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ABSTRACT

We suggest a new refined (i.e., depending on a parameter) tropical enu-

merative invariant of toric surfaces. This is the first known enumerative

invariant that counts tropical curves of positive genus with marked ver-

tices. Our invariant extends the refined rational broccoli invariant invented

by L. Göttsche and the first author, though there is a serious difference be-

tween the invariants: our elliptic invariant counts weights assigned partly

to individual tropical curves and partly to collections of tropical curves,

and our invariant is not always multiplicative over the vertices of the

counted tropical curves as was the case for other known tropical enu-

merative invariants of toric surfaces. As a consequence we define elliptic

broccoli curves and elliptic broccoli invariants as well as elliptic tropical

descendant invariants for any toric surface.
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1. Introduction

Refined (i.e., depending on a formal parameter y) tropical enumerative invari-

ants were introduced by F. Block and L. Göttsche [1] (see also [7] for proof of the

invariance), and they showed that, for y = 1, its value is the Gromov–Witten

tropical invariant, while for y = −1 it coincides with the Welschinger tropi-

cal invariant associated with totally real point constraints. Under appropriate

conditions, enumeration of plane trivalent tropical curves with Mikhalkin and

Welschinger weights gives Gromov–Witten and Welschinger invariants of toric
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del Pezzo surfaces, respectively (see [12, Theorems 1 and 6]). Mikhalkin [13]

observed that, in specific situations, the refined invariant itself has an algebro-

geometric enumerative meaning. Note the Block–Göttsche invariants count

tropical curves with marked points on the edges, and they are uniformly de-

fined for any genus (cf. [2, Theorem 4.8] and [6, Theorem 1] for the complex

and real specifications discovered earlier).

In [3], A. Gathmann, H. Markwig and the first author introduced rational

tropical broccoli invariants, tightly related to Welschinger invariants for mixed,

real and complex conjugate point constraints. L. Göttsche jointly with the first

author [4] suggested a refinement of the rational broccoli invariant, which eval-

uates to the rational broccoli invariant for y = −1 and to a certain rational

logarithmic descendant invariant of toric surfaces as y = 1 (see [9, 11] for de-

tailed treatment of tropical descendant invariants and [5] for comparison with

the logarithmic descendant invariants).

The main goal of this paper is to define elliptic (tropical) broccoli curves,

elliptic broccoli invariants and their refinement. An attempt to define elliptic

broccoli curves was undertaken by the first author in [14, Section 6], which

basically led to indication of difficulties in this task. These difficulties come

from the fact that the structure of the moduli space of plane tropical curves of

a positive genus with marked vertices is much more complicated than that for

genus zero. This stands in contrast to the moduli spaces of plane tropical curves

without marked vertices, where the difference between genus zero and positive

genera is quite simple (see [2]). In particular, this phenomenon allows one to

easily define invariants counting tropical curves of any genus with markings only

on edges [2, 12, 6, 7].

The main outcome of our work is

• a refined tropical invariant that counts elliptic plane tropical curves

having markings on edges and at vertices and passing through appro-

priately many generic points; the new invariant naturally extends the

refined rational broccoli invariant (see Theorem 3.7 in Section 3);

• an elliptic broccoli invariant and a definition of elliptic broccoli curves

(geometric description in Definition 3.9, Section 3.4, and numerical

characterization in Proposition 5.5, Section 5.2);

• an elliptic tropical descendant invariant 〈τ0(2)neτ1(2)
nv〉1Δ (Proposition

5.3 and Remark 5.4 in Section 5.2) that naturally extends the rational

tropical descendant invariant 〈τ0(2)neτ1(2)
nv 〉0Δ studied in [11].
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Our refined tropical invariant is always a symmetric Laurent polynomial in

the parameter y (Proposition 5.2 in Section 5). The computational aspect is

addressed in Section 5.3, where we explain how to compute the invariant via a

lattice path algorithm that is very similar to the algorithms presented in [12,

Section 7.2] and [11, Section 9].

We also point out two main differences between the Block–Göttsche and

refined rational broccoli invariants on one side and the refined elliptic broccoli

invariant on the other side:

• Refined weights of elliptic tropical curves in count are no longer products

of refined weights of vertices.

• Some tropical curves are counted with a joint refined weight, and it

is not clear whether one can split such a joint weight into individual

weights so that the invariant will become local (in the sense that, as-

signing to a top-dimensional face of the moduli space of the counted

curves the weight of a generic element of the face, one obtains a topo-

logical cycle relative to infinity).

The questions on the enumerative meaning of the elliptic invariants and on

possible extension of such invariants to all positive genera still remain open.

Presumably, they can be viewed as certain tropical Welschinger invariants of

positive genera.

A tropical computation of descendant log Gromov–Witten invariants, includ-

ing higher genus case, was suggested in [10]. Our approach and our goals have

been different: first of all, we focus on the construction of a refined invariant,

interpolating between usual descendant Gromov–Witten invariants and broccoli

invariants stressing on the latter invariants, since they have an important real

enumerative meaning for the genus zero case (tropical and algebraic Welschinger

invariants), and we expect that the elliptic broccoli invariants (as well as their

possible extensions to higher genera) are closely related to real enumerative

geometry too. In turn, no real counterpart of descendant log Gromov–Witten

invariants is known so far.

Acknowledgements. A part of this work was performed during the stay of

the first author at Tel Aviv University as a postdoc position supported from the

Hermann-Minkowski-Minerva Center for Geometry at the Tel Aviv University

and from the Israel Science Foundation grant no. 178/13. The second author has

been supported by the German–Israeli Foundation grant no. 1174-197.6/2011
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2. Plane marked tropical curves

We briefly recall some basic definitions concerning tropical curves, adapted to

our setting (for details, see [2, 4, 12]).

2.1. Abstract and plane tropical curves. An abstract tropical curve

is a finite connected compact graph Γ without bivalent vertices such that the

complement Γ = Γ \ Γ 0

∞ to the set Γ
0

∞ of univalent vertices is a metric graph

whose non-closed edges (called ends) are isometric to [0,∞) (i.e., univalent

vertices are infinitely far from their neighboring vertices). Denote by Γ0, Γ1,

and Γ1
∞ the sets of vertices, edges, and ends of Γ, respectively. The genus of

Γ is g(Γ) = b1(Γ). A tropical curve Γ is called trivalent if all the vertices

of Γ are trivalent. A marked tropical curve is a pair (Γ,p), where p is an

ordered sequence of distinct points of Γ. We say that the complement Γ \ p is

regular, if each component of this set is simply connected and contains exactly

one univalent vertex. The edges of the closure of a component of a regular set

Γ\p admit a unique orientation (called canonical) such that the marked points

are the only sources and the univalent vertex of Γ is the only sink. A labeled

abstract marked tropical curve is an abstract tropical curve with an ordered

set Γ
0

∞ of univalent vertices. We denote a labeled marked tropical curve by

(Γ
lab

,p).

A marked plane tropical curve is a tuple (Γ,p, h), where (Γ,p) is a marked

abstract tropical curve, and h : Γ → R
2 is a proper map such that

• the restriction h|E to any edge E ∈ Γ1 is a nonconstant affine-integral

map;

• for any vertex V ∈ Γ0 the following balancing condition holds:

(1)
∑

V ∈E,E∈Γ1

D(h|E)(aV (E)) = 0,

where aV (E) is the unit tangent vector to E at V , and D(∗) is the

differential;



822 F. SCHROETER AND E. SHUSTIN Isr. J. Math.

• if, for some vertex V∈Γ0, dimSpan{D(h|E)(aV (E)), V ∈E, E∈Γ1}=1,

then V ∈ p (we call such vertices collinear).

The latter condition excludes parasitic parameters, coordinates of images of

collinear unmarked vertices.

Notice that each vector D(h|E)(aV (E)) has integral coordinates, and it can

be written as

D(h|E)(aV (E)) = mv,

where v ∈ Z
2 \ {0} is primitive and m is a positive integer (called the weight

of the edge E and denoted wt(E, h)). The degree of the plane tropical curve

(Γ, h) is the (unordered) multiset of vectors

Δ(Γ, h) = {D(h|E)(aV (E)), E ∈ Γ1
∞}.

The balancing condition yields that Δ(Γ, h) is a balanced multiset, i.e.,∑
a∈Δ(Γ,h) a = 0. We call Δ(Γ, h) primitive if it contains only primitive vec-

tors, and we call Δ(Γ, h) nondegenerate if Span
R
Δ(Γ, h) = R

2.

The push-forward T = h∗(Γ) ⊂ R
2 is an embedded tropical curve with the

Newton polygon P (Δ) built of vectors a ∈ Δ(Γ, h) rotated by π/2. By pa(Δ)

we denote the number of interior integral points of P (Δ), the arithmetic genus

of a curve in the tautological linear system on the toric surface associated with

the polygon P (Δ). There is a natural duality between the edges and vertices

of T on one side and the edges and polygons of a certain (dual) subdivision of

P (Δ). We denote the dual object by D(∗). Any edge E of T possesses a natural

weight wt(E), which can be viewed as the lattice length of the dual edge D(E).

Observe also that our definition of a plane tropical curve does not allow loops

in Γ formed by one edge. If a cycle contains exactly two edges, then these edges

join the same two vertices of Γ, and they are mapped by h to the same segment

(though they may have different weights). We call such cycles collinear.

Remark 2.1: When considering curves of genus g > 0, we should assume that

g ≤ pa(Δ). Otherwise, one may encounter fake high genus curves like an “el-

liptic conic” shown in Figure 1.

2.2. Moduli spaces of tropical curves. Denote by Mg,n,k, where n ≥ 0,

the moduli space of marked tropical curves (Γ,p) of genus g with an ordered con-

figuration p of n distinct points of Γ and such that |Γ 0

∞| = k. It is a polyhedral

complex, whose cells parameterize n-marked curves of a given combinatorial
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Figure 1. Fake elliptic conic.

type, while the parameters (possibly linearly dependent) are lengths between

neighboring vertices and/or marked points. The natural closureMg,n,k includes

the curves obtained by vanishing of some parameters and may contain curves

of genus < g (if g is positive) as some cycles contract to points.

Furthermore, for any splitting n = nv + ne with nv, ne ≥ 0, introduce

Mg,(nv ,ne),k = {(Γ,p) ∈ Mg,n,k : the first nv points of p are vertices of Γ}.

Lemma 2.2: The moduli space Mg,(nv,ne),k is a finite polyhedral fan of pure

dimension k + g − 1 + ne, and its open top-dimensional cones parameterize

trivalent curves (Γ,p) such that pi �∈ Γ0, i > nv, pi ∈ p.

Proof. For ne = nv = 0, the moduli space Mg,(0,0),k is a finite polyhedral fan of

dimension k + g − 1 with top-dimensional open cones parameterizing trivalent

curves (see [12, Propositions 2.13 and 2.23]). Then each marked point on an

edge adds one more parameter.

Denote by Mg,(nv ,ne),k the closure of Mg,(nv ,ne),k in Mg,n,k.

Given a nondegenerate multiset Δ ⊂ Z
2 \{0} such that

∑
a∈Δ a = 0, we have

the moduli spaces Mg,n(R
2,Δ) of plane n-marked tropical curves of genus g

and degree Δ and its subspaces for ne + nv = n,

Mg,(nv ,ne)(R
2,Δ) = {(Γ,p, h) ∈ Mg,n(R

2,Δ) : (Γ,p) ∈ Mg,(nv ,ne),k, k = |Δ|}.

We also have a natural evaluation map Evn : Mg,n(R
2,Δ) → R

2n that takes

(Γ,p, h) to the vector h(p) ∈ R
2n. The following fact is well-known (see

[2, 12, 14]):
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Lemma 2.3: The space Mg,n(R
2,Δ) is a finite polyhedral complex of (not

necessarily pure) dimension |Δ| + g − 1 + n. The space Mg,(nv ,ne)(R
2,Δ) is a

finite polyhedral complex of (not necessarily pure) dimension |Δ|+ g − 1 + ne.

Suppose that n = |Δ| + g − 1 and denote by M e

g,n(R
2,Δ) the closure in

Mg,n(R
2,Δ) of the union of open cells of dimension 2n = |Δ| + g − 1 + n

whose Evn-images have dimension 2n (enumeratively essential cells). Re-

spectively, suppose that 2nv+ne = |Δ|+g−1 and denote by M e

g,(nv,ne)(R
2,Δ)

the closure in Mg,(nv ,ne)(R
2,Δ) of the union of open cells of dimension

2n = |Δ|+g−1+ne whose Evn-images have dimension 2n. By Even, resp. Ev
e
nv ,ne

we denote the restriction of Evn to M e

g,n(R
2,Δ) and M e

g,(nv ,ne)(R
2,Δ), respec-

tively.

2.3. Labeled tropical curves and their moduli spaces. A labeling of

an abstract tropical curve Γ is a linear order on the set of the ends Γ1
∞. The

moduli spaces of tropical curves considered in the preceding section admit nat-

ural labeled counterparts, in particular, fixing an arbitrary order on Δ, we have

M lab

g,(nv ,ne)(R
2,Δ), the space of labeled marked plane tropical curves of genus g,

considered up to automorphisms respecting the labeling and the order of Δ. The

forgetful map

πg,(nv ,ne) : M
lab

g,(nv ,ne)(R
2,Δ) → Mg,(nv ,ne)(R

2,Δ)

is surjective and finite and, for any element (Γ,p, h) ∈ Mg,(nv ,ne)(R
2,Δ), we

have

(2) |(πg,(nv ,ne))
−1(Γ,p, h)| = |Δ|!

|Aut(Γ,p, h)|
.

