞)/K is finite. Let

g1, . . . , gr be a set of representatives of this double quotient and consider the

torsion-free arithmetic subgroups Γi = G(F )′ ∩ giKg−1
i . By Shapiro’s Lemma

we get an isomorphism

H•(G(F )′, IndG(A∞)
K Hom(StG,M))

∼=−→
r⊕

i=1

H•(Γi,Hom(StG,M)).

Using Borel–Serre duality for every Γi and Shapiro’s Lemma for homology af-

terwards yields the isomorphism (19). We are mostly interested in the case

G = H/Z. Theorem 11.4. of [BS73] gives us

ν(Γ) = d(n2 + n− 1)− 2n+ 1 = q − 2n+ 1

for every arithmetic subgroup Γ of H(F )/Z(F ).

We can use the Steinberg module to give another description of the Eichler–

Shimura map. By Corollary 8.4.2 of [BS73] there is a homotopy equivalence be-

tween the boundary ∂X of the Borel–Serre bordification of the symmetric space

X and the Bruhat–Tits building of G(F ) which gives a PG(F )+-equivariant

isomorphism of singular homology groups. Since X̄ is contractible, the long

exact sequence for relative homology shows that Hj+1(X̄, ∂X) is isomorphic to

the reduced homology H̃j(∂X). Thus the complex Hom(Csm
• (X̄, ∂X), V ∨

al ) is
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quasi-isomorphic to the complex Hom(StG, V
∨
al )[−2n + 1]. Therefore, we have

isomorphisms

Hj(PG(F )+, Cω(G,K,Hom(Csm
• (X̄, ∂X), V ∨

al )))

∼=−→Hj−2n+1(PG(F )+, Cω(G,K,Hom(StG, V
∨
al )))

and

Hj(PG(F )+, CSp
ω (G,Kp,Hom(Vp,Hom(Csm

• (X̄, ∂X), V ∨
al ))))

∼=−→Hj−2n+1(PG(F )+, CSp
ω (G,Kp,Hom(Vp,Hom(StG, V

∨
al )))).

We will identify EScoh(Φ) (resp. ESp
coh(Φ

p)) with its image under the above

isomorphism for j = q.

4.5. Modular symbols. Let E be the field of definition of the finite part of

V . Each Vv, v /∈ S∞, is defined over E and by abuse of notation we will denote

its model over E also by Vv. Since all embeddings F ↪→ C factor through E , the
algebraic representation Val also has a model over E . Again, we will denote this
model by Val.

Definition 4.6: Let S be a finite set of finite places and R an algebra over the

localization of the ring of integers of E at ω(IS∪S∞). We fix a compact, open

subgroup K ⊂ G(AS∪S∞) and an algebraic subgroup A ⊂ G containing the

center. Further, let M be an R[A(F )+] module, on which the center acts via

Z(F )+ −→
∏

v∈S∪S∞

Vv
ω−→ R∗

and N an R-module with trivial G(F )+-action. The module of N -valued mod-

ular symbols of weight M , level K and character ω on A is defined as

MS
ω(A,K,M,N) := Hq−2n+1(PA(F )+, CSω (A,K,HomR(M,N)).

We will omit S (resp. ω) from the notation if S = ∅ (resp. ω is trivial).

Our main example of a weight module will be the E-vector space

ṼS = Val ⊗
⊗
v∈S

Vv.
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For a compact, open subgroup K ⊂ G(A∞) (resp. Kp ⊂ G(Ap,∞)) one can

rephrase the Eichler–Shimura map (resp. its p-augmented version) as a homo-

morphism

EScoh : (⊗v/∈S∞Vv)
K −→Mω(G,K, StG⊗Val,W )

resp. ESpcoh : (⊗v/∈Sp,∞Vv)
Kp −→MSp

ω (G,Kp, StG⊗ṼSp ,W ).

Lemma 4.7: Let S∞ ⊂ S be a finite set of finite places and K ⊂ G(AS∪S∞) an

compact, open subgroup. Then:

(a) The canonical map

MS
ω(G,K, StG⊗ṼS , E)⊗W −→MS

ω(G,K, StG⊗ṼS ,W )

is an isomorphism for all E-vector spaces W .

