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ABSTRACT

In this paper we study the geodesic flow for a particular class of Rie-
mannian non-compact manifolds with variable pinched negative sectional
curvature. For a sequence of invariant measures we are able to prove re-
sults relating the loss of mass and bounds on the measure entropies. We
compute the entropy contribution of the cusps. We develop and study the
corresponding thermodynamic formalism. We obtain certain regularity
results for the pressure of a class of potentials. We prove that the pres-
sure is real analytic until it undergoes a phase transition, after which it
becomes constant. Our techniques are based on the one hand on symbolic
methods and Markov partitions, and on the other on geometric techniques
and approximation properties at the level of groups.

1. Introduction

This paper is devoted to studying ergodic and geometric properties of a class
of geodesic flows defined over non-compact manifolds of variable pinched neg-
ative curvature. These flows can be coded with suspension flows defined over
Markov shifts, albeit on a countable alphabet. This paper addresses problems
where the non-compactness of the ambient manifold plays a fundamental role.
Inspired by some recent results proved in the context of homogeneous dynamics
([ELMV12, EKP15]), we establish properties that relate the escape of mass of
a sequence of invariant probability measures for the geodesic flow with its mea-
sure theoretic entropies (see Section 5). Our study combines both geometric
and symbolic methods. A consequence of these results is that we can describe
the thermodynamic formalism for the flow. In particular, we construct a class
of potentials for which the pressure exhibits a phase transition (see Section 6).

The class of manifolds that we will be working on in the paper were intro-
duced in [DP98]. These manifolds are obtained as the quotient of a Hadamard
manifold with an extended Schottky group (see Subsection 4.2 for precise def-
initions). Groups in this class have maximal parabolic subgroups of rank 1,
therefore the manifolds are non-compact. It was shown in [DP98] that the
geodesic flow over the unit tangent bundle of those manifolds can be coded
as suspension flows over countable Markov shifts. The existence of a Markov
coding for the geodesic flow is essential for our results.

The idea of coding a flow in order to describe its dynamical and ergodic
properties has a long history, and a great deal of interesting and important
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results have been obtained with these methods. Probably, some of the most
relevant results using this technique are related to counting closed geodesics
and also estimating the rate at which their number grow [PP90]. A landmark
result is the construction of Markov partitions for Axiom A flows defined over
compact manifolds done by Bowen [Bow73] and Ratner [Rat73]. They actually
showed that Axiom A flows can be coded with suspension flows defined over
sub-shifts of finite type on finite alphabets with regular (Holder) roof functions.
The study in the non-compact setting is far less developed. However, some
interesting results have been obtained. Recently, Hamenstadt [Ham] and also
Bufetov and Gurevich [BG11] have coded Teichmiiller flows with suspension
flows over countable alphabets, and using this representation have proved, for
example, the uniqueness of the measure of maximal entropy. Another important
example for which codings on countable alphabets have been constructed is a
type of Sinai billiards [BS81a, BS81b].

As mentioned before, a main goal of the paper is to investigate the loss of
mass of sequences of invariant measures for the geodesic flow. Recently, the loss
of mass has been studied for the modular surface in [ELMV12]. Despite being
a particular case, the method displayed in [ELMV12] is quite flexible and has
the advantage that it can be understood purely geometrically. A more general
situation is studied in [EKP15], where this type of result is shown to hold for
geodesic flows on finite volume hyperbolic spaces of any dimension and type
(real hyperbolic, complex hyperbolic, quaternionic, Cayley plane).

We begin by introducing the notion of entropy at infinity of a dynamical
system defined over a non-compact topological space. This notion has also
been considered in a similar form by Buzzi in [Buzl0] for countable Markov
shifts.

Definition 1.1: Let Y be a non-compact topological space and ¥ = (¢4 )er: Y > Y
a continuous flow. We define the “entropy at infinity” of the dynamical sys-
tem as the number

ho(P,Y) = sup limsuph,, (V),

(yn)A\O n—00

where the supremum is taken over all the sequences of invariant probability
measures for the flow converging in the vague topology to the zero measure. If
no such sequence exists we set hq(¥,Y) = 0. Here h, (¥) denotes the measure-
theoretic entropy of a probability W-invariant measure v.
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Recall that the total mass of probability measures is not necessarily preserved
under vague convergence (as opposed to weak convergence). Note that Defini-
tion 1.1 can be extended to more general group actions whenever an entropy
theory has been developed for the group in consideration. Amenable groups are
a classical example of such.

In this paper we are able to compute ho (g, 71X /T'), where X is a Hadamard
manifold with pinched negative sectional curvature, I" is an extended Schottky
group generated by N; hyperbolic isometries and N3 parabolic ones, and (g;)
is the geodesic flow on the unit tangent bundle T X /T" (see Subsection 4.2 for
precise definitions). Define

Op,max = max{dp : P parabolic subgroup of I'},
where dp denotes the critical exponent of H < Iso(X). We prove that
hoo (ga TlX/F) = 5p,max-

It is worth mentioning that 0, max is strictly less than the topological entropy
of the geodesic flow. In our context, the non-compact pieces of dynamical
interest are modeled by cusps. That is why we refer to this quantity as entropy
in the cusps. More concretely, we prove that if a sequence of measures is
dissipating through the cusps, then the entropy contribution of the sequence
is at most Opmae. In [EKP15] it is proven that hoo(A,I'\G) = htop/2, where
G is a connected semisimple Lie group of real rank 1 with finite center, I' a
lattice in GG, and A a one-parameter subgroup of diagonalizable elements over
R acting by right multiplication. In particular ho(g, T1S) = 1/2, where S is a
hyperbolic surface with finite volume. We also obtain results in the case where
the sequence of measures keeps some mass at the limit. Our bounds are less
concrete than the analogous result in the homogeneous dynamical case though.
The following is one of our main results and gives the calculation of the entropy
in the cusps mentioned before.

THEOREM 1.2: Let X be a Hadamard manifold with pinched negative sec-
tional curvature and let I' be an extended Schottky group of isometries of X
satisfying N1 + No = 3. Assume that the derivatives of the sectional curva-
ture are uniformly bounded. Then, for every ¢ > 0pmax there exists a con-
stant m = m(c) > 0, with the following property: If (vy) is a sequence of
(g¢)-invariant probability measures on T'X /T" satisfying h,, (g) = ¢, then for
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every vague limit v, — v, we have
v(T'XT) = m.

In particular, if v, — 0, then limsuph,,(¢) < Op.max. Moreover, the value
Opmax IS optimal in the following sense: there exists a sequence (v,) of
(g¢)-invariant probability measures on T X /T" such that h,, (9) — 0pmax and

vy — 0.

We also study regularity properties of the pressure function. In order to do
so, we make strong use of the symbolic coding that the geodesic flow has in the
manifolds we are considering. The idea of using symbolic dynamics to study
thermodynamic formalism of flows of geometric nature can be traced back to
the work of Bowen and Ruelle [BR75]. They studied in great detail ergodic
theory and thermodynamic formalism for Axiom A flows defined on compact
manifolds. The techniques they used were symbolic in nature and were based on
the symbolic codings obtained by Bowen [Bow73] and Ratner [Rat73]. In this
work we follow this strategy. We stress, however, that our symbolic models are
non-compact. There are several difficulties related to the lack of compactness
that have to be addressed, but also new phenomena are observed.

To begin with, in Subsection 2.6 we propose a definition of topological pres-
sure, P(-), that satisfies not only the variational principle, but also an approxi-
mation by the compact invariant sets property. These provide symbolic proofs
to results obtained by different (non-symbolic) methods in far more general set-
tings by Paulin, Pollicott and Schapira [PPS15]. The strength of our approach
is perhaps better appreciated in our regularity results for the pressure (Sub-
section 6.2). Note that the techniques in [PPS15] do not provide these type of
results. We say that the pressure function ¢t — P(¢f) has a phase transition
at t = o if it is not analytic at that point. It readily follows from work by Bowen
and Ruelle [BR75] that the pressure for Axiom A flows and regular potentials
is real analytic and hence has no phase transitions. Regularity properties of the
pressure of geodesic flows defined on non-compact manifolds, as far as we know,
have not been studied, with the exception of the geodesic flow defined on the
modular surface (see [IJ13, Section 6]).

There is a general strategy used to study regularity properties of the pressure
of maps and flows with strong hyperbolic or expanding properties in most of
the phase space but not in all of it. Indeed, if there exists a subset of the phase
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space B < X for which the restricted dynamics is not expansive and its entropy
equal to A, then it is possible to construct potentials f : X — R for which the
pressure function has the form

real analytic, strictly decreasing and convex if t < t/;

L Plf) = A ift>1t.

Well known examples of this phenomena include the Manneville-Pomeau map
(see for example [Sar01]) in which the set B consists of a parabolic fixed point
and therefore A = 0. The potential considered is the geometrical one: —log |1”|.
Similar results for multimodal maps have been obtained, for example, in [DT,
IT10, PRL]. In this case the set B corresponds to the post-critical set and A = 0.
Examples of maps in which A > 0 have been studied in [DGR11, IT13]. For
suspension flows over countable Markov shifts, similar examples were obtained
in [[J13].

In the case of geodesic flows, roughly speaking we are considering the set B
as the union of the cusps of the manifold. More interestingly, as we mentioned
before we are able to compute the entropy contributions of the cusps in the
geodesic flow. In Subsection 6.2 we construct a class of potentials, that we
denote by F, for which the pressure exhibits similar behaviour as in equation
(1). In those examples A = 0, max. Note that it is possible for ¢’ to be infinity
and in that case the pressure is real analytic. The following is the precise
statement:

THEOREM 1.3: Let X be a Hadamard manifold with pinched negative sectional
curvature and let I' be an extended Schottky group of isometries of X satisfy-
ing N1 + Ny > 3. Assume that the derivatives of the sectional curvature are
uniformly bounded. If f € F, then:

(1) For every t € R we have that Py(tf) = 0p max-
(2) We have that lim;—, o Py(tf) = dp max-
(3) Lett' :=sup{t € R: Py(tf) = 0p max}. Then

Op,max ift <t
Pg (tf) = . . . . . . ’
real analytic, strictly convex, strictly increasing ift > t'.

(4) Ift > ¢/, the potential tf has a unique equilibrium measure. If t < t' it

has no equilibrium measure.



Vol. 225, 2018 GEODESIC FLOWS 615

In order to prove this result we need to relate symbolic quantities with geo-
metrical ones. This is achieved in Theorem 4.10 in which a symbolic parameter
of the suspension flow, the number sy, is proven to be equal to the geometric
parameter of the group dp max. We stress that when coding a flow a great deal
of geometric information is lost. With this result we are able to recover part of
it.

Remark 1.4: In [RV] the authors recently studied the escape of mass phenom-
ena and the thermodynamical formalism for the geodesic flow on geometrically
finite groups (extended Schottky groups are a particular case of such). Their
approach is purely geometric, which gives more explicit bounds of the mass
of limit measures. However, our symbolic approach allows one to give precise
answers to questions relating the thermodynamical formalism, such as approx-
imation results for the topological pressure and the regularity of the pressure

function .
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2. Preliminaries on thermodynamic formalism and suspension flows

This section is devoted to providing the necessary background on thermody-

namic formalism and on suspension flows required in the rest of the article.