If 2nv + ne = |Δ|+ g − 1, we denote by

Ev e,lab
nv ,ne

: M e,lab

g,(nv ,ne)(R
2,Δ) → R

2n

the evaluation map restricted to the (closure of the) enumeratively essential

cells.

2.4. Evaluation map in codimension zero and one. Below we will in-

troduce a refined enumerative quantity related to the count of elliptic tropical

curves passing through a generic configuration of points in R
2, and we will prove

its invariance via the study of its behavior along generic paths in the space of
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point constraints. So we stratify the space of constraints identified with R
2n for

an appropriate n into cells of full dimension 2n, walls of codimension one, and

the complement of codimension two which can be avoided by generic paths.

Throughout this section we suppose that Δ ⊂ Z
2 \{0} is a balanced multiset.

Furthermore, to simplify formulations we introduce the following notion: Given

an abstract marked tropical curve (Γ,p), we call (Γ \ Γ′
,p \ Γ′

), where Γ
′ ⊂ Γ

is a closed subgraph (possibly empty), simple if either Γ \Γ′
is trivalent, or all

but one vertices of Γ \ Γ
′
are trivalent and there is a collinear cycle joining a

trivalent marked vertex with a four-valent unmarked vertex.

Lemma 2.4 ([2, 4, 12]): Let n = |Δ|+g−1. Then for each element x belonging

to some open dense subset of R2n, the preimage Ev−1
n (x) ⊂ M e

g,n(R
2,Δ) is

non-empty and finite. Furthermore, for each curve (Γ,p, h) ∈ Ev−1
n (x), the

graph Γ is trivalent, p ∩ Γ0 = ∅, and the set Γ \ p is regular.

Lemma 2.5 ([2], Section 4, and [4], Section 2): Under the hypotheses of Lemma

2.4, the map Even is onto, and its target space splits into the disjoint union

R
2n = X2n

g,n ∪X2n−1
g,n ∪X2n−2

g,n ,

where

(1) X2n
g,n is the union of open polyhedra of dimension 2n and, for each

element x ∈ X2n
g.n, its preimage (Even)

−1(x) satisfies the conclusions of

Lemma 2.4;

(2) X2n−1
g,n is the union of open polyhedra of dimension 2n − 1, for each

x ∈ X2n−1
g,n the preimage (Even)

−1(x) is non-empty, finite, and the

curves (Γ,p, h) ∈ (Even)
−1(x) are as follows:

(2i) either Γ is trivalent, having precisely one marked vertex,

(2ii) or all but one vertices of Γ are trivalent, one vertex is four-valent,

unmarked, p ∩ Γ0 = ∅, and the set Γ \ p is regular,

(2iii) or, in case g > 0, all but two vertices of Γ are trivalent, the

remaining two vertices are four-valent, and they are joined by a

couple of edges that are mapped to the same segment in R
2, and

the set Γ \ p is regular;

(3) dimX2n−2
g,n ≤ 2n− 2.

Lemma 2.6: Let n = nv + ne, nv > 0, ne ≥ 0, and

2nv + ne = |Δ|+ g − 1.
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Then for a generic element x ∈ R
2n, the preimage

(Evenv ,ne
)−1(x) ⊂ M e

g,(nv ,ne)(R
2,Δ)

is finite. Furthermore, one has:

(1) If g = 0, then each curve (Γ,p, h) ∈ (Evenv ,ne
)−1(x) satisfies the follow-

ing conditions:

(1i) |p ∩ Γ0| = nv, and the set Γ \ p is regular;

(1ii) Γ is trivalent.

(2) If g = 1, then each curve (Γ,p, h) ∈ (Evenv ,ne
)−1(x) satisfies the follow-

ing conditions:

(2i) |p ∩ Γ0| = nv, and the set Γ \ p is regular;

(2ii) (Γ,p) is simple.

Proof. The case of g = 0 is settled in [3]. The second statement is a part of

Lemma 2.8 below.

Lemma 2.7: Let n = nv + ne, nv > 0, ne ≥ 0, and 2nv + ne = |Δ| − 1. Then

the target space of Evenv ,ne
: M e

0,(nv,ne)(R
2,Σ) → R

2n splits into the disjoint

union

R
2n = X2n

0,(nv,ne)
∪X2n−1

0,(nv,ne)
∪X2n−2

0,(nv,ne)
,

where

(1) X2n
0,(nv,ne)

is the union of open polyhedra of dimension 2n and, for each

element x ∈ X2n
0,(nv ,ne)

, its preimage (Evenv,ne
)−1(x) is finite and satis-

fies the conclusions of Lemma 2.6(1);

(2) X2n−1
0,(nv,ne)

is the union of open polyhedra of dimension 2n− 1, for each

x ∈ X2n−1
0,(nv ,ne)

the preimage (Evenv,ne
)−1(x) is finite, and the curves

(Γ,p, h) ∈ (Evenv ,ne
)−1(x) are as follows:

(2i) either Γ is trivalent, and |p ∩ Γ0| = nv + 1,

(2ii) or all but one vertices of Γ are trivalent, one vertex is four-valent,

unmarked, |p ∩ Γ0| = nv, and the set Γ \ p is regular,

(2iii) or all but one vertices of Γ are trivalent, one vertex is four-valent,

marked, and |p ∩ Γ0| = nv;

(3) dimX2n−2
0,(nv,ne)

≤ 2n− 2.

Proof. See [3, Section 3] and [4, Section 4].
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Lemma 2.8: Let n = nv + ne, nv > 0, ne ≥ 0, and 2nv + ne = |Δ|. Then the

target space of Evenv ,ne
: M e

1,(nv,ne)(R
2,Δ) → R

2n splits into the disjoint union

R
2n = X2n

1,(nv,ne)
∪X2n−1

1,(nv,ne)
∪X2n−2

1,(nv,ne)
,

where

(1) X2n
1,(nv,ne)

is the union of open polyhedra of dimension 2n and, for each

element x ∈ X2n
1,(nv,ne)

, its preimage (Evenv,ne
)−1(x) satisfies the con-

clusions of Lemma 2.6(2);

(2) X2n−1
1,(nv,ne)

is the union of open polyhedra of dimension 2n− 1, for each

x ∈ X2n−1
1,(nv,ne)

the preimage (Evenv,ne
)−1(x) is finite and consists of the

following curves (Γ,p, h):

(2i) either Γ is elliptic, |p∩Γ0| = nv+1, the set Γ\p contains exactly

one bounded component, and the marked graph (Γ,p) is simple,

(2ii) or Γ is elliptic, |p ∩ Γ0| = nv, the set Γ \ p is regular, there is

an unmarked four-valent vertex V ∈ Γ0 which neither belongs

to a collinear cycle, nor is neighboring a collinear marked triva-

lent vertex belonging to a collinear cycle, and the marked graph

(Γ \ {V },p) is simple,

(2iii) or Γ is elliptic, has no collinear cycle, |p ∩ Γ0| = nv, all but one

vertices of Γ are trivalent, one vertex is four-valent, marked, and

exactly one edge of the unique bounded component of Γ \ p is

incident to that vertex,

(2iv) or Γ is elliptic, has no collinear cycle, |p ∩ Γ0| = nv, all but one

vertices of Γ are trivalent, one vertex is four-valent, marked, and

exactly two edges of the unique bounded component of Γ \ p are

incident to that vertex,

(2v) or Γ is elliptic, has a collinear cycle, |p ∩ Γ0| = nv, and

(2v-a) either all but two vertices of Γ are trivalent, two unmarked

four-valent vertices are joined by a collinear cycle, and the

set Γ \ p is regular,

(2v-b) or all but two vertices of Γ are trivalent, two four-valent

vertices, one marked and the other unmarked, are joined

by a collinear cycle containing an additional marked point,

(2v-c) or all but two vertices of Γ are trivalent, two marked four-

valent vertices are joined by a collinear cycle,
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(2vi) or Γ is elliptic, and all but two vertices of Γ are trivalent, two

four-valent vertices, one marked and the other unmarked, are

joined by a collinear cycle containing no extra marked point, and

the set Γ \ p is not regular,

(2vii) or Γ is rational, trivalent, |p∩Γ0| = nv, and the set Γ\p contains

exactly one bounded component,

(2viii) or Γ is elliptic, has a collinear cycle, |p ∩ Γ0| = nv, and

(2viii-a) either all but one vertices of Γ are trivalent, one five-

valent vertex is unmarked, joined with a marked vertex

by a collinear cycle, and the set Γ \ p is regular,

(2viii-b) or all but two vertices of Γ are trivalent, two unmarked

four-valent vertices are neighboring a collinear marked

trivalent vertex, and the set Γ \ p is regular;

(3) dimX2n−2
1,(nv,ne)

≤ 2n− 2.

Proof. The statement can be extracted from [14, Chapter 6]. For the reader’s

convenience we shall prove it here. Given a curve (Γ,p, h) ∈ M e

1,(nv,ne)(R
2,Δ),

by Def(Γ,p, h) we denote the (open) cell of M e

1,(nv,ne)(R
2,Δ) parameterizing

curves of the same combinatorial type as (Γ,p, h).

Step 1. Suppose that x ∈ R
2n is generic. Observe that |p ∩ Γ0| = nv

and that the set Γ \ p must be regular, since otherwise it would contain a

bounded component, and hence a condition to the images of the endpoints

of that component (cf. [15, Formula (4)]). Next, denote by si the valency of

the marked vertex pi ∈ p, i = 1, . . . , nv, set u = |Γ0 \ p|, and denote by

tj , j = 1, . . . , u, the valencies of the (somehow ordered) unmarked vertices

of Γ. Counting the marked points pi ∈ p, i > nv as bivalent vertices of Γ and

respectively defining the set Γ1 of edges of Γ, we get

2|Γ1| =
nv∑
i=1

si +

u∑
j=1

tj + 2ne + |Δ| =
nv∑
i=1

si +

u∑
j=1

tj + 2nv + 3ne + n∞,

|Γ 0| =u+ nv + ne + |Δ| = u+ 3nv + 2ne,

which together with the genus condition |Γ 0| = |Γ1| yields

(3)

nv∑
i=1

(4− si) + ne =

u∑
j=1

(tj − 2).
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Now denote by Γk, k = 1, . . . , |Δ|, the closures of the components of Γ \ p

obtained by adding a vertex to each non-closed edge. Next, denote by sik,

i = 1, . . . , nv, resp. tjk, j = 1, . . . , u, the number of edges of Γk incident to

the respective marked and unmarked vertices, denote by ne,k the number of

bivalent marked vertices of Γ belonging to Γk, and, finally, denote by uk the

number of vertices of Γk of valency > 2, k = 1, . . . , |Δ|. Then the regularity

condition |Γ1

k|+ 1 = |Γ0

k|, k = 1, . . . , |Δ|, implies that

2|Γ 1

k |+ 2 =

nv∑
i=1

sik +

u∑
j=1

tjk + 2ne,k + 3

=2|Γ 0

k | = 2

nv∑
i=1

sik + 2ne,k + 2n∞,k + 2uk + 2,

k = 1, . . . , |Δ|, and hence

(4)

nv∑
i=1

(si − 2) + ne =

u∑
j=1

(tj − 2),

which together with (3) yields that all marked vertices p1, . . . , pnv are trivalent.

Furthermore, in the above notation, sik ≤ 2 for all i = 1, . . . , nv, k = 1, . . . , |Δ|,
and sik = 2 for at most one pair (i, k), since each pair like that yields a cycle

of Γ. If sik = 1 for all k, then all unmarked vertices are trivalent (cf. [12,

Proposition 2.23]). If sik = 2 for some pair (i, k), and there is an unmarked

vertex V of Γk of valency ≥ 4, then Γk \ {V } contains at least three bounded

trees, and hence a restriction to the position of h(Γk)∩x unless V is four-valent

and joined by a couple of edges with some pi ∈ p.

Step 2. It is easy to see that the combinatorial types listed in item (2)

of Lemma 2.8 are degenerations of the top-dimensional combinatorial types of

item (1) and that dimEvenv ,ne
(Def(Γ,p, h)) = 2n + n∞ − 1 for each of them.

We shall show that other degenerations satisfy

dimEvenv ,ne
(Def(Γ,p, h)) ≤ 2n− 2.

The following two simple observations will be used below.

First, we note that if Γ \ p contains at least two bounded components then

dimEvenv ,ne
(Def(Γ,p, h)) ≤ 2n − 2. Indeed, the closures of two such bounded

components have at most two common points (since the genus is at most 1),

and hence one gets two linearly independent conditions to the position of h(p)

(cf. [15, Formula (4)]).
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Second, suppose that h : γ → R
2 is a plane rational tropical curve of degree

δ having vertices of valencies s1, . . . , sr, r ≥ 1; then

dimDef(γ, h) = |δ| − 1−
r∑

i=1

(si − 3).

Indeed, this immediately follows from the formula |δ|− 3−
∑r

i=1(si− 3) for the

number of bounded edges.

