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ABSTRACT

Let (X,H) be a polarized, smooth, complex projective surface, and let v

be a Chern character on X with positive rank and sufficiently large dis-

criminant. In this paper, we compute the Gieseker wall for v in a slice

of the stability manifold of X. We construct explicit curves parameter-

izing nonisomorphic Gieseker stable sheaves of character v that become

S-equivalent along the wall. As a corollary, we conclude that if there

are no strictly semistable sheaves of character v, the Bayer–Macr̀ı divisor

associated to the wall is a boundary nef divisor on the moduli space of

sheaves MH(v). We recover previous results for P2 and K3 surfaces, and

illustrate applications to higher Picard rank surfaces with an example on

P1 × P1.
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1. Introduction

Let (X,H) be a polarized, smooth, complex projective surface. Let D be a

Q-divisor on X and let v ∈ Knum(X) be the class of a stable sheaf with positive

rank and sufficiently large discriminant. The divisorsH andD determine a half-

plane in the Bridgeland stability manifold Stab(X) called the (H,D)-slice (see

§2.3 for the precise definition). Let MH,D(v) denote the moduli space param-

eterizing (H,D)-twisted Gieseker semistable sheaves with Chern character v.

The large volume limit of the Bridgeland moduli spaces in the (H,D)-slice is

MH,D(v). Let the Gieseker wall W be the largest Bridgeland wall in the slice

along which an (H,D)-semistable sheaf with Chern character v is destabilized.

In this paper, we compute the Gieseker wall W for v in the (H,D)-slice. We

also construct an explicit curve parameterizing nonisomorphic (H,D)-twisted

Gieseker stable sheaves that become S-equivalent for the Bridgeland stabil-

ity conditions along W . As a corollary, we conclude that if MH,D(v) has no

strictly semistable sheaves, then the Bayer–Macr̀ı divisor constructed in [BM14a,

Lemma 3.3] is a nef divisor which lies in the boundary of Nef(MH,D(v)). When

Pic(X) ∼= Z, we show that the problem of computing Gieseker walls in (H,D)-

slices for large discriminants is equivalent to the problem of classifying stable

Chern characters. Our computations recover previous results for P2 [CH16] and

K3 surfaces [BM14a, BM14b]. We also explore new applications in the setting

of P1 × P1, surfaces in P3 and double covers of P2.

Let Y be a projective variety. The ample cone Amp(Y ) ⊂ N1(Y ) is the open

convex cone in the Néron–Severi space spanned by the classes of ample divisors.



Vol. 226, 2018 NEF CONE OF THE MODULI SPACE OF SHEAVES 207

It encodes embeddings of Y in projective space and is among the most important

invariants of Y . The closure of Amp(Y ) is the nef cone Nef(Y ) ⊂ N1(Y )

spanned by the classes of divisors that have nonnegative intersection with every

integral curve on Y . By definition, Nef(Y ) is dual to the Mori cone of curves

(see [La04]). Computing Nef(Y ) requires finding nef divisors to generate a

subcone of Nef(Y ) and dually finding integral curves on Y to bound Nef(Y )

from above. In this paper, we carry out this strategy for Nef(MH,D(v)) when

MH,D(v) contains only stable sheaves.

We now explain our strategy in greater detail. Given a Chern character v,

we define an extremal Chern character w. Intuitively, w is chosen to make

the numerical wall W (w,v) that it determines as large as possible, subject to

natural restrictions which will ensure that the wall is an actual wall where a

semistable sheaf is destabilized. See Definition 3.1 for the precise conditions

defining w. If sufficiently strong Bogomolov-type results are known about the

Chern characters of stable sheaves on X , then w can be computed explicitly.

Theorem 1.1: Assume that the discriminantΔH,D(v) � 0. Then the Gieseker

wall for v in the (H,D)-slice is given by the wall W (w,v).

Throughout the paper we will consider r(v), c1(v), X , H , and D as fixed, and

ΔH,D(v) as variable. Thus, we write ΔH,D(v) � 0 to mean that ΔH,D(v) > C

for some constant C depending on r(v), c1(v), X , H , and D.

A numerical check, using inequalities discovered in [ABCH13], [CH16] and

further elaborated in [Bo15], confirms that the Gieseker wall is contained in

W (w,v). Conversely, we need to construct a family of nonisomorphic Gieseker

stable sheaves that become S-equivalent for the Bridgeland stability conditions

onW (w,v). We construct the necessary sheaves inductively. The key is to show

that the Gieseker walls corresponding to w and the quotient Chern character

u = v−w are both nested inside W (w,v). One can then inductively construct

the required curves (see §6).
Given two Chern characters z and v, define the incidence variety

Z(z) := {(E,F ) ∈ MH,D(z)×MH,D(v)|Hom(E,F ) �= 0}.

In general, describing the geometric properties of Z(z), even determining when

they are nonempty, can be very challenging. Our results in §6 imply that Z(w)

is nonempty for the extremal Chern character w provided the discriminant of v

is sufficiently large.
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Applications to birational geometry. For the rest of the introduction, we

additionally assume that v is a Chern character such that MH,D(v) contains

only stable sheaves. In this case, Bayer and Macr̀ı [BM14a] associate a nef

divisor to the Gieseker wall.

Corollary 1.2: If MH,D(v) contains only stable sheaves and ΔH,D(v) � 0,

then the Bayer–Macr̀ı divisor associated to W (w,v) is a nef divisor lying in the

boundary of Nef(MH,D(v)).

Computing the Gieseker wall is closely related to Bogomolov-type inequali-

ties for (H,D)-semistable sheaves on X . The correspondence is tightest when

Pic(X) ∼= ZH withH effective, so we focus on this case. Then the determinantal

line bundles on MH(v) span a 2-dimensional subspace of N1(MH(v)). The in-

tersection of Nef(MH(v)) with this determinantal subspace is a cone spanned by

two classes. One of these classes L1 corresponds to the Donaldson–Uhlenbeck–

Yau compactification by slope-semistable sheaves. When ΔH,D(v) � 0, then

there are singular sheaves in MH,D(v) and the map to the twisted Donaldson–

Uhlenbeck–Yau space is not an isomorphism ([HL10], [GRT15]). Let L2 span

the other extremal ray. Given a rank r and slope μ = c1/r, let δ(r, μ) denote

the minimal discriminant of a semistable sheaf of slope μ and rank at most r.

Then the inequality

Δ ≥ δ(r, μ)

holds for any semistable sheaf with invariants (r, μ,Δ). This refines the ordinary

Bogomolov inequality Δ ≥ 0.

Corollary 1.3: Assume that Pic(X) ∼= ZH with H effective. The computa-

tion of L2 for all characters v with Δ(v) � 0 is equivalent to the computation

of the function δ(r, μ) for all r > 0, μ ∈ Q with rμ ∈ Z.

In the higher Picard rank case, global information about the nef cone can fre-

quently be obtained by varying the twisting divisor D. If v is a Chern character

such that H-Gieseker semistability and μH -slope stability coincide, then both

of these notions are also equivalent to (H,D)-Gieseker stability for any choice of

twisting divisor D. Varying the twisting divisor, the various Bridgeland (H,D)-

slices correspond to rays in N1(MH(v)) by the Bayer–Macr̀ı construction. The

corresponding boundary nef divisors vary as well. This method was used in

[Bo15] to compute the nef cone of the Hilbert scheme of points on a del Pezzo
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surface of degree 1. In this paper we will illustrate this method by studying a

moduli space of sheaves on P1 × P1 in detail.

Bridgeland stability has been successfully used by many authors to study the

birational geometry of moduli spaces of sheaves on surfaces. We refer the reader

to [ABCH13], [BMW14], [CH16], [CHW17], [Oh10], [LZ13] for P2, [BC13] for

Hirzebruch and del Pezzo surfaces, [BM14a], [BM14b], [MYY12], [MYY14] for

K3 surfaces, [Nu14] for Enriques surfaces, and [MM13], [YY14], [Y12] for abelian

surfaces. The ample cones of Hilbert schemes of points on surfaces were studied

in [Bo15]. This paper generalizes and unifies the techniques in these papers for

computing the ample cones to moduli spaces of sheaves on arbitrary surfaces.