2.1. THERMODYNAMIC FORMALISM FOR COUNTABLE MARKOV SHIFTS. Let M
be an incidence matrix defined on the alphabet of natural numbers. The asso-
ciated one sided countable Markov shift (X%, ) is the set

St = {(zn)nen : M (2, n01) = 1 for every n € N},

together with the shift map ¢ : ¥* — X% defined by o (21, 72, ...) = (22,3, ...).
A standing assumption we will make throughout the article is that (37, 0) is
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topologically mixing. We equip X1 with the topology generated by the
cylinder sets:

Coyoa, ={x €St imy =a; fori=1,...,n}.

We stress that, in general, ¥ is a non-compact space. Given a function
©: X7 — R we define the n-th variations of ¢ by

Valp) :=sup{|e(z) —p(y)| : 2,y € BT, @; = y; fori = 1,...,n},

where z = (21,22,...) and y = (y1,92,...). We say that ¢ has summable
variation if 37| V;,() < 0. We say that ¢ is locally Hélder if there exists
0 € (0,1) such that for all n > 1, we have V,,(p) < O(6™).

This section is devoted to recalling some of the notions and results of ther-
modynamic formalism in this setting. The following definition was introduced
by Sarig [Sar99] based on work by Gurevich [Gur69].

Definition 2.1: Let ¢: X% — R be a function of summable variation. The
Gurevich pressure of ¢ is defined by

P(g) = lim “log Y exp<2w<aix>)xail<z>,
i=0

n—w0n n
X o"xr=x
where x¢,, (z) is the characteristic function of the cylinder C;, < XF.

It is possible to show (see [Sar99, Theorem 1]) that the limit always exists
and that it does not depend on i;. The following two properties of the pressure
will be relevant for our purposes (see [Sar99, Theorems 2 and 3] and [IJT15,
Theorem 2.10]). If p: ¥ — R is a function of summable variations, then:

(1) (Approximation property)
P(p) = sup{Px (¢) : K € K},
where
K:={Kc%t:K # @& compact and o-invariant}

and Pk (y) is the classical topological pressure on K (see [Wal82, Chap-
ter 9]).

(2) (Variational Principle) Denote by M, the space of o-invariant
probability measures and by h,(c) the entropy of the measure p
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(see [Wal82, Chapter 4]). If ¢: ¥ — R is a function of summable
variation, then

P,(¢) = sup {hu(a) + J.tpdu i€ My and — fapdu < oo} .

A measure p € M, attaining the supremum, that is, Py(p) = hu(o) + {¢dp,
is called an equilibrium measure for . A potential of summable variations
has at most one equilibrium measure (see [BS03, Theorem 1.1]).

It turns out that under a combinatorial assumption on the incidence ma-
trix M, which roughly means to be similar to a full-shift, the thermodynamic
formalism is well behaved.

Definition 2.2: We say that a countable Markov shift (X%, ), defined by the
transition matrix M (7, ) with (¢,7) € N x N, satisfies the BIP (Big Images
and Preimages) condition if and only if there exists {b1,...,b,} < N such
that for every a € N there exists ¢, j € N with M (b;, a)M(a,b;) = 1.

The following theorem summarises results proven by Sarig in [Sar99, Sar01,
Sar03] and by Mauldin and Urbanski, [MUO03], where they show that thermody-
namic formalism in this setting is similar to that observed for sub-shifts of finite
type on finite alphabets. For precise statements see [MUO03, Theorem 2.6.12]
and [Sar03, Section 3].

THEOREM 2.3: Let (X%,0) be a countable Markov shift satisfying the BIP
condition and ¢ : ¥ — R a non-positive locally Holder potential. Then,
there exists so, = 0 such that pressure function t — P,(ty) has the following

properties:

P, (te) 0 ift < S
SD =
7 real analytic — ift > sq.

Moreover, if t > so,, there exists a unique equilibrium measure for ty.

2.2. SUSPENSION FLOWS. Let (X% ,0) be a topologically mixing countable
Markov shift and 7 : ¥T — R* a function of summable variations bounded
away from zero. Consider the space

(2) Y ={(r,t)eXt xR: 0 <t < 7(2)},

with the points (z,7(z)) and (o(z),0) identified for each x € 3. The suspen-
sion semi-flow over o with roof function 7 is the semi-flow ® = (¢;)¢>0 on
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Y defined by
ot(z,8) = (x,s +t) whenever s+t e [0,7(x)].

In particular,
@T(m)(xv O) = (O'(:Z?), 0)

2.3. INVARIANT MEASURES. Let (Y, ®) be a suspension semi-flow defined over
a countable Markov shift (X1, 0) with roof function 7 : ¥* — R* bounded
away from zero. Denote by Mg the space of invariant probability measures for
the flow. It follows from a classical result by Ambrose and Kakutani [AK42]
that every measure v € Mg can be written as
5 L lxmly
(1 > m)(Y)
where 4 € M, and m denotes the one dimensional Lebesgue measure. When
(X%, 0) is a sub-shift of finite type defined on a finite alphabet the relation
in equation (3) is actually a bijection between M, and Ms. If (X7,0) is a
countable Markov shift with roof function bounded away from zero, the map
defined by
(k x m)ly
(1 < m)(Y)
is surjective. However, it can happen that (u x m)(Y) = oo. In this case the
image can be understood as an infinite invariant measure.
The case which is more subtle is when the roof function is only assumed to
be positive. We will not be interested in that case here, but we refer to [[JT15]
for a discussion on the pathologies that might occur.

2.4. OF FLOWS AND SEMI-FLOWS. In 1972 Sinai [Sin72, Section 3] observed
that in order to study thermodynamic formalism for suspension flows, it suffices
to study thermodynamic formalism for semi-flows. Denote by (X, o) a two-sided
countable Markov shift. Recall that two continuous functions ¢,y € C(X) are
said to be cohomologous if there exists a continuous function ¢ € C(X),
called a transfer function, such that ¢ = v + ¥ o 0 — t. The relevant remark
is that thermodynamic formalism for two cohomologous functions is exactly
the same. Thus, if every continuous function ¢ € C(X) is cohomologous to a
continuous function v € C(X) which only depends on future coordinates, then
thermodynamic formalism for the flow can be studied in the corresponding
semi-flow. The next result formalises this discussion.
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PROPOSITION 2.4: If ¢ € C(X) has summable variation, then there exists
v € C(X) of summable variation cohomologous to ¢ via a bounded transfer
function, such that vy(z) = ~(y) whenever x; = y; for all i = 0 (that is, 7
depends only on the future coordinates).

Proposition 2.4 has been proved with different regularity assumptions in the
compact setting and in the non-compact case in [Daol3, Theorem 7.1].

2.5. ABRAMOV AND KAC. The entropy of a flow with respect to an invariant
measure can be defined as the entropy of the corresponding time one map. The
following result was proved by Abramov [Abr59].

PROPOSITION 2.5 (Abramov): Let v € Mg be such that
v=(uxm)ly/(pxm)(Y), wherepe M,.

Then the entropy of v with respect to the flow, that we denote h, (®), satisfies

() @) = ()

In Proposition 2.5 a relation between the entropy of a measure for the flow
and a corresponding measure for the base dynamics was established. We now
prove a relation between the integral of a function on the flow with the integral

of a related function on the base. Let f: Y — R be a continuous function.
Define Ay: ¥+ — R by

7 ()
Aj() ;=f ot dt.

0
PROPOSITION 2.6 (Kac’s Lemma): Let f: Y — R be a continuous function and
v € Mg an invariant measure that can be written as
WX om

(uxm)(Y)’

J. fdv= b8 dﬂ.
Y Ssz:u

Propositions 2.5 and 2.6 together with the relation between the spaces of

where u € M. Then

invariant measures for the flow and for the shift established by Ambrose and
Kakutani (see Subsection 2.3) allow us to study thermodynamic formalism for
the flow by means of the corresponding one on the base.
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2.6. THERMODYNAMIC FORMALISM FOR SUSPENSION FLOWS. Let (X*,0) be a
topologically mixing countable Markov shift and 7 : ¥* — R a positive func-
tion bounded away from zero of summable variations. Denote by (Y, ®) the
suspension semi-flow over (X%, ¢) with roof function 7. Thermodynamic for-
malism has been studied in this context by several people with different degrees
of generality: Savchenko [Sav98], Barreira and Iommi [BI06], Kempton [Kem11]
and Jaerisch, Kessebohmer and Lamei [JKL14]. Thermodynamic formalism for
suspension flows where the base (3%, ) is a sub-shift of finite type defined on a
finite alphabet has been studied, for example, in [BR75, PP90]. The next result
provides equivalent definitions for the pressure, Py (), on the flow.

THEOREM 2.7: Let f : Y — R be a function such that Ay : ¥ — R is of
summable variations. Then the following equalities hold:

n=tim o % e ([ rente0) ab)xe, ()

@s(x,0)=(z,0),0<s<t
=inf{t e R: P,(Ay —t1) <0} = sup{t e R: P,(Ay —t1) = 0}
:SUP{P<I>\K(f) : K e K(D)},
where KC(®) denotes the space of compact ®-invariant sets.

In particular, the topological entropy of the flow is the unique number Ay, (P)
satisfying

(5) hiop(®) = inf{t € R : P(—t7) < 0}.

Note that in this setting the Variational Principle also holds (see [BI06, JKL14,
Kemll, Sav98]).

THEOREM 2.8 (Variational Principle): Let f : Y — R be a function such that
Ay : ¥t — R is of summable variations. Then

Ps(f) =sup{h,,(<1>)+f fdv:ve Mg and —f fdy<oo}.
Y Y
A measure v € Mg is called an equilibrium measure for f if
Py(f) =h,(®) + Jf dv.

It was proved in [IJT15, Theorem 3.5] that potentials f for which Ay is locally
Holder have at most one equilibrium measure. Moreover, the following result
(see [BI06, Theorem 4]) characterises functions having equilibrium measures.
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THEOREM 2.9: Let f: Y — R be a continuous function such that Ay is of
summable variations. Then there is an equilibrium measure vy € Mg for f
if and only if P,(Aj — Py(f)r) = 0 and there exists an equilibrium measure
pf € Mg for Ay — Py (f)7 such that §rdpy < oo.

Remark 2.10: We stress that the situation is more complicated when 7 is not
assumed to be bounded away from zero. For results in that setting see [[JT15].

3. Entropy and escape of mass

Over the last few years there has been interest, partially motivated for its con-
nections with number theory, in studying the relation between entropy and the
escape of mass of sequences of invariant measures for diagonal flows on homoge-
nous spaces (see [EKP15, ELMV12, KKLM17]). Some remarkable results have
been obtained bounding the amount of mass that an invariant measure can give
to an unbounded part of the domain (a cusp) in terms of the entropy of the
measure (see for example [EKP15, Theorem A] or [KKLM17, Theorem 1.3]).
The purpose of this section is to prove similar results in the context of suspen-
sion flows defined over countable Markov shifts. As we will see, the proofs in
this setting suggest a geometrical interpretation that we pursue in Section 5.