Step 3. Let (Γ,p, h) ∈ (Evenv ,ne
)−1(x) be rational. The computation similar

to that in Step 1 leads to relations

(5)

⎧⎨
⎩

∑nv

i=1(4 − si) + ne =
∑u

j=1(tj − 2) + 2 +
∑ne

i=1(s
′
i − 2),∑nv

i=1(si − 2) +
∑ne

i=1(s
′
i − 2) + ne =

∑u
j=1(tj − 2) + 2q,

where s′i is the valency of the point pi+nv ∈ p, i = 1, . . . , ne, and q is the

number of bounded connected components of Γ \ p. If we suppose that

dimEvenv ,ne
(Def(Γ,p, h)) = 2n − 1, then q ≤ 1, and from (5) we immediately

get that q = 1, all marked vertices pi ∈ p, i = 1, . . . , nv are trivalent, and all

marked points pi+nv ∈ p, i = 1, . . . , ne, are bivalent. It can easily be derived

that all unmarked vertices are trivalent, since otherwise it would further reduce

the dimension of Evenv ,ne
(Def(Γ,p, h)) (cf. Step 2). Thus we fit the conditions

of item (2vii).

Step 4. Let (Γ,p, h) ∈ (Eve(nv ,ne))
−1(x) be elliptic, and some of the marked

points pi+nv , 1 ≤ i ≤ ne, have valency ≥ 3. The computation as in Step 1 leads

to relations

(6)

⎧⎨
⎩

∑nv

i=1(4 − si) + ne =
∑u

j=1(tj − 2) +
∑ne

i=1(s
′
i − 2),∑nv

i=1(si − 2) +
∑ne

i=1(s
′
i − 2) + ne =

∑u
j=1(tj − 2) + 2q,

where
∑ne

i=1(s
′
i−2) ≥ 1. Thus, we obtain that q = 1,

∑ne

i=1(s
′
i−2) = 1 and that

all marked vertices pi ∈ p, i = 1, . . . , nv, are trivalent. It also follows that one

point pi+nv ∈ p, 1 ≤ i ≤ ne, is a trivalent vertex, while the others are bivalent.

Finally, as in Step 1, we derive that (Γ,p, h) meets the conditions of item (2i).

Step 5. Suppose that |p ∩ Γ0| = nv, and (Γ,p, h) ∈ (Evenv ,ne
)−1(x) is

elliptic with a collinear cycle. Introduce the rational curve (Γ′,p, h′) by re-

placing the edges of the collinear cycle with one edge whose weight is the sum

of weights of the replaced edges. It belongs either to M0,(nv ,ne)(R
2,Δ) or to

M0,(nv−1,ne+1)(R
2,Δ).
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In the latter case, 2(nv − 1) + (ne + 1) = |Δ| − 1, and hence Lemma 2.7(2)

applies and leaves for (Γ,p, h) only the options (2ii) and (2viii).

In the former case, the relation

2nv + ne = |Δ|

means that Γ′ \ p contains a bounded component (which is unique in view of

the assumption dimEvenv,ne
(Def(Γ,p, h)) = 2n − 1). In addition, the second

observation in Step 2 yields that Γ′ must be trivalent, and hence we are left

only with options (2v) and (2vi).

Step 6. Finally suppose that |p ∩ Γ 0| = nv, and (Γ,p, h) is elliptic without

collinear cycles. If the set Γ\p is regular, then (cf. the second observation in Step

2) all but one vertices of Γ are trivalent, one vertex is four-valent. Furthermore,

the four-valent vertex must be unmarked, since otherwise one would encounter

a bounded component of Γ \ p. Thus we fit conditions of item (2ii). Suppose

now that the set Γ \ p contains a bounded component (unique in view of the

first observation in Step 2). As in Step 4, we get relations (6), where s′i = 2,

i = 1, . . . , ne, and q = 1. It follows that exactly one marked vertex is four-valent

while the others are trivalent. This four-valent marked vertex must be incident

to a bounded component of Γ\p, since otherwise it would not be a degeneration

of a top-dimensional combinatorial type. On the other hand, this four-valent

vertex cannot be incident to more than two edges of the bounded component of

Γ \ p, since otherwise the curve would have genus > 1. Thus we fit conditions

of either item (2iii) or item (2iv).

3. Refined count of plane marked tropical curves

Let Δ ⊂ Z
2 \ {0} be a balanced multiset. Given μ ∈ Z, set

[μ]−y =
yμ/2 − y−μ/2

y1/2 − y−1/2
, [μ]+y =

yμ/2 + y−μ/2

y1/2 + y−1/2
, [μ]∗y =

1

μ
· y

μ/2 − (−1)μy−μ/2

y1/2 − (−1)μy−1/2
,

y being a formal parameter.

Let (Γ, h) be a plane tropical curve. For any trivalent vertex V ∈ Γ0, set its

Mikhalkin’s weight:

μ(Γ, h, V ) = |D(h|E1)(aV (E1))×D(h|E2)(aV (E2))|,

where E1, E2 ∈ Γ1 are distinct edges incident to V . Due to the balancing

condition (1), this number does not depend on the choice of a pair of edges
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incident to V and, in fact, it equals the lattice area of the triangle D(h(V )),

dual to the vertex h(V ) of the tropical curve T = h∗(Γ). For any univalent

vertex V ∈ Γ
0

∞, set μ(Γ, h, V ) = wt(E, h), where E is the edge of Γ incident

to V .

3.1. Trivalent curves without marked vertices. Let

(Γ,p, h) ∈ Me
g,n(R

2,Δ)

be trivalent, n = |Δ| + g − 1, p ∩ Γ0 = ∅, and let the set Γ \ p be regular

(equivalently, Even(Γ,p, h) ∈ X2n
g,n in the notation of Lemma 2.5).

In line with [1, Definition 3.5], the Block–Göttsche weight of the curve

(Γ,p, h) (with p∞ = ∅ and n∞ = 0) is

BGy(Γ,p,p∞, h) =
∏

V ∈Γ0

[μ(Γ, h, V )]−y .

Under some mild conditions on Δ (for example, when Δ contains no even vec-

tors), BGy(Γ,p, h) is a symmetric Laurent polynomial in y (see [7, Proposition

2.3(4)]).

Proposition 3.1 ([7], Theorem 1): For any nondegenerate balanced multiset

Δ ⊂ Z
2 \ {0} and integers g ≥ 0, n = |Δ|+ g − 1, the expression

BGy(Δ, g,x) =
∑

(Γ,p,h)∈(Eve
n)

−1(x)

BGy(Γ,p, h)

does not depend on the choice of x ∈ X2n
g,n (defined in Lemma 2.5).

Furthermore,

Proposition 3.2 ([7], Corollary 2.4, and [12], Theorems 1 and 3): Under the

hypotheses of Proposition 3.1, suppose additionally that Δ is primitive. Then

(1) BG1(Δ, g) equals the number of irreducible complex curves in the toric

surface Tor(Δ), belonging to the tautological linear system, having

genus g, and passing through a generic configuration of n points in

Tor(Δ); if Tor(Δ) is del Pezzo, then BG1(Δ, g) = GWg(Δ), the genus g

Gromov–Witten invariant of Tor(Δ) for the tautological linear system;

(2) BG−1(Δ, g) equals the sum of Welschinger signs of irreducible real

curves in the toric surface Tor(Δ), belonging to the tautological linear

system, having genus g, and passing through a generic configuration of

n real points that tropicalize into a configuration fromX2n
g,n; if Tor(Δ) is
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del Pezzo and g = 0, then BG−1(Δ, 0) equals the Welschinger invariant

W0(Δ) of Tor(Δ) corresponding to the tautological linear system and

totally real configurations of points.

3.2. Rational trivalent curves with marked vertices. Let

(Γ,p, h) ∈ M e
0,(nv,ne)

(R2,Δ)

be a rational, trivalent plane tropical curve. Assume that n= |Δ|−1, |p∩Γ0|=nv,

and the set Γ \ p is regular. Following [4, Definition 3.13], define the refined

broccoli weight of (Γ,p, h) by

(7)

RBy(Γ,p, h) =
1

|Aut(Γ,p, h)|
×

∏
V ∈p∩Γ0

[μ(Γ, h, V )]+y ·
∏

V ∈Γ0\p
[μ(Γ, h, V )]−y ·

∏
V ∈Γ

0
∞

[μ(Γ, h, V )]∗y,

where Aut(Γ,p, h) is the automorphism group of (Γ,p, h).

Proposition 3.3 ([4], Theorem 4.1): For any balanced multiset Δ ⊂ Z
2 \ {0}

and nonnegative integers nv, ne such that 2nv + ne = |Δ| − 1, the expression

(8) RBy(Δ, 0, (nv, ne),x) :=
∑

(Γ,p,h)∈(Eve
(nv,ne)

)−1(x)

RBy(Γ,p, h)

does not depend on the choice of x ∈ X2n
0,(nv,ne)

(defined in Lemma 2.7).

For the proof see [4, Section 4]. Thus RBy(Δ, 0, (nv, ne)) is a genus zero trop-

ical invariant. Its particular values have an important enumerative meaning:

Proposition 3.4 ([4], Corollary 3.14 and Lemmas 3.27, 3.29): If Δ consists of

the vectors (1, 0), (0, 1), (−1,−1), each one appearing d times, then Tor(Δ)�P
2,

and RB1(Δ, 0, (nv, ne)) equals the descendant invariant 〈τ0(2)neτ1(2)
nv 〉0d, while

RB−1(Δ, 0, (nv, ne)) equals the Welschinger invariantWnv (P
2, d), counting (with

signs) real plane rational curves of degree d that pass through ne real points

and nv pairs of complex conjugate points in general position.

3.3. Elliptic curves with marked vertices. Nowwe define refined weights

of generic elliptic curves with marked vertices, i.e., tropical curves described in

Lemma 2.6(2).

Suppose that Δ⊂Z
2\{0} is a balanced, nondegenerate multiset, 2nv+ne=|Δ|,

where nv > 0, ne ≥ 0.
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Figure 2. Tropical curves with collinear cycles.

Denote by M′
1,(nv,ne)

(R2,Δ) ⊂ M e

1,(nv,ne)(R
2,Δ) the subset formed by the

elements (Γ,p, h) such that Γ is trivalent, elliptic, |p ∩ Γ0| = nv, and the set

Γ \ p is regular. Denote by M′′
1,(nv,ne)

(R2,Δ) ⊂ M e

1,(nv,ne)(R
2,Δ) the subset

formed by the elements (Γ,p, h) such that Γ is elliptic with all but one vertices

trivalent, one unmarked vertex is four-valent and joined with a marked vertex

by a collinear cycle, |p ∩ Γ0| = nv, and the set Γ \ p is regular.

By Lemma 2.6(2), the complement of M′
1,(nv,ne)

(R2,Δ) ∪M′′
1,(nv,ne)

(R2,Δ)

in M e

1,(nv,ne)(R
2,Δ) has positive codimension.

Let (Γ,p, h) ∈ M′′
1,(nv,ne)

(R2,Δ). Then the marked trivalent vertex belong-

ing to the collinear cycle is collinear, too. The map π(Γ,h) : Γ → Γ′, iden-

tifying edges of the collinear cycle according to the h-image, defines a curve

(Γ
′
,p, h′) ∈ Me

0,(nv−1,ne+1)(R
2,Δ) such that h = h′ ◦ π(Γ,h) (see Figure 2).

Furthermore, the corresponding morphism

(Γ,p, h) ∈ M′′
1,(nv,ne)

(R2,Δ)
π�→ (Γ

′
,p, h′) ∈ M e

0,(nv−1,ne+1)(R
2,Δ)

satisfies Eve(nv,ne) = Eve(nv−1,ne+1) ◦ π. A curve (Γ
′
,p, h′) ∈ Im(π) has a distin-

guished marked point p ∈ p, the image of the marked vertex in the collinear cy-

cle. Denote byM′′
0,(nv−1,ne+1)(R

2,Δ) the moduli space of the tuples (Γ
′
,p, p, h′)
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such that (Γ
′
,p, h′) ∈ Im(π) ⊂ M e

0,(nv−1,ne+1)(R
2,Δ), and p ∈ p is the image

of the marked collinear vertex belonging to the collinear cycle. Note that the

point p belongs to some edge E of Γ′ with h′(E) = e an edge of the embedded

curve (T,x) = h′
∗(Γ

′,p) of weight wt(e) > 1. Now we introduce the following

expressions.

If e = h′(E) is the image of an unbounded edge E of Γ′, V1 the vertex of E,

v1 = h′(V1), we let

(9)

RBy(Γ
′
,p, p, h′) =

1

|Aut(Γ′
,p, p, h′)|

·Ψ(1)
z (m, ν)

×
∏

V ∈p∩(Γ′)0
[μ(Γ

′
, h′, V )]+y

×
∏

V ∈(Γ′)0\p
V �=V1

[μ(Γ
′
, h′, V )]−y

×
∏

V ∈(Γ
′
)0∞

[μ(Γ
′
, h′, V )]∗y,

where

m = wt(e), ν =
μ(Γ

′
, h′, V1)

m
, y = z2,

and

(10)

Ψ(1)
z (m, ν) =

2

(z − z−1)2(z + z−1)

×
[zνm−1−z1−νm

z−z−1
−m

zνm−m−zm−νm

zm−z−m
− zνm−ν−zν−νm

zν−z−ν

]
.

