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ABSTRACT

In this paper we study the geodesic flow for a particular class of Rie-

mannian non-compact manifolds with variable pinched negative sectional

curvature. For a sequence of invariant measures we are able to prove re-

sults relating the loss of mass and bounds on the measure entropies. We

compute the entropy contribution of the cusps. We develop and study the

corresponding thermodynamic formalism. We obtain certain regularity

results for the pressure of a class of potentials. We prove that the pres-

sure is real analytic until it undergoes a phase transition, after which it

becomes constant. Our techniques are based on the one hand on symbolic

methods and Markov partitions, and on the other on geometric techniques

and approximation properties at the level of groups.

1. Introduction

This paper is devoted to studying ergodic and geometric properties of a class

of geodesic flows defined over non-compact manifolds of variable pinched neg-

ative curvature. These flows can be coded with suspension flows defined over

Markov shifts, albeit on a countable alphabet. This paper addresses problems

where the non-compactness of the ambient manifold plays a fundamental role.

Inspired by some recent results proved in the context of homogeneous dynamics

([ELMV12, EKP15]), we establish properties that relate the escape of mass of

a sequence of invariant probability measures for the geodesic flow with its mea-

sure theoretic entropies (see Section 5). Our study combines both geometric

and symbolic methods. A consequence of these results is that we can describe

the thermodynamic formalism for the flow. In particular, we construct a class

of potentials for which the pressure exhibits a phase transition (see Section 6).

The class of manifolds that we will be working on in the paper were intro-

duced in [DP98]. These manifolds are obtained as the quotient of a Hadamard

manifold with an extended Schottky group (see Subsection 4.2 for precise def-

initions). Groups in this class have maximal parabolic subgroups of rank 1,

therefore the manifolds are non-compact. It was shown in [DP98] that the

geodesic flow over the unit tangent bundle of those manifolds can be coded

as suspension flows over countable Markov shifts. The existence of a Markov

coding for the geodesic flow is essential for our results.

The idea of coding a flow in order to describe its dynamical and ergodic

properties has a long history, and a great deal of interesting and important
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results have been obtained with these methods. Probably, some of the most

relevant results using this technique are related to counting closed geodesics

and also estimating the rate at which their number grow [PP90]. A landmark

result is the construction of Markov partitions for Axiom A flows defined over

compact manifolds done by Bowen [Bow73] and Ratner [Rat73]. They actually

showed that Axiom A flows can be coded with suspension flows defined over

sub-shifts of finite type on finite alphabets with regular (Hölder) roof functions.

The study in the non-compact setting is far less developed. However, some

interesting results have been obtained. Recently, Hamenstädt [Ham] and also

Bufetov and Gurevich [BG11] have coded Teichmüller flows with suspension

flows over countable alphabets, and using this representation have proved, for

example, the uniqueness of the measure of maximal entropy. Another important

example for which codings on countable alphabets have been constructed is a

type of Sinai billiards [BS81a, BS81b].

As mentioned before, a main goal of the paper is to investigate the loss of

mass of sequences of invariant measures for the geodesic flow. Recently, the loss

of mass has been studied for the modular surface in [ELMV12]. Despite being

a particular case, the method displayed in [ELMV12] is quite flexible and has

the advantage that it can be understood purely geometrically. A more general

situation is studied in [EKP15], where this type of result is shown to hold for

geodesic flows on finite volume hyperbolic spaces of any dimension and type

(real hyperbolic, complex hyperbolic, quaternionic, Cayley plane).

We begin by introducing the notion of entropy at infinity of a dynamical

system defined over a non-compact topological space. This notion has also

been considered in a similar form by Buzzi in [Buz10] for countable Markov

shifts.