(b) The E ′-module MS
ω(G,K, StG⊗ṼS , E ′) is finitely generated for every

E-algebra E ′.
Proof. More generally, we will prove the above statements for the modules

Hj(PG(F )+, CSω (G,K,HomE(StG⊗ṼS ,W )))

for all j ∈ N.

(a) We break the exact sequence 0 → StG → St2n−2 → · · · → St0 → Z → 0

into short exact sequences and consider the associated long exact sequences

Hj(·,W ) and Hj(·, E) ⊗ W . By induction we see that it is enough to prove

(a) with StG replaced by Sti, −1 ≤ i ≤ 2n − 2. Since the modules Sti are

direct sums of modules of the form c-ind
PGL2n(F )
PQ(F ) Z with PQ ⊂ PGL2n (not

necessarily proper) parabolic subgroups, it is enough to show that

Hj(PG(F )+, CSω (G,K,HomE(c-ind
PGL2n(F )
PQ(F ) Z⊗ ṼS ,W )))

=Hj(PG(F )+, Ind
GL2n(F )
PQ(F ) CSω (G,K,HomE(ṼS ,W )))

=Hj(PQ(F )+, CSω (G,K,HomE(ṼS ,W )))

commutes with base change In [SS93] Schneider and Stuhler construct for every

v ∈ S a finite resolution

0 −→ Cv,m −→ · · · −→ Cv,0 −→ Vv −→ 0

in CE(G(Fv)), where each Cv,i is of the form

Ci = c-ind
G(Fv)
Kv,[i]Z(Fv)

Li ⊗ ωv
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with compact, open subgroups Kv,[i] ⊂ G(Fv) and E [K[i]]-modules Li, which

are finite-dimensional over E . A similar argument as above shows that it is

enough to prove that cohomology groups of the form

Hj(PQ(F )+, Cω(G,K,HomE(Val,W )))

commute with base change.

By strong approximation (and the Iwasawa decomposition) the double quo-

tient

PQ(F )+\PG(A∞)/K

is finite. We choose a system of representatives g1, . . . , gr of the above double

quotient and define the arithmetic subgroups

Γi = PQ(F )+ ∩ gi(KZ(A∞)/Z(A∞))g−1
i .

From Shapiro’s Lemma we get the equality

Hj(PQ(F )+, CSω (G,K,HomE(Val,W ))) =

r⊕
i=1

Hq(Γi,HomE(Val,W ))

=

r⊕
i=1

Hq(Γi, V
∨
al ⊗W ).

Since the groups Γi are arithmetic, they are of type (VFL). It follows that the

functor W 
→ Hq(Γi, V
∨
al ⊗W ) commutes with direct limits (cf. [Ser72]).

(b) can be proven in exactly the same manner.

For the remainder of the article we stick to the case S = Sp. Let R be the

valuation ring of E with respect to ordp, R its completion and write E for the

field of fractions of R. A place v ∈ S∞ induces an embedding F ↪→ E ↪→ R and

thus a place p ∈ Sp via ordp. For every p ∈ Sp we define

Sp
∞ = {v ∈ S∞ | v induces p}.

The representation Val can be written as a tensor product Val =
⊗

v∈S∞ Val,v.

We put

V p
al =

⊗
v∈Sp

∞

Val,v and Ṽ p
Sp

= Vp ⊗ V p
al.

Then V p
Sp,∞ ⊗E E is a locally Qp-rational representation of G(Fp).
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Definition 4.8: (i) The representation ṼSp is called homologically inte-

gral if the representations Ṽ p
Sp
⊗E E are homologically integral for all

p ∈ Sp.

(ii) A lattice L ⊂ ṼSp ⊗E E is called homologically of finite type if it is

of the form L =
⊗

p∈Sp
Lp, where Lp is a homologically of finite type

lattice in Ṽ p
Sp
⊗E E for each p ∈ Sp.

Proposition 4.9: Assume that L is a lattice in ṼSp ⊗E E, which is homologi-

cally of finite type. Then:

(a) The canonical map

MSp
ω (G,K, StG⊗L,R)⊗N −→MSp

ω (G,K, StG⊗L,N)

is an isomorphism for all flat R-modules N .

