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ABSTRACT

Extending a construction of Bourgain for SL(2,R), we construct on any

semisimple real Lie group G a symmetric probability measure whose sta-

tionary measure on the Furstenberg boundary has a smooth density and

whose support is finite and generates a dense subgroup of G.

1. Introduction

1.1. Notations. LetG be a connected real semisimple Lie group and let P ⊂ G

be a parabolic subgroup. We recall that a parabolic subgroup is a subgroup P

that contains a minimal parabolic subgroup Pmin and that a minimal parabolic

subgroup is a subgroup that is equal to the normalizer of a maximal unipotent

subgroup of G. Equivalently, Pmin is a maximal amenable subgroup of G such

that G/Pmin is compact. The homogeneous space X := G/P is called a partial

flag variety. The homogeneous space G/Pmin is called the full flag variety or

the Furstenberg boundary.
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Let μ be a (Borel) probability measure on G. In this paper, the probability

measure μ will often be a finite average of Dirac masses μ = |F |−1
∑

f∈F δf

where F is a finite subset of G.

1.2. Example. The main example is the following: the group G is the special

linear group G = SL(d,R), the parabolic subgroup P is the stabilizer in G of a

line of Rd and X is the real projective space X = P(Rd).

1.3. Main result. A probability measure ν on X is said to be μ-stationary if

ν = μ ∗ ν where μ ∗ ν =
∫
G g∗ν dμ(g).

The following fact, which is the starting point of this note, is due to Fursten-

berg in [16] and to Goldsheid and Margulis in [21]. We denote by Γμ the

subgroup of G spanned by the support of μ. We will assume that Γμ is Zariski

dense in G. Here, this means that no finite index subgroup of Γμ is included in

a proper connected closed subgroup of G.

Fact 1.1: When Γμ is Zariski dense in G, there exists a unique μ-stationary

probability measure ν on X .

We will call this measure ν the Furstenberg measure. The importance of this

measure relies on the fact that it controls the behavior of the random walk on

G obtained by multiplying random elements of G chosen independently with

law μ. See the articles [14], [18], [24], or the surveys [8], [9], [13], [27]. The

question we address in this short note is: What is the regularity of ν? Our

main result is the construction of examples where ν has regularity Ck while Γμ

is (topologically) dense.

Theorem 1.2: Let G be a connected semisimple real Lie group, P be a par-

abolic subgroup of G and let k ≥ 1. Then, there exists a finitely supported

symmetric probability measure μ on G with Γμ dense in G whose stationary

measure ν on the flag variety X := G/P of G has a Ck-smooth density.

With no loss of generality, we can assume that G has finite center and we de-

note by K ⊂ G a maximal compact subgroup. For instance when G = SL(d,R),

the maximal compact subgroupK is the special orthogonal groupK = SO(d,R).

The main property of G/P used in the proof will be Fact 1.1. Hence Theorem

1.2 is still true for any compact algebraic homogeneous space G/P . Indeed, by

[6, Prop. 5.5], those also support a unique μ-stationary probability measure.
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The conclusion of Theorem 1.2 means that one can write ν = ψ dx where

ψ ∈ Ck(X) is a k-times continuously differentiable function on X and where

dx is the K-invariant probability measure on X .

When G = SL(2,R), this existence theorem is due to B. Barany, M. Pollicott

and K. Simon in [4, Section 9], if we do not insist on μ to be symmetric. If

we insist on μ to be symmetric, the first example of such a measure μ when

G = SL(2,R) is due to J. Bourgain in [10]. Moreover, the example of Bour-

gain is given by an explicit construction. Our proof below will assume that

G �= SL(2,R) and will also give an explicit construction of such a measure μ.

1.4. Related results. We survey now a few regularity results for the Fursten-

berg measure which help to put our theorem in perspective. We fix a K-

invariant Riemannian metric on X .

(i) When μ has a C1 density, then ν has a C∞ density. Just because the

convolution by μ is then a regularizing operator, it sends measures to measures

with C1 density and measures with Ck density to measures with Ck+1 density.