Definition 1.1: Let Y be a non-compact topological space and Ψ“pψtqtPR :YÑY

a continuous flow. We define the “entropy at infinity” of the dynamical sys-

tem as the number

h8pΨ, Y q “ sup
pνnqá0

lim sup
nÑ8

hνnpΨq,

where the supremum is taken over all the sequences of invariant probability

measures for the flow converging in the vague topology to the zero measure. If

no such sequence exists we set h8pΨ, Y q “ 0. Here hνpΨq denotes the measure-

theoretic entropy of a probability Ψ-invariant measure ν.
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Recall that the total mass of probability measures is not necessarily preserved

under vague convergence (as opposed to weak convergence). Note that Defini-

tion 1.1 can be extended to more general group actions whenever an entropy

theory has been developed for the group in consideration. Amenable groups are

a classical example of such.

In this paper we are able to compute h8pg, T 1X{Γq, where X is a Hadamard

manifold with pinched negative sectional curvature, Γ is an extended Schottky

group generated by N1 hyperbolic isometries and N2 parabolic ones, and pgtq
is the geodesic flow on the unit tangent bundle T 1X{Γ (see Subsection 4.2 for

precise definitions). Define

δp,max “ maxtδP : P parabolic subgroup of Γu,
where δH denotes the critical exponent of H ă IsopXq. We prove that

h8pg, T 1X{Γq “ δp,max.

It is worth mentioning that δp,max is strictly less than the topological entropy

of the geodesic flow. In our context, the non-compact pieces of dynamical

interest are modeled by cusps. That is why we refer to this quantity as entropy

in the cusps. More concretely, we prove that if a sequence of measures is

dissipating through the cusps, then the entropy contribution of the sequence

is at most δp,max. In [EKP15] it is proven that h8pA,ΓzGq “ htop{2, where
G is a connected semisimple Lie group of real rank 1 with finite center, Γ a

lattice in G, and A a one-parameter subgroup of diagonalizable elements over

R acting by right multiplication. In particular h8pg, T 1Sq “ 1{2, where S is a

hyperbolic surface with finite volume. We also obtain results in the case where

the sequence of measures keeps some mass at the limit. Our bounds are less

concrete than the analogous result in the homogeneous dynamical case though.

The following is one of our main results and gives the calculation of the entropy

in the cusps mentioned before.

Theorem 1.2: Let X be a Hadamard manifold with pinched negative sec-

tional curvature and let Γ be an extended Schottky group of isometries of X

satisfying N1 ` N2 ě 3. Assume that the derivatives of the sectional curva-

ture are uniformly bounded. Then, for every c ą δp,max there exists a con-

stant m “ mpcq ą 0, with the following property: If pνnq is a sequence of

pgtq-invariant probability measures on T 1X{Γ satisfying hνnpgq ě c, then for
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every vague limit νn á ν, we have

νpT 1X{Γq ě m.

In particular, if νn á 0, then lim suphνnpgq ď δp,max. Moreover, the value

δp,max is optimal in the following sense: there exists a sequence pνnq of

pgtq-invariant probability measures on T 1X{Γ such that hνnpgq Ñ δp,max and

νn á 0.

We also study regularity properties of the pressure function. In order to do

so, we make strong use of the symbolic coding that the geodesic flow has in the

manifolds we are considering. The idea of using symbolic dynamics to study

thermodynamic formalism of flows of geometric nature can be traced back to

the work of Bowen and Ruelle [BR75]. They studied in great detail ergodic

theory and thermodynamic formalism for Axiom A flows defined on compact

manifolds. The techniques they used were symbolic in nature and were based on

the symbolic codings obtained by Bowen [Bow73] and Ratner [Rat73]. In this

work we follow this strategy. We stress, however, that our symbolic models are

non-compact. There are several difficulties related to the lack of compactness

that have to be addressed, but also new phenomena are observed.