(b) The R-module M
Sp
ω (G,K, StG⊗L,R) is finitely generated.

Proof. Replacing the Schneider–Stuhler resolution by the resolution (4) the

same proof as for Lemma 4.7 works.

4.6. Cohomological description of the distribution. Besides the run-

ning assumption that V is cohomological with respect to Val we are going to

assume in the following that

• s+ 1/2 is critical for V ,

• we have given a stabilization Θ of Vp over a finite extension E ′ ⊂ C of

E and

• V has a (η, ψ)-Shalika model with respect to some idele class character

η, whose finite part takes values in E .
We choose a pure tensor Φp,∞

Σ = Φp,∞
Σ,m ∈

⊗
v/∈Sp∪S∞ Vv as in Section 3.2 and

Kp ⊂ G(Ap,∞) a compact, open subgroup such that

• KpG(Op) is neat, i.e., G(F ) ∩ gKpG(Op)g
−1 is torsion-free for every

g ∈ G(A∞),

• Φp,∞
Σ is invariant under Kp, and

• (η◦det0,1)(Kp
H) = 1, whereKp

H is the intersection of Kp with H(Ap,∞).

Let U ′ ⊂ U∞ be the subgroup generated by Up and the image of Kp under

the determinant. The main aim of this section is to construct functorial maps

Δs
W :MSp,∞

ω (G,Kp, StG⊗ṼSp ,W )→ H0(F
∗
+, c-ind

I∞
U ′ (Dist(Up),W ))
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for all E-vector spaces W such that ∂(Δs
C(ES

p
coh(Φ

p))) = μΘ,s holds up to

multiplication by a non-zero constant.

The homomorphism Δs
W is constructed in several steps: Firstly, the map (18)

from StH to StG together with the restriction of functions yields the map

MSp
ω (G,Kp, StG⊗ṼSp ,W )

ResH−−−→MSp
ω (H,Kp, StH ⊗ṼSp ,W ).

Secondly, s + 1
2 is critical. Hence, by the discussion in Section 4.2 there is a

unique 1-dimensional H(F )-subrepresentation Vs of Val, which is given by the

algebraic character

ResF/Q GL2n
det−s,s+w−−−−−−→ ResF/Q Gm,F

N−→ Gm,Q.

The map δΘ as defined in (13) together with the inclusion Vs ↪→ Val gives a map

MSp
ω (H,Kp, StG⊗ṼSp ,W )

δ∨Θ,s−−−→MSp
ω (H,Kp, StH ⊗Vs ⊗ IC0

ω(G(Op), E),W ).

By Remark 4.2 we have

[det1,−1
|·|s ] ∪ [det0,−1

η ] ∈ H0(PH(F )+, Cω−1(H,K, Vs))

for the cohomology class associated to the character | det1,−1 |sη(det0,−1) as in

(15). Thus, taking the cap product with [det1,−1
|·|s ] ∪ [det0,−1

η ] induces a map

MSp
ω (H,Kp, StH ⊗Vs ⊗ IC0

ω(G(Op), E),W )

[s,η]−−−→MSp(H,Kp, StH ⊗IC0(G(Op), E),W ).

Borel–Serre duality (19) gives an isomorphism

MSp(H,Kp, StH ⊗IC0(G(Op), E),W )
BSH−−−→ H0(PH(F )+, IDist(G(Op),W )).

Finally, the pushforward map (2) applied to the determinant det : G(Op)→ Up

induces a map

H0(PH(F )+, IDist(G(Op),W ))
det∗−−−→ H0(F

∗
+, c-ind

I∞
U ′ (Dist(Up),W ).

Now we can define Δs
W as the following composition:

Δs
W = det∗ ◦BSH ◦[s, η] ◦ δ∨Θ,s ◦ ResH .

Lemma 4.10: There exists a constant c ∈ C∗ such that

∂(Δs
C(ES

p(Φp,∞
Σ )coh)) = c · μΘΣ,s.
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Proof. We have to evaluate both sides on locally constant functions f : Gp → C.