(ii) If Γμ is Zariski dense in G and μ has a finite exponential moment, then ν

is Hölder regular. Recall that finite exponential moment means that there

exists ε > 0 such that
∫
G ‖Adg‖ε dμ(g) <∞. Recall also that Hölder regular

means that there exists α > 0 and C > 0 such that ν(B(x, r)) ≤ Crα for all

balls B(x, r) in X of radius r. This fact is due to Guivarc’h in [22]. See also

the survey [8, Chap. 13]

(iii) For any lattice Λ in G, one can find μ such that Γμ = Λ and ν = dx.

This fact is due to Furstenberg in [15] and to Lyons and Sullivan in [29]. See

also [31]. Ballmann and Ledrappier have proved in [3] that one can choose μ to

be symmetric. When Λ is cocompact, the construction of Lyons and Sullivan

gives a probability measure μ with a finite exponential moment. Note that all

these constructions provide measures with infinite support.

(iv) If G = SL(2,R), if Γμ is a non-cocompact lattice in G and if μ has a

finite first moment, then ν is singular with respect to dx. This fact is due to

Guivarc’h and Le Jan in [23]. See also [11] and [19].

(v) If G = SL(d,R), there exists a finitely supported symmetric probability

measure μ on G such that Γμ is dense in G and ν is singular with respect to

dx. This fact is due to Kaimanovich and Le Prince in [26] and the construc-

tion allows to obtain a Furstenberg measure ν whose Hausdorff dimension is
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arbitrarily small. The authors of [26] conjectured there that the Furstenberg

measure ν of a finitely supported probability measure μ might always be sin-

gular. As we have already seen, the first counterexamples for G = PSL(2,R)

are due to Barany, Pollicott and Simon in [4] and to Bourgain in [10] with a

symmetric measure μ. The main theorem of this note is a counterexample for

each semisimple Lie group G.

(vi) It is not known whether there exists a finitely supported probability mea-

sure μ on G with Γμ discrete and Zariski dense and whose Furstenberg measure

is absolutely continuous with respect to dx. Note that the constructions in [4]

and [10] provide measures with Γμ dense.

(vii) We end this introduction by quoting a few results whose proofs rely on

an understanding of the regularity of Furstenberg measures.

-The Margulis superrigidity theorem for a lattice Λ in G relies on the Fursten-

berg construction of a measure μ supported by Λ whose Furstenberg measure

has a continuous density. See (iii) and [31, Section VI.4].

- The classification of stationary measures on finite volume homogeneous

spaces relies on the Hölder regularity theorem due to Guivarc’h for the Fursten-

berg measure when μ has a finite exponential moment. See (ii) and [5, Section

4.5].

- The central limit theorem for the product of random independent elements

of G when their law μ has a finite second moment, i.e., when∫
G

(log ‖Adg‖)2 dμ(g) <∞,

relies on the log-regularity of the Furstenberg measure. See [7, Prop. 4.5].

Acknowlegments. We thank F. Ledrappier for nice discussions on this topic.

We also thank the MSRI for its support during the Spring 2015.

2. Construction of the law

We begin now the proof of Theorem 1.2.

2.1. First reductions. We notice that, if Theorem 1.2 is true for two semisim-

ple Lie groups, then it will be true for their product. We notice also that, when

the group G is compact, the space X is a singleton. Since moreover Bourgain
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has proved Theorem 1.2 for G = PSL(2,R), we can assume with no loss of

generality that

G is a non-compact simple Lie group, G �= PSL(2,R).

We will first construct in Section 2.6 probability measures μ for which the

Furstenberg measure ν has an L2 density. We will explain then in Section 2.7

that the same method allows to construct probability measures μ for which the

Furstenberg measure ν has a Ck density.

2.2. Transfer operators. We introduce some notation and a few remarks

that will relate Theorem 1.2 to a spectral property of the transfer operators

that we will prove later. We will use the Hilbert space

L2(X) := {ϕ : X → C | ‖ϕ‖2
L2

:=
∫
X
|ϕ(x)|2 dx <∞}.