Let (7T, 0) be a topologically mixing countable Markov shift of infinite topo-
logical entropy and 7 : ¥t — R™ a potential of summable variations bounded
away from zero. Denote by (Y, ®) the associated suspension flow, which we
assume to have finite topological entropy. Note that since (X1,0) has infi-
nite entropy and 7 is non-negative, the entropy hiop(®) of the flow satisfies
P, (—hiop(®)7) < 0 (see equation (5)). Therefore, there exists a real number
S € (0, hiop(®P)] such that

Py (—tr) = infinite if ¢ < 54;
finite if t > 5.
As it turns out the number s, will play a crucial role in our work.

For geodesic flows defined in non-compact manifolds there are vectors that
escape through the cusps; they do not exhibit any recurrence property. That
phenomenon is impossible in the symbolic setting; every point will return to the
base after some time. The following definition describes the set of points that
escape on average (compare with an analogous definition given in [KKLM17]).
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Definition 3.1: We say that a point (z,t) € Y escapes on average if
1 n—1 .
lim Z T(o'x) = 0.

n—a0
n =0

We denote the set of all points which escape on average by €4(7).

Remark 3.2: Note that if v € Mg is ergodic and v = (. x m)/(u x m)(Y") with
1 € M, then Birkhoff’s theorem implies that
R S
nh_r)rgo . ; T(o'z) = J.Td,u.
Thus, no measure in Mg is supported on € 4(7). We can, however, describe the
dynamics of the set £4(7) by studying sequences of measures v, € Mg such
that the associated measures u,, € M, satisfy

lim | 7du, = c0.
n—o0

In our first result we show that a measure of sufficiently large entropy cannot
give too much weight to the set of points for which the return time to the base
is very high. More precisely,

THEOREM 3.3: Let (Y, ®) be a finite entropy suspension flow defined over an
infinite entropy countable Markov shift with roof function bounded away from
zero. Assume that So, < hiop(®) and let ¢ € (S0, hiop(®)). Then there exists a
constant C' > 0 such that for every v € Mg with h,(®) > ¢, we have that

JTd[L <C.

Proof. Let v € Mg with h,(®) = ¢ and let u € M, be the invariant measure
satisfying v = (u x m)/((u x m)(Y")). By the Abramov formula we have

hu(o) — cJ.Td,u =0.

We will consider the straight line L(t) := h, (o) — ¢ §{7du. Note that L(c) = 0
and L(0) = hy(o). Let s € (sx,c). Note that P,(—s7) < oo and by the
variational principle L(s) < P,(—s7). This remark readily implies a bound on
the slope of L(t). Indeed,

c— S

JTdM < Pg(—ST).
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Thus the constant C' = P,(—s7)/(c—s) satisfies the theorem. In order to obtain
the best possible constant we have to compute the infimum of the function
defined for s € (s, ¢) by
P,(—sT)

c—s

S >

Remark 3.4: We stress that the constant C' in Theorem 3.3 depends only on
the entropy bound ¢ and not on the measure v.

Remark 3.5: In Section 4 we will see that in the geometrical context of geodesic
flows the assumption sq < hiop(®) in Theorem 3.3 has a very natural interpre-
tation. Indeed, it will be shown to be equivalent to the parabolic gap property
(see [DP98, Section III] or Definition 4.12 for precise definitions).

COROLLARY 3.6: If (X%, o) is a Markov shift defined countable alphabet satis-
fying the BIP condition, then the best possible constant C' € R in Theorem 3.3
is given by

Po’ —om

C = (=sm7) = J.Td,usm,
C— Sm
where s,, € R is such that the equilibrium measure s, for —s,,T satisfies
_ husm (U)
§rdus,,

Proof. Since the system satisfies the BIP condition, the function P,(—s7), when

finite, is differentiable (see Theorem 2.3). Moreover, its derivative is given by
(see [Sarlb, Theorem 6.5])

:ZSPJ(fST) . = — erusm,
where ps, is the (unique) equilibrium measure for —s,,7. The critical points
of the function s — P"C(:SST) are those which satisfy
(6) (c— 8)P,(—sT) + Py(—s7) = 0.
Equivalently,

—(c—s) JTd[LS + hy, (o) — SJTdMS =0.
Therefore, equation (6) is equivalent to

= hy, (o)
§rdps
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In the next Theorem we prove that the entropy of the flow on E4(7) is
bounded above by s, and that, under some additional assumptions, it is actu-
ally equal to it. This result could be thought of as a symbolic estimation for the
entropy of a flow in a cusp. Theorem 3.7 describes a phenomenon first observed
in [FJLR15, Lemma 2.5] in a dimension theory context and used in the setting
of suspension flows in [IJ13].

THEOREM 3.7: Let (Y, ®) be a finite entropy suspension flow defined over an
infinite entropy countable Markov shift and with roof function bounded away
from zero. Assume that s < hiop(®). Let (vn)n, © Mg be a sequence of
invariant probability measures for the flow of the form

fn X M
(kn x m)(Y)’

where ji,, € M. Iflim,_,o §{ 7dp, = o0, then

Up =

limsup Ay, (P) < Sop.

n—0o0
Moreover, there exists a sequence (Vy)n € Mg such that lim,_,q STd,un = 0
and

lim A, (®) = se.

n—0o0
Proof. Observe that the first claim is a direct consequence of Theorem 3.3. Let
us construct now a sequence (vp,), € Mg with lim,, STd/Ln = o0 such that
lim,, o Ay, (P) = s4. First note that it is a consequence of the approximation
property of the pressure, that there exists a sequence of compact invariant sets
(Kn)n < ¥ such that limy_,o Piy(—t7) = Py(—t7). In particular, for every
n € N we have that

(7) lim Pg, (= (So —1/n)7) = 0.
N—0
For the same reason, for any n € N and N € N we have that
(8) Pry (— (500 +1/0)7) < Py (— (5o + 1/n) T) < 0.

Thus, given n € N there exists N e N such that

22 o P (= (500 =1/n)7) = Prey (= (800 + 1/0) 7)

2/n '
Since the function ¢ — Pk, (—t7) is real analytic, by the mean value theorem
there exists ¢y, € [so — 1/n, o0 + 1/n] such that Py (—t,7) > n*. Denote by



Vol. 225, 2018 GEODESIC FLOWS 625

Iy the equilibrium measure for —¢,,7 in K. We have that
n? < PI'(N (—t,7) = JTdMn.
In particular, the sequence (p,,), satisfies
lim | 7du, = o0.
P

Since Soo < hiop(®P), we have that for n € N large enough

hy, (o) =ty deun > 0.

In particular,

tn < P (G).
§rdpy,
Since ty, € (oo — 1/n, Soo + 1/n), we have that
. . hy, (o .
) s = lim tn < lim, gid(u,f = Jim ho (®).

But we already proved that the limit cannot be larger than s, thus the result
follows.

4. The geodesic flow on extended Schottky groups

4.1. SOME PRELIMINARIES IN NEGATIVE CURVATURE. Let X be a Hadamard
manifold with pinched negative sectional curvature, that is a complete simply
connected Riemannian manifold whose sectional curvature K satisfies
—b? < K < —1 (for some fixed b > 1). Denote by 0X the boundary at in-
finity of X. Finally, denote by d the Riemannian distance on X. A crucial
object in the study of the dynamics of the geodesic flow is the Busemann func-
tion. Let £ € 0X and x,y € X. For every geodesic ray t — & pointing to &, the
limit
Be(w,y) := lim [d(z, &) — d(y, &)]

always exists, and is independent of the geodesic ray & since X has negative
sectional curvature. The Busemann function B : 0X x X? — R is the
continuous function defined as B(§,z,y) — Be(x,y). A (open) horoball based
in £ and passing through z is the set of y € X such that Be(z,y) > 0. In the
hyperbolic case, when X = I, a horoball based in ¢ € S! and passing through
x € D is the interior of a euclidean circle containing 2 and tangent to S at €.
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Recall that every isometry of X can be extended to a homeomorphism of
X U 0X. A very important property of the Busemann function is the fact that
it is invariant by isometries. More precisely, if ¢ : X — X is an isometry of X,
then for every x,y € X we have

(10) ngg((px,goy) = Bg(l‘,y).

Let 0 € X be a reference point, which is often called the origin of X. The
unit tangent bundle T'X of X can be identified with 02X x R via Hopf’s
coordinates, where 02X = (0X x 0X)\diagonal. A vector v € T*X is iden-
tified with (v=,v™, By+(0,m(v))), where v~ (resp. v™) is the negative (resp.
positive) endpoint of the geodesic defined by v. Here 7 : T'X — X is the
natural projection of a vector to its base point. Observe that the geodesic flow
(g¢) : T*X — T'X acts by translation in the third coordinate of this identifi-
cation. Another crucial object in this setting is the Poincaré series.

Definition 4.1: Let G be a discrete subgroup of isometries of X and let z € X.
The Poincaré series Py (s, ) associated with G is defined by

Pg(s,x) := Z e sd@g7)

geG

The critical exponent d¢ of G is the number
0 :=inf{seR: Pg(s,z) < w0}.

The group G is said to be of divergence type (resp. convergence type) if
P (G, x) = © (resp. Pg(dg,z) < o).

Remark 4.2: By the triangle inequality, the critical exponent of a discrete group
of isometries of X is independent of x € X. Moreover, as the sectional curvature
of X is bounded from below, it is finite.

The isometries of X are categorized in three types: those fixing a unique
point in X called elliptic isometries, those fixing a unique point in X called
parabolic isometries, and finally, those fixing uniquely two points in 0X
called hyperbolic isometries. For g a non-elliptic isometry of X, denote by
04 the critical exponent of the group < g >. If g is a hyperbolic isometry, it
is fairly straightforward to see that 6, = 0 and that the group < g > is of
divergence type. If g is parabolic, it was shown in [DP98, Theorem IIL.1] that

1
5y =1
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Let I" be a discrete subgroup of isometries of X. Denote by A the limit set
of I, that is, the set
A=T:-0\T'"-o.

The group I' is non-elementary if A contains infinitely many elements. We
recall the following fact proved in [DOP00, Proposition 2].

THEOREM 4.3: Let I' be a non-elementary discrete subgroup of isometries of a
Hadamard manifold X. If G is a divergence type subgroup of I' and its limit
set is strictly contained in the limit set of I", then dr > d¢.

In particular, if " is a non-elementary discrete group of isometries and there
is an element g € I" such that < g > is of divergence type, then dr > d<4- (see
also [DP98, Theorem III.1]). Note that a non-elementary group always contains
a hyperbolic isometry (in fact, infinitely many non-conjugate of them), hence a
non-elementary group I' always satisfies épr > 0.