To begin with, in Subsection 2.6 we propose a definition of topological pres-

sure, P p¨q, that satisfies not only the variational principle, but also an approxi-

mation by the compact invariant sets property. These provide symbolic proofs

to results obtained by different (non-symbolic) methods in far more general set-

tings by Paulin, Pollicott and Schapira [PPS15]. The strength of our approach

is perhaps better appreciated in our regularity results for the pressure (Sub-

section 6.2). Note that the techniques in [PPS15] do not provide these type of

results. We say that the pressure function t ÞÑ P ptfq has a phase transition

at t “ t0 if it is not analytic at that point. It readily follows from work by Bowen

and Ruelle [BR75] that the pressure for Axiom A flows and regular potentials

is real analytic and hence has no phase transitions. Regularity properties of the

pressure of geodesic flows defined on non-compact manifolds, as far as we know,

have not been studied, with the exception of the geodesic flow defined on the

modular surface (see [IJ13, Section 6]).

There is a general strategy used to study regularity properties of the pressure

of maps and flows with strong hyperbolic or expanding properties in most of

the phase space but not in all of it. Indeed, if there exists a subset of the phase
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space B Ă X for which the restricted dynamics is not expansive and its entropy

equal to A, then it is possible to construct potentials f : X Ñ R for which the

pressure function has the form

(1) P ptfq :“
$&%real analytic, strictly decreasing and convex if t ă t1;

A if t ą t1.

Well known examples of this phenomena include the Manneville–Pomeau map

(see for example [Sar01]) in which the set B consists of a parabolic fixed point

and therefore A “ 0. The potential considered is the geometrical one: ´ log |T 1|.
Similar results for multimodal maps have been obtained, for example, in [DT,

IT10, PRL]. In this case the setB corresponds to the post-critical set and A “ 0.

Examples of maps in which A ą 0 have been studied in [DGR11, IT13]. For

suspension flows over countable Markov shifts, similar examples were obtained

in [IJ13].

In the case of geodesic flows, roughly speaking we are considering the set B

as the union of the cusps of the manifold. More interestingly, as we mentioned

before we are able to compute the entropy contributions of the cusps in the

geodesic flow. In Subsection 6.2 we construct a class of potentials, that we

denote by F , for which the pressure exhibits similar behaviour as in equation

(1). In those examples A “ δp,max. Note that it is possible for t1 to be infinity

and in that case the pressure is real analytic. The following is the precise

statement:

Theorem 1.3: Let X be a Hadamard manifold with pinched negative sectional

curvature and let Γ be an extended Schottky group of isometries of X satisfy-

ing N1 ` N2 ě 3. Assume that the derivatives of the sectional curvature are

uniformly bounded. If f P F , then:

(1) For every t P R we have that Pgptfq ě δp,max.

(2) We have that limtÑ´8 Pgptfq “ δp,max.

(3) Let t1 :“ suptt P R : Pgptfq “ δp,maxu. Then

Pgptfq “
$&%δp,max if t ă t1;

real analytic, strictly convex, strictly increasing if t ą t1.

(4) If t ą t1, the potential tf has a unique equilibrium measure. If t ă t1 it
has no equilibrium measure.
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In order to prove this result we need to relate symbolic quantities with geo-

metrical ones. This is achieved in Theorem 4.10 in which a symbolic parameter

of the suspension flow, the number s8, is proven to be equal to the geometric

parameter of the group δp,max. We stress that when coding a flow a great deal

of geometric information is lost. With this result we are able to recover part of

it.

Remark 1.4: In [RV] the authors recently studied the escape of mass phenom-

ena and the thermodynamical formalism for the geodesic flow on geometrically

finite groups (extended Schottky groups are a particular case of such). Their

approach is purely geometric, which gives more explicit bounds of the mass

of limit measures. However, our symbolic approach allows one to give precise

answers to questions relating the thermodynamical formalism, such as approx-

imation results for the topological pressure and the regularity of the pressure

function .
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2. Preliminaries on thermodynamic formalism and suspension flows

This section is devoted to providing the necessary background on thermody-

namic formalism and on suspension flows required in the rest of the article.