In a parallel development, the papers [BM15] and [Y15] study Thaddeus flips

resulting from change of polarization in terms of Bridgeland stability.

Organization of the paper. In §2, we introduce the necessary background

on MH,D(v) and Bridgeland stability. In §3, we introduce the extremal Chern

character w associated to v and state our main result. In §4, we show that the

Gieseker wall is no larger than W (w,v) if the discriminant of v is sufficiently

large. In §5, we show that the Gieseker walls corresponding to w and u = v−w

are nested in W (w,v). Using the nesting result, in §6, we construct curves of

Gieseker stable sheaves which become S-equivalent along W (w,v). In §7, we
study the nef cone of moduli spaces of rank 2 sheaves several families of surfaces.

Acknowledgements. We would like to thank Arend Bayer, Aaron Bertram,

Emanuele Macr̀ı, Benjamin Schmidt and Matthew Woolf for many enlightening

discussions on Bridgeland stability. Part of this work was carried out during

the Algebraic Geometry Summer Research Institute in Utah. We thank the

American Mathematical Society, the University of Utah and the organizers for

providing us with ideal working conditions. We additionally would like to thank

the referees for their comments.

2. Preliminaries

In this section, we review basic facts concerning moduli spaces of Gieseker

semistable sheaves and Bridgeland stability conditions.

2.1. Basic definitions. We refer the reader to [HL10] and [MW97] for an

in-depth treatment of (twisted) Gieseker semistability.
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Let X be a smooth projective surface over C. A sheaf on X will always mean

a coherent sheaf of pure dimension. Fix an ample divisor H ∈ Pic(X). For

any Q-divisor D on X , define the twisted Chern character chD = e−D ch, with

expansion

chD0 = ch0, chD1 = ch1 −D ch0, chD2 = ch2 −D ch1 +
D2

2
ch0 .

We will find it convenient to work with coordinates provided by the slope and

the discriminant. For a sheaf E with rk(E) > 0, define the (H,D)-slope μH,D

and (H,D)-discriminant ΔH,D by

μH,D =
H · chD1
H2 chD0

, ΔH,D =
1

2
μ2
H,D − chD2

H2 chD0
.

A sheaf E of positive rank is μH,D-(semi)stable if for every nonzero subsheaf

F ⊂ E of smaller rank,

μH,D(F ) <
(−)

μH,D(E).

Note that μH,D only differs from μH := μH,0 by a constant, so μH,D-(semi)sta-

bility and μH -(semi)stability coincide.

A slightly modified version of these invariants will often be more useful. We

define

ch
D
= chD+ 1

2KX ,

and define modified slopes μH,D and discriminants ΔH,D using this modified

Chern character; thus

μH,D = μH,D+ 1
2KX

and ΔH,D = ΔH,D+ 1
2KX

.

The additional twist by 1
2KX (especially in the discriminant) greatly simplifies

computations with twisted Gieseker semistability, which we now discuss. The

reduced twisted Hilbert polynomial of a positive rank sheaf E is defined

by

pEH,D(m) =
χ(E ⊗OX(mH −D))

rk(E)
,

where the Euler characteristic is computed formally. A sheaf E is (H,D)-

twisted Gieseker (semi)stable if for every nonzero proper subsheaf F ⊂ E,

pFH,D(m) <
(−)

pEH,D(m)
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for all m � 0. When D = 0, we recover usual H-Gieseker semistability. When

referring to H-Gieseker semistability, we will omit D from our notation. A sim-

ple Riemann–Roch computation shows that a sheaf E is (H,D)-twisted Gieseker

(semi)stable if and only if

(1) E is μH,D-semistable, and

(2) if F � E with μH,D(F ) = μH,D(E), then

ΔH,D(F ) >
(−)

ΔH,D(E).

Note that this equivalence is not typically correct when using the ordinary

discriminant ΔH,D instead of ΔH,D unless KX is parallel to H .

Remark 2.1: Note that when r(v), c1(v), X , H , and D are fixed, we have

ΔH,D(v) � 0 if and only if ΔH,D(v) � 0. Thus the results in the introduction

could also be stated in terms of the discriminant ΔH,D(v) instead of ΔH,D(v).

2.2. Properties of the moduli space. Recall that two semistable sheaves

are S-equivalent with respect to a notion of stability if they have the same

Jordan–Hölder factors for that stability condition. Fix the Chern character v of

an (H,D)-twisted Gieseker semistable sheaf. Matsuki and Wentworth [MW97]

prove that there are projective moduli spaces MH,D(v) parameterizing S-equiv-

alence classes of (H,D)-twisted Gieseker semistable sheaves on X with invari-

ants v.

Recall the following fundamental theorems of O’Grady for the ordinary

Gieseker moduli space.

Theorem 2.2 ([O’G96, Theorems B, D], [HL10, Theorems 5.2.5, 9.3.3, 9.4.3]):

Let (X,H) be a smooth polarized surface, and let v ∈ K(X) with r(v) > 0. If

ΔH(v) � 0 (depending on r(v), X , and H), then the moduli space MH(v) is

normal, generically smooth, irreducible, and nonempty of the expected dimen-

sion. Furthermore, the slope stable sheaves are dense in MH(v).

As we remarked earlier, the two slopes μH and μH,D differ only by a con-

stant. Consequently, μH - and μH,D-stability coincide. Since μH,D-stability is an

open condition, Theorem 2.2 provides a nonempty Zariski open set in MH,D(v)

parameterizing μH,D-stable sheaves.
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2.3. Bridgeland stability. In this subsection, we review key facts concern-

ing Bridgeland stability on surfaces. We refer the reader to [AB13], [ABCH13],

[BM14a], [Bo15], [Br07], [Br08], [CH14] and [CH16] for more details.

Let Db(X) denote the bounded derived category of coherent sheaves on X .

A Bridgeland stability condition on Db(X) is a pair σ = (Z,A), where A
is the heart of a bounded t-structure on Db(X) and Z : K0(X) → C is a group

homomorphism mapping A to the extended upper half plane and satisfying the

Harder–Narasimhan and Support Properties [Br07], [BM14a]. The set Stab(X)

of Bridgeland stability conditions on X is a complex manifold [Br07].

Bridgeland [Br08] and Arcara and Bertram [AB13] constructed Bridgeland

stability conditions on surfaces. Given an ample divisor H , an arbitrary R-

divisor D and β ∈ R, define two subcategories of the category of coherent

sheaves Coh(X) by

Tβ = {E ∈ Coh(X) : μH,D(G) > β for every quotient G of E},
Fβ = {E ∈ Coh(X) : μH,D(F ) ≤ β for every subsheaf F of E}.

The pair (Tβ ,Fβ) forms a torsion pair in Coh(X). Tilting Coh(X) with respect

to this torsion pair yields the heart Aβ of a new bounded t-structure on Db(X)

defined by

Aβ = {E• ∈ Db(X) : H−1(E•) ∈ Fβ , H
0(E•) ∈ Tβ , Hi(E•) = 0, i �= −1, 0}.

Let α be a positive real number. Define the central charge

Zβ,α = −ch
D+βH

2 +
α2H2

2
ch

D+βH

0 + iHch
D+βH

1 .

Then the pair

σβ,α = (Zβ,α,Aβ)

is a Bridgeland stability condition for α, β ∈ R, α > 0 [AB13]. These stability

conditions span a half-plane in Stab(X) which we call the (H,D)-slice. The

σβ,α-slope of an object with invariants r > 0, μH,D and ΔH,D is given by

νσβ,α
= −�Zβ,α

�Zβ,α
=

(μH,D − β)2 − α2 − 2ΔH,D

μH,D − β
.