The main tool will be the two transfer operators

Pμ : L2(X) → L2(X) and P ∗
μ : L2(X) → L2(X)

defined for compactly supported measures μ on G by, for all ϕ, ψ in L2(X),

Pμϕ (x) =

∫
G

ϕ(gx) dμ(g)

and

P ∗
μψ (x) =

∫
G

ψ(g−1x)Jac(g−1, x) dμ(g),

where Jac(g−1, x) is the Jacobian determinant of the map x �→ g−1x with

respect to the volume form dx.

Remark 2.1: (i) These operators Pμ and P ∗
μ are bounded operators which are

adjoint of one another, i.e., for all ϕ, ψ in L2(X), one has∫
X

Pμϕψ dx =

∫
X

ϕP ∗
μψ dx .

(ii) Their norms as operators of L2(X) are equal ‖Pμ‖L2 = ‖P ∗
μ‖L2 . When μ

is a Dirac mass μ = δg with g in G, one has

‖Pδg‖L2 = supx∈XJac(g−1, x)1/2.

(iii) When μ is a symmetric probability measure μ = σ supported on K, one

has the equalities

P ∗
σ = Pσ and ‖Pσ‖L2 = 1,
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because the measure dx is K-invariant and because Pσ1 = 1.

(iv) For all compactly supported measures μ1, μ2 on G, one has

Pμ1∗μ2 = Pμ2Pμ1 .

(v) Whenever the equation

P ∗
μψ = ψ

has a solution ψ in L2(X), the measure ψ dx is μ-stationary. In particular, if Γμ

is Zariski dense, by uniqueness, the stationary measure ν must be proportional

to ψ dx, hence ν has an L2 density. Moreover, whenever this solution ψ can be

found in Ck(X), the stationary measure ν has a Ck density.

(vi) The equation Pμϕ = ϕ always has a solution in L2(X): the constant

function ϕ = 1. Hence we will just have to use the following general Fact 2.3

which allows us sometimes to deduce that 1 is an eigenvalue of P ∗
μ from the

input that 1 is an eigenvalue of Pμ.

2.3. Essential spectral radius. Let E be a Banach space and let T ∈ L(E)

be a bounded operator. We denote by E∗ the dual Banach space and T ∗∈L(E∗)
the adjoint operator. We recall that the spectral radius of T is

ρ(T ) = lim
n→∞ ‖T n‖1/nE

and that the essential spectral radius is

ρe(T ) = lim
n→∞ γ(T n)1/n,

where γ(T ) is the infimum of the radii R such that the image T (B(0, 1)) of the

ball of radius 1 is included in a finite union of translates of the ball B(0, R).

The operator T is said to be quasicompact if one has ρe(T ) < ρ(T ).

The following two related facts will be useful.

Fact 2.2: One has ρe(T ) < 1 if and only if some positive power T d of T can be

written as a sum T d = T0+T1 of two operators with T0 compact and ‖T1‖ < 1.

Fact 2.3: Let λ be a complex number such that |λ| > ρe(T ). Then the follow-

ing dimensions are finite and are equal:

dimKer(T ∗ − λ) = dimKer(T − λ).

For a proof of these classical facts, see for instance [8, Prop. B.13]. For more

on the essential spectral radius see [32] and [34, Section 2.4].
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We will also need the following fact which tells us that the spectral radius and

the essential spectral radius vary upper semicontinuously in the norm topology.

Fact 2.4: Let Tn ∈ L(E) be a sequence of bounded operators which converges

in norm toward an operator T∞ ∈ L(E). Then, one has

lim sup
n→∞

ρ(Tn) ≤ρ(T∞)

and

lim sup
n→∞

ρe(Tn) ≤ρe(T∞).

These inequalities could be strict. An example due to Kakutani is given in

[36, §17.13].

Proof. The first inequality is true in any Banach algebra by [33, Thm. 10.20].