2.1. Thermodynamic formalism for countable Markov shifts. LetM

be an incidence matrix defined on the alphabet of natural numbers. The asso-

ciated one sided countable Markov shift pΣ`, σq is the set

Σ` :“ tpxnqnPN :Mpxn, xn`1q “ 1 for every n P Nu ,
together with the shift map σ : Σ` Ñ Σ` defined by σpx1, x2, . . . q“px2, x3, . . . q.
A standing assumption we will make throughout the article is that pΣ`, σq is
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topologically mixing. We equip Σ` with the topology generated by the

cylinder sets:

Ca1¨¨¨an “ tx P Σ` : xi “ ai for i “ 1, . . . , nu.
We stress that, in general, Σ` is a non-compact space. Given a function

ϕ : Σ` Ñ R we define the n-th variations of ϕ by

Vnpϕq :“ supt|ϕpxq ´ ϕpyq| : x, y P Σ`, xi “ yi for i “ 1, . . . , nu,
where x “ px1, x2, . . . q and y “ py1, y2, . . . q. We say that ϕ has summable

variation if
ř8

n“1 Vnpϕq ă 8. We say that ϕ is locally Hölder if there exists

θ P p0, 1q such that for all n ě 1, we have Vnpϕq ď Opθnq.
This section is devoted to recalling some of the notions and results of ther-

modynamic formalism in this setting. The following definition was introduced

by Sarig [Sar99] based on work by Gurevich [Gur69].

Definition 2.1: Let ϕ : Σ` Ñ R be a function of summable variation. The

Gurevich pressure of ϕ is defined by

P pϕq “ lim
nÑ8

1

n
log

ÿ
x:σnx“x

exp

ˆ n´1ÿ
i“0

ϕpσixq
˙
χCi1

pxq,

where χCi1
pxq is the characteristic function of the cylinder Ci1 Ă Σ`.

It is possible to show (see [Sar99, Theorem 1]) that the limit always exists

and that it does not depend on i1. The following two properties of the pressure

will be relevant for our purposes (see [Sar99, Theorems 2 and 3] and [IJT15,

Theorem 2.10]). If ϕ : Σ` Ñ R is a function of summable variations, then:

(1) (Approximation property)

P pϕq “ suptPKpϕq : K P Ku,
where

K :“ tK Ă Σ` : K ‰ H compact and σ-invariantu
and PKpϕq is the classical topological pressure on K (see [Wal82, Chap-

ter 9]).

(2) (Variational Principle) Denote by Mσ the space of σ-invariant

probability measures and by hμpσq the entropy of the measure μ
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(see [Wal82, Chapter 4]). If ϕ : Σ` Ñ R is a function of summable

variation, then

Pσpϕq “ sup

"
hμpσq `

ż
ϕdμ : μ P Mσ and ´

ż
ϕdμ ă 8

*
.

A measure μ P Mσ attaining the supremum, that is, Pσpϕq “ hμpσq ` ş
ϕdμ,

is called an equilibrium measure for ϕ. A potential of summable variations

has at most one equilibrium measure (see [BS03, Theorem 1.1]).

It turns out that under a combinatorial assumption on the incidence ma-

trix M , which roughly means to be similar to a full-shift, the thermodynamic

formalism is well behaved.

Definition 2.2: We say that a countable Markov shift pΣ`, σq, defined by the

transition matrix Mpi, jq with pi, jq P N ˆ N, satisfies the BIP (Big Images

and Preimages) condition if and only if there exists tb1, . . . , bnu Ă N such

that for every a P N there exists i, j P N with Mpbi, aqMpa, bjq “ 1.

The following theorem summarises results proven by Sarig in [Sar99, Sar01,

Sar03] and by Mauldin and Urbański, [MU03], where they show that thermody-

namic formalism in this setting is similar to that observed for sub-shifts of finite

type on finite alphabets. For precise statements see [MU03, Theorem 2.6.12]

and [Sar03, Section 3].

Theorem 2.3: Let pΣ`, σq be a countable Markov shift satisfying the BIP

condition and ϕ : Σ` Ñ R a non-positive locally Hölder potential. Then,

there exists s8 ě 0 such that pressure function t Ñ Pσptϕq has the following

properties:

Pσptϕq “
$&%8 if t ă s8;

real analytic if t ą s8.