2.3.1. Bridgeland walls. Fix an invariant v∈Knum(X). Assume thatw∈Knum(X)

is an invariant that does not have the same σβ,α-slope as v everywhere in the

(H,D)-slice. Then the numerical wall W (w,v) is the set of points (β, α) such
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that v and w have the same σβ,α-slope. A numerical wall is an actual wall if

there exists a point (β, α) ∈ W (w,v) and an exact sequence

0 → F → E → G → 0

in Aβ with ch(F ) = w, ch(E) = v such that E,F,G are σβ,α-semistable. We

will refer to the sequence as the destabilizing sequence. We will frequently

use the following facts about the Bridgeland walls [Bo15], [CH14], [Ma14]:

(1) The numerical walls W (w,v) in the (H,D)-slice are disjoint. Let v

and w have positive rank. If μH,D(v) = μH,D(w), then W (w,v) is the

vertical wall β = μH,D(v). If μH,D(v) �= μH,D(w), then W (w,v) is the

semicircular wall with center (s, 0) and radius ρ, where

s =
1

2
(μH,D(v) + μH,D(w))− ΔH,D(v)−ΔH,D(w)

μH,D(v)− μH,D(w)
,

ρ2 =(s− μH,D(v))2 − 2ΔH,D(v).

If ρ2 is negative, then the wall is empty.

(2) Let W1,W2 be two numerical walls to the left of β = μH,D(v) with

centers (s1, 0), (s2, 0). Then W1 is nested inside W2 if and only if

s1 > s2.

(3) Let W (w,v) be an actual wall. If 0 → F → E → G → 0 is a destabi-

lizing sequence at a point (β, α) ∈ W (w,v), then it is a destabilizing

sequence for every point of W (w,v).

Define the Gieseker wall for v to be the largest actual semicircular wall to

the left of β = μH,D(v) where a Gieseker semistable sheaf is destabilized. In

this paper, we will be concerned with computing the Gieseker wall.

2.3.2. Large volume limit. Let v ∈ Knum(X) have positive rank, and consider

stability conditions σβ,α with β < μH,D(v) and α � 0. Maciocia [Ma14]

shows that any σβ,α-semistable object of character v is a μH -semistable (equiv-

alently, μH,D-semistable) sheaf. Observe that if a μH-semistable sheaf E is

σβ,α-(semi)stable for any β, α with β < μH,D(E), then it is also (H,D)-Gieseker

(semi)stable. Indeed, if F ⊂ E is an (H,D)-Gieseker stable subsheaf with

μH,D(F ) = μH,D(E), then

νσβ,α
(F ) <

(−)

νσβ,α
(E)
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if and only if

ΔH,D(F ) >
(−)

ΔH,D(E)

by our explicit formula for the slope νσβ,α
. Thus for α � 0 the moduli space

Mσβ,α
(v) coincides with MH,D(v).

If we only know that σβ,α lies above the Gieseker wall, it a priori may be the

case that Mσβ,α
(v) is larger than MH,D(v), since, for example, Mσβ,α

(v) may

have an additional component which does not consist of sheaves. However, it is

still true that every (H,D)-Gieseker semistable sheaf is σβ,α-semistable. This

is all we will need to apply the Positivity Lemma.

2.3.3. The Positivity Lemma. Our main tool for constructing nef divisors on the

moduli space is the Positivity Lemma of Bayer and Macr̀ı. Let σ = (Z,A) be

a Bridgeland stability condition on X , v ∈ Knum(X) and S a proper algebraic

space of finite type over C. Let E ∈ Db(X × S) be a flat family of σ-semistable

objects. Denote the two projections on X × S by p and q, respectively. Then

Bayer and Macr̀ı define a numerical class on Dσ,E ∈ N1(S) by setting

Dσ,E · C = −�
(Z(p∗(E ⊗ q∗OC))

Z(v)

)

for every integral curve C on S.

Theorem 2.3 (Positivity Lemma [BM14a, Lemma 3.3]): The divisor Dσ,E is

nef on S. A projective, integral curve C ⊂ S satisfies Dσ,E · C = 0 if and only

if objects parameterized by C are generically S-equivalent with respect to σ.

From now on we assume that MH,D(v) contains only stable sheaves. Then

MH,D(v) admits a quasiuniversal family E (see [Mu84, Theorem A.5] or [HL10]

in the case of ordinary Gieseker stability). For (β, α) in the region bounded by

the Gieseker wall and the vertical wall, E is a family of σβ,α-semistable objects.

Hence, the Positivity Lemma provides a nef divisor on MH,D(v) associated to

the Gieseker wall. By [BM14a, §4], the nef divisor may be identified with the

determinantal class corresponding to the unique vector α satisfying

�(Z(−)) = χ(α · −),

where χ denotes the Euler pairing. Thus, the construction of Bayer and Macr̀ı

can only give determinantal classes. When the irregularity q(X) = 0, it is

natural to guess that the determinant line bundles span NS(M(v)) if Δ(v) � 0.

This is known when rk(v) = 2 by results of Jun Li [Li96], but open in general.
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3. The destabilizing sequence and strong Bogomolov inequalities

Fix divisors (H,D) giving a slice of Stab(X). Let e > 0 be a generator of the

subgroup

H · Pic(X) ⊂ Z.

We define the reduced slope of a class v of positive rank by

μ̃H(v) =
H2

e
μH(v) =

c1(v) ·H
r(v)e

.

The set of reduced slopes of stable vector bundles on X of rank at most r is

precisely the set of rational numbers with denominator at most r. The reduced

slope determines and is determined by the ordinary slope μH or any of the

twisted slopes μH,D, μH,D.

3.1. Extremal characters. Consider a variable Chern character v where

r(v) > 0 and c1(v) are fixed but ΔH,D(v) is variable, subject to the restriction

that v is (H,D)-stable. By Theorem 2.2, v will be (H,D)-stable so long as

ΔH,D(v) is sufficiently large and v is integral. In this section, we describe

the Gieseker wall for MH,D(v) in the (H,D)-slice under the assumption that

ΔH,D(v) is sufficiently large.

First, we describe the numerical invariants of the destabilizing subobject.

Definition 3.1: An extremal character w for v is any Chern character satis-

fying the following defining properties.

(E1) We have 0 < r(w) ≤ r(v), and if r(w) = r(v), then c1(v) − c1(w) is

effective.

(E2) We have μ̃H(w) < μ̃H(v), and μ̃H(w) is as close to μ̃H(v) as possible

subject to (E1).

(E3) The moduli space MH,D(w) is nonempty.

(E4) The discriminant ΔH,D(w) is as small as possible, subject to (E1)–(E3).

(E5) The rank r(w) is as large as possible, subject to (E1)–(E4).

Note that conditions (E1) and (E2) uniquely determine μ̃H(w). Property

(E4) uniquely determines ΔH,D(w) (note that the Bogomolov inequality and

the bound on the rank guarantee that a minimum actually exists), and property

(E5) uniquely determines r(w). Furthermore, the discriminant ΔH,D(v) plays

no role in the determination of w. Thus the triple

(r(w), μ̃H (w),ΔH,D(w))
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is uniquely determined by r(v) and c1(v); on the other hand, there may be

several possible choices for c1(w). The requirement that ΔH,D(w) is as small

as possible may restrict which first Chern classes c1(w) are permissible.

Our main result in this paper is the following.

Theorem 3.2: If ΔH,D(v) � 0, then the Gieseker wall for MH,D(v) in the

(H,D)-slice is W (w,v). There are curves in MH,D(v) parameterizing sheaves

which become S-equivalent along this wall.

There are two main steps to the proof of Theorem 3.2. First, we show that

no actual wall for MH,D(v) is larger than the wall W (w,v) given by w. This

step is not too difficult; it will follow from a bound on higher rank walls and an

asymptotic study of walls.