Recall that the Calkin algebra is the quotient of the Banach algebra L(E) by the

closed ideal K(E) of compact operators. Since the essential spectral radius of T

is the spectral radius of the image of T in the Calkin algebra (see [8, Sect. B.2.4]),

the second formula follows from the same [33, Thm. 10.20] applied in the Calkin

algebra.

2.4. Spectral gap. We recall that G is now a non-compact simple Lie group

of dimension d > 3 and with finite center. The following fact is well-known.

Fact 2.5: G contains a simple 3-dimensional compact subgroup S.

Proof. See [25, Prop. VIII.5.1]. Write g = k⊕e, where k is the Lie algebra of K

and e its orthogonal for the Killing form. Since k is a maximal Lie subalgebra,

k acts irreducibly on e. If Fact 2.5 were not true, k would be abelian hence

one would have dime ≤ 2. Since k = [e, e], one would also have dimk ≤ 1.

Contradiction with d > 3.

This subgroup S is locally isomorphic to the orthogonal group SO(3,R). We

will say that a probability measure σ on S has a spectral gap if there exists

ε > 0 such that, for every unitary representation (H, π) of S with no S-invariant

non-zero vectors, one has ‖π(σ)‖ ≤ 1 − ε where π(σ) is the bounded operator

of H given by π(σ) :=
∫
G
π(s) dσ(s). The following fact is due to Drinfeld in

[12] (see also [30]).
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Fact 2.6: There exists a finitely supported symmetric probability measure σ

on S which has a spectral gap.

Here are two comments on this well-known fact.

- An explicit example of such a probability measure σ on SO(3,R) has

been given by Lubotzky, Phillips and Sarnak in [28] (see also [35, Section

2.5]). One can choose σ to be

σ = 1
6

∑
i≤3

(δRi + δR−1
i
)

where the Ri’s are the rotations of angle arccos(−3/5) with respect to

the ith coordinate axis. One has then ‖π(σ)‖ =
√
3/5.

- When a probability measure σ on S has a spectral gap, the subgroup

spanned by the support of σ is dense in S. Conversely, it is conjectured

that any probability measure σ on S whose support spans a dense sub-

group has a spectral gap.

2.5. Construction of μ. We choose now a finitely supported symmetric

probability measure σ on S with a spectral gap. We choose also a finitely

supported symmetric probability measure μ0 on G of the form

μ0 = |F0|−1
∑
f∈F0

δf

where

(i) F0 is a symmetric finite subset of G with |F0| = 4d,

(ii) F0 is included in a small neighborhood B of e so that, for g in B,

‖Pδg‖ ≤ (1 + ε0)
1/d with ε0 = |F0|−d/2.

Such a neighborhood B does exist by Remark 2.1(ii).

(iii) F0 contains elliptic elements gi = eXi of infinite order where the ele-

ments Xi span the Lie algebra g of G.

(iv) One can find a finite sequence f1, . . . , fd in F0, such that the Lie algebra

s of S together with the images Ad(f1 · · · fi)(s) with 1 ≤ i ≤ d span g
as a vector space.

It is elementary to construct such a finite set F0.

- The equality |F0| = 4d is not important: it can be relaxed easily. In

our construction we need d elements to check (iii), d elements to check

(iv), and the inverses of these 2d elements so that μ be symmetric.
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- The condition (iii) ensures that the subgroup Γμ0 is dense in G. Indeed

the Lie algebra of the closure Γμ contains all the elements Xi and hence

is equal to g.
- The condition (iv) will be used to ensure that the set Sf1S · · · fdS has

non-empty interior.

We will choose the probability measure μ to be

μ = μn := σ∗n ∗ μ0 ∗ σ∗n,

for n large enough. The subgroup Γμn is also dense in G.

Notice that a similar construction cannot provide a discrete subgroup Γμn as

required in Question 1.4(vi), because the group Γσ is dense in S.