We can view such a function f as an F ∗
+-invariant function on I∞/Up,∞. Since

I∞/F ∗
+ is compact, there exists an m ∈ N such that f factors through the

quotient I∞/Up,∞U (m)
p . Hence, to calculate the right-hand side one can replace

all distribution and function spaces in the above construction by (co-)inductions

of the trivial representation from open subgroups. Now all involved cohomology

groups can be written purely in terms of the (de Rham) cohomology of the

associated symmetric spaces. The claim then follows by standard computations

(see, for example, [Har87], Section 5.3).

Corollary 4.11 (Rationality of the distribution): The distribution μΘΣ,s

takes values in a finite-dimensional vector space over E ′. For every character

ε : F ∗
∞ → {±1} there exists a period Ωε ∈ C∗ such that∫

Gp

χμΘΣ,s ∈ E ′χΩχ∞

for all characters χ : Gp → C∗. Here E ′χ ⊂ C denotes the field you get by

adjoining the image of χ to E ′.
Proof. The first assertion follows directly from Lemma 4.7 and the lemma

above. For the second assertion let ϕp ∈ Vp be the essential vector as de-

fined in [JPSS81] and Kp ⊂ G(Op) its stabilizer. We put Kp =
∏

p∈Sp
Kp and

K = KpKp. By Frobenius reciprocity we have a surjective map

c-ind
G(Fp)

KpZ(Fp)
ωp

ev−→ Vp,

which induces a map on modular symbols

MSp
ω (G,Kp, StG⊗ṼSp ,W )

ev∨−→Mω(G,K, StG⊗Ṽal,W ).

By Lemma 1.1 the map

δΘ : IC0
ωp
(G(Op), E ′) 
−→ Vp

of Section 2.5 can be lifted to a map

δ̃Θ : IC0
ωp
(G(Op), E ′) 
−→ c-ind

G(Fp)

KpZ(Fp)
ωp.

Thus, we get a commutative diagram of the form
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MSp
ω (G,Kp, StG⊗ṼSp ,W ) Mω(G,K, StG⊗Ṽal,W )

H0(F
∗
+, c-ind

I∞
U ′ (Dist(Up),W ))

ev

Δs
W

By Section 3.9 of [GR14] the pure tensor (
⊗

p∈Sp
ϕp)⊗ Φp,∞

Σ can be chosen to

be in the rational Shalika model as defined in loc. cit. if Σ contains all primes

at which V is ramified. Therefore, the claim follows from multiplicity one in

this case. The general case follows from Lemma 7.1.1 of [GR14].

Let E′ be the completion of E ′ with respect to ordp and R′ its valuation ring.

We can regard Θ as a stabilization of ṼSp ⊗E′ E′ and thus the notion of weak

ordinarity makes sense.

Corollary 4.12 (Integrality of the distribution): (a) The distribution

μΘΣ,s is a p-adic measure provided that Θ is weakly ordinary with

respect to Val and that Vp ⊗ Val is homologically integral.

(b) Assume that Θ is weakly ordinary with respect to Val and that for every

p in Sp one of the following conditions hold:

• Ṽ p
Sp
⊗E′ E′ is a smooth ordinary principal series representation, or

• Fp = Qp, V
p
al has p-small weights, Vp is a twist of an unram-

ified principal series representation and the central character of

Ṽ p
Sp
⊗E′ E′ takes values in Z∗

p

Then μΘΣ,s is a p-adic measure.

Proof. (a) Let L ⊂ ṼSp be a lattice, which is homologically of finite type. By

Lemma 2.11 and the discussion at the end of Section 4.1 we can construct maps

Δs
N :MSp,∞

ω (G,Kp, StG⊗L,N)→ H0(F
∗
+, c-ind

I∞
U ′ (Dist(Up), N))

for all R′-modules N , which agrees with the previous definition if N is an E′-
vector space. Therefore, the claim follows from Proposition 4.7.

(b) follows from (a) together with Theorem 1.6 and Theorem 1.8.