We end this subsection by giving an important relation between the critical
exponent of a group and the topological entropy of the geodesic flow on the
associated quotient manifold. Let X be a Hadamard manifold with pinched
negative sectional curvature and let I be a non-elementary torsion free discrete
subgroup of isometries of X. Denote by

(9¢0): T'X/T - T'X/T

the geodesic flow on the unit tangent bundle of the quotient manifold X /T". Otal
and Peigné [OP04, Theorem 1] proved that, if the derivatives of the sectional
curvature are uniformly bounded, then the topological entropy htop(g) of the
geodesic flow equals the critical exponent of the Poincaré series of the group I,
that is

(11) htop(g) = 6F-

We stress the fact that the assumption on the derivatives of the sectional curva-
ture is crucial in order to compute the topological entropy of the geodesic flow.
This assumption implies the Holder regularity of the strong unstable and stable
foliations (see for instance [PPS15, Theorem 7.3]), which is used in the proof of
[OP04, Theorem 1].

4.2. THE SYMBOLIC MODEL FOR EXTENDED SCHOTTKY GROUPS. In this sec-
tion we recall the definition of an extended Schottky group. To the best of our
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knowledge this definition was introduced in [DP98] by Dal’bo and Peigné. The
basic idea is to extend the classical notion of Schottky groups to the context of
manifolds where the non-wandering set of the geodesic flow is non-compact.
Let X be a Hadamard manifold as in Subsection 4.1. Let Ny, Na be two non-
negative integers such that Ny + No > 2 and Ny > 1. Consider N; hyperbolic
isometries hq, ..., hy, and Ny parabolic ones p1, ..., pn, satisfying the following

conditions:

(C1) For 1 <4 < N there exist in 0X a compact neighbourhood Cp,;, of the
attracting point &, of h; and a compact neighbourhood C) -1 of the
repelling point £, - of h;, such that

hi(aX\Ohfl) (e Chi-

(C2) For 1 < i < Ny there exists in 0X a compact neighbourhood Cp, of the
unique fixed point &, of p;, such that

VneZ* pl(0X\Cp,) < Cp,.

(C3) The 2N; + N3 neighbourhoods introduced in (1) and (2) are pairwise
disjoint.

(C4) The elementary parabolic groups < p; >, for 1 < i < N, are of diver-
gence type.

The group
I'=< hl,...,th,pl,...,pNz >

is a non-elementary free group which acts properly discontinuously and freely
on X (see [DP98, Corollary I1.2]). Such a group I' is called an extended
Schottky group. Note that if No = 0, that is the group I' only contains
hyperbolic elements, then I' is a classical Schottky group and its geometric
and dynamical properties are well understood. Indeed, in that case, the non-
wandering set Q < T1X /T of the geodesic flow is compact, which implies that
(9¢)]q is an Axiom A flow. If Ny = 1, then X /T is a non-compact manifold and
) is a non-compact subset of T1X/T". Figure 1 is an example of a Schottky
group acting on the hyperbolic disk D. It has two generators, one hyperbolic
and the other parabolic.
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Cyp

Ch-1 Ch

Figure 1. Schottky group I' =< h,p >.

In [DP98] the authors proved that there exists a (g;)-invariant subset € of
T1X /T, contained in the non-wandering set of (g;), such that (g¢)|q, is topolog-
ically conjugated to a suspension flow over a countable Markov shift (X, o). The
Theorem below summarizes their construction together with some dynamical
properties.

THEOREM 4.4: Let X be a Hadamard manifold with pinched negative sec-
tional curvature and let I' be an extended Schottky group. Then there exists a
(g¢)-invariant subset Qg of T* X /T, a countable Markov shift (X, 0) and a func-
tion 7 : ¥ — R, such that:

(1) the function T is locally Holder and bounded away from zero,

(2) the geodesic flow (g:)|q, over Qq is topologically conjugated to the sus-
pension flow over ¥ with roof function T,

(3) the Markov shift (X, o) satisfies the BIP condition,

(4) if N1 + Ny = 3, then (X, 0) is topologically mixing.

Proof. Let A = {hy,...,hn,,P1,...,DN,} and consider the symbolic space X
defined by
Y = {(a?”)iez a; € A, m; € Z and Ai41 # (J,ZVZ € Z}

Note that the space ¥ is a sequence space defined on the countable alphabet
{a™ : a; € A;m € Z}. Let A be the limit set A minus the I-orbit of the
fixed points of the elements of .A. We denote by Qg the set of vectors in T"X
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identified with (A x A%\diagonal) x R via Hopf’s coordinates. Finally, define
Qo = QO/F, where the action of I is given by

v (§7a§+a S) = (7(57)a7(€+)a §— BE* (Oa ’7710))'

Observe that 2y is invariant by the geodesic flow.

Fix now & € 0X\J,eq Cat» where Cp+ = Cq U Cy-1. Dal’bo and Peigné
[DP98, Property IL.5] established the following coding property: for every ¢ € A°
there exists a unique sequence w(§) = (a;");»1 with a; € A, m; € Z* and
a;+1 # a; such that

kli_)% a/’;:n/l Y .a’];nké-o = 5.

For each a € A define A%, = A% n C,x and set 02A° = Ja sea A2 X A%i' For
a#f
any pair (67,&T) € 02A0, if a™ is the first term of the sequence w(£™), define
70(§7) = Be+(0,a™0) and T(§,&%) = (a7™& ,a™ET). Define also T'z, by
the formula
T7 (67,67, 8) = (T(§,€7),s — 7o(§T)).
Observe that Tz, maps 0?A° x R to itself.
LEMMA 4.5: The set Qg can be identified with the quotient 0?A° xR/ < Tz, >.

Proof. Let (£7,¢7) € 0?A°. The geodesic determined by (£7,¢%) in X in-
tersects the horosphere based in £&* and passing through o in only one point
ng,,ﬁ. Denote by v275,7£+ € T' X the unit vector based in x2,5,7€+ and point-
ing to £T. Finally, set

(12) S={vge er (£, €PN} cT'X/T.

To prove this lemma we first observe that the set S is a cross-section in T X /T,
so for any v € {2y there exists a minimal time ¢ > 0 such that g_,v € S. If
v21£,7§+ denotes the vector g_;v, then (£7,£%1,t) corresponds to v. Observe
that gsv ¢ S for every 0 < s < 7(€1) — ¢, so 7(£T) is the first return time of

’Ug ¢ ¢+ 1nto S. This give us the identification.

The coding property implies that the set 0?A° is identified with ¥ by consid-
ering (£7,&7) as a bilateral sequence (w*(£7),w(§1)). If w(€™) = (b]'")iz1, we
define w*(£7) as the sequence (...,by"?,b7""); then (w*(£7),w(€1)) represent
the concatenated sequence. Let X% be the one-sided symbolic space obtained
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from ¥ by forgetting the negative time coordinates. We define the function
9:X2T - Ras

70(2) = 7(w™ (7)) = Bu-1(s)(0,a™0),

where w : A — ¥ is the coding function and a™ the first symbol in w1 (z).
We extend 7 to ¥ by making it independent of the negative time coordinates.

LEMMA 4.6: The function 19 : ¥ — R is cohomologous to a Hélder-continuous
positive function 7 : ¥ — R bounded away from zero and depending only on
future coordinates.

Proof. By [DP98, Proposition V.1], there exists N > 1 such that for every
n = N and every z € 3, we have

i =c>0.

Let e = ]1, and m; = 1 —ieforevery i = 0,..., N. Define the function f : ¥ -> R
as

= Z_: m;7o (0" (x))
i=0

Then
N— N—1
flz) - Z — > muimo(o" (x)
=0 1=0
N N
= momo(x) — myTo(o™ (2)) + > mito Z mi—17o(0" (2)).
=1
Since mg =1, my =0 and m; —m;_1 = —c foreveryi=1,..., N, we get

(13) f(@) = flo(x)) = 7oz Z

Define the function 7 : ¥ > Ras7(z) = ¢ sz\il 10(0(x)). It is positive bounded
away from zero since 7(x) > 5 and depends only on future coordinates by
construction. By equation (13) it is cohomologous to 79. Finally, the Holder-
regularity of 7 follows from the Holder-regularity of 7o, which is proved in [DP98,
Lemma VII] together with a standard recoding argument. All points above

conclude the proof of this lemma.
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Lemma 4.6 implies (1) in the conclusion of Theorem 4.4. Using the identifi-
cation given by Lemma 4.5 together with the previous construction, we deduce
that the geodesic flow (g;) on €y can be coded as the suspension flow on

Y={(z,t) eExR:0<t <7(x)}/ ~,
which gives us (2).

LEMMA 4.7: Under the hypothesis of Theorem 4.4 the countable Markov shift
(X, o) satisfies the BIP condition. Moreover, if N1 + Ny > 3, then the countable
Markov shift (X,0) is topologically mixing.

Proof. 1t is not hard to see that the set A satisfies the required conditions in
order for (X, o) to be BIP (see Definition 2.2). Suppose now that N; + N3 > 3.
Recall that the Markov shift (¥,0) is topologically mixing if for every
a,be{al”:a;,€ A,meZ} there exists N(a,b) € N, such that for every n > N(a, b)
there exists an admissible word of length n of the form aiqis - - i,_1b. The set
of allowable sequences is given by

{(a?”)iez ta; € A, m; € Z and Aip1 # (J,ZV’L € N}

Since N7 4+ Ny = 3, then given any pair of symbols in {a]" : a; € A,m € Z}, say
ai™, a5, we can consider the symbol ag ¢ {a1,a2}. Hence the following words
are admissible:

mi m2 mi m2
a; -azaijas---aijay -, a; "azaijasag - - a3y .

Thus the system is topologically mixing.

Since Lemma 4.7 above shows the points (3) and (4), we have concluded the
proof of Theorem 4.4.

Remark 4.8: Under the condition Ny + N2 = 3 we have proved that (3,0)
is a topologically mixing countable Markov shift satisfying the BIP condition
(Lemma 4.7) and that the roof function 7 is locally Holder and bounded away
from zero (Lemma 4.6). Therefore, the associated suspension semi-flow (Y, @)
can be studied with the techniques presented in Section 2.

So far we have proved that the geodesic flow restricted to the set ¢ can
be coded by a suspension flow over a countable Markov shift. We now de-
scribe, from the ergodic point of view, the geodesic flow in the complement
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(TP X /T)\Qo of Q. We denote by Mg, the space of (g;)-invariant probabil-
ity measures supported in the set where we have coding, in other words in
0%Ao x R/ < T, >. We describe the difference between the space Mg, and the
space M, of all (g;)-invariant probability measures. Recall that in I" there are
hyperbolic isometries h1,...,hn,, each of which fixes a pair of points in 0.X.
The geodesic connecting the fixed points of h; will descend to a closed geodesic
in the quotient by I'. We denote v the probability measure equidistributed
along such a geodesic.

PROPOSITION 4.9: The set of ergodic measures in M \Magq, is finite, those are

exactly the set {v" : 1 <i < Ny}. Moreover, for every v € M with support in
X\Qo, we have h,(g) = 0.