Next, we prove this wall is the Gieseker wall and that the corresponding nef

divisor lies on the boundary of the nef cone. Put u = v − w. We show that

there are sheaves F ∈ MH,D(w) and Q ∈ MH,D(u) and curves in Ext1(Q,F )

such that the corresponding family of sheaves E fitting as extensions

0 → F → E → Q → 0

are generically (H,D)-Gieseker stable and vary in moduli. Then the wall

W (w,v) is the Gieseker wall since such sheaves E are destabilized along it.

Furthermore, the corresponding curves in MH,D(v) are orthogonal to the nef

divisor given by the Gieseker wall, so the divisor is on the boundary of the nef

cone. This second part of the proof is fairly delicate, and primarily depends on

computing the Gieseker wall for MH,D(u) by induction on the rank.

Remark 3.3: Note that if w′ is any character satisfying properties (E1)–(E4)

in Definition 3.1 (but not necessarily property (E5)), then the walls W (w,v)

and W (w′,v) will coincide. Property (E5) has been imposed to make the

construction of orthogonal curves to the nef divisor as easy as possible.

3.2. The quotient character. The definition of the extremal character w

ensures that the moduli space MH,D(w) is nonempty. In the previous discus-

sion we needed to know that the moduli space MH,D(u) corresponding to the

quotient character u = v − w is also nonempty. We now address this point,

and study u more closely. There are two cases to consider, based on whether

r(u) > 0 or r(u) = 0.
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First assume r(u) > 0. Note that r(u) and μ̃H(u) depend only on r(v)

and c1(v). The class c1(u) depends on the choice of c1(w). The relationship

between ΔH,D(u) and the other invariants is encoded in the identity

r(v)ΔH,D(v) =r(w)ΔH,D(w) + r(u)ΔH,D(u)

− r(w)r(u)

2r(v)
(μH,D(w)− μH,D(u))2.

In particular, as ΔH,D(v)→∞ we find ΔH,D(u)→∞. Therefore, if ΔH,D(v)�0,

Theorem 2.2 applies to the moduli space MH(u). For instance, there are μH,D-

stable sheaves of character u.

On the other hand, if r(u) = 0, then by (E1) we find that c1(u) is effective.

Let C be an effective curve representing this class. By (E2), C is a curve of

minimalH-degree onX . Therefore C is reduced and irreducible, and the moduli

spaceMH,D(u) contains sheaves which are line bundles of the appropriate degree

supported on C.

In either case, MH,D(u) is nonempty and contains well-behaved points.

3.3. Background on Farey sequences. The arguments in this paper rely

on understanding the number theory which determines the slope μ̃H(w) of the

exceptional character w. Recall that the (unrestricted) Farey sequence Fn

of order n consists of the ordered list of reduced fractions with denominator

at most n. We refer the reader to [HW79] for a detailed discussion of Farey

sequences. For example,

F6 =
{
. . . ,−1

6
,
0

1
,
1

6
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
5

6
,
1

1
,
7

6
, . . .

}
.

Thus the elements of Fr are precisely the reduced slopes of stable vector bundles

on X of rank at most r.

Suppose that
a

b
<

c

d
are Farey neighbors, i.e., that they are adjacent terms in the Farey sequence

Fmax{b,d}. Then

bc− ad = 1.

The mediant of two (reduced) rational numbers a
b and c

d is the rational number

a+ c

b+ d
.
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If a
b < c

d are Farey neighbors, then the mediant is already written in lowest

terms. Furthermore, the mediant is the unique rational number in the interval

(ab ,
c
d ) with denominator at most b+ d. That is, the three terms

a

b
,
a+ c

b+ d
,
c

d

are adjacent in the Farey sequence Fb+d.

Remark 3.4: Here we explain how to use the Farey sequence to compute μ̃H(w)

more explicitly. Let d = μ̃H(L) be the minimum reduced slope of a nontrivial

effective line bundle L on X . If r(v) = 1, then μ̃H(w) = μ̃H(v)−d. If r(v) ≥ 2,

let α be the number in Fr(v) immediately preceding μ̃H(v). If μ̃H(v) is not an

integer, then the denominator of α is strictly less than r(v). Therefore

μ̃H(w) =

⎧⎨
⎩
α if μ̃H(v) /∈ Z or d = 1,

μ̃H(v)− 1
r(v)−1 if μ̃H(v) ∈ Z and d > 1.

3.4. Bogomolov inequalities. The extremal character w associated to v

can be computed given the classification of stable Chern characters on X . For

example, on P2 it is easy to compute w from the Drézet–Le Potier classification

(see [CH16] and [LP97]). In particular, when X = P2, Theorem 3.2 specializes

to the main theorem of [CH16].

Conversely, suppose that Pic(X) = ZH with H effective. In this case we

can express Chern characters in terms of their rank r, slope μ = μ̃H , and

discriminant Δ = ΔH,0. Fix a rank r > 0 and slope μ ∈ Q with rμ ∈ Z. Let

δ(r, μ) be the minimal discriminant of a stable bundle E such that μ(E) = μ and

rk(E) ≤ r. Then the inequality Δ ≥ δ(r, μ) is valid for any stable bundle with

invariants (r, μ,Δ), and typically improves the ordinary Bogomolov inequality.

Corollary 3.5: Suppose Pic(X) = ZH with H effective. Computing the

Gieseker wall for all v with sufficiently large discriminant is equivalent to com-

puting the function δ(r, μ) for all r > 0 and μ ∈ Q with rμ ∈ Z.

Proof. If δ(r, μ) is known, then it is straightforward to determine the character

w from v using Remark 3.4.

Conversely, suppose the computation of the Gieseker wall is known. Let r > 0

and μ ∈ Q with c1 := rμ ∈ Z. Write μ = b
s as a reduced fraction, so r = ks for

some integer k > 0. Define b′
s′ ∈ Q by requiring b

s < b′
s′ to be Farey neighbors
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in the Farey sequence Fr. Then the mediant

μ′ :=
b+ b′

s+ s′

has denominator r′ := s+s′ > r. Let v = (r′, μ′,Δ′). Then the extremal Chern

character w to v has slope μ.

What is the rank of w? Since w has slope μ, we have r(w) = ls for some

l > 0. By definition, s′ ≤ r. If s′ = r, then since denominators of Farey

neighbors are coprime we see that μ is an integer and δ(r, μ) = 0. If instead

s′ < r, then

(k + 1)s = r + s > s′ + s = r′,

and thus r(w) ≤ ks = r. It then follows that Δ(w) = δ(r, μ), computing

δ(r, μ).

Remark 3.6: Note that the character v constructed in the proof of Corollary 3.5

has coprime rank and first Chern class. Thus the moduli space MH(v) carries

a universal family. We conclude Corollary 1.3 holds as well.

4. Bounding the Gieseker wall

In this section we show that if ΔH,D(v) � 0, then the Gieseker wall forMH,D(v)

in the (H,D)-slice is no larger than the wall W := W (w,v) defined by the

extremal Chern character w (see Definition 3.1). Suppose W ′ is a semicircular

wall in the (H,D)-slice lying left of the vertical wall such that W ′ is at least

as large as W and some E ∈ MH,D(v) is destabilized along W ′. Let σ0 be a

stability condition on W ′, and let

0 → F ′ → E → Q′ → 0

be an exact sequence of σ0-semistable objects of the same σ0-slope which defines

the wall W ′.
Let w′ = ch(F ′); then W ′ = W (w′,v). We will show that if ΔH,D(v) � 0,

then μ̃H(w′) = μ̃H(w) and ΔH,D(w′) = ΔH,D(w). That is, the walls W and

W ′ actually coincide, and the Gieseker wall is no larger than W .

A now-standard argument gives some initial restrictions on F ′.

Lemma 4.1: The object F ′ is a nonzero torsion-free sheaf. We have

μH,D(w′) < μH,D(v),

and every Harder–Narasimhan factor of F ′ has (H,D)-slope at most μH,D(v).
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Proof. Fix a category Aβ such that some point (β, α) is on the wall W ′. Taking
cohomology sheaves, since H−1(E) = 0 we find that F ′ is a sheaf in Tβ ; it is

nonzero since the wall W † is not the whole slice. Since K := H−1(Q′) and E

are torsion free, so is F ′. If F ′ has an (H,D)-Gieseker stable subsheaf F1 with

μH,D(F1) > μH,D(v), then F1 is a subsheaf of K, which violates K ∈ Fβ since

E ∈ Tβ . Finally, if μH,D(w′) = μH,D(v), then W ′ contains the vertical wall,

which again is a contradiction. Therefore μH,D(w′) < μH,D(v).

We next recall a lemma which first appeared in [CH16] for P2 and was later

generalized in [Bo15].

Lemma 4.2 ([Bo15, Lemma 3.1]): With the notation and hypotheses of this

section, if the map F ′ → E of sheaves is not injective, then the radius ρW ′ of

the wall W ′ satisfies

ρ2W ′ ≤
(min{r(w′)− 1, r(v)})2

2r(w′)
ΔH,D(v).

The lemma allows us to show the map of sheaves F ′ → E is injective once

ΔH,D(v) is sufficiently large. This provides a restriction on the ranks of subob-

jects.

Proposition 4.3: If ΔH,D(v) � 0, then the map F ′ → E of sheaves is in-

jective. In particular, 0 < r(w′) ≤ r(v). Furthermore, in case r(w′) = r(v),

the induced map on line bundles detF ′ → detE is an injection, and therefore

c1(v)− c1(w
′) is effective.

Proof. We compare the radius of W with the bound on ρ2W ′ in Lemma 4.2. The

center (sW , 0) and radius ρW of W satisfy

sW =
μH,D(v) + μH,D(w)

2
− ΔH,D(v)−ΔH,D(w)

μH,D(v)− μH,D(w)
,

ρ2W = (μH,D(v) − sW )2 − 2ΔH,D(v).

Therefore ρ2W grows quadratically as a function of ΔH,D(v). Let

C = max
{ (min{r′ − 1, r(v)})2

2r′
: r′ ∈ N>0

}
.

By Lemma 4.2, if the map F ′ → E is not injective, then ρ2W ′ is bounded by

C ·ΔH,D(v). Since W ′ is at least as large as W , we conclude that if ΔH,D(v)

is sufficiently large, then F ′ → E is injective.
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Having restricted the rank r(w′), we next turn to restricting the slope μ̃H(w′)
and discriminant ΔH,D(w′). We begin with a simple observation.

Lemma 4.4: Let (xW , 0) be the right endpoint of the wall W , so that

xW = sW + ρW . Then xW is increasing as a function of ΔH,D(v), and

lim
ΔH,D→∞

xW = μH,D(w).

Proof. The walls W = W (w,v) are a family of numerical walls for w, so they

are all nested. The formula for sW shows that the centers decrease (and tend

to −∞) as ΔH,D(v) increases. Correspondingly, the walls become larger and

xW increases. As the walls become arbitrarily large, they come arbitrarily close

to the vertical wall β = μH,D(w), and the limit follows.

We now complete the proof of the main theorem in this section.

Theorem 4.5: If ΔH,D(v) � 0, then W ′ = W . Thus the Gieseker wall for

MH,D(v) is no larger than W .

Proof. Suppose ΔH,D(v) is large enough that

(1) Proposition 4.3 holds, and

(2) xW is sufficiently close to μH,D(w) that no number in the interval

(xW , μH,D(w)) is the μH,D-slope of a Chern character of rank at most

r(v).

Since W ′ is at least as large as W , the sheaf F ′ lies in TxW . By Lemma 4.1, we

have

μH,D(w′) ∈ (xW , μH,D(v)).

More precisely, since r(w′) ≤ r(v) we actually have

μH,D(w′) ∈ [μH,D(w), μH,D(v)).

Since we know that c1(v)− c1(w
′) is effective in case r(w′) = r(v), we conclude

from the definition of μH,D(w) that μH,D(w′) = μH,D(w).

The sheaf F ′ is also μH,D-semistable, for if F ′ has a quotient sheaf of smaller

slope, then F ′ is not in TxW by construction. Since F ′ is σ0-semistable, it is also

(H,D)-Gieseker semistable by §2.3.2 The formula for the center of a wall and

the assumption that W ′ is at least as large as W implies ΔH,D(w′) ≤ ΔH,D(w).

By the minimality of ΔH,D(w), we conclude ΔH,D(w′) = ΔH,D(w).
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5. Nesting walls

Let w denote the extremal Chern character from Definition 3.1. In the next sec-

tion we will prove that W = W (w,v) is actually the Gieseker wall for MH,D(v)

by producing (H,D)-Gieseker stable sheaves which are destabilized along W .

The main ingredient in this construction will be the inductive computation of

the Gieseker wall for the moduli space MH,D(u) corresponding to the quotients,

which we address here. Recall that u = v −w.

Proposition 5.1: Assume Theorem 3.2 holds for characters of (positive) rank

less than r(v). If ΔH,D(v) � 0, then the Gieseker wall for MH,D(u) in the

(H,D)-slice is nested properly inside W .

(If the rank r(u) is zero, it may happen that every E ∈ MH,D(u) is semistable

everywhere in the (H,D)-slice. In this case we consider the Gieseker wall to be

empty and the result is vacuous.)

The proof of Proposition 5.1 is different based on whether r(u) > 0 or

r(u) = 0. We treat the more interesting positive rank case first.

5.1. Positive rank quotients. Throughout this subsection we assume

r(u) > 0, i.e., 0 < r(w) < r(v). In particular, r(v) ≥ 2. We write the

inequality μ̃H(w) < μ̃H(v) < μ̃H(u) as

a′

r′
<

a

r
<

a′′

r′′
,

where the denominators are the ranks of the corresponding characters. We

begin with a couple useful lemmas. Write the above fractions in lowest terms

as

b′

s′
<

b

s
<

b′′

s′′
,

with positive denominators.

Lemma 5.2: The fractions b′
s′ and b

s are Farey neighbors.

Proof. This follows immediately from Remark 3.4 since r(v) ≥ 2.

Lemma 5.3: At least one of the fractions a′
r′ or a

r is already written in lowest

terms.
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Proof. Suppose not. Then r ≥ 2s and r′ ≥ 2s′. The denominator s′ + s of the

mediant
b′

s′
<

b′ + b

s′ + s
<

b

s
satisfies

s′ + s ≤ 1

2
(r′ + r) ≤ r.

If s′ + s < r, then condition (E2) defining μ̃H(w) is violated. On the other

hand, if s′ + s = r, then r = r′, contrary to our assumption.

We now relate an extremal character for u to w.

Lemma 5.4: Let w† be an extremal character for u. Then μ̃H(w†) ≤ μ̃H(w),

and in case of equality we have ΔH,D(w†) > ΔH,D(w).

Proof. First we show that μ̃H(w†) ≤ μ̃H(w). We write μ̃H(w†) = a†
r† , and have

a†
r† < a′′

r′′ and r† ≤ r′′. It suffices to show that a†
r† /∈ (a

′
r′ ,

a′′
r′′ ). We consider three

different cases, depending on the relationship between a†
r† and a

r .

Case 1: Suppose a†
r† ∈ (a

′
r′ ,

a
r ). Since r† ≤ r′′ < r, this contradicts the

definition of μ̃H(w).

Case 2: Suppose a†
r† ∈ (ar ,

a′′
r′′ ). Let

a‡ = a− a†,

r‡ = r − r†.

Then a‡
r‡ ∈ (a

′
r′ ,

a
r ), again contradicting the definition of μ̃H(w). Indeed, to

prove this, we can view a
r as a weighted mean in two ways:

a

r
=

r′ a
′

r′ + r′′ a
′′

r′′

r′ + r′′
=

r‡ a‡
r‡ + r† a†

r†

r‡ + r†
.

Since a†
r† is closer to a

r than a′′
r′′ is and the weight r†

r on a†
r† in the second mean is

smaller than the weight r′′
r on a′′

r′′ in the first mean, it follows that a‡
r‡ ∈ (a

′
r′ ,

a
r ).

Case 3: Suppose a†
r† = a

r . Since r† < r, we find that the fraction a
r is not

already reduced, and therefore a′ = b′ and r′ = s′ by Lemma 5.3. We must

have s + s′ ≥ r, for otherwise the mediant of b′
s′ and b

s lies in (a
′

r′ ,
a
r ) and has

denominator less than r, contradicting the definition of μ̃H(w). Thus

r′′ = r − s′ ≤ s.

If this inequality is strict, then r† ≤ r′′ gives a contradiction.
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Suppose instead that r′′ = s and s + s′ = r. Since b′
s′ and b

s are Farey

neighbors by Lemma 5.2, their mediant

b′ + b

s′ + s

is written in lowest terms and has denominator r. Then b′+b
r and b

s are con-

secutive terms in the Farey sequence of order r, so gcd(r, s) = 1. Therefore

r′′ = s = 1, the slope μ̃H(v) = b is an integer, and μ̃H(u) = b + 1. Since

μ̃H(w) �= b− 1
r , there is no effective line bundle on X of reduced slope 1. This

implies μ̃H(w†) �= b, a contradiction.

This completes the proof that μ̃H(w†) ≤ μ̃H(w). Suppose μ̃H(w†) = μ̃H(w).

Let w0 be any character satisfying conditions (E1)–(E4) of the definition of an

extremal character for v, but such that the rank r′0 of w0 is as small as possible.

We must have r′+r′0 ≥ r by condition (E5) in the definition ofw, since otherwise

w +w0 would satisfy (E1)–(E4) but have larger rank. Therefore

r† ≤ r′′ = r − r′ ≤ r′0.

If the strict inequality r† < r′0 holds, then by the definition of w0 we have

ΔH,D(w†) > ΔH,D(w).

Instead assume r† = r′′ = r′0. In this case we have ΔH,D(w†) ≥ ΔH,D(w),

so assume ΔH,D(w†) = ΔH,D(w). Then w0 and w† have the same invariants,

except possibly their first Chern classes are different. But then w+w† satisfies
conditions (E1)–(E4) in the definition of w, since

c1(v) − (c1(w) + c1(w
†)) = c1(u)− c1(w

†)

and c1(u) − c1(w
†) is effective. This contradicts the condition (E5) in the

definition ofw. Therefore ΔH,D(w†) > ΔH,D(w) holds in this case as well.

The lemma immediately allows us to treat the positive rank quotient case of

Proposition 5.1.

Proof of Proposition 5.1 when r(u) > 0. By Lemma 5.4, we have

μH,D(w†) ≤ μH,D(w),

and in case of equality ΔH,D(w†) > ΔH,D(w). We must compare the walls

W = W (w,v) = W (w,u) and W † := W (w†,u); note that both walls are

numerical walls for u, so they are disjoint, and it suffices to compare their right

endpoints. Recall that ΔH,D(u) is an increasing function of ΔH,D(v), and

ΔH,D(u) → ∞ as ΔH,D(v) → ∞.
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First suppose μH,D(w†)<μH,D(w). Then the right endpoints xW and xW † of

W andW † are increasing functions of ΔH,D(v). Furthermore, as ΔH,D(v)→∞,

we have xW → μH,D(w) and xW † → μH,D(w†). Therefore if ΔH,D(v) is

sufficiently large, xW † < xW , and W † is nested in W .

Next suppose μH,D(w†) = μH,D(w) and ΔH,D(w†) > ΔH,D(w). Comparing

the formulas for the centers of W (w,u) and W (w†,u) immediately proves the

result; we don’t even need to increase ΔH,D(v).

5.2. Rank zero quotients. In this case things are considerably easier.

Proof of Proposition 5.1 when r(u) = 0. Record the character u in terms of

its first Chern class c1(u) and Euler characteristic χ(u), which depends on

ΔH,D(v). By the construction of w, c1(u) is effective, so the moduli spaces

MH,D(u) are all nonempty. Since tensoring by OX(H) gives an isomorphism

MH,D(c1(u), χ(u)) ∼= MH,D(c1(u), χ(u) +H · c1(u)),

there are only finitely many isomorphism types of spaces MH,D(u) as ΔH,D(v)

varies. Tensoring by OX(H) also preserves the radius of the Gieseker wall,

assuming the Gieseker wall of either space is nonempty. Therefore, there is a

universal bound on the radii of the Gieseker walls of the spaces MH,D(u).

Recall that the numerical walls for u are nested semicircles with a common

center that foliate the entire (H,D)-slice [CH14, Ma14]. Since

W = W (w,v) = W (w,u)

is also a numerical wall for for u, a numerical wall for u is nested inside W if

and only if its radius is smaller than the radius of W . Since W is arbitrarily

large for ΔH,D(v) � 0, this completes the proof.

6. Orthogonal curves

In this section we prove thatW is actually the Gieseker wall by producing curves

of objects in MH,D(v) which are destabilized along W . If MH,D(v) contains

only stable sheaves, our curves will furthermore be orthogonal to the nef divisor

given by W . We first recall some algebraic preliminaries.



226 I. COSKUN AND J. HUIZENGA Isr. J. Math.

6.1. Extensions. The basis for our construction of stable sheaves is the fol-

lowing mild generalization of [BM14b, Lemma 6.9]. Recall that a simple object

in an abelian category is an object with no proper subobjects, and a semisimple

object is a (finite) direct sum of simple objects. In what follows we write

A =
⊕
i

Ani

i

with the Ai simple and nonisomorphic. Then every subobject or quotient object

of A is isomorphic to an object
⊕

Ami

i for some integers mi with 0 ≤ mi ≤ ni.

In particular, every quotient of A is also a subobject of A.

Lemma 6.1: Let A be an abelian category, and let A,B ∈ A with A semisimple

and B simple. If E is any extension of the form

0 → A → E → B → 0

with Hom(E,A) = 0, then any subobject of E is a subobject of A.

Proof. Let S ⊂ E be a subobject. Consider the composition φ : S → E → B.

Since B is simple, φ is either surjective or zero. If φ is zero, then S is a subobject

of A.

Suppose instead that φ is surjective; in this case we will obtain a contradiction.

Let C be the cokernel of the inclusion

0 → S → E → C → 0.

Then the composition A → E → C is surjective, so C is a quotient of A. Since

A is semisimple, C is also isomorphic to a subobject of A, but this contradicts

Hom(E,A) = 0.

The next lemma gives a criterion for the vanishing Hom(E,A) = 0 needed to

apply Lemma 6.1. Recall that by Schur’s lemma, if A,B are simple objects in

a C-linear abelian category, then Hom(A,B) = 0 unless A,B are isomorphic,

and Hom(A,A) ∼= C.

Lemma 6.2: Let A be a C-linear abelian category, and let A,B ∈ A with A

semisimple and B simple. Assume B is not a simple factor of A. Consider an

extension

0 → A → E → B → 0

given by an extension class e ∈ Ext1(B,A) ∼=
⊕

i Ext
1(B,Ai)

ni . For each i,

write ei,1, . . . , ei,ni for the ni components of e under this isomorphism. Then
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Hom(E,A)=0 if and only if ei,1, . . . , ei,ni are linearly independent in Ext1(B,Ai)

for all i.

In particular, if E is a general extension as above, then Hom(E,A) = 0 if and

only if ext1(B,Ai) ≥ ni for all i.

Proof. Observe that Hom(E,A) = 0 if and only if Hom(E,Ai) = 0 for all i.

Applying Hom(−, Ai) to the sequence defining E and using that B �∼= Ai, we

get an exact sequence

0 → Hom(E,Ai) → Hom(Ai, Ai)
⊕ni → Ext1(B,Ai).

The map Cni ∼= Hom(Ai, Ai)
⊕ni → Ext1(B,Ai) carries the identity map in the

jth component of Hom(Ai, Ai)
⊕ni to ei,j , so this map is injective if and only if

the ei,j are linearly independent.

Finally, we study when two extensions are isomorphic.

Lemma 6.3: Let A be a C-linear abelian category, and let A,B ∈ A with A

semisimple, B simple, and B not a simple factor of A. If

0 → A → E → B → 0,

0 → A → E′ → B → 0

are two extensions of B by A, then any isomorphism E → E′ is induced by an

automorphism of A.

Therefore, if ext1(B,A) > dimAutA =
∑

i n
2
i then two general extensions

E,E′ as above are nonisomorphic.

Proof. Since Hom(B,B)∼=C and Hom(A,B)=0, we have Hom(E,B)=C. Thus

up to scale the maps E→B and E′→B are canonically determined by E,E′.
Their kernels are therefore identified under the isomorphism E → E′.

6.2. Construction of curves. We now bring together the results of Sections

4, 5 and 6.1 to prove our main result.

Theorem 6.4: IfΔH,D(v) � 0, then W is the Gieseker wall forMH,D(v). Fur-

thermore, there are curves in MH,D(v) parameterizing nonisomorphic (H,D)-

twisted Gieseker stable sheaves that become S-equivalent for Bridgeland stabil-

ity conditions along W .
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Proof. Let σ0 = (Z0,A0) be a stability condition on W . Choose a polystable

sheaf

F =
⊕
i

Fni

i ∈ MH,D(w).

Since W can be made arbitrarily large by increasing ΔH,D(v), we may assume

that every stable factor of F is σ0-stable. By Theorem 2.2, we may increase

ΔH,D(v) so that there are stable sheaves in MH,D(u). We let Q be such a stable

sheaf (if u has rank 0, we additionally assume Q is sufficiently nice; see Step 2

below). Increasing ΔH,D(v), Proposition 5.1 shows that Q is actually σ0-stable.

It is clear that Q is not one of the stable factors of F . Increasing ΔH,D(v)

decreases the Euler characteristics χ(u, Fi). Thus, if ΔH,D(v) is sufficiently

large we will have χ(Q,Fi) ≤ −ni and χ(Q,F ) < −
∑

i n
2
i .

Let P ⊂ A0 be the full subcategory of σ0-semistable objects with the same

σ0-slope as F and Q. Then F is a semisimple object of P and Q is a simple

object of P . If E is a general extension of the form

0 → F → E → Q → 0,

then by Lemma 6.2 we have Hom(E,F ) = 0. Furthermore, by Lemma 6.3 we

can find curves in Ext1(Q,F ) such that two general parameterized objects E

are nonisomorphic. To complete the proof, we prove that E is (H,D)-Gieseker

stable.

Step 1: if σ+ is a stability condition just above W , then E is

σ+-stable. Suppose F ′ ⊂ E destabilizes E with respect to σ+, so

μσ+(F
′) ≥ μσ+(E).

Since E is σ0-semistable, we have μσ0(F
′) = μσ0(E), and thus by Lemma

6.1, F ′ is a subobject of F in P . But then μσ+(F
′) = μσ+(F ) < μσ+(E), a

contradiction.

Step 2: E is torsion-free. If u has positive rank this is trivial, so assume

that r(u) = 0. By the discussion in §3.2, we may assume Q is a line bundle

L supported on a reduced and irreducible curve C. Suppose E has a nonzero

torsion subsheaf T , and let E′ = E/T . Since F is torsion-free, T must be a

subsheaf of Q. Since Q has pure dimension 1, T must be another line bundle

L′ supported on C. Then c1(T ) = c1(u), so

c1(E
′) = c1(v)− c1(u) = c1(w).
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Furthermore, the composition F → E → E′ is injective. Since the stable

factors of F have minimal discriminant, this is only possible if F → E′ is

an isomorphism. But then the composition E → E′ → F with the inverse

isomorphism gives a nontrivial homomorphismE → F , which is a contradiction.

Therefore E is torsion-free.

Step 3: E is μH,D-semistable. Suppose that E → C is a μH,D-stable

quotient of E with μH,D(C) < μH,D(E) and r(C) < r(E). By the definition of

w, we have

μH,D(C) ≤ μH,D(F ).

If μH,D(C) < μH,D(F ), then the composition F → E → C is 0, so induces

a map Q → C which must be 0 since μH,D(C) < μH,D(Q); thus C is zero, a

contradiction. If instead μH,D(C) = μH,D(F ), since the stable factors of F have

minimal discriminant the composition F → E → C is either 0 or identifies C

with one of the stable factors Fi of F . In the first case we conclude as before,

and in the second we obtain a nontrivial homomorphism E → F , which again

is a contradiction. Thus E is μH,D-semistable.

Finally, since E is μH,D-semistable and σ+-stable, it is (H,D)-Gieseker stable

by the discussion in §2.3.2. This completes the proof.

7. Examples

In this section, we give applications and examples of our general theory. We dis-

cuss the nef cones of certain moduli spaces of vector bundles of rank 2 on several

classes of surfaces. Let (X,H) be a polarized surface and consider the vector

v with r(v) = 2, fixed ch1(v), and variable ch2(v) � 0, so that ΔH,D(v) � 0.

In the cases we consider, μH -semistability and μH -stability will coincide, so the

moduli space MH(v) carries a quasiuniversal family. Additionally, we will have

q(X) = 0.

Under these assumptions, by O’Grady’s theorem [O’G96] the moduli space

MH(v) is irreducible. Writing v⊥ for the orthogonal complement of v in

Knum(X) with respect to the Euler pairing (v,w) = χ(v ⊗ w), the Donald-

son homomorphism

λ : v⊥ → N1(MH(v))

is an isomorphism by a theorem of Jun Li [Li96]. Thus we can specify divisor

classes by giving elements of v⊥. By [Bo15, Proposition 3.8], if σ is a stability
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condition on a wallW in the (H,D)-slice of stability conditions, then the Bayer–

Macr̀ı divisor class associated to σ corresponds to a multiple of the class

(−1, sWH +D,m) ∈ v⊥,

where the second Chern character m is determined by the requirement

(−1, sWH +D,m) ∈ v⊥.
Additionally, when Pic(X) ∼= ZH , one extremal ray of the nef cone corre-

sponds to the Jun Li morphism to the Donaldson–Uhlenbeck–Yau compactifica-

tion [HL10, §8] and is given by λ(0, H, n), where n is chosen by the requirement

that (0, H, n) ∈ v⊥. Hence, we only need to compute the other extremal ray.

7.1. Surfaces in P3
. Let X be a very general surface of degree d ≥ 4 in P3.

By the Noether–Lefschetz theorem, Pic(X) ∼= ZH , where H is the class of a

hyperplane section ofX . Let v be the Chern character with r(v) = 2, c1(v) = H

and variable second Chern character ch2(v). The reduced slope is μ̃H(v) = 1
2 .

Since there are no line bundles with this reduced slope, every μH -semistable

sheaf of character v is μH -stable. We use the twisting divisor D = 0, and omit

it from our notation.

The extremal character w must have reduced slope μ̃H(w) = 0 and rank at

most 2. The line bundle OX has this slope. By the Bogomolov inequality, we

conclude that the extremal character w is the character of OX ⊕OX . If ΔH(v)

is sufficiently large, then the Gieseker wall is given by W (v,w). A computation

shows that the wall W (v,w) has center

sW = −KX ·H
2H2

+
ch2(v)

H2
= −d− 4

2
+

ch2(v)

d
.

The interesting extremal ray of the nef cone corresponds to the class

(−1, sWH,m) ∈ v⊥.

7.2. Double covers of P2
. Let X be the cyclic double cover of P2 branched

along a very general curve of degree 2d ≥ 6. Let H be the pullback of OP2(1).

By the Noether–Lefschetz theorem (see for example [RS09]), Pic(X) ∼= ZH . Let

v be the Chern character with r(v) = 2, c1(v) = H and variable second Chern

character ch2. The reduced slope is μ̃H(v) = 1
2 . Since there are no line bundles

with this reduced slope, every μH -semistable sheaf of character v is μH -stable.

We again use the twisting divisor D = 0.
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The extremal character w must have reduced slope μ̃H(w) = 0 and rank at

most 2. The line bundle OX has this slope. By the Bogomolov inequality, we

conclude that the extremal character is the character of OX ⊕OX . If ΔH(v) is

sufficiently large, then the Gieseker wall is given by W (v,w). A computation

shows that the wall W (v,w) has center

sW = −KX ·H
2H2

+
ch2(v)

H2
= −d− 3

2
+

ch2
2

.

One edge of the nef cone corresponds to a class

(−1, sWH,m) ∈ v⊥,

and the other edge corresponds to the Donaldson–Uhlenbeck–Yau compactifi-

cation.

7.3. The quadric P1 × P1
. Let X = P1 × P1. We write classes in

N1(X)Q ∼= QH1 ⊕ QH2

as (a, b), where H1 and H2 are the two fibers on X . Fix the polarization

H = (1, 1), and define a family

Dt = (t,−t)

of twisting divisors orthogonal to H . We consider the vector v with r(v) = 2,

c1(v) = (1, 0), and variable ch2(v) � 0. Since we vary the twisting divisor

in this section, it is preferable to view ch2 as varying instead of the twisted

discriminant as varying, since the latter depends on the particular twist.

Observe that every μH -semistable sheaf of character v is μH -stable, since

μ̃H(v) = 1
2 and no line bundle has this reduced slope. Therefore, the twisted

moduli spacesMH,Dt(v) parameterize the same objects as the ordinary Gieseker

space MH(v), and MH(v) can be realized as the large-volume limit in the

(H,Dt)-slice for any t ∈ Q. For any t ∈ Q, Corollary 1.2 allows us to determine

a boundary nef divisor on MH(v) so long as ch2(v) � 0; however, the required

bound on ch2(v) depends on the particular time t. As ch2(v) becomes more

negative, we will find that the structure of the nef cone becomes increasingly

complicated; for example, while any fixed space MH(v) is a Mori dream space

and thus has a finite polyhedral nef cone [Ry16], the number of extremal rays

of this cone becomes arbitrarily large as ch2(v) decreases.

Let wt denote an extremal character for v in the (H,Dt)-slice. In the next

result we compute wt in terms of t.



232 I. COSKUN AND J. HUIZENGA Isr. J. Math.

Proposition 7.1: Let t ∈ Q and let n ∈ Z be an integer closest to t.

(1) If n �= 0, then the character of OX(n,−n) is an extremal character for

v in the (H,Dt)-slice.

(2) If n = 0, then the character of O⊕2
X is an extremal character for v in

the (H,Dt)-slice.

Any extremal character for v in the (H,Dt)-slice is obtained in this way. In

particular, the extremal character is uniquely determined if t is not a half-

integer, and there are two choices of extremal character if t is a half-integer.

Proof. Let wt denote an extremal character for v in the (H,Dt)-slice. Since

μ̃H(wt) = 0, the first Chern class satisfies

c1(wt) = (n,−n)

for some n ∈ Z. If wt has rank 2, then

c1(v) − c1(wt) = (1, 0)− (n,−n) = (1− n, n)

is effective, so either n = 0 or n = 1. In all other cases, wt has rank 1.

Next we minimize the discriminant ofwt, viewing c1(wt) = (n,−n) and r(wt)

as fixed. First recall the ordinary discriminant Δ and twisted discriminant

ΔH,Dt are

Δ =
1

2

c21
r2

− ch2
r

and

ΔH,Dt =
1

2
μ2
H,Dt

− ch
Dt

2

H2r
.

When the formula for ΔH,Dt is fully expanded using the definitions, there are

several terms; however, only the term − ch2 /(H
2r) varies when c1 and r are

held fixed and ch2 is varied. Thus, the problems of minimizing Δ and ΔH,Dt

are equivalent. If the class c1(wt)/r(wt) is integral, then Δ(wt) must be zero

and wt is a direct sum of r(wt) copies of a line bundle.

The only remaining possibility is that r(wt) = 2 and n = 1, so that

c1(wt) = (1,−1).

By Rudakov’s classification of the numerical invariants of semistable sheaves

[Ru94], the smallest discriminant of a semistable sheaf with this rank and first

Chern class is

Δ(wt) =
3

4
.
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Thus wt will be the character

y = (r, c1,Δ) =
(
2, (1,−1),

3

4

)
.

However, we claim that for each t ∈ Q,

ΔH,Dt(y) > min
n∈Z

ΔH,Dt(OX(n,−n)),

so that y is never an extremal character for v in the (H,Dt)-slice. To this end,

a computation shows

(∗) ΔH,Dt(OX(n,−n)) =
(n− t)2

2

while

ΔH,Dt(y) =
1

2
+

(t− 1)t

2
.

Therefore

ΔH,Dt(y) ≥
3

8
for all t. On the other hand, if n is an integer closest to t, then

ΔH,Dt(OX(n,−n)) ≤ 1

8
.

The remaining statements of the proposition now follow at once from our

explicit formula (∗) for ΔH,Dt(OX(n,−n)); for fixed t and variable n, the dis-

criminant of OX(n,−n) is smallest when n is an integer closest to t.

Having computed the extremal character wt, Corollary 1.2 determines a

boundary nef divisor on MH(v) corresponding to the (H,Dt)-slice, provided

that ΔH,Dt(v) is sufficiently large (depending on t). Let Wt be the wall in the

(H,Dt)-slice determined by wt, and suppose its center is at the point (sWt , 0).

Let ut be the Chern character

ut = (−1, sWtH +Dt,m) ∈ v⊥,

where the number m is determined by the requirement ut ∈ v⊥. (Note that

while wt is technically not well-defined if t is a half-integer, the wall Wt and

hence the character ut are independent of the choice.) Then λ(ut) spans the

ray determined by the wall Wt in the (H,Dt)-slice.

We reiterate that for any given t ∈ Q, the ray spanned by λ(ut) will be a

boundary nef ray if ch2(v) � 0 depending on t. We compute the center sWt to

more explicitly determine ut in the next result.
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Lemma 7.2: If n is a closest integer to t ∈ Q, then we have

sWt = (1− 4n)t+ 2n2 + 1 + ch2(v).

Proof. Without loss of generality assume

wt = ch(OX(n,−n)).

Then

μH,Dt
(wt) = 1,

μH,Dt
(v) =

5

4
,

ΔH,Dt(wt) =
1

2
(n− t)2,

ΔH,Dt(v) =
1

2

(
t− 1

4

)2

− ch2(v)

4
,

and the result follows at once from the formula for the center.

As t varies in a unit-length interval (n − 1
2 , n + 1

2 ) for some integer n, the

centers sWt interpolate linearly between the centers at half-integer times. Thus,

if ch2(v) is sufficiently negative that the divisors

λ(un− 1
2
), λ(un), and λ(un+ 1

2
)

are all boundary nef divisors, then λ(ut) is a boundary nef divisor for every t

in this interval. Similarly, if the divisors

λ(un− 1
2
), λ(un), λ(un+ 1

2
), λ(un+1) and λ(un+ 3

2
)

are all boundary nef divisors, then λ(ut) is a boundary nef divisor for all t ∈
(n− 1

2 , n+ 3
2 ). Furthermore, in this case λ(un+ 1

2
) spans an extremal ray of the

nef cone. By further decreasing ch2(v) in this manner, we get the next result.

Proposition 7.3: Let N > 0 be a positive integer, and suppose ch2(v) is

sufficiently negative, depending on N . If t ∈ [−N,N ], then λ(ut) is a boundary

nef divisor on MH(v). If additionally t is a half-integer, then λ(ut) spans an

extremal ray of the nef cone of MH(v). In particular, as ch2(v) decreases, the

number of extremal rays of Nef(MH(v)) becomes arbitrarily large.

In a sense, the “middle” portion of the nef cone of MH(v) stabilizes as ch2(v)

decreases.
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