If e = [v1, v2] = h′[V1, V2] (the image of a bounded edge), we let

(11)

RBy(Γ
′
,p, p, h′) =

1

|Aut(Γ′
,p, p, h′)|

·Ψ(2)
z (m, ν1, ν2)

×
∏

V ∈p∩(Γ′)0
[μ(Γ

′
, h′, V )]+y

×
∏

V ∈(Γ′)0\p
V �∈{V1,V2}

[μ(Γ
′
, h′, V )]−y

×
∏

V ∈(Γ
′
)0∞

[μ(Γ
′
, h′, V )]∗y,



836 F. SCHROETER AND E. SHUSTIN Isr. J. Math.

where

m = wt(e), νi =
μ(Γ

′
, h′, Vi)

m
, i = 1, 2, y = z2,

and

(12)

Ψ(2)
z (m, ν1, ν2) =

1

(z − z−1)3(z + z−1)

×
[2(zν2m − z−ν2m)(zν1m−1 − z1−ν1m)

z − z−1

− 2m(zν2m − z−ν2m)(zν1m−m − zm−ν1m)

zm − z−m

+ (m− 1)(zν1m − z−ν1m)(zν2m + z−ν2m)

− 2(zν2m − z−ν2m)(zν1m−ν1 − zν1−ν1m)

zν1 − z−ν1

− 2(zν1m − z−ν1m)(zν2m−ν2 − zν2−ν2m)

zν2 − z−ν2

]
.

In both cases, Aut(Γ
′
,p, p, h′) is the automorphism group of (Γ

′
,p, p, h′).

Remark 3.5: (1) For the elliptic curves (Γ,p, h) counted in the right-hand side

of (8), and rational curves (Γ
′
,p, p, h′) counted in the right-hand side of (9),

the automorphism group is (Z/2)r, where r is the number of collinear trivalent

vertices incident to a pair of ends of the same weight.

(2) Though the functions Ψ(1)(m, ν) and Ψ(2)(m, ν1, ν2) look complicated

and mysterious, they necessarily appear in the construction of an invariant

generalizing the Göttsche–Schroeter refined broccoli invariant, since there are

wall-crossing phenomena (see, for instance, Section 4.6), in which the invariance

equation contains in one side only trivalent curves without collinear cycles that

are equipped with the Göttsche–Schroeter multiplicities and contains in the

other side elliptic curves with collinear cycles, and the solution ends up with

formulas (10) and (12).

We postpone the study of functions Ψ
(1)
y (m, ν) and Ψ

(2)
y (m, ν1, ν2) till Section

5, and here present only the following non-evident, but crucial property.

Lemma 3.6: The function Ψ
(2)
z (m, ν1, ν2) is symmetric with respect to ν1 and

ν2, i.e., Ψ
(2)
z (m, ν1, ν2) = Ψ

(2)
z (m, ν2, ν1).
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Proof. Since the last two summands in the formula for Ψ
(2)
z (m, ν1, ν2) are sym-

metric with respect to ν1, ν2, one only has to show that

2(zν2m−z−ν2m)(zν1m−1−z1−ν1m)

z−z−1
− 2m(zν2m−z−ν2m)(zν1m−m−zm−ν1m)

zm−z−m

+ (m− 1)(zν1m − z−ν1m)(zν2m + z−ν2m)

=
2(zν1m−z−ν1m)(zν2m−1−z1−ν2m)

z−z−1
− 2m(zν1m−z−ν1m)(zν2m−m−zm−ν2m)

zm−z−m

+ (m− 1)(zν2m − z−ν2m)(zν1m + z−ν1m)

which can easily be done by a routine direct computation.

Our main result is

Theorem 3.7: Given a balanced, nondegenerate multiset Δ ⊂ Z
2 \ {0} and

integers nv > 0, ne ≥ 0 such that 2nv + ne = |Δ|, n = nv + ne, the expression

(13)

RBy(Δ, 1, (nv, ne),x) :=
∑

(Γ,p,h)∈M′
1,(nv,ne)(R

2,Δ)

h(p)=x

RBy(Γ,p, h)

+
∑

(Γ
′
,p,p,h′)∈M′′

0,(nv−1,ne+1)(R
2,Δ)

h′(p)=x

RBy(Γ
′
,p, p, h′)

does not depend on the choice of a generic x ∈ R
2n.

Remark 3.8: In view of relation (2) and the absence of non-trivial automor-

phisms of labeled plane tropical curves under consideration, the statement of

Theorem 3.7 is equivalent to the invariance of the expression

RBlab
y (Δ, 1, (nv, ne),x) :=

∑
(Γ

lab
,p,h)∈(Mlab

1,(nv,ne)(R
2,Δ))′

h(p)=x

RBy(Γ
lab

,p, h)

+
∑

((Γ
′
)lab,p,p,h′)∈(Mlab

0,(nv−1,ne+1)(R
2,Δ))′′

h′(p)=x

RBy((Γ
′
)lab,p, p, h′)

with respect to the choice of a generic x ∈ R
2n.

3.4. Elliptic broccoli curves. Fix a balanced, nondegenerate multiset

Δ ⊂ Z
2 \{0} and integers nv > 0, ne ≥ 0 such that 2nv+ne = |Δ|, n = nv+ne.

Fix also a generic point x ∈ R
2n.
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Definition 3.9: (1) Suppose that (Γ,p, h) ∈ M′
1,(nv,ne)

(R2,Δ) and h(p) = x.

Introduce the subgraph Γeven ⊂ Γ containing all edges of even weight and their

endpoints. We call the curve (Γ,p, h) an elliptic broccoli curve, if each

marked vertex of Γ is adjacent to at most one edge of even weight and, in each

component of Γeven, all but one univalent vertices belong to Γ
0

∞ ∪ p.

(2) Suppose that (Γ,p, h) ∈ M′′
1,(nv,ne)

(R2,Δ) and h(p) = x, and let

π(Γ,p, h) = (Γ
′
,p, p, h′) ∈ M′′

0,(nv−1,ne+1)(R
2,Δ).

Denote by Ep the edge of Γ that includes the point p. Introduce the subgraph

Γ
′,even ⊂ Γ

′
that contains all edges of even weight except for the edge Ep, if

the weight of Ep is even and Ep has finite length, and contains all endpoints

of these edges. We call the curve (Γ,p, h) an elliptic broccoli curve if each

marked vertex of Γ
′
is adjacent to at most one edge of even weight and, in each

component of Γ′,even, all but one univalent vertices belong to Γ
0

∞ ∪ p.

Part (1) of Definition 3.9 matches the definition of unoriented rational broccoli

curves [3, Definition 3.1].

In Proposition 5.5, Section 5.2, we show that the elliptic broccoli curves are

characterized by the property that their refined broccoli weight, evaluated at

y = −1, does not vanish, which, in particular, agrees with [4, Corollary 3.9].

4. Proof of Theorem 3.7

For the proof, we choose two generic configurations x(0),x(1)∈X2n
1,(nv ,ne)

⊂R
2n,

join them by a generic path x(t) ∈ R
2n, and check the invariance as the path

crosses top-dimensional cells of X2n−1
1,(nv,ne)

at their generic points. Clearly, we

can move points of the configuration one by one. Furthermore, by Remark 3.8,

we can work with labeled curves. So all curves in this section are labeled, but

to simplify notations, we skip the index “lab” everywhere.

For completeness, we shall consider all possible bifurcations so that as byprod-

uct we prove the invariance stated in Propositions 3.1 and 3.3. In the sequel,

we label bifurcations as in the list presented in Lemma 2.8(2).

Let x(t∗) be generic in an (2n−1)-dimensional cell ofX2n−1
1,(nv,ne)

. Denote byH0

the germ of this cell at x(t∗) and by H+, H− ⊂ R
2n the germs of the halfspaces

with common boundary H0. Let C∗ = (Γ,p, h) ∈ (Eve(nv,ne))
−1(x(t∗)) be as

described in Lemma 2.8(2), and let F0 ⊂ M e

1,(nv,ne)(R
2,Δ) be the germ at C∗
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of the (2n−1)-cell projecting by Eve(nv,ne
ontoH0. We shall analyze the 2n-cells

of M e

1,(nv ,ne)(R
2,Δ) attached to F0, their projections onto H+, H−, and prove

the invariance of the expression RBy(Δ, 1, (nv, ne),x).

4.1. Degeneration of type (2i). Let C∗ be as in Lemma 2.8(2i). Notice

that the set Γ0
sing of the marked trivalent non-collinear vertices of Γ belonging

to the closure of the bounded component of Γ \ p is nonempty. Each marked

point p ∈ Γ0
sing is incident to two unbounded and one bounded component of

Γ \ p (see Figure 3, where the bounded component of Γ \ p is shown bold), and

the cell F0 lies on the boundary of exactly two 2n-dimensional cells F+, F− of

M e

1,(nv,ne)(R
2,Δ) along which the marked point p moves towards one of the

unbounded components of Γ \ p. Clearly, Eve(nv−1,ne+1) takes F+, F− onto the

germs H+, H− of the half spaces in R
2n with H0 as a common boundary (see

Figure 3). Clearly, for any point p ∈ Γ0
sing, such a bifurcation does not affect

the value of RBy(Δ, 1, (nv, ne),x
(t)), t ∈ (R, t∗).

�
�

�
�•

�
�

�
�

•�
�•

F1 F0 F2

⇐= =⇒

Figure 3. Degeneration of type (2i).

4.2. Degeneration of type (2ii). Let C∗ be as in Lemma 2.8(2ii). The

curve C∗ admits three types of deformation according to three types of splitting

of a four-valent vertex into a pair of trivalent vertices as shown in Figure 4,

where the right part of the figure exhibits fragments of the dual subdivision

of the Newton polygon (cf. [2, page 172]). That is, F0 lies in the boundary of

three 2n-cells F1, F2, F3 ⊂ M e

1,(nv ,ne)(R
2,Δ). We claim that Eve(nv ,ne) takes

F1 onto the germ of the halfspace H+, and takes F2, F3 onto the germ of the

halfspace H−. Indeed, this holds in the situation considered in [2] when nv = 0,

and it corresponds to the local invariance of the count of tropical curves with

Mikhalkin’s weights, which in turn reduces here to the elementary geometric

relation (see Figure 4(b))

μ1μ2 = μ3μ4 + μ5μ6,



840 F. SCHROETER AND E. SHUSTIN Isr. J. Math.

�
��

�
��

�
��

�
��

�
�

�
�

�
�

�
�

�
�

�
�

��
��

��

��
����

=⇒

⇗

⇘

(a) (b)

�����

�����

�
��

�
��

�����

�����

�
��

�
��

�����

�����

�
��

�
��

�
��

�
��

�����

�����

�
��

�
��

⇐=

⇖

⇙

F0

F1

F2

F3

μ1

μ2

μ3 μ4

μ5

μ6

Figure 4. Degeneration of type (2ii).

where μi’s, in fact, are equal to the lattice areas of the dual triangles. The same

holds in our case, if we replace each marked vertex by a couple of close marked

points on edges (see, for example, such a replacement in the case of a collinear

marked vertex in Figure 4(c)). Thus the invariance of RBy(Δ, 1, (nv, ne),x
(t)),

t ∈ (R, t∗), reduces to the relation

ϕ(y)(zμ1 − z−μ1)(zμ2 − z−μ2)

=ϕ(y)(zμ3 − z−μ3)(zμ4 − zμ4) + ϕ(y)(zμ5 − z−μ5)(zμ6 − z−μ6)

with some expression ϕ(y) and y = z2. So we have to show

(zμ1 − z−μ1)(zμ2 − z−μ2)

=(zμ3 − z−μ3)(zμ4 − zμ4) + (zμ5 − z−μ5)(zμ6 − z−μ6),

which immediately follows from the following elementary geometric observa-

tions:

(14) μ1 + μ2 = μ3 + μ4, μ1 − μ2 = μ6 − μ5, μ3 − μ4 = μ5 + μ6.

4.3. Degeneration of type (2iii). Let C∗=(Γ,p, h) be as in Lemma 2.8(2iii).

As above (cf. [4, page 24]) we derive that F0 lies in the boundary of three 2n-

cells F1, F2, F3 of M e

1,(nv,ne)(R
2,Δ) according to three types of splitting of the

four-valent vertex into a pair of trivalent vertices, shown in Figure 5. We have

to study two cases according as the edge of a bounded component of Γ \ p is
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dual to a side of the parallelogram inscribed into the quadrangle or not (see

Figures 5(a,b), where the edge belonging to the bounded component of Γ \ p

and its dual are labeled by an asterisk, and the triangles dual to the marked

trivalent vertices are shown by bold lines). Assuming that along the germ of

the path (x(t))t∈[0,1] at x
(t∗), the image of the marked point at the four-valent

vertex of C∗ is moving and the rest of p is fixed, we decide which cells Fi,

i = 1, 2, 3, project onto H+ or onto H− according as the moving marked ver-

tex belongs to the halfplane R
2
+ or R

2
−. In the notation of Section 4.2 for the

Mikhalkin’s weights of the trivalent vertices (see Figures 5(a,b)), we have the

following additional geometric relations:

(15)

⎧⎨
⎩μ3 = μ1 + μ5, in Figure 5(a),

μ1 = μ4 + μ6, in Figure 5(b).

Similarly to Section 4.2, the invariance of RBy(Δ, 1, (nv, ne),x
(t)), t ∈ (R, t∗),

reduces to the relation

(zμ3 − z−μ3)(zμ4 + z−μ4)

=(zμ1 − z−μ1)(zμ2 + z−μ2) + (zμ5 − z−μ5)(zμ6 + z−μ6)

in the case of Figure 5(a), and the relation

(zμ1 − z−μ1)(zμ2 + z−μ2)

=(zμ3 + z−μ3)(zμ4 − z−μ4) + (zμ5 + z−μ5)(zμ6 − z−μ6)

in the case of Figure 5(b). Both relations immediately follow from (14) and (15).