Proof. Let v e M,\Mg, be an ergodic measure. Take v a generic vector for v.
Since a generic vector is recurrent, the orbit g;v does not go to infinity, therefore
vt is not parabolic. Now consider the case when v points toward a hyperbolic
fixed point z. Let v : R — X be a geodesic flowing at positive time to z with
initial condition 7/(0) = v and let v; be the geodesic connecting z with the
associated hyperbolic fixed point. By reparametrization we can assume

Vi(+0) = 2

and that «;(0) lies in the same horosphere centered at z rather than v. By
estimates in [HIH77] we have d(v;(t),¥(t)) — 0 exponentially fast (here d stands
for hyperbolic distance, actually in [HIH77] the stronger exponential decay in
the horospherical distance is obtained). Since the vectors along the geodesics are
perpendicular to the horospheres centered at z, we have the desired geometric
convergence in TX. Observe that +; descends to a periodic orbit in TX/T.
This gives the convergence of v to the periodic orbit and the Birkhoff ergodic
theorem gives that the measure generated by such a geodesic is exactly one of
vhi,

The fact that h,(g) = 0 for every ergodic v € My \ Mg, is a classical result

for measures supported on periodic orbits.

4.3. GEOMETRIC MEANING OF S. One of our main technical results is the
following. Let 7 be the roof function constructed in subsection 4.2. In the next
Theorem we give a geometrical characterisation of the value sy defined as the
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unique real number satisfying

infinite if ¢ < 54;

P, (—tr) = *

finite if t > 5.
One of the key ingredients in this paper, and the important result of this section,
is the relation between s, and the largest parabolic critical exponent. This
relation will allow us to translate several results at the symbolic level into the

geometrical one.

THEOREM 4.10: Let I' be an extended Schottky group satisfying N1 + Na > 3.
Let (X,0) and 7 : ¥ — R be the base space and the roof function of the symbolic
representation of the geodesic flow (g¢) on Qo. Then s = max{dp,, 1 < i < No}.

Proof. Since 7 is cohomologous to 79, we have P,(—t1) = P,(—trg). We first
show that s, < max{d,,,1 <i < Na}. Now

Pg(ftTo) n;so n _1*_ 1 Z exp (Z t70(0i$)> XCh, (:17)

zontlp=xg i=0

. 1 S
R | 2 exp <Z —tBy-1(oia) (0, $i+10)>

E=h1z2..2nTn+180 =0

. 1 S
> nlgrolo nl log Z exp (Z —td(o, xi+1o)> .

E=hi1z2...xn1+180 =0

Il
=
=
—
S

0

I
=
=)
—
o

03

The last inequality follows from d(z,y) > Be(z,y). By removing words having
hT* (some m) in more places than just the first coordinate, we conclude that
the argument of the function log in the limit above is greater than

e—td(o,hlo) Z Z exp (i 7td(0, cz’” 0)) ,

(e1reeen) (AR (ma,...mp ) ELT i=1

where (A\h1)} represent the set of admissible words of length n for the code,
ie ¢;#ci. Letk>1 Forall0<j<k—1land1<i<N;+N,—1,define

b hit1, ifl<i< N —1,

i+j(N1+N2—1) =

D T v, NI i< N+ Ny — 1.

Consider n + 1 = k(N1 + Ny — 1). By restricting the above sum to words with
c; = b; for every ¢ = 1,...,n, we can continue the sequence of inequalities above
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to get

Py(—tr) = Z exp (Z —td(o, b?”o)) ,

mi,...,mp€Z i=1

where the right-hand side is equal to
H Z exp(—td(o, b"0)).
i=1meZ

By definition of the b;’s, the last term is equal to

Ny k /N, k
(H Z exp(—td(o, h?o))) (H Z exp(td(o,p?o))) )

=2 meZ i=1meZ

Hence, it follows that

P,(—tT)
1 N1 N2
> log exp(—td(o, hi"O))) < exp(—td(o,pZ”O))>
N1+ Nz (E n;Z 111 r;l
1
= lo P_.~(t,0).
N + Na gael,:\[hl <a>(t0)

In particular, if ¢t < max{dp,,1 < i < Nz} then P,(—tr) = +o0. This shows
that se = max{d,,,1 <1i < Na}.

Before proving the other inequality we need to prove first a technical lemma.
Let AT = {h%l, e h%i,pl, ..., PN, } and consider for every a € A* the convex
hull U, in X u 06X of the set C,,.

LEMMA 4.11: Let X be a Hadamard manifold with pinched negative sectional
curvature and let I' be an extended Schottky group. Fix o € X. Then there
exists a universal constant C' > 0 (depending only on the generators of I' and
the fixed point o) such that for every ay,as € A% satisfying a; # a3 ', and for
every x € Uy, and y € U,,, we have

(14) d(z,y) = d(z,0) + d(y,0) — C.

Proof. Since C,, and C,, are disjoint, for every ay, as € AT satisfying a; # a;*rl,

the same happens for the sets U,, and U,,. Let z € U,, and y € U,,. The
geodesic segments [o0,z] and [o,y] form an angle uniformly bounded below,
hence d(z,y) = d(z,0) + d(y,0) — C for a universal constant C' > 0.
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Let (&) be the geodesic ray [o,w 1 (c?"1x)). Using (14), we have
7-O(O’i‘rE) = Bwfl(aiz) (Oa :Eio)
= Bw71(gi+11)($;10, O)
= tli)nolo d(&, zi0) — d(&f, 0)
= [d(gza O) + d(O, l’iO) - C] - d(é-;a 0)
= d(o0,z;0) — C.

Thus
exp(—t7o(o'z)) < exp(tC) exp(—td(o, z;0)).

Therefore

In particular,
the pressure P,(—t7) is finite for every t > max{d,,,1 <1i < Na}.

Denote 0p max := max{dp,,1 < i < Na}. The simplest example to consider
is a real hyperbolic space X. In this case d<p,~ = 1/2 for any ¢ € {1,..., Na}.
In particular, dp max = 1/2. More generally, if we replace hyperbolic space by a
manifold of constant negative curvature equal to —b?, then d—,~ = b/2. In the
case of non-constant curvature some bounds are known, indeed if the curvature
is bounded above by —a? then d,~ > a/2 (see [DOP00]).

Recall that at a symbolic level we have hyop(®) = inf {¢ : P,(—t7) < 0}. In
particular, if the derivatives of the sectional curvature are uniformly bounded,
then Theorem 4.4, Proposition 4.9 and equality (11) imply

(15) htop(g) = 61" = htop(q)).

The existence of a measure of maximal entropy for the flow (g:) is related
to convergence properties of the Poincaré series at the critical exponent. In-
deed, using the construction of Patterson and Sullivan ([Pat76], [Sul84]) of a
I-invariant measure on 02X, it is possible to construct a measure on 7' X which
is invariant under the action of I" and the geodesic flow. This measure induces a
(g¢)-invariant measure on T X /T called the Bowen—Margulis measure. It turns
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out that, if the group I' is of convergence type, then the Bowen—Margulis mea-
sure is infinite and dissipative. Hence the geodesic flow does not have a measure
of maximal entropy. On the other hand, if the group I' is of divergence type,
then the Bowen—-Margulis measure is ergodic and conservative. If finite, it is
the measure of maximal entropy.

It is therefore of interest to determine conditions that will ensure that the
group is of divergence type and that the Bowen—Margulis measure is finite.
It is along these lines that Dal’bo, Otal and Peigné [DOPO00] introduced the
following:

Definition 4.12: A geometrically finite group I' satisfies the parabolic gap
condition (PGQ) if its critical exponent Jr is strictly greater than the one of
each of its parabolic subgroups.

It was shown in [DOP00, Theorem A] that if a group satisfies the PGC-
condition, then the group is divergent and the measure of Bowen—Margulis is
finite [DOP00, Theorem B]. In particular, it has a measure of maximal entropy.
Note that a divergent group in the case of constant negative curvature satisfies
the PGC-property.

In our context, an extended Schottky group is a geometrically finite group
such that all the parabolic subgroups have rank 1. Moreover, by Condition (C4)
and Theorem 4.3, it satisfies the PGC-condition. Thus, the following property
is a direct consequence of Theorem 4.10, Theorem 4.3 and (15).

PROPOSITION 4.13: Let X be a Hadamard manifold with pinched negative sec-
tional curvature and let I' be an extended Schottky group satisfying
N1 + No > 3. Assume that the derivatives of the sectional curvature are uni-
formly bounded. If (Y, ®) is the symbolic representation of the geodesic flow on
T'X/T, then sq < htop(®).

5. Escape of mass for geodesic flows

This section contains our main results relating the escape of mass of a sequence
of invariant probability measures for a class of geodesic flows defined over non-
compact manifolds. We prove that there is a uniform bound, depending only
on the entropy of a measure, for the amount of mass a measure can give to the
cusps. We also characterise the amount of entropy that the cusp can have. These
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results are similar in spirit to those obtained in [EKP15, ELMV12, KKLM17]
for other types of flows.

THEOREM 5.1: Let X be a Hadamard manifold with pinched negative sectional
curvature and let I' be an extended Schottky group of isometries of X satis-
fying N1 + Ny = 3. Assume that the derivatives of the sectional curvature
are uniformly bounded. Then, for every ¢ > 0, max there exists a constant
M = M(c) > 0 such that for every v € Mg, with h,(g) > ¢, we have

JTdu < M,

where v has a symbolic representation as (u x m)/((pn x m)(Y)). Moreover, the

value 0, max IS optimal in the following sense: there exists a sequence (v,) <

Mg, of g-invariant probability measures such that lim,_,q4 STd/Ln = o0 and
i by, (9) = 0p max-

Proof. This is a direct consequence of Theorems 3.3 and 3.7 using the symbolic
model for the geodesic flow on 71X /T.

The following corollary is just an equivalence of the first conclusion in Theo-
rem 5.1 (see also Theorem 3.7).

COROLLARY 5.2: Assume X and T' as in Theorem 5.1. If (v,) € Mg, is a
sequence of (g;)-invariant probability measures such that lim,_,o §7dpu, = ©
then

)

limsup Ay, (9) < 0pmax-
n—o0

We are now in position to prove the main result about escape of mass.

THEOREM (1.2): Let X be a Hadamard manifold with pinched negative sec-
tional curvature and let I' be an extended Schottky group of isometries of X
satisfying N1 + No = 3. Assume that the derivatives of the sectional curva-
ture are uniformly bounded. Then, for every ¢ > dp max there exists a constant
m = m(c) > 0, with the following property: If (v,) is a sequence of ergodic
(g¢)-invariant probability measures on T'X /U satisfying h,, (g) > ¢, then for

every vague limit v, — v, we have

v(T'X/T) = m.
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In particular, if v, — 0, then limsup h,, (9) < Opmax. Moreover, the value
dpmax IS optimal in the following sense: there exists a sequence (v,) of
(g¢)-invariant probability measures on T'X /I" such that hy, (9) — 0pmax and

v — 0.

Proof. Since every ergodic measure in M, with support in X\ has zero en-
tropy, we can suppose that v, belongs to Mg, for every n € N. Observe now
that the cross-section S < T1X/T" defined in (12) is bounded. Hence, using the
identification ¥ : g — Y given by Theorem 4.4 and fixing 0 < r < inf,ex 7(2),
there exists a compact set K, = T*X/I' such that

Y x[0,r]) ~ € U(K,).

Let u,, be the probability measure on X associated to the symbolic representa-
tion of v,. By Theorem 5.1, we have

erun < M.

Hence

Vn(Kr) = Wi (VU(K;)) = Wavn (X x [0,7]/ ~)

_ §x §o dtdpn
§rdpy,

r
Z
In other words, every vague limit v of the sequence of ergodic probability mea-
sures (vy, ), satisfies v(K,.) = r/M. In particular, we obtain v(T' X /T") = r/M.
By setting m = infex 7(2)/M, the conclusion follows.

Before giving the proof of the optimality of d, max, We need the following
result.

PROPOSITION 5.3: Let I' be an extended Schottky group of isometries of X.
Let p € A be a parabolic isometry. We can choose a hyperbolic isometry h € I’
for which the groups I', =< p, h™ > satisfy the following conditions:

(1) The group T',, is of divergence type for every n > 1.
(2) The sequence (dr, ), of critical exponents satisty dr, — dp as n goes
to o0.
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(3) The following limit holds:
n

lim 0.

n—00 ZVGP e—0r,d(z,yx) -

Proof. The proof is based on that of [DOP00, Theorem C]. Let G be a group; we
will use the notation G* for G\{id}. Define P =< p > and take Up < X U 0X
a connected compact neighbourhood of the fixed point £, of p such that for
every m € Z* we have p™(0X\Up) < Up. We could take Up so that Up n 0X
is a fundamental domain for the action of P in 0X\{{,}. Because I' is non-
elementary and Ar is not contained in Up, it is possible to choose h € T" a
hyperbolic isometry of X such that its two fixed points &;,-, &, do not lie in Up.
We have used the fact that a pair of points fixed by a hyperbolic isometry is
dense in A x A. Fix x € X over the axis of h. Since I is an extended Schottky
group, for every k € N the elements p and h¥ are in Schottky position. In
particular, for H;, =< h¥ > we can find a compact subset Uy, < X u 0X
satisfying the following three conditions:

(1) H*(0X\Up,) < Ug,.

(2) UHk N Up = @

(3) x ¢ Upn, vUp.

Since P and Uy, are in Schottky position it is a consequence of the Ping
Pong Lemma that the group generated by them is a free product. By the same
argument as that of Lemma 4.11, there is a positive constant C' € R such that
for every y € Ug, and z € Up, we have

Applying inequality (16) and the inclusion properties described above we obtain
(A7) d(x,p™hFr o pmipknig) > Z d(x,p™x) + Z d(z, hFiz) — 2kC,

where m; € Z*. As remarked in [DOPO00] the sum
]5(5) = Z Z exp(—sd(:z:,pmlhlml coop™a pR x))
j=1 m,mieZ*
is comparable with the Poincaré series of I'y.. Indeed, since h is hyperbolic both
have the same critical exponent. Using the inequality (17) we obtain

P(s) s Z <e2sC Z e—sd(@h" ") Z e—Sd(w,pmm)>J.

j=1 nezZ* mezZ*



Vol. 225, 2018 GEODESIC FLOWS 641

Because of our choice of z, if | := d(x, hx) then d(x, hNz) = |N|l for all N € Z.

Thus
efslk

—sd(z,hF"x)
> e <20 e
nez*
Let sc := dp + € > dp and denote P, =3 e~ (0P +s)d(@.p™2). then the sum P,

is finite. Assuming e small, we get a constant D such that

e—sekl

2s.C
€2

Z esed@p™ ) o pe=skip

mez*

Hence, if log(DP.)/s.l < k, then De™*<*' P, < 1 and therefore dr, < s.. Observe
that the function ¢ — log(DP;)/s; is continuous, decreasing and unbounded
in the interval (0,7), for any 0 < n < 1. We can then solve the equation
log(DP;)/sil = k — 1, where t € (§p,0, + 1) and k is large enough. We call this
solution €. By construction dr, < s.,. It follows from the definition of € that
lim,, 0 Pe,, = 9. Observe that

k - ko _ log(DP.,)/ (s 1) +1
Z'yep e~ o d(@7) TP P, ,

€k k

but the RHS goes to 0 as k — 00. Since p is of divergence type, it follows from
[DOPO00, Theorem A] that T'y, is of divergence type.

We proceed to show an explicit family of measures satisfying the property
claimed in the second part of Theorem 1.2. We remark that the measures
constructed in Theorem 5.1 cannot be used at this point, since a compact set in
T1X /T is not necessarily a compact set in the topology of Y. Hence, the fact
that §7du, — 00 does not imply that v, — 0. Despite this difficulty, we can
use the geometry to construct the desired family.

Denote by p a parabolic isometry in the generator set A4 with maximal critical
exponent, that is 6, max = dp. Take I';, =< p, h™ > as in Proposition 5.3. Let
mZM be the Bowen—-Margulis measure on 71X /T,,. Since an extended Schottky
group is a geometrically finite group, the measure m2 is finite [DOP00, The-
orem B]. Moreover, it maximises the entropy of the geodesic flow on T* X /H,,
[OP04, Theorem 2]. In other words h, 51 (g) equals dr,, . Recall that the critical
exponent dr, converges to 6, max as n goes to infinity, therefore

(18) BBy (9) = 0p max-
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Using the coding property, we know that T X /T, (except vectors defining
geodesics pointing to the I',-orbit of the fixed points of h and p) is identified
with Y, = {(z,t) e ¥, x R: 0 <t < 7(x)}/ ~, where

Yn = {(a]")iez : a; € {p, K"}, m; € Z},

and the geodesic flow is conjugated to the suspension flow on (Y;,, 7) (same 7 as

before, but for this coding). It is convenient to think of (X,,0) as a sub-shift

BM

of (¥, 0). Since the Bowen—Margulis measure m,;

is ergodic and has positive
entropy, it needs to be supported in Y, under the corresponding identification,
i.e. in the space of geodesics modeled by the suspension flow. In particular, we

BM a5 supported in some invariant subset of Y. Let us call vZM

can consider m,; b

the image measure of mZM induced by the inclusion Y, <> Y and normalized

so that v2M

is a probability measure. Observe that (18) implies that

lim h,, (9) = 6p max-

n—o0
We just need to prove that 5™ — 0 to end the proof of Theorem 1.2. This se-
quence actually dissipates through the cusp associated to the parabolic element
p. Recall that &, denotes the fixed point of p at infinity. Define

Ne,(s) :={x e X : B¢, (0,x) > s},

where o € X is a reference point. Since I' is geometrically finite, for s large
enough N¢ (s)/ < p > embeds isometrically into 7' X/T', i.e. it is a standard
model for the cusp at &,. By definition, the group < p > acts co-compactly on
Ar\{¢,}. In other words, if we consider a fundamental domain for the action
of P on Ar\{&p}, say D, then Ap (D is relatively compact in D. Clearly the
other fundamental domains are given by vD where v € P.

In [DOPOQ] it is proven that for any geometrically finite group I" the Bowen—
Margulis measure in the cusp C satisfies a bound of the type

1 — xr,pxr
Ar.c Z d(z,pr)e drd(zpr) < mIJ;M(Tlc)

(19) peP
<Are Y de pr)e-TiEr),
peP
Here the point z is chosen inside C' and the constant Ar ¢ basically depend on
the size of C' and the minimal distance between Ar n D and ¢D.
Define Q; = N¢,(s;)/ < p >, where the sequence (s;);>1 is increasing with
lim; s; = c0. We assume )1 provides a standard cusp neighborhood. Denote
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by p, the projection
pn:T'X/T, - T'X/T,
induced by the inclusion at the level of groups. By definition

1
BM _ BM
Vn - mEM(TlX/Fn) (pn)*mn
We will prove that lim, . vZM(T1((X/T)\Q;)) = 0 for any . For this it is

enough to prove the limit

b MR 0 TH(X/T)\ Q)

- 0.
n=o mBM (pr Ty

Observe that, if m, : X/T', — X/T is the natural projection, then the sets
7, 1Q; are represented by the same one in the universal covering. We denote
by S; this cusp neighborhood.

LEMMA 5.4: The measure mBM (p 1T1((X/T')\Q;))) grows at most linearly in
k., that is, for a certain positive constant C; we have

(20) my M (py ' TH((X/T)\Q))) < Cin.

Proof. Let Dg (resp. D,,) be the fundamental domain of I" (resp. T';) containing
0 € X. By the definition of fundamental domain, there exists a set T,, < I" such
that

(1) for any v1,v2 € T,, and 1 # 72, we have y1int(Dg) N Y2int(Dy) = &,
and

(2) UyeTn FYDO = Dp.
Denote by K; the compact K; = (X/T')\Q; and let IN(Z be the lift of K; into

X intersecting Dg. By definition, any lift of K; into X intersecting D,, is a

translation of I}l by an element in 7. Since me

Bowen-Margulis measure mZ on X satisfies

is supported in Ar,, the

mBM TR ) <)) mBM(T(KY),
YE€Tn

YRK;inC(Th) %Y

where C(T',,) is the convex hull of L(T',,) x L(T',,) in X u 0X. By construction
and convexity of the domains C.,, we obtain

#{yeT, :vK; nC(T,) # &} < 2n—1.
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In particular, we have
my M (p, T () < (20 — DM (TH(K)).
But again, by estimates given in [DOP00], the measure mZ (T (K;)) satisfies
my M (TN (K;)) < Li,

where L; is a constant depending on the diameter of INQ By setting C; = 2L;,
the conclusion follows.

Using the comments just below equation (19) we know that the constants
Apq, 0, can all be considered equal to Ap, o,. We have then
(21) mfjw(TlSi) Sy . Z d(x,px)e—érnd(z,pz)_
peP

Hence, from (20) and (21), we get

mBM (p- 1T (X\ Q) - A, 0,Cin
mBM (p1T1Q;) Ypep d(x, pr)edrnd@pe)
Cin

ZPEP e=0rnd(@.pz)”
Finally, property (3) in Proposition 5.3 implies that the last term above
converges to 0. Therefore
L mE (T (X Q)
Y (' T Qy)

which concludes the proof of Theorem 1.2.

=0,

COROLLARY 5.5: Let X and I' be as in Theorem 1.2. Then the entropy at
infinity of the geodesic flow is equal to the maximal parabolic critical exponent,
that is

hoo(9, T X /T) = 6p max-

6. Thermodynamic formalism

In this section we always consider X a Hadamard manifold with pinched nega-
tive sectional curvature and I' an extended Schottky group of isometries of X
satisfying N1 + No > 3. We also assume that the derivatives of the sectional
curvature are uniformly bounded. Our goal is to obtain several results on ther-
modynamic formalism for the geodesic flow over X/I". Some of these results
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were already obtained, without symbolic methods, by Coudéne (see [Cou03))
and Paulin, Pollicott and Schapira (see [PPS15]). However, the strength of
our symbolic approach will be clear in the study of regularity properties of the
pressure (subsection 6.2).

Here we keep the notation of subsection 4.2. Thus, the geodesic flow (g;) in
the set Qg can be coded by a suspension semi-flow (Y, ®) with base (X, o) and
roof function 7: ¥ — R.

6.1. EQUILIBRIUM MEASURES. We will consider the following class of poten-
tials.

Definition 6.1: A continuous function f : T1X/T' — R belongs to the class
of regular functions, that we denote by R, if the symbolic representation
Ay 3 — Rof f|g, has summable variations.

We begin studying thermodynamic formalism for the geodesic flow restricted
to the set €1y. The following results can be deduced from the general theory
of suspension flows over countable Markov shifts and from the symbolic model
for the geodesic flow. With a slight abuse of notation, using the identification
explained before, we still denote by f : Y — R the given map f : Qg — R.

Definition 6.2: Let f € R. Then the pressure of f with respect to the geodesic
flow g := (g¢) restricted to the set g is defined by

Pou(f) i= lim - log > exp (L f(er(x,0)) dk) XCio (2)

T t—oo t
o (2,0)=(2,0) 0<s<t

This pressure satisfies the following properties:

PROPOSITION 6.3 (Variational Principle): Let f € R. Then

Pou(f) = sup { o) + |

Qo

fdv:ve Mg, and —J.

Qo

fdy<oo},

where Mg, denotes the set of (g;)-invariant probability measures supported in
Q.

PROPOSITION 6.4: Let f € R. Then

PQg(f) = Sup{Pg|K(f) K e ICQo(g)}v

where Kq,(g) denotes the space of compact g-invariant sets in €.
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Remark 6.5 (Convexity): It is well known that for any K € Kq,(g) the pressure
function Py (-) is convex. Since the supremum of convex functions is a convex
function, it readily follows that Pq,(-) is convex.

PROPOSITION 6.6: Let f € R. Then there is an equilibrium measure vy € Mgy,
that is,

Poy(f) = hu(9) + | f dvy,

for f if and only if we have that P,(Ay — Py(f)T) = 0 and there exists an
equilibrium measure jiy € M, for Ay—Pqg(f)7 such that § rdpuy < o0. Moreover,

if such an equilibrium measure exists, then it is unique.

In order to extend these results to the geodesic flow in T'X/I" we use the
second conclusion of Proposition 4.9.

Definition 6.7: Let f € R. Then the pressure of f with respect to the geodesic
flow g := (g¢) in T*X /T is defined by

Py(f):= max{PQO(f),ff duhl,...,ff dthl}.

PROPOSITION 6.8 (Variational Principle): Let f € R. Then

Py(f) =sup{hl,(g)+Jf dv:ve M, and fff dy<oo}.
PROPOSITION 6.9: Let f € R. Then

Py(f) = sup{Pyx(f) : K € K(g)},

where K(g) denotes the space of compact g-invariant sets.

PROPOSITION 6.10: Let f € R be such that sup f < Py(f). Then there is an
equilibrium measure vy € M,y for f if and only if we have that
Po,(Ay — Py(f)T) = 0 and there exists an equilibrium measure puy € M, for
Ay — Py(f)7 such that §7duy < co. Moreover, if such an equilibrium measure
exists, then it is unique.

Proof. Note that if sup f < P,(f), then an equilibrium measure for f, if it
exists, must have positive entropy, since the measures v, with i € {1,..., N},
have zero entropy (see Proposition 4.9). The result follows from Proposition
6.6.
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The next result shows that potentials with small oscillation do have equilib-
rium measures; this result can also be deduced from [Cou03, PPS15]. Our proof
is short and uses the symbolic structure.

THEOREM 6.11: Let feR. If

sup f —inf f < hiop(9) — Op,maxs
then f has an equilibrium measure.

Proof. Assume that the measures v™ are not equilibrium measures for f, oth-

erwise the theorem is proved. Therefore, we have that Py(f) = Po,(f). We
first show that P,(A; — P,(f)7) = 0. Note that for every z € X,

7(x)inf f < Ag(x) < 7(x)sup f.
By monotonicity of the pressure we obtain
P,((inf f —t)7) < P,(Afy —t1) < P,((sup f — t)7).
Let t € (S0 + sup f, hop(g) + inf f) and recall that s = 0p max. Then
0 < P,((inf f —t)7) < Po(Af —t1) < Py((sup f — t)7) < o0.

Since Py(f) < oo and the function ¢ — P,(Ay — ¢7) is continuous with
limy_,o0 Py (Ay — t7) = —o0, we obtain that P,(A; — P,(f)7) = 0. Since the
system X has the BIP condition and the potential Ay — P,(f)7 is of summable
variations, it has an equilibrium measure p. It remains to prove the integrability
condition. Recall that
0

atPo.(Af - tT)‘t:Pg(f) =— J.Tdu.

But we have proved that the function ¢ — P,(Aj — t7) is finite (at least) in
an interval of the form [P, (f) — €, P;(f) + €]. The result now follows, because

when finite the function is real analytic.

6.2. PHASE TRANSITIONS. This subsection is devoted to studying the regularity
properties of pressure functions ¢ — Py(tf) for a certain class of functions f.
We say that the pressure function ¢t — P,(¢f) has a phase transition at
t = t¢ if the pressure function is not real analytic at ¢ = to. The set of points at
which the pressure function exhibits phase transitions might be a very large set.
However, since the pressure is a convex function it can only have a countable

set of points where it is not differentiable. Regularity properties of the pressure
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are related to important dynamical properties, for example exponential decay
of correlations of equilibrium measures. In the Axiom A case the pressure is real
analytic. Indeed, this can be proved noting that, in that setting, the function
t — P,(Aj —tr) is real analytic and that P,(Ay — Pp7) = 0. The result then
follows from the implicit function theorem noticing that the non-degeneracy
condition is fulfilled:

0

atPg(Af —tr) = — JTdu <0,

where p is the equilibrium measure corresponding to Ay — t7. The inequality
above, together with the coding properties established in [Bow73, BR75, Rat73],
allow us to establish that the pressure is real analytic for regular potentials in
the Axiom A setting. In the non-compact case the situation can be different.
However, the only results involving the regularity properties of the pressure
function for geodesic flows defined on non-compact manifolds, that we are aware
of, are those concerning the modular surface (see [IJ13, Section 6]). In this
section we establish regularity results for pressure functions of geodesic flows
defined on extended Schottky groups. We begin by defining conditions (F1)
and (F2) on the potentials.

Definition 6.12: Consider a non-negative continuous function f : T'X/T" — R.
We will say f satisfies Condition (F1) or (F2) if the corresponding property
below holds.

(F1) The symbolic representation Ay : ¥+ — R is locally Holder and bounded
away from zero in every cylinder Cym < X, where a € A, m € Z.
(F2) Cousider any indexation (C,,)nen of the cylinders of the form Cym. Then

sup{Af(z) : z e Cy} _0
n—w inf{r(z):z e Cy,} '

We say f belongs to the class F if it satisfies (F1) and (F2).

In the following Lemma we establish two properties of potentials in F that
will be used in the sequel.

LEMMA 6.13: Let f be a potential satisfying (F1) and (v,) a sequence of mea-

sures in Mg, such that v, = (:":TZL)‘(‘Q,). Then:

(1) if limy, o0 Sﬂo fdv, =0, then lim,, o § 7dpu,, = o0;
(2) if f satisfies (F2) and lim,—,o § 7dp, = 00, then lim,,_,o Sﬂo fdv, = 0.
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Proof. To prove (1) we will argue by contradiction. Assume, passing to a sub-
sequence if necessary, that

lim | 7du, = C.

n—o0

Let € > 0. There exists N € N such that for every n > N we have that

erun C” < €.

LEMMA 6.14: Let r > 1. Then for every n > N we have that

C+e

s rl@) <rh) > 1=

Proof of Lemma 6.14. Since the function 7 is positive we have

J.Td,un > run({x:7(x) = r}) + J. Ty,

{z:7(x)<r}

Thus
Crezrpn({z:7(z) =1}),
C+e
T e 7la) 2 ).
Finally
pn({z i 7(x) <r}) >1-— C'Jre.
r

Note that the set {z : 7(z) < r} is contained in a finite union of cylinders on
Y. This follows from the inequality d(o,a™0)—C < 7(z), which is a consequence
of Lemma 4.11, and the fact that A is finite. Since Ay is bounded away from
zero in every one of them, there exists a constant G(r) > 0 such that

Ag(z) > G(r),
on {z: 7(x) < r}. Thus

C+e
fdv, = §o Ay (@)dun > Sir@r<ry Br(@)dptn > Gr)(1=°F )
% S Tdpin S Tdpin C—e¢
If we choose r large enough so that 1 — C:re > (0 we obtain the desired contra-
diction.
To prove (2), observe that for every € > 0 there exists N > 1 such that for

every k = N we have
sup{As(x) : z € Cy}
inf{r(x) : x € Cy}
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Hence

1
lim | fdv, = lim J Ardpy,
n—o n—o Srd‘un ];1 !

1
= lim Z Ardpy,
k=N JCk

J SR (@) 2 € Ohd yi 0 - 2 € CpYdpn
k=N JC

N
5.

. inf{r(x) : x € Cy}

N
5.

Z J einf{r(x) : x € Cy}dun
k=N YOk

Since € > 0 is arbitrary, the conclusion of the second claim follows.
Combining Theorem 3.7 and Lemma 6.13, we obtain the following

LEMMA 6.15: Let I' be an extended Schottky group satisfying N1 + Na = 3
and let f be a function satisfying property (F1). If (vn)n < Mg is a sequence
of invariant probability measures for the geodesic flow such that

lim fdv, =0,

n=% Jrixr
then
limsup Ay, (9) < Op,max-

n—0o0

Proof. If v, € Mgq,, the Lemma follows directly from (1) in Lemma 6.13 and
Theorem 3.7. If v, € M, with support in X\Qq, then we can consider the
measure Uy =1y, Zl L v where the constants ¢! 20 are chosen so that 7,
(periodic orbit associated to hyperbolic generator h;)=0. Let C,, =7, (X /T). If
Cp,=0, then h,, (g) = 0 and there is no contribution to the desired limsup h,,, (g).
Otherwise define u, =C,; ',,. By definition w,, is a probability measure in May;
we claim lim,,_,o § fdu, = 0. Observe that { fdv,, = { fdu, +ZN11 cvhi(f) has
non-negative summands and it is converging to zero, it follows that § fdv, — 0,
¢’ = 0 as n — . By definition C,, = 1 —Zivll cl', therefore C,, — 1. Recalling
= C,; ', we get lim § fdu, = 0.

Because v, = CpunH1-Cp)(1-C,)~ 121 L vt we have hy, (9) = Chrhu, (9)-

Finally, since C,, — 1 and limsup,,_,, hu, (¢ )< 5p,max (because u, € Mgq,), we

get limsup,,_, . hu,, (9) <Ip max-



Vol. 225, 2018 GEODESIC FLOWS 651

The next Theorem is the main result of this subsection and it is an adaptation
of results obtained at a symbolic level in [IJ13]. Tt is possible to translate those
symbolic results into this geometric setting thanks to Theorem 4.10.