In case μΘΣ,s is a p-adic measure, we can define its associated p-adic L-

function as follows: Let χcyc : Gp → Z∗
p be the cyclotomic character, i.e.,

γζ = ζχcyc(γ)
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holds for all p-power roots of unity ζ and all γ∈Gp. For x∈Zp and γ∈Gp we put

〈γ〉x = expp(x logp(χcyc(γ))), where expp (resp. logp) is the p-adic exponential

map (resp. logarithm map). The p-adic L-function attached to μΘΣ,s is defined

by

Lp(ΘΣ, s, x) =

∫
Gp

〈γ〉xμΘΣ,s(dγ).

It is an analytic function on Zp with values in a finitely generated R′-submodule

of E′ ⊗E′ C.

Remark 4.13: (i) Even in the non-weakly ordinary situation we can use

Lemma 2.11 (or rather its proof) to give bounds on the order of growth

of our distributions in terms of slopes of stabilizations.

(ii) There should be relations between the distributions μΘΣ,s for differ-

ent critical points s + 1/2. These relations together with the above-

mentioned bounds would enable us to construct for every stabilization of

non-critical slope a unique locally analytic distribution, which interpo-

lates special values at all critical points. In upcoming work of Santiago

Molina and the author it is shown that these relations follow directly

from Lemma 2.11 in the GL2-case, thus giving a new construction of

Dabrowski’s p-adic L-function for Hilbert modular forms (cf. [Dab94]).

This enables us to generalize the work of Spieß on the exceptional zero

conjecture to Hilbert modular forms of higher weight.

5. Examples

We want to give some examples to our construction. The natural source for these

are odd symmetric powers of p-ordinary Hilbert modular forms over totally real

fields F , in which p is totally split. To keep the notation simple we only deal

with the case F = Q. Let f be a cuspidal newform of level Γ1(N), p � N ,

and weight k ≥ 2. The associated cuspidal automorphic representation V of

GL2(A) is cohomological with respect to the representation (Symk−2 C2)∨. The
local component Vp is an unramified principal series representation of the form

Ind
GL2(Qp)

B2(Qp)
(χ1, χ2). Let us put α = χ2(p) and α

′ = χ1(p). Then, as explained at

the end of Section 2.2, the weak ordinarity condition is equivalent to ordp(α) = 1

and ordp(α
′) = k−2. Thus, the notion of weakly p-ordinarity coincides with the

usual ordinarity condition at p. In this case our construction gives the classical

p-adic L-function as constructed, for example, in [MTT86].
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By the work of Kim and Shahidi (cf. [KS02]) the symmetric cube Sym3 V of

V is known to be a cuspidal automorphic representation of GL4(Q) if f is not

a CM-form. The representation Sym3 V is cohomological with respect to the

algebraic representation of highest weight (0,−(k − 2),−2(k − 2),−3(k − 2))

(see [RS08]) and the local representation at p is given by

Ind
GL4(Qp)

B4(Qp)
(χ3

1, χ
2
1χ

1
2, χ

1
1χ

2
2, χ

3
2).

If f is p-ordinary, we get

ordp(α
−5(α′)−1pk−2) = 0

and hence the associated unramified stabilization is weakly ordinary. One can

combine the results of Kim (cf. [Kim03]) and Jacquet–Shalika (cf. [JS90]) to

show that Sym3 V has a Shalika model (see Section 8 of [GR14] for a detailed

discussion). Thus, our construction yields a p-adic L-function for every critical

point of the symmetric cube of a p-ordinary modular form of level Γ1(N), p � N ,

which is not of CM-type.

The same arguments carry over to higher odd symmetric powers as well.

Assume that

Π = Sym2r+1 V

is a cuspidal automorphic representation of GL2(r+1)(Q). Again, this implies

that Π is cohomological (cf. [RS08]) and, as in the symmetric cube case, one can

show that Π is weakly ordinary if f is ordinary at p. Accordingly, Banerjee and

Raghuram show in [BR16] that the symmetric powers of the motive associated

to f are nearly p-ordinary, if f is p-ordinary.

If we would know that Π has a Shalika model, our construction would yield a

p-adic L-function for every critical point of Π. By Proposition 8.1.4 of [GR14] Π

has a Shalika model if Sym4(r−a) V is an isobaric sum of cuspidal automorphic

representations for all 0 ≤ a ≤ r.
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