4.4. Degeneration of type (2iv). Let C∗=(Γ,p, h) be as in Lemma 2.8(2iv)

(see Figure 6(a,c)). It admits four different deformations shown in

Figures 6(b1–b4) and 6(d1–d4). It is easy to see that if both edges of the bounded

component of Γ\p are dual to the sides of the inscribed parallelogram or both are

not (cf. Figures 6(a,b1–b4) and 6(a’,b’)), then two 2n-cells of M e

1,(nv,ne)(R
2,Δ)

attached to F0 are projected onto H+ and the other two onto H−. In turn, if

one edge of the bounded component of Γ \ p is dual to a side of the inscribed

parallelogram and the other is not (cf. Figures 6(c,d1–d4) and 6(c’,d’)), then

three 2n-cells of M e

1,(nv ,ne)(R
2,Δ) attached to F0 are projected onto H+ and
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Figure 5. Degeneration of type (2iii).

the remaining one onto H−. Thus the invariance of RBy(Δ, 1, (nv, ne),x
(t)),

t ∈ (R, t∗), reduces

• in the former case to the equality (cf. Figure 6(b))

(zμ1+z−μ1)(zμ2 − z−μ2) + (zμ5 + z−μ5)(zμ6 − z−μ6)

=(zμ1 − z−μ1)(zμ2 + z−μ2) + (zμ5 − z−μ5)(zμ6 + z−μ6),
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or, equivalently,

zμ2−μ1 − zμ1−μ2 = zμ5−μ6 − zμ6−μ5 ,

which immediately follows from the second relation in (14);

• in the latter case to the equality (cf. Figure 6(d))

(zμ3+z−μ3)(zμ4−z−μ4)+(zμ5+z−μ5)(zμ6−z−μ6)+(zμ5−z−μ5)(zμ6+z−μ6)

=(zμ3 − z−μ3)(zμ4 + z−μ4),

or, equivalently,

zμ3−μ4 − zμ4−μ3 = zμ5+μ6 − z−μ5−μ6 ,

which immediately follows from the first relation in (14).
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Figure 6. Degeneration of type (2iv).
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4.5. Degeneration of type (2v). Let C∗ be as in Lemma 2.8(2v) (see Fig-

ure 7(a–c)). The collinear cycle contains either one or two marked points, and

we can assume that the image of one of them in x(t) moves transversally to

the image of the collinear cycle, while the rest of the marked points have fixed

images along the path x(t), t ∈ (R, t∗). The curve C∗ admits exactly two de-

formations into generic elements of M e

1,(nv,ne)(R
2,Δ), and the corresponding

2n-cells F1, F2, attached to F0, project to H+, H−, respectively (see Figure

7(a,b,c), cf. [2, page 175, case (d)]). The invariance of RBy(Δ, 1, (nv, ne),x
(t)),

t ∈ (R, t∗), is evident, since the weights of the edges converging to the edges

of the collinear cycle and the Mikhalkin’s weights of the trivalent vertices con-

verging to the four-valent vertices are respectively conserved (see Figure 7(d)).
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Figure 7. Degeneration of type (2v).
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4.6. Degenerations of types (2vi) and (2vii), I. We consider degenera-

tions of types (2vi) and (2vii) together. Let C∗ be either as in as in Lemma

2.8(2vi) or as in Lemma 2.8(2vii) (with the same embedded plane tropical curve

T = h∗(C
∗) in both the situations, see Figure 8(a,b)). The closure of the

bounded component of Γ \ p contains at least one marked vertex. Let p ∈ pv

be one of them (see Figures 8(a,b), where x = h(p) and the bounded compo-

nent of Γ \ p is marked by an asterisk). In this section, we consider the case

when the edges of the unbounded components of Γ \ p incident to p have finite

length. Assume also that the weights of the corresponding edges of T satisfy

m1,m2 > 1. The case of m1 = 1 or m2 = 1 can be treated in the same (in fact,

rather simpler) way.

Assuming that the germ of the path (x(t), t ∈ (R, t∗) is such that the point

x moves along a generic line while the rest of x = h(p) is fixed, we encounter

the deformations of the above curves shown in Figures 8(d,e), where we also

label 2n-cells of M e

1,(nv ,ne)(R
2,Δ) projecting onto H+ or H−. Notice that the

curves shown in Figures 8(d1–d4) belong to M′
1,(nv,ne)

(R2,Δ) and the curves

shown in Figures 8(e1–e4) belong to M′′
1,(nv ,ne)

(R2,Δ). Introduce the following

parameters of the curve C∗ shown in Figure 8(a):

νi =
μ(Γ, h, Vi)

mi
, ν′i =

μ(Γ, h, p)

mi
, i = 1, 2.

By definition, we can express the contributions of the curves shown in Figures

8(d1–d4), respectively, to RBy(Δ, 1, (nv, ne),x
(t)), t ∈ (R, t∗), as

c1 =ϕ(y)(zν1m1 − z−ν1m1)(zν2m2 − z−ν2m2)
∑

v∈IntD(p)∩Z2

σ+(v),(16)

c2 =ϕ(y)(zν1m1 − z−ν1m1)(zν2m2 − z−ν2m2)
∑

v∈IntD(p)∩Z2

σ−(v),(17)

c3 =ϕ(y)(zν2m2 − z−ν2m2)

m1−1∑
i=1

((zν1i − z−ν1i)(zν1(m1−i) − z−ν1(m1−i))

×(zν
′
1i+z−ν′

1i)(zν
′
1(m1−i)−z−ν′

1(m1−i))),

c4 =ϕ(y)(zν1m1 − z−ν1m1)

m2−1∑
i=1

((zν2i − z−ν2i)(zν2(m2−i) − z−ν2(m2−i))

×(zν
′
2i+z−ν′

2i)(zν
′
2(m2−i)−z−ν′

2(m2−i))),
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Figure 8. Degenerations of types (2vi) and (2vii), I.

where y = z2, ϕ(y) is the contribution of the vertices outside the fragments

shown in Figure 8, and

(18)

⎧⎨
⎩σ+ = (zμ(v) − z−μ(v))(zμ+(v) + z−μ+(v))(zμ−(v) − z−μ−(v)),

σ− = (zμ(v) − z−μ(v))(zμ+(v) − z−μ+(v))(zμ−(v) + z−μ−(v)),

μ(v), μ+(v), μ−(v) being the lattice areas of the triangles in the subdivision of

D(p) with vertex v (see Figure 8(c)). Correspondingly, the contributions of the

curves shown in Figures 8(e1–e2) are

d1 =ϕ(y)(zν1m1 − z−μ1m1)Ψ(2)
z (ν2, ν

′
2,m2),

d2 =ϕ(y)(zν2m2 − z−μ2m2)Ψ(2)
z (ν1, ν

′
1,m1).

The desired invariance of RBy(Δ, 1, (nv, ne),x
(t)), t ∈ (R, t∗), reads

(19) c1 + c3 + d1 = c2 + c4 + d2.
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Lemma 4.1:

(20)

c2 − c1 =2ϕ(y)(zν1m1 − z−μ1m1)(zν2m2 − z−ν2m2)

×
[
m2

zν
′
2m2−m2 − zm2−ν′

2m2

zm2 − z−m2
−m1

zν
′
1m1−m1 − zm1−ν′

1m1

zm1 − z−m1

+
zν

′
2m2−ν′

2 − zν
′
2−ν′

2m2

zν
′
2 − z−ν′

2

− zν
′
1m1−ν′

1 − zν
′
1−ν′

1m1

zν
′
1 − z−ν′

1

]
,

and

(21)

c4 − c3 =ϕ(y)(zν
′
1m1 − z−ν′

1m1)

×
[
(m2 − 1)(zν1m1 − z−ν1m1)(zν2m2 + z−ν2m2)

− (m1 − 1)(zν1m1 + z−ν1m1)(zν2m2 − z−ν2m2)

+ 2(zν2m2 − z−ν2m2)
zν1m1−ν1 − zν1−ν1m1

zν1 − z−ν1

− 2(zν1m1 − z−ν1m1)
zν2m2−ν2 − zν2−ν2m2

zν2 − z−ν2

]
.

Before proving Lemma 4.1, we note that (19) follows from (20) and (21), since

along (11) and (12) one gets

c3 =ϕ(y)(zν2m2 − z−ν2m2)

×
[
2(zν1m1 − z−ν1m1)

zν
′
1m1−1 − z1−ν′

1m1

z − z−1

− 2m1(z
ν1m1 − z−ν1m1)

zν
′
1m1−m1 − zm1−ν′

1m1

zm1 − z−m1

+ (m1 − 1)(zν
′
1m1 − zν

′
1m1)(zν1m1 + z−ν1m1)

− 2(zν1m1 − z−ν1m1)
zν

′
1m1−ν′

1 − zν
′
1−ν′

1m1

zν
′
1 − z−ν′

1

− 2(zν
′
1m1 − zν

′
1m1)

zν1m1−ν1 − zν1−ν1m1

zν1 − z−ν1

]
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and

c4 =ϕ(y)(zν1m1 − z−ν1m1)

×
[
2(zν2m2 − z−ν2m2)

zν
′
2m2−1 − z1−ν′

2m2

z − z−1

− 2m2(z
ν2m2 − z−ν2m2)

zν
′
2m2−m2 − zm2−ν′

2m2

zm2 − z−m2

+ (m2 − 1)(zν
′
2m2 − zν

′
2m2)(zν2m2 + z−ν2m2)

− 2(zν2m2 − z−ν2m2)
zν

′
2m2−ν′

2 − zν
′
2−ν′

2m2

zν
′
2 − z−ν′

2

− 2(zν
′
2m2 − zν

′
2m2)

zν2m2−ν2 − zν2−ν2m2

zν2 − z−ν2

]
,

and the first summand in the brackets cancels out in c4 − c3 in view of

ν′1m1 = ν′2m2.

Proof of Lemma 4.1. We start with formula (21) which is simpler. We have

(22)

c3 =ϕ(y)(zν2m2 − z−ν2m2)

×
m1−1∑
i=1

[(zν
′
1i + z−ν′

1i)(zν
′
1(m1−i) − z−ν′

1(m1−i))

× (zν1i − z−ν1i)(zν1(m1−i) − z−ν1(m1−i))]

=ϕ(y)(zν2m2 − z−ν2m2)

×
m1−1∑
i=1

[z(ν1+ν′
1)m1 + z(ν

′
1−ν1)m1

− z(ν1−ν′
1)m1 − z−(ν′

1+ν1)m1 − 2(zν
′
1m1 − z−ν′

1m1)z(2i−m1)ν1 ]

=ϕ(y)(zν2m2 − z−ν2m2)(zν
′
1m1 − z−ν′

1m1)

×
[
(m1 − 1)(zν1m1 + z−ν1m1)− 2

zν1m1−m1 − zm1−ν1m1

zm1 − z−m1

]
.

Similarly (notice that ν′1m1 = ν′2m2),

c4 =ϕ(y)(zν1m1 − z−ν1m1)(zν
′
1m1 − z−ν′

1m1)

×
[
(m2 − 1)(zν2m2 + z−ν2m2)− 2

zν2m2−m2 − zm2−ν2m2

zm2 − z−m2

]
,

and formula (21) follows.
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In view of formulas (16), (17), and (18), and using the equality

μ(v) + μ+(v) + μ−(v) = μ := μ(Γ, h, p), v ∈ IntΔ(p) ∩ Z
2,

we obtain

c2 − c1 =ϕ(y)(zν1m1 − z−ν1m1)(zν2m2 − z−ν2m2)

×
∑

v∈IntΔ(p)∩Z2

[(zμ(v) − z−μ(v))(zμ+(v) − z−μ+(v))(zμ−(v) + z−μ−(v))

− (zμ(v) − z−μ(v))(zμ+(v)+z−μ+(v))(zμ−(v)−z−μ−(v))]

=2ϕ(y)(zν1m1 − z−μ1m1)(zν2m2 − z−ν2m2)

×
[ ∑
v∈IntΔ(p)∩Z2

(zμ−2μ−(v) + z2μ−(v)−μ)

−
∑

v∈IntΔ(p)∩Z2

(zμ−2μ+(v) + z2μ+(v)−μ)

]
.

To complete the proof of (20), and thereby of Lemma 4.1, we use the relations

(23)

2
∑

v∈IntΔ(p)∩Z2

(zμ−2μ−(v) + z2μ−(v)−μ)

=2m2
zν

′
2m2−m2 − zm2−ν′

2m2

zm2 − z−m2
− zν

′
1m1−ν′

1 − zν
′
1−ν′

1m1

zν
′
1 − z−ν′

1

− zν
′
3m3−ν′

3 − zν
′
3−ν′

3m3

zν
′
3 − z−ν′

3

and

(24)

2
∑

v∈IntΔ(p)∩Z2

(zμ−2μ+(v) + z2μ+(v)−μ)

=2m1
zν

′
1m1−m1 − zm1−ν′

1m1

zm1 − z−m1
− zν

′
2m2−ν′

2 − zν
′
2−ν′

2m2

zν
′
2 − z−ν′

2

− zν
′
3m3−ν′

3 − zν
′
3−ν′

3m3

zν
′
3 − z−ν′

3

,

where m3 is the weight of the third edge incident to the vertex p of Γ, and

ν′3 = μ(Γ, h, p)/m3. Finally, both relations, (23) and (24), follow from Lemma

4.2 below.



850 F. SCHROETER AND E. SHUSTIN Isr. J. Math.

Lemma 4.2: Let T ⊂ R
2 be the lattice triangle with vertices (0, 0), (m, 0),

(k, l), where l,m ≥ 1. Denote by (xv, yv) the coordinates of a point v ∈ R
2.

Then

(25)

2
∑

v∈IntT ∩Z2

(zm(l−2yv) + zm(2yv−l)) +
∑

v∈∂T ∩Z
2

0<yv<l

(zm(l−2yv) + zm(2yv−l))

=m
zml−m − zm−ml

zm − z−m
.

Proof. (1) Suppose that m = 1.

First, we claim that the sequences (l−2yv)v∈T ∩Z2,0<yv<l and (2yy−l)v∈IntT ∩Z2

are disjoint, and each number s ≡ l mod 2, −l < s < l, appears once in one

of the sequences. Since in each of the sequences, the elements are distinct, and

the total number of elements in both sequences equals 2l − 2 (Pick’s formula),

for the above claim it is enough to verify that the sequences are disjoint. In-

deed, let v1 = (x1, y1) ∈ T ∩ Z2, 0 < y1 < l, v2 = (x2, y2) ∈ IntT ∩ Z
2, and

l − 2y1 = 2y2 − l, or, equivalently, y2 = l − y1. We have the following relations

for slopes:

x1

y1
≥ k

l
,

x1 − 1

y1
≤ k − 1

l
,

x2

y2
>

k

l
,

x2 − 1

y2
<

k − 1

l
,

which yield

k

l
y1 ≤ x1 ≤ k

l
y1 +

l − y1
l

,
k

l
y2 < x1 <

k

l
y2 +

l − y2
l

.

Plugging y2 = l − y1 into the second relation, we obtain

k

l
y1 −

y1
l

< k − x2 <
k

l
y1,

that is, two integers k − x2 < x1 in the unit interval (kl y1 − y1

l ,
k
l y1 + l−y1

l ],

which is a contradiction.

Second, we notice that the sequences (l − 2yv)v∈∂T ∩Z2 and (2yv − l)v∈∂T ∩Z2

coincide.

Both claims together yield that

(26)

2
∑

v∈IntT ∩Z2

(zl−2yv + z2yv−l) +
∑

v∈∂T ∩Z
2

0<yv<l

(zl−2yv + z2yv−l)

=2
l−1∑
i=1

zl−2i = 2
zl−1 − z1−l

z − z−1
.
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(a1) (a2) (b)

(c1) H+ (c2) H+ (c3) H+

(d1) H− (d2) H− (d3) H−

(e1) H+ (e2) H+ (e3) H− (e4) H−

Figure 9. Degeneration of type (2vi) and (2vii), II.

(2) For an arbitrary m ≥ 1, we divide the triangle T into the triangles

Ts = conv{(s− 1, 0), (s, 0), (k, l)}, s = 1, . . . ,m, sum up the formulas (26) for

Ts, s = 1, . . . ,m, and substitute zm for z, finally obtaining (25).

4.7. Degenerations of types (2vi) and (2vii), II. Now we go back to the

hypotheses of Section 4.6 with the following modification: we suppose that one

or two edges of the unbounded components of Γ \ p incident to p are ends

of Γ (see Figure 9(a,b), where the ends are shown by solid and dashed lines).

Furthermore, we assume that the weights of the edges of T = h∗(C
∗) adjacent

to x and covered by the edges of the unbounded components of Γ \ p satisfy

m1,m2 > 1. The case of m1 = 1 or m2 = 1 can be treated in the same way.
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Suppose, first, that exactly one edge of Γ \p incident to p is an end of Γ (see

Figure 9(a)). Without loss of generality, we can also suppose that the germ of

the path x(t) ∈ R
2n, t ∈ (R, t∗), is such that the point x = h(p) moves along a

line transversal to the h-image of the bounded component of Γ\p for the original

curve C∗, while the rest of x stay fixed. Then we observe the deformations

of C∗ depicted in Figures 9(c1–c3,d1–d3), respectively corresponding to Evn-

projections to the halfspaces H+ and H−.

Introduce the following parameters of the curve C∗ shown in Figure 9(a1):

m1 = wt([v1, v2]), ν1 =
μ(Γ, h, V1)

m1
, ν′i =

μ(Γ, h, p)

mi
, i = 1, 2,

where v1=h(V1), V1∈Γ0. The constancy of RBy(Δ, 1, (nv, ne),x(t)), t∈(R, t∗),

amounts to the verification of the relation

(27) c1 + c2 + c3 = d1 + d2 + d3,

where c1ϕ(y), c2ϕ(y), c3ϕ(y) and d1ϕ(y), d2ϕ(y), d3ϕ(y) are the contributions

of the curves shown in Figures 9(c1–c3) and 9(d1–d3), respectively, with ϕ(y)

some expression and (setting y = z2)

c1 + c2 = Ψ(2)
z (m1, ν1, ν

′
1)(z − z−1)3(z + z−1),

c3 − d1
(23)
= (zν1m1 − z−ν1m1)

×
[
m1

zν
′
1m1−m1 − zm1−ν′

1m1

zm1 − z−m1
−m2

zν
′
2m2−m2 − zm2−ν′

2m2

zm2 − z−m2

+
zν

′
1m1−ν′

1 − zν
′
1−ν′

1m1

zν
′
1 − z−ν′

1

− zν
′
2m2−ν′

2 − zν
′
2−ν′

2m2

zν
′
2 − z−ν′

2

]
,

d2
(22)
= (zν

′
1m1 − z−ν′

1m1)

×
[
(m1 − 1)(zν1m1 + z−ν1m1)− 2

zν1m1−ν1 − zν1−ν1m1

zν1 − z−ν1

]
,

d3 = (zν1m1 − zν1m1)Ψ(1)
z (m2, ν

′
2)(z − z−1)2(z + z−1).

Substituting these formulas into (27) and using expressions (12), (10) for Ψ(2)

and Ψ(1), we immediately establish the validity of (27).

Suppose now that two edges of Γ \ p incident to p are ends of Γ (see Figure

9(b)). We have to consider deformations of C∗ shown in Figures 9(e1–e4) labeled

according as the Evn-image of the deformed curves belongs to the halfspace H+

or H−. The constancy of RBy(Δ, 1, (nv, ne),x(t)), t ∈ (R, t∗), reduces to the
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relation

(28) e1 + e2 = e3 + e4,

where eiϕ(y) is the contribution of the curves shown in Figure 9(ei), i = 1, 2, 3, 4,

with some expression ϕ(y) and

e1 − e3
(23)
= m1

zν
′
1m1−m1 − zm1−ν′

1m1

zm1 − z−m1
−m2

zν
′
2m2−m2 − zm2−ν′

2m2

zm2 − z−m2

+
zν

′
1m1−ν′

1 − zν
′
1−ν′

1m1

zν
′
1 − z−ν′

1

− zν
′
2m2−ν′

2 − zν
′
2−ν′

2m2

zν
′
2 − z−ν′

2

,

e2 =Ψ(1)
z (m1, ν

′
1)(z − z−1)2(z + z−1),

e4 =Ψ(1)
z (m2, ν

′
2)(z − z−1)2(z + z−1).

Substituting these formulas into (28) and using expression (10) for Ψ(1), we

immediately establish the validity of (28).

4.8. Degeneration of type (2viii). Let C∗ be as in Lemma 2.8(2viii) (see

Figure 10(a,b)). We simultaneously consider the degenerations of types (2viii-

a) and (2viii-b) having the same image (Γ
′
,p, h′) in M e

0,(nv−1,ne+1)(R
2,Δ) (see

Section 3.3). Let p ∈ p be the collinear trivalent vertex and E ∈ (Γ′)1 the

edge of Γ′ containing p. Note that only one edge of Γ incident to the endpoints

of E has outward canonical orientation; furthermore, without loss of general-

ity we can suppose that the other edges of Γ incident to the endpoints of E

contain marked points (see Figure 10(a,b)). We will verify the invariance of

RBy(Δ, 1, (nv, ne),x
(t)), t ∈ (R, t∗), simultaneously considering deformations

of the type (2viii-a) and (2viii-b). We can assume that, along the path x(t),

t ∈ (R, t∗), the image x = h(p) moves transversally to the edge h′(E), whereas

h(p \ {p}) = h′(p \ {p}) stays fixed. The three possible deformations of C∗

of type (2viii-a) correspond to splittings of the four-valent vertex outside the

collinear cycle into a pair of trivalent vertices (see Figure 10(c)). A curve C∗ of

type (2viii-b) similarly admits three deformations shown in Figure 10(d) as well

as two more types shown in Figure 10(e). In Figures 10(c,d,e) we present the

subdivisions of the quadrangle Q = D(V4), V4 being the four-valent endpoint

of E, and labeled with H+, H− according to the move of h(p) into one or the

other halfplane bounded by the line passing through h′(E). We observe that

the H+, H−-labels of the deformations shown in Figures 10(c,d) meet the rule
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(e)

Figure 10. Degeneration of type (2viii).

described in Section 4.2. We also denote by x+, x− the images of p in the plane

corresponding to deformations labeled by H+, H−, respectively.

We need to show that the total refined weight of the curves labeled by H+

equals that of the curves labeled by H−. Note that we can restrict our at-

tention to only fragments presented in Figures 10(c,d,e), since the remaining

part of these curves provides the same multiplicative contribution to each term.

Furthermore, we can make two additional assumptions:

• the outgoing edge of the trivalent endpoint V3 of E has weight one;

indeed, the refined weights of all curves depend only on the Mikhalkin

weight of this vertex of Γ′ and on the weight of E, and we can vary the

weights and slopes of the images of the edges incident to V and different

from E∗ while keeping the aforementioned parameters;

• the marked point p can be chosen arbitrarily close to V3.

To prove the required equality, we do not perform direct tedious computations

but will exhibit a deformation of the configuration x along which the H+-types

turn into the H−-types so that, in this way, the considered curves undergo
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degenerations of types (2i)–(2vii) for which we have already established the

invariance of RBy(Δ, 1, (nv, ne),x).

For each of the curves presented in Figures 10(c,d,e), we denote by E+ or E−
the edge of the embedded plane tropical curve T = h∗(Γ), containing h(p), so

that the subindex ± matches the H+, H−-labels. Next, we deform the configu-

ration xε, ε = ±, so that the point x = h(p) moves along the line, containing

the edge Eε, to the position x′, also in a small neighborhood of V (see Fig-

ure 11(a)), while the rest of x stays fixed. Denote by x′
ε the deformed configu-

ration. Now, for the initial configurations x± we introduce the curves shown in

Figure 11(c), where the triangular fragments are dual to the subdivisions of the

D(V3), induced by the choice of each of the integral points v ∈ IntD(V3) (see

Figure 11(b)), and for the configurations x′
± we introduce the curves shown in

Figures 11(d,e,f).

Then we introduce the following quantities:

• Σ
(1)
ε , the total refined weight of the curves of the shape shown in Fig-

ure 10(c,d), labeled by Hε, and projected to the same rational curve

(Γ
′
,p, h′) ∈ Me

0,4(R
2,Δ) with h′(p) = xε, ε = ±,

• Σ
(2)
ε , the total refined weight of the elliptic curves of shapes shown

in Figure 10(e), labeled by Hε, having the given degree, and passing

through the configuration xε, ε = ±,

• Σ
(3)
ε , the total refined weight of the elliptic curves of the shape shown

in Figure 11(c), labeled by Hε, having the given degree, and passing

through xε, ε = ±,

• Σ
(4)
ε , the total refined weight of the elliptic curves of the shape shown

in Figure 11(d), labeled by Hε, having the given degree, and passing

through x′
ε, ε = ±,

• Σ
(5)
ε , the total refined weight of the elliptic curves of the shape shown

in Figure 11(e), labeled by Hε, having the given degree, and passing

through x′
ε, ε = ±,

• Σ
(6)
ε , the total refined weight of the elliptic curves of the shape shown

in Figure 11(e), labeled by Hε, having the given degree, and passing

through x′
ε, ε = ±.

The required invariance reads

(29) Σ
(1)
+ +Σ

(2)
+ = Σ

(1)
− +Σ

(2)
− .
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Figure 11. Deformations in case (2viii), I.

On the other hand, according to the result of Section 4.6,

Σ(1)
ε = Σ(4)

ε +Σ(5)
ε − Σ(3)

ε , ε = ±

(recall that, by our assumption, the weight of the left lower unbounded edge

equals one), according to the result of Section 4.3,

Σ(2)
ε = Σ(6)

ε , ε = ±,
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according to the result of Section 4.2,

Σ
(3)
+ = Σ

(3)
− and Σ

(4)
+ = Σ

(4)
− ,

and hence (29) converts to the following relation:

(30) Σ
(5)
+ +Σ

(6)
+ = Σ

(5)
− +Σ

(6)
− .

If we fix weights of the horizontal edges for curves shown in Figure 11(e,f),

equality (30) reduces to the comparison of the refined weight of the rational

curves shown in Figure 12(a) on one side, and of the refined weight of the ratio-

nal curves shown in Figure 12(b) (in both figures we assume that the marked

points are far away from the vertices). However, it amounts to the comparison

of the two values of BGy for rational curves of the same degree hitting two

generic configurations of points in R
2, and hence the equality by Proposition

3.1 (alternatively, it follows from the consideration of degenerations in Sections

4.1 and 4.2).
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Figure 12. Deformations in case (2viii), II.

5. Computations

Here we show that the refined elliptic broccoli invariant RBy(Δ, 1, (nv, ne)) is a

Laurent polynomial in y (Proposition 5.2), evaluate it at y = 1 and y = −1, and

characterize elliptic broccoli curves (see Definition 3.9) as the tropical curves

in the right-hand side of (13) with the non-zero weight RBy|y=−1. Finally, we
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demonstrate a modification of the lattice path algorithm from [12, Section 7.2]

and [11, Section 9] suitable for computation of the invariant BGy(Δ, 1, (nv, ne)).

5.1. Evaluation at y = 1 and y = −1, and the Laurent property.

Lemma 5.1: (1) The functions [m]±z2 , m∗
z2 and Ψ

(1)
z (m, ν), Ψ

(2)
z (m, ν1, ν2)

behave regularly at z = 1 and attain the following values:

[m]+1 = 1, lim
z→1

[m]−z2 = m lim
z→1

[m]∗z2 =

⎧⎨
⎩1, m ≡ 0 mod 2,

1
m , m ≡ 1 mod 2,

,

lim
z→1

Ψ(1)
z (m, ν) =

ν(ν − 1)m(m2 − 1)

12
,

lim
z→1

Ψ(2)
z (m, ν1, ν2) =

ν1ν2(ν1 + ν2 − 1)m2(m2 − 1)

12
.

(2) The functions [m]±z2 , [m]∗z2 , and Ψ
(1)
z (m, ν), Ψ

(2)
z (m, ν1, ν2) reveal the

following behavior in a neighborhood of z = i:

(2i) for m ∈ Z, we have

lim
z→i

[m]+z2 = m · lim
z→i

[m]∗z2 = m(−1)(m−1)/2, m ≡ 1 mod 2,

lim
z→i

(z + z−1)[m]+z2 = 2(−1)m/2, m ≡ 0 mod 2,

lim
z→i

[m]−z2 = (−1)(m−1)/2, m ≡ 1 mod 2,

lim
z→i

[m]−z2

z + z−1
= m · lim

z→i

[m]∗z2

z + z−1
= (−1)m/2−1m, m ≡ 0 mod 2;

(2ii) Ψ
(1)
z (m, ν) is regular at z = i if m is odd; furthermore, if ν is odd

one has

(31)

lim
z→i

Ψ(1)
z (m, ν) =

1

4
·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1− ν)(m2 − 1), ν ≡ m ≡ 1 mod 4,

(1− ν)(m2 + 1), ν ≡ −m ≡ 1 mod 4,

(m− 1)(ν(m− 1)−m− 1), ν ≡ −m ≡ −1 mod 4,

(ν − 1)(m2 + 1)− 2ν, ν ≡ m ≡ −1 mod 4,

and if ν is even, Ψ
(1)
z (m, ν) vanishes at z = i and

lim
z→i

Ψ
(1)
z (m, ν)

z + z−1
=

(−1)ν/2

24
m(m2 − 1)ν(ν − 3);
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if m is even, then Ψ
(1)
z has a pole at z = i and one has

lim
z→i

(z + z−1)Ψ(1)
z (m, ν) =

⎧⎨
⎩

mν
2 , ν ≡ 0 mod 2,

(−1)m/2 · m(ν−1)
2 , ν ≡ 1 mod 2;

(2iii) the function Ψ
(2)
z (m, ν1, ν2) is regular at z = i; furthermore, if

m = 2m′ is even, then

lim
z→i

Ψ(2)
z (m, ν1, ν2)=

(−1)m
′(ν1+ν2)

2
·

⎧⎪⎪⎨
⎪⎪⎩
m′(ν1+ν2), ν1≡ν2 ≡ 1 mod 2,

m′(ν1+ν2−ν1ν2), ν1+ν2≡1 mod 2,

m′(ν1+ν2−2ν1ν2), ν1≡ν2≡0 mod 2;

if m is odd and ν1 = 2ν′1 + 1, ν2 = 2ν′2 + 1 are odd, then

lim
z→i

Ψ(2)
z (m, ν1, ν2) =

(−1)m(ν′
1+ν′

2+1)

4
(m2 − 1)(2ν′1 + 2ν′2 + 1);

ifm is odd, ν1 is odd, and ν2 is even, then Ψ
(2)
z (m, ν1, ν2) vanishes

at z = i and

lim
z→i

Ψ
(2)
z (m, ν1, ν2)

z + z−1
=

(−1)(1+m(ν1+ν2))/2

16
(2m2ν1ν2−2mν2−2m3ν1ν2+2m2ν2

−2m2ν1ν2+2mν1ν2+m(m2 − 1)ν22),

if m = 2m′ + 1 is odd and ν1 = 2ν′1, ν2 = 2ν′2 are even, then

Ψ
(2)
z (m, ν1, ν2) has a double zero at z = i and

lim
z→i

Ψ
(2)
z (m, ν1, ν2)

(z + z−1)2
=

(−1)ν
′
1+ν′

2+1

3
ν′1ν

′
2(2ν

′
1 + 2ν′2 − 3)m′(m′ + 1)(2m′ + 1)2.

Proof. All formulas for [m]±z2 and [m]∗z2 are elementary and known [1, 4]. All

the statements on Ψ
(1)
z (m, ν) and Ψ

(2)
z (m, ν1, ν2) can be obtained by a routine

direct computation.

Proposition 5.2: Given a balanced, nondegenerate multiset Δ ⊂ Z
2 \{0} and

integers nv > 0, ne ≥ 0 such that 2nv + ne = |Δ|, n = nv + ne, the refined

invariant RBy(Δ, 1, (nv, ne)) is a symmetric Laurent polynomial in y, i.e., a

polynomial of degree |P (Δ) ∩ Z
2| − |Δ| − 1 in y + y−1 with a positive leading

coefficient.

Proof. We shall show that each weight RBy(Γ,p, h) and RBy(Γ
′
,p, p, h′) in the

right-hand side of formula (13) is a symmetric Laurent polynomial in y with a
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positive leading coefficient. Substitute y = z2 in the formulas for RBy(Γ,p, h)

and RBy(Γ
′
,p, p, h′).

Show, first, that RBz2(Γ,p, h) and RBz2(Γ
′
,p, p, h′) are even functions of z

(equivalent to the fact that the weights of tropical curves are functions of y).

Indeed, the expressions [μ]±z2 [m]∗z2 are even, resp. odd functions of z according

as μ is odd, resp. even. By [7, Proposition 2.3(4)], the total number of trivalent

and univalent vertices V of Γ with even μ(Γ, h, V ) is even. Hence, RBz2(Γ,p, h)

is an even function of z for (Γ,p, h) ∈ M′
1,(nv,ne)

(R2,Δ). The same argument

works in the case of (Γ
′
,p, p, h′) ∈ M′′

0,(nv−1,ne+1)(R
2,Δ) if we notice that

• the expression Ψ
(2)
z (m, ν1, ν2) is an even, resp. odd function of z accord-

ing as the pair (ν1m, ν2m) contains an even, resp. odd number of even

values,

• if m is odd, then the expression Ψ
(1)
z (m, ν)[μ(Γ

′
, h′, V )]∗z2 is an even,

resp. odd function of z according as ν is odd, resp. even, where V is the

univalent vertex belonging to the edge that contains p,

• if m is even, then the expression Ψ
(1)
z (m, ν)[μ(Γ

′
, h′, V )]∗z2 is always an

even function of z.

Next we verify that RBz2(Γ,p, h) and RBz2(Γ
′
,p, p, h′) are regular at z = 1

and z = i, and hence they are symmetric Laurent polynomials in y. Indeed,

by Lemma 5.1(1), the functions [μ]±z2 and [μ]∗z2 , μ ∈ Z, and the functions

Ψ
(2)
z (m, ν1, ν2), Ψ

(2)
z (m, ν1, ν2) are regular at z = 1.

The study of the point z = i requires more work. We shall show that the

total order of poles at z = i does not exceed the total order of zeroes at z = i.

Let (Γ,p, h) ∈ M′
1,(nv,ne)

(R2,Δ) be a curve in the right-hand side of (13),

and let Γ
even ⊂ Γ be the subgraph introduced in Definition 3.9(1). The vertices

of Γ
even

are either univalent or trivalent. Then it follows from the regularity of

the position of p in Γ that the closure of any component of Γ
even \p contains at

least as many unmarked vertices as the marked ones; hence, by Lemma 5.1(2i)

all the poles at z = i cancel out with zeroes.

Suppose that (Γ
′
,p, p, h′) ∈ M′′

0,(nv−1,ne+1)(R
2,Δ), and let Γ

′,even ⊂ Γ
′
be

the subgraph introduced in Definition 3.9(2). As in the preceding paragraph,

the closure of any component of Γ′,even \p contains at least as many unmarked

vertices as the marked ones. Assume that Ep has a finite length. If an endpoint

of Ep is a bivalent vertex of Γ
′,even

, then we can take off this vertex gluing the

adjacent edges of Γ
′,even

into one edge and preserving the claim of the previous
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sentence. In this case, we derive the cancellation of poles at z = i from Lemma

5.1(2i) and the statements of Lemma 5.1(2ii,2iii), where the parameter m is

even. If d = 1 or 2 endpoints of Ep are univalent vertices of Γ
′,even

, then again

the poles at z = i cancel out due to Lemma 5.1(2i) and the statements of Lemma

5.1(2ii,2iii), where either the parameter ν is even, or the parameter m is odd,

while precisely d of the parameters ν1, ν2 are even. Assume that Ep is an end.

If Ep has an odd weight, but its vertex belongs to Γ
′,even

, then the argument

of the preceding paragraph applies since then Ψ
(1)
z (m, ν) vanishes at z = −i

by Lemma 5.1(2ii). If Ep has an even weight and is a separate component of

Γ
′,even

, then m = μ(Γ
′
, h′, V ) is even, where V ∈ (Γ

′
)0∞ is a vertex of Ep, and

hence the regularity of RBz2(Γ
′
,p, p, h′) at z = i follows from the argument

of the preceding paragraph and the fact that the product Ψ
(1)
z (m, ν)[m]∗z2 is

regular at z = i (see Lemma 5.1(2i,2ii)). If Ep ends at a trivalent vertex of

Γ
′,even

, then we separate the two other adjacent edges of Γ
′,even

from Ep, glue

them up into one edge and obtain the required result as in the latter considered

case.

The degree of RBy(Δ, 1, (nv, ne)) can be computed as in [7, Proposition 2.11]

with an additional term coming from
∏

V ∈Γ
0
∞
[μ(Γ, h, V )]∗y.

5.2. Weights of elliptic broccoli curves and tropical descendant

invariants.

Proposition 5.3: Given a balanced, nondegenerate multiset Δ ⊂ Z
2 \ {0}

and integers nv > 0, ne ≥ 0 such that 2nv + ne = |Δ|, n = nv + ne, the

value RB1(Δ, 1, (nv, ne)) is a positive integer. Moreover, for any generic point

x ∈ R
2n, each summand in the right-hand side of (13) evaluated at y = 1 is a

positive integer.

Proof. The positivity is straightforward from Lemma 5.1(1) and the absence

of trivalent collinear unmarked vertices. So we have to explain the integrality.

Consider the subgraph G of Γ (resp. Γ′) consisting of finite edges (and their

endpoints) that are incident to trivalent marked collinear vertices, whose two

other incident edges are ends of the same weight. Due to the general position of

x, the second endpoint of any edge of G is unmarked and, in the case of G ⊂ Γ′,

if an unmarked vertex of G is incident to two edges of G, then the third edge

of Γ′ attached to this vertex does not contain the marked point p. Thus the
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integrality follows from Remark 3.5 and the fact that the Mikhalkin weight of a

trivalent vertex incident to at least one or two even edges is divisible by 2 or 4,

respectively.

Remark 5.4: If Δ is primitive, the invariant RB1(Δ, 1, (nv, ne)) can be regarded

as a tropical elliptic descendant invariant 〈τ0(2)neτ1(2)
nv 〉1Δ.

Proposition 5.5: Given a balanced, nondegenerate multiset Δ ⊂ Z
2 \ 2{0},

integers nv > 0, ne ≥ 0 such that 2nv + ne = |Δ|, n = nv + ne, and a generic

point x ∈ R
2n, the following holds:

(1) if (Γ,p, h) ∈ M′
1,(nv,ne)

(R2,Δ), h(p) = x, then RB−1(Γ,p, h) �= 0 if

and only (Γ,p, h) is an elliptic broccoli curve;

(2) if (Γ,p, h) ∈ M′′
1,(nv,ne)

(R2,Δ), h(p) = x, and

π(Γ,p, h) = (Γ
′
,p, p, h′) ∈ M′′

0,(nv−1,ne+1)(R
2,Δ),

then RB−1(Γ
′
,p, p, h′) �= 0 if and only if (Γ,p, h) is an elliptic broccoli

curve.

Proof. Following the argument in the proof of Proposition 5.2 and using the

computations of Lemma 5.1, one immediately obtains that RB−1(Γ,p, h),

resp. RB−1(Γ
′
,p, p, h′) vanishes whenever (Γ,p, h), resp. (Γ′,p, p, h′) is not an

elliptic broccoli curve. The same reasoning yields that the weight RB−1 does

not vanish for elliptic broccoli curves.

5.3. Lattice path algorithm. To efficiently compute the refined elliptic

broccoli invariant, we provide here a suitable version of the lattice path al-

gorithm. It is a simplification of the algorithm from [11, Section 9], in which we

allow only trivalent vertices but also consider elliptic curves. For the reader’s

convenience, we provide here all details.

(1) Initial data and general procedure. Suppose we are given a bal-

anced, nondegenerate multiset Δ ⊂ Z
2 \ {0} and integers nv > 0, ne ≥ 0 such

that 2nv + ne = |Δ|, n = nv + ne. Pick a vector a ∈ R
2 \ {0} which is not

parallel or orthogonal to any vector u1−u2, where u1, u2 ∈ P (Δ)∩Z
2, u1 �= u2,

and consider a straight line La through the origin, directed by a. Introduce a

configuration of points x = (x1, . . . , xn) ⊂ La such that

xi = Mia, i = 1, . . . , n, 0 < M1 � M2 � · · · � Mn.
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The linear functional ϕa(x) = 〈x, a〉 : R
2 → R defines a linear order on

the points u ∈ P (Δ) ∩ Z
2, that is, u ≺ u′ if ϕa(u) < ϕa(u

′). Denote by

umin, umax ∈ P (Δ) the extremal points. Any ϕa-monotone sequence of points

u0 = umin ≺ u1 ≺ · · · ≺ ur = umax ⊂ P (Δ) ∩ Z
2

is called a lattice path in P (Δ) (of length r). Denote by Ln(Δ, a) the set of

lattice paths in P (Δ) of length n.

The algorithm starts with a lattice path G ∈ Ln(Δ, a). Then we construct

an enhanced lattice path Ĝ, and inductively extend it (if possible) to a cer-

tain subdivision of the polygon P (Δ). Such a subdivision uniquely determines

a tropical curve passing through x. We verify whether it is irreducible and

has degree Δ. Then it must be elliptic. If the reconstructed tropical curve

(Γ,p, h) is irreducible and has no collinear cycle, we assign to it a refined weight

RBy(Γ,p, h). If (Γ,p, h) contains a collinear cycle, we take the rational curve

π(Γ,p, h) = (Γ
′
,p, p, h′) and assign to it the refined weight RBy(Γ

′
,p, p, h′).

In both situations, the refined weights can be expressed in terms of the pair

(enhanced lattice path, subdivision).

Notice that if either a lattice path cannot be equipped with an enhancement,

or a current subdivision does not cover P (Δ) and cannot be extended anymore,

or the subdivision covers P (Δ) but does not define an irreducible tropical curve

of degree Δ, we skip these outcomes.

Given a subdivision S as a set of convex lattice polygons and segments, we

let

|S| =
⋃
σ∈S

σ.

(2) Enhancement of a lattice path. Let

G = (u0, . . . , un) ∈ Ln(Δ, a).

Denote by S0(G) the set of the segments [ui−1, ui], i = 1, . . . , n.

Let ∂P (Δ)+ and ∂P (Δ)− be the two components of ∂P (Δ) \ {umin, umax}.
Each component of P (Δ) \ |S0(G)| has a nonempty intersection either with

∂P (Δ)+ or with ∂P (Δ)−. Denote by P (Δ)+ (resp. P (Δ)−) the the union of

∂P (Δ)+ (resp. ∂P (Δ)−) with the components of P (Δ) \ |S0(G)| intersecting
∂P (Δ)+ (resp. ∂P (Δ)−).

An enhancement Ĝ of G is a pair:



864 F. SCHROETER AND E. SHUSTIN Isr. J. Math.

• a lattice path of length n + nv extending G with extra points u′
i,

i = 1, . . . , nv ∈ P (Δ)∩Z
2 such that ui−1 ≺ u′

i ≺ ui for all i = 1, . . . , nv;

• a sequence of signs εi = ±1, i = 1, . . . , nv: if u′
i ∈ P (Δ)+

(resp. u′
i ∈ P (Δ)−) we set εi = 1 (resp. εi = −1), if u′

i ∈ [ui−1, ui]

we choose either εi = 1 or εi = −1.

Denote by Lnv,ne(Δ, q) ⊂ Ln(Δ, a) the set of those lattice path which admit an

enhancement Ĝ. From now on we suppose that G ∈ Lnv,ne(Δ, a).

(3) Initial subdivision. Define S1(Ĝ) to be the set of polygons

conv{ui−1, u
′
i, ui},

i = 1, . . . , nv, and the segments [unv+j−1, unv+j ], j = 1, . . . , ne, and let ∂S1(Ĝ)+

(resp. ∂S1(Ĝ)−) to be the lattice path consisting of the points U0, . . . , un and

the points u′
i, 1 ≤ i ≤ nv, such that εi = 1 (resp. εi = −1).

(4) Step of the algorithm. Suppose we are given k ≥ 1, a subdivision

Sk(Ĝ) and two lattice paths ∂Sk(Ĝ)+, ∂Sk(Ĝ)− such that

Sk(Ĝ)ε ⊂ ∂|Sk(Ĝ)| ∩ P (Δ)ε,

ε = ±1, and ∂|Sk(Ĝ)| is the union of the broken lines induced by ∂Sk(Ĝ)±.

If ∂Sk(Ĝ)+ = {v0 = umin ≺ v1 · · · ≺ vr = umax}, r ≥ 2, we look for the

minimal i = 1, . . . , r−1 such that the points vi−1, vi, vi+1 are not collinear, and

the triangle Ti = conv{vi−1, vi, vi+1} is not contained in |Sk(Ĝ)|. If such i does

exist, we

• either set

Sk+1(Ĝ) = Sk(Ĝ) ∪ {T }

and

∂Sk+1(Ĝ)+ = ∂Sk(Ĝ)+ \ {vi},

• or, in case the parallelogram Πi = conv{vi−1, vi, vi+1, v
′
i} lies inside

P (Δ), set

Sk+1(Ĝ) = Sk(Ĝ) ∪ {Πi}

and

∂Sk+1(Ĝ) = {vo ≺ · · · ≺ vi−1 ≺ v′i ≺ vi+1 ≺ · · · ≺ vr}.

In both cases ∂Sk+1(Ĝ)− = ∂Sk(Ĝ)−.

If we cannot perform the above step, we do the same exchanging all the signs.
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(5) Restoring a tropical curve. Since the area of |Sk(Ĝ)| strictly grows,

the algorithm is finite. Let Sfin(Ĝ), ∂Sfin(Ĝ)+, ∂Sfin(Ĝ)− be the outcome.

We call the outcome admissible if

• |Sfin(Ĝ)| = P (Δ), in which case the broken lines induced by ∂Sfin(Ĝ)±
cover ∂P (Δ);

• ∂Sfin(Ĝ)± match the degree Δ; this means that, orienting the segments

that join consecutive points of ∂Sfin(Ĝ)± counter-clockwise and rotat-

ing all of them by π/2 clockwise, we obtain the multiset of vectors Δ.

Non-admissible outcomes are skipped in the count.

To an admissible outcome we assign a tropical curve (Γ,p, h) of degree Δ

with an n-tuple of marked points p such that h(p) = x. In fact, we follow

the above algorithm in its dual form and, moreover, in parallel, construct an

orientation of the components of Γ \ p. Denote by b ∈ R
2 \ {0} the unit vector

orthogonal to a and oriented from P (Δ)− towards P (Δ)+.

In the construction we shall use auxiliary objects, plane tropical precurves,

which are the following objects: Given a marked plane tropical curve (Γ,p, h)

and any open bounded subset Γ′ ⊂ Γ containing p, we say that the triple

(Γ′,p, h|Γ′) is a marked plane tropical precurve (associated with (Γ,p, h)).

Take an n-tuple of points p = (p1, . . . , pn) and consider the tropical precurve

(Γ1,p, h1) with Γ1 being the union of graph germs (Γ1, pi), i = 1, . . . , n, which

are trivalent for i = 1, . . . , nv and bivalent for i = nv + 1, . . . , n and with the

map h1 : (Γ1,p) → R
2 determined by the conditions

• pi ∈ p �→ h1(pi) = xi ∈ x, i = 1, . . . , n;

• if nv < i ≤ n, the germ (Γ1, pi) is mapped onto the germ of a straight

line through xi orthogonal to the segment [ui−1, ui];

• if 1 ≤ i ≤ nv, then the edges of (Γ1, pi) are mapped to the three rays

rooted at xi and directed by the vectors orthogonal to the segments

[ui−1, ui], [ui−1, u
′
i], [u

′
i, ui] and such that their scalar products with εib

are respectively negative, positive, and positive;

• the differential Dh1 along each edge equals the Euclidean length of

the corresponding orthogonal segment, mentioned in the two preceding

items.

We then inductively proceed along the lattice path algorithm extending the

current tropical precurve. Namely, having a tropical precurve (Γk,p, hk), we

follow step (4) of the lattice path algorithm:
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• extend the edges e, e′ of Γk corresponding to the segments [vi−1, vi],

[vi, vi+1] induced by ∂Sk(Ĝ)+ (or ∂Sk(Ĝ)−), until h(e) and h(e′) hit

each other;

• if there is no third edge of Γk, which is mapped by h to the same ray

as E or E′, then either form a new trivalent vertex of Γk+1 mapping

the third edge orthogonal to the segment [vi−1, vi+1], or slightly extend

further the considered edges of the current tropical precurve without

gluing them, while their h-images intersect transversally (cf. [8, Figure

2.17 in Section 2.5.6]);

• if there is an edge e′′ of Γk which is mapped to the same ray as, say,

e′ (this can only happen when e′, e′′ are incident to the same collinear

marked vertex), then either we extend all three edges without gluing

so that h(e′) = h(e′′) intersects transversally h(e), or one of e′, e′′ joins

with e forming a trivalent vertex with the germ of a new edge and the

remaining edge extends further, or all e, e′, e′′ join together forming a

four-valent vertex with the germ of a new edge.

Notice that in the very last situation one obtains a precurve with a collinear

cycle.

The final tropical precurve turns into a plane tropical curve as we extend all

open edges to unbounded rays and compactify them with univalent vertices.

We claim that if it is irreducible, then it is elliptic. Indeed, it is easy to see from

the construction that each component of Γ \ p is a tree containing exactly one

univalent vertex of Γ. Hence 1− g(Γ) = χ(Γ) = |Δ| − 2nv − ne = 0.

(6) Refined broccoli weights. Given an admissible subdivision Sfin

corresponding to an irreducible tropical curve without collinear cycle, we define

its refined broccoli weight RBy(Sfin) to be the product of

• [μi]
+
y , where μi is the lattice area of the (possibly degenerate) triangle

conv{ui−1, u
′
i, ui}, over all i = 1, . . . , nv,

• and [μ]−y , where μ runs over the lattice areas of all other triangles in

Sfin,

which is divided by 2r, r being the number of segments among conv{ui−1, u
′
i, ui},

i = 1, . . . , nv. If Sfin corresponds to an irreducible tropical curve with a

collinear cycle, it contains a special fragment as shown in Figure 13(a,b) (where
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the number of the incline of parallelograms may vary). We transform this frag-

ment as shown in Figure 13(c,d), respectively, and then assign a refined weight

RBy(S
′
fin) to the newly obtained subdivision S′

fin to be the product of

• either Ψ(1)(m, ν) or Ψ(2)(m, ν1, ν2) as S
′
fin contains the fragment as in

Figure 13(c,d), respectively,

• [μj ]
+
y , j = 1, . . . , nv, j �= i,

• [μ]−y , where μ runs over all triangles of S′
fin different from

conv{uj−1, u
′
j , uj}, j = 1, . . . , nv, j �= i, and lying outside the special

fragment,

• [μ]∗y, where μ runs over the lattice length of all the vectors in Δ,

which is divided by 2r, r being the number of segments among conv{uj−1, u
′
j, uj},

j = 1, . . . , nv, j �= i.
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Figure 13. Subdivisions related to collinear cycles.

Proposition 5.6: For a balanced, nondegenerate multiset Δ ⊂ Z
2 \ {0}, inte-

gers nv > 0, ne ≥ 0 such that 2nv + ne = |Δ|, n = nv + ne, and any generic

vector a ∈ R
2 \ {0}, we have

RBy(Δ, 1, (nv, ne)) =
∑
Sfin

RBy(Sfin) +
∑
S′
fin

RBy(S
′
fin),

where Sfin, resp. S
′
fin, run over all admissible subdivisions of the Newton poly-

gon P (Δ) as described in the preceding part of Section 5.3, corresponding to

irreducible tropical curves, and RBy(Sfin), RBy(S
′
fin) are their refined weights.

Proof. The statement follows in the same way as [12, Theorem 2 in Section 7.2],

where the subdivisions arising from lattice paths enumerate all plane trivalent

tropical curves of a given degree and genus, passing through the given point
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configuration. In our case, in the same manner, the subdivisions Sfin and

S′
fin mentioned in the assertion of the theorem enumerate all trivalent elliptic

curves (Γ,p, h) ∈ M′
1,(nv,ne)

(R2,Δ) with h(p) = x and all trivalent rational

curves (Γ
′
,p, p, h′) ∈ M′′

0,(nv−1,ne+1)(R
2,Δ) with h′(p) = x that appear in the

right-hand side of (13).

Example 5.7: The case of Δ = {2× (−1, 0), 3× (0, 1), 2× (1, 0), 3× (0− 1)} is

one of the simplest, when the refined elliptic broccoli invariant is not constant.

Here ne + 2nv = |Δ| = 10, and the lattice path algorithm gives

RBy(Δ, 1, (ne, nv)) = 2y + 16− 2nv + 2y−1, nv = 0, . . . , 5.

We also notice that the lattice path algorithm with the vector a = (1, ε),

0 < ε � 1, counts only tropical curves inM′
1,(nv,ne)

(R2,Δ), while the procedure

with the vector a = (ε, 1) counts also tropical curves in M′′
1,(nv,ne)

(R2,Δ).
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