THEOREM (1.3): Let X be a Hadamard manifold with pinched negative sec-
tional curvature and let I' be an extended Schottky group of isometries of X
satisfying N1 + Ny > 3. Assume that the derivatives of the sectional curvature
are uniformly bounded. If f € F, then

(1) For every t € R we have that Py(tf) = 0p max-
(2) We have that limy—,_o, Py(tf) = 0p max-
(3) Lett' :=sup{t € R: Py(tf) = 0p max}. Then

8 max ift <t
Pg(tf): &

real analytic, strictly convex, strictly increasing ift > t'.

(4) Ift > ¢/, the potential tf has a unique equilibrium measure. If t < t' it
has no equilibrium measure.

Note that Theorem 1.3 shows that when ¢’ is finite, then the pressure function
exhibits a phase transition at ¢ = ¢/, whereas when ' = —oo the pressure
function is real analytic where defined (see Figure 2). Recall that dp max = Sco.

Py (tf) Py(tf)
/ i

6p,max 5}7,max
[ 2

t t' t
No phase transitions Phase transition at t = ¢/

Figure 2.

Proof of (1). The first claim follows from the variational principle. By The-
orem 5.1 there exists a sequence (v,) < M, such that lim, . by, (9) = Seo
and their corresponding probability o-invariant measures (u,) in X satisfy
lim, o0 { 7dpn, = 0. Therefore, by (2) in Lemma 6.13, we also have that
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lim,, o § fdv, = 0. Hence, for every t € R, we have

Soo = Opmax = lim <hl,n (g)+t fdz/n)
Qo

n—o0

< sup {hl,(g) + tjfdy ‘VE ./\/lg} = P,(tf).

Proof of (2). Sincet — P,(tf) is non-decreasing and bounded below, the follow-
ing limit lim,_,_ o, P, (¢f) exists. Define A € R as the limit lim;_,_o, Py(¢f) :=
Using the Variational Principle, we can choose a sequence of measures (v,,), in
M, for which

lim h,, —nffdl/n—A
n—0o0
Since A is finite it follows that lim, .o § fdv, = 0. Hence, from Lemma 6.15,

we obtain limsup,, ., hy, (9) < . In particular,

Son < tlim Py(tf)

= lim hu, —nJ.den

Therefore, we have that A = 0p max-

Proof of (3). Real analyticity. We first prove Py(tf) = Pqo,(tf). After this is
done we can proceed with standard regularity arguments in the symbolic pic-
ture. Observe that for ¢ < 0 the pressure Py, (tf) is always positive while the
contribution of the pressure on (T X /T')\Qo is negative, so Py(tf) = Pq,(tf)
for every t < 0. Consider now ¢ > 0. Pick v as in Proposition 4.9 (see also
Definition 6.7). Denote by x_ (resp. x), the repulsor (attractor) of h; and 7y,,
the geodesic defined by those points. Consider p a parabolic element in .4 and
let 7y, be the geodesic connecting the points £~ and £ where w(£7) = p~1h—"

and w(¢1) = hmp. Denote 74 the geodesic connecting p~!

z_ and zy. Observe
that 7, descends to a closed geodesic in 7' X /I". By comparing 7, and v, we
see that for any € > 0, the amount of time ~, leaves a e-neighborhood of ~p,
is uniformly bounded for big enough n. Let v, be the invariant probability
measure defined by the closed geodesic 7,; then we get the weak convergence

v, — v, Then

tJ.fdyhi = 1in;OtJ.den < hnolo(h”” (9) + tJ.den) < Po, (tf).
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This give us P, (tf) = Po, (tf).

The pressure function ¢ — Py(tf) is convex, non-decreasing and bounded
from below by sy. We now prove that for ¢ > ¢’ it is real analytic. Note that
since ' < t we have that

P,(tAy — s47) > 0,
possibly infinity, and that there exists p > so such that 0 < P,(tAf —p7) < 0
(see [1J13, Lemma 4.2]). Moreover, Condition (F'2) implies that Py(tf) < oo
for every t > t/, hence

PO‘(Atf — Pg(tf)T) < 0.

Since 7 is positive, the function s — P, (tAf — s7) is decreasing and
SEI}}DO P,(tAy — s1) = —c0.

Moreover, since the base map of the symbolic model satisfies the BIP condition,
the function (s,t) — P,(tAy — s7) is real analytic in both variables. Hence,
there exists a unique real number sy > so such that Py (tAy — sy7) = 0 and

0
P,(tAs — < 0.
85 ( f ST) s=sj¢
Therefore, P,(tf) = sy and, by the Implicit Function Theorem, the function

t — P,(tf) is real analytic in (¢/,t*).

Proof of (4). First note that the previous claims imply that no zero entropy
measure can be an equilibrium measure. Moreover, in the proof of (3) we
obtained that for t € (t',00) we have that P,(tAy — P,(¢tf)7) = 0. Since the
system satisfies the BIP condition, there exists an equilibrium measure py € M,
for tAy — Py(tf)7 such that § 7dps < o0 (see Theorem 2.9). Therefore it follows
from Proposition 6.6 that ¢f has an equilibrium measure.

In order to prove the last claim, assume by contradiction that for some
t; < t’ the potential ¢1 f has an equilibrium measure v4,. Then

5 = Py(t1f) = huy, (9) + 1 f fdu,.
Qo

Since f > 0 on 2y, we have that Sﬂo fdvy, = B > 0. Thus the straight line
7= hy, (9) +1§q, fdvy, is increasing with r, therefore for ¢ € (t1,¢') we have

that
hy, (9) +1 fdvy, > s = Py(tf).
Qo
This contradiction proves the statement.



654 G. IOMMI, F. RIQUELME AND A. VELOZO Isr. J. Math.

6.3. ExaAMPLES. We will use the following criterion, first introduced in [1J13],
to construct phase transitions.

ProposiTION 6.16: Let f € F. Then:

(1) If there exists tg € R such that P, (toAj — seT) < 00, then there exists
t' < to such that for every t < t' we have

Py(tf) = 0.

(2) Suppose that there exists an interval I such that P,(tAf — soT) = o0
for every t € I. Thent — Py(tf) is real analytic on I. In particular, if
for every t € R we have P,(tAy — so7) = o0, then t — Py(tf) is real
analytic in R.

The proof of this Lemma follows as in [IJ13, Lemma 4.5, Theorem 4,1]. We
now present an example of a phase transition (Example 6.18) and another one
with pressure real analytic everywhere (Example 6.19). A useful lemma in order
to construct an example of a phase transition is the following

LEMMA 6.17: Let (an)n be a sequence of positive real numbers such that

Zle a, converges for every t > t* and diverges at t = t*. Then there ex-

ists a sequence (e,), of positive numbers such that

lim e, =0
n—o0

and

& *
tT +en
E Q,, < Q0.

n=1

Proof of Lemma 6.17. Let (o, )m be any sequence of real numbers in (0, 1]
converging to zero. Note that for every m > 1 we have

& *
t* +a
E a,, m < 0.
n=1

Then there exists an integer N,,, = 1 such that

m
0

t¥+a 2
Z a, Tem < 1/m*.
=N,

n m



Vol. 225, 2018 GEODESIC FLOWS 655

We can suppose without loss of generality that N, < Np,+1. Define g, for

every Ny, <n < Npy1 a8 €y = up, and g, = 1 for 1 <n < Ny. Thus
y + )
[e’e] N;—1 0 Nmt1—
t*¥ e, t* e t*+5,
Saree = Sy 58 e
n=1 m=1 n=N,,
Ni—1 0 Nmi1—1
S 5 e
n
n=1 m=1 n=N,,
N;—1 o)

g t*+1 + Z Z at +om

=1 m=1n=N,,
Ni—1 0
< Y a Y 1ym?
n=1 m=1

<o0.

Example 6.18 (Phase transition): Let T' be a Schottky group satisfying
N7 + N5 > 3 and assume that there are at least 2 different cusps, i.e. No > 2.
Moreover, assume there exists a unique parabolic generator p with 6, = 6, max.
Recall that the series }} _, e~ 9d(0:p™0) diverges since p is a parabolic isometry
of divergence type. Take a decreasing sequence of real numbers ¢, > 0, as
in Lemma 6.17, such that lim,, ,p&, = 0 and > _, e~ ptem)d(op™0) oo,
Define a function f°: 3% — R* by

(1) f°z) = em7 () if the first symbol of z is p™ for some m € Z,
(2) f°(x) =1 otherwise.

Observe that since 7 is locally Holder, the function f° is also locally Holder. We
first see that f° e F; for this, it is enough to check that Condition
(F2) holds. There exists a constant C independent of m such that
d(o,p™o) — C < 7(x) whenever x € Cpm. Then, if z,y € Cpm we have

7(x)/7(y) < d(o,p™0)/(d(0,p™0) = C),

i.e. sUpgec,,, T(2)/ infzec,m T(2) is uniformly bounded in m; this implies Con-
dition (F2). As shown in [BRWO04, Section 2], we can construct a continuous
function f: Y — R with Ay = f0. We define ¢ : ¥ — R by t(z) = (S0 + &m)
if the first symbol of = is p™, and sy otherwise. By simplicity we will denote
s(a™) = t(zx) if the first symbol of z is . Following the notation and ideas of
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the second part of the proof of Theorem 4.10, we obtain

Py (—Af—55T)
nlgrgo " 1ogm J;; Iexp <§) (As(c'z) + seo7(0 x))) XCh, (x)
n—1

nh—r»Iolo n 1Og Z Z 1_[ Cs(anll) —s(a;"%)d(o,a; o)
< nlglgo Tll, log Cr(so+1) Z Z 1_[ —s(a;"*)d(o,a;""0)
= nlglio Tll log Cn(se0+1) (Z Z es(a”)d(o,a’”o))

aeA meZ

= log CSOO+1 (Z Z e—s((f")d(o,a’"o)) )

a€A meZ

Observe that ] e—s(a™)d(0.a™0) conyerges for every s > 8, and every a # p.
On the other hand, the series ] _, e~ Optem)d(op™0) jg finite by construction.
In particular Py(—Aj — s, 7) is finite. Observe that f is a potential belonging
to the family F. Then from Proposition 6.16 it follows that ¢t — Py (tf) exhibits
a phase transition.

Example 6.19 (No phase transition): Let I' be a Schottky group satisfying
Ni + Ny = 3. Define fO : ¥ — R* to be constant of value 1 and construct
a continuous function f:Y — R with Ay = f%. Observe that

P,(t — $0o7) =t + Py(—85T) = 00.

Recall that P,(—s,7T) = o0, because the maximal parabolic generator is of
divergence type (see the first part of Theorem 4.10). Since 7 is unbounded and
10 is constant, we can apply Proposition 6.16 to show that ¢ — P,(tf) is real
analytic in R. In particular, it never attains the lower bound s;.
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Remark 6.20: In both examples above, the potential f is defined (a priori) only
on the set ©y. To extend it continuously to the entire manifold T X /T, it is
enough to define it to be equal to 0 on the complement (71X /T")\Qpo.
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