Moreover, if t ą s8, there exists a unique equilibrium measure for tϕ.

2.2. Suspension flows. Let pΣ`, σq be a topologically mixing countable

Markov shift and τ : Σ` Ñ R` a function of summable variations bounded

away from zero. Consider the space

(2) Y “ tpx, tq P Σ` ˆ R : 0 ď t ď τpxqu,
with the points px, τpxqq and pσpxq, 0q identified for each x P Σ`. The suspen-

sion semi-flow over σ with roof function τ is the semi-flow Φ “ pϕtqtě0 on
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Y defined by

ϕtpx, sq “ px, s ` tq whenever s ` t P r0, τpxqs.
In particular,

ϕτpxqpx, 0q “ pσpxq, 0q.
2.3. Invariant measures. Let pY,Φq be a suspension semi-flow defined over

a countable Markov shift pΣ`, σq with roof function τ : Σ` Ñ R` bounded

away from zero. Denote by MΦ the space of invariant probability measures for

the flow. It follows from a classical result by Ambrose and Kakutani [AK42]

that every measure ν P MΦ can be written as

(3) ν “ pμˆmq|Y
pμ ˆmqpY q ,

where μ P Mσ and m denotes the one dimensional Lebesgue measure. When

pΣ`, σq is a sub-shift of finite type defined on a finite alphabet the relation

in equation (3) is actually a bijection between Mσ and MΦ. If pΣ`, σq is a

countable Markov shift with roof function bounded away from zero, the map

defined by

ν ÞÑ pμ ˆmq|Y
pμ ˆmqpY q

is surjective. However, it can happen that pμ ˆ mqpY q “ 8. In this case the

image can be understood as an infinite invariant measure.

The case which is more subtle is when the roof function is only assumed to

be positive. We will not be interested in that case here, but we refer to [IJT15]

for a discussion on the pathologies that might occur.

2.4. Of flows and semi-flows. In 1972 Sinai [Sin72, Section 3] observed

that in order to study thermodynamic formalism for suspension flows, it suffices

to study thermodynamic formalism for semi-flows. Denote by pΣ, σq a two-sided

countable Markov shift. Recall that two continuous functions ϕ, γ P CpΣq are

said to be cohomologous if there exists a continuous function ψ P CpΣq,
called a transfer function, such that ϕ “ γ ` ψ ˝ σ ´ ψ. The relevant remark

is that thermodynamic formalism for two cohomologous functions is exactly

the same. Thus, if every continuous function ϕ P CpΣq is cohomologous to a

continuous function γ P CpΣq which only depends on future coordinates, then

thermodynamic formalism for the flow can be studied in the corresponding

semi-flow. The next result formalises this discussion.
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Proposition 2.4: If ϕ P CpΣq has summable variation, then there exists

γ P CpΣq of summable variation cohomologous to ϕ via a bounded transfer

function, such that γpxq “ γpyq whenever xi “ yi for all i ě 0 (that is, γ

depends only on the future coordinates).

Proposition 2.4 has been proved with different regularity assumptions in the

compact setting and in the non-compact case in [Dao13, Theorem 7.1].

2.5. Abramov and Kac. The entropy of a flow with respect to an invariant

measure can be defined as the entropy of the corresponding time one map. The

following result was proved by Abramov [Abr59].

Proposition 2.5 (Abramov): Let ν P MΦ be such that

ν “ pμˆmq|Y {pμˆmqpY q, where μ P Mσ.

Then the entropy of ν with respect to the flow, that we denote hνpΦq, satisfies

(4) hνpΦq “ hμpσqş
τdμ

.

In Proposition 2.5 a relation between the entropy of a measure for the flow

and a corresponding measure for the base dynamics was established. We now

prove a relation between the integral of a function on the flow with the integral

of a related function on the base. Let f : Y Ñ R be a continuous function.

Define Δf : Σ
` Ñ R by

Δf pxq :“
ż τpxq

0

fpx, tq dt.

Proposition 2