2.6. Stationary measure with L2
density.

Proposition 2.7: For n large enough, the essential spectral radius of Pμn in

L2(X) is strictly smaller than 1:

ρe(Pμn) < 1.

Hence the μn-stationary measure νn on X has an L2 density.

Since 1 is an eigenvalue of Pμn , this Proposition 2.7 tells us also that the

operator Pμn is quasicompact in L2(X).

The proof of Proposition 2.7 will rely on the following Lemma 2.8. Let σ∞
be the S-invariant probability measure on S and let

μ∞ := σ∞ ∗ μ0 ∗ σ∞.
Lemma 2.8: The essential spectral radius of Pμ∞ in L2(X) is strictly smaller

than 1: ρe(Pμ∞) < 1.

Proof of Lemma 2.8. The proof will be based on Fact 2.2. Recall that d = dimG

and ε0 := |F0|−d/2. We first claim that we can write

(2.1) μ∗d
∞ = ε0α0 + (1 − ε0)α1,

with α0, α1 positive measures on G such that α0 has a C∞ density and

(2.2) ‖Pα1‖ ≤ 1 + ε0.

Indeed, by construction μ∗d
∞ is the average of |F0|d probability measures of

the form

σ∞ ∗ δf1 ∗ σ∞ ∗ · · · ∗ δfd ∗ σ∞,
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with the fi’s in F0. If one chooses (f1, . . . , fd) in F
d
0 to be the d-tuple given by

condition (iv), the map π : Sd+1 → G given by

π(s0, . . . , sd) = s0f1s1 · · · fdsd
is submersive near the point (e, . . . , e). Since this map π is algebraic, it is

submersive on a non-empty Zariski open subset U ⊂ Sd+1. This open subset

U has full σ⊗d+1
∞ -measure. Hence there exists a compactly supported function

ϕ ∈ C∞
c (U) with 0 ≤ ϕ ≤ 1 on U such that

∫
U
ϕdσ⊗d+1

∞ = 1/2. The measure

α0 := π∗(2ϕσ⊗d+1
∞ )

is a probability measure on G with C∞ density. Since ε0 = |F0|−d/2, one can

write μ∗d
∞ = ε0α0 + (1 − ε0)α1 where α1 is another probability measure on G.

It remains only to check (2.2).

Notice that, by construction, the operator Pα1 is an average of operators of

the form Pδg where g = s0f1s1 · · · fdsd with the si’s varying in S and the fi’s

varying in F0. The condition (ii) tells us that these operators Pδg have norm at

most 1 + ε0, hence one also has ‖Pα1‖ ≤ 1 + ε0 as required.

Now, the operator T := P d
μ∞ of L2(X) is equal to the sum T = T0+T1 where

T0 := ε0Pα
0
and T1 := (1−ε0)Pα

1
. The measure α0 has a C∞ density, hence

the convolution operator by α0 is a continuous operator from L2(X) to C∞(X).

Because of the Ascoli Theorem, the embedding C∞(X) ↪→ L2(X) is compact,

hence the first operator T0 is a compact operator of L2(X). The norm of the

second operator T1 is bounded by

‖T1‖ ≤ (1− ε0)‖Pα
1
‖ ≤ 1− ε20 < 1.

Using Fact 2.2, this proves that ρe(Pμ∞) < 1 in L2(X).

Proof of Proposition 2.7. Since the probability measure σ has a spectral gap,

and since the operator Pσ∞ is the orthogonal projection on the S-invariant

vectors in L2(X), one has the convergences in L(L2(X)) for the norm topology,

P
σ∗n −−−−→

n→∞ Pσ∞ and hence Pμn −−−−→
n→∞ Pμ∞ .

By Fact 2.4, the essential spectral radius varies in an upper semicontinuous way

in the norm topology, Hence by Lemma 2.8, one has ρe(Pμn) < 1 for n large

enough.
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Since 1 is always an eigenvalue of Pμn and since ρe(Pμn) < 1, using Fact 2.3,

one infers that 1 is also an eigenvalue of P ∗
μn

. Let ψn ∈ L2(X) be the corre-

sponding eigenvector. According to Remark 2.1(v), the μn-stationary proba-

bility measure νn on X is proportional to ψn dx. In particular νn has an L2

density.

2.7. Stationary measure with Ck
-density. We explain now how to mod-

ify the previous arguments to show that for n large enough the μn-stationary

measure νn has a Ck-density.

The main modification is to replace the Hilbert space L2(X) by the Sobolev

space E = H−s(X) and by its dual E∗ = Hs(X). We first recall the definition

of Sobolev spaces. For more details, one can consult [1] for Sobolev spaces over

Rn and [2, Chap. 2] for Sobolev spaces over Riemannian manifolds. We denote

by C∞(X) the Frechet space of C∞-functions on X , and by D′(X) the Frechet

space of generalized functions (or distributions) on X . By definition, D′(X) is

the topological dual of C∞(X). The duality on C∞(X) given by, for all ϕ, ψ

in C∞(X),

(2.3) (ϕ, ψ) :=

∫
X

ϕ(x)ψ(x) dx,

identifies the space C∞(X) with a dense subspace of D′(X).

We denote by Δ the Laplacian of the K-invariant Riemannian metric on X .

It is a symmetric operator on C∞(X) that has a unique continuous extension,

also denoted by Δ, as an operator of D′(X). The operator 1 −Δ is invertible

both in C∞(X) and in D′(X). For s an even integer, the Sobolev spaces are

given by

Hs(X) := {ψ ∈ D′(X) | (1−Δ)s/2ψ ∈ L2(X)}.
The Sobolev space Hs(X) is a Hilbert space for the norm

‖ψ‖
Hs := ‖(1−Δ)s/2ψ‖

L2 .

This Hilbert norm is K-invariant. When a probability measure μ on G has

compact support, the operators Pμ and P ∗
μ introduced in Section 2.2 have a

unique continuous extension, also denoted by Pμ and P ∗
μ , as operators of D′(X).

These operators Pμ and P ∗
μ preserve the Sobolev spaces. In what follows, we

will assume s > k + 1
2 dimX so that, by the Sobolev embedding theorem (see

[2, Thms. 2.10 & 2.20]), one has Hs(X) ⊂ Ck(X). We will consider Pμ as a
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bounded operator of H−s(X) and P ∗
μ as a bounded operator of Hs(X):

Pμ : H−s(X) → H−s(X) and P ∗
μ : Hs(X) → Hs(X).

We recall that the duality (2.3) on C∞(X) extends as a duality also denoted

by (·, ·) between H−s(X) and Hs(X). This duality identifies Hs(X) with the

dual of H−s(X). The operators Pμ and P ∗
μ are still adjoint to each other for

this duality, i.e., one has, for all ϕ in H−s(X) and ψ in Hs(X),

(Pμϕ, ψ) = (ϕ, P ∗
μψ).

Proof of Theorem 1.2. We use the same probability measures σ and σ∞ on K,

μn and μ∞ on G as in Sections 2.5 and 2.6, maybe with a smaller neighborhood

B and a larger value of n. Our claim follows from the previous discussion and

the following Proposition 2.9.

Proposition 2.9: Let s ≥ 0. For n large enough, the essential spectral radius

of Pμn in H−s(X) is strictly smaller than 1: ρe(Pμn) < 1. Hence the μn-

stationary measure νn on X has a Hs density.

Since 1 is an eigenvalue of Pμn , this Proposition 2.9 tells us also that the

operator Pμn is quasicompact in H−s(X).

Proof of Proposition 2.9. The proof is the same as for Proposition 2.7. We just

replace Lemma 2.8 by Lemma 2.10 below.

Lemma 2.10: Let s ≥ 0. For r small enough, the essential spectral radius of

Pμ∞ in H−s(X) is strictly smaller than 1: ρe(Pμ∞) < 1.

Proof of Lemma 2.10. The proof is the same as for Lemma 2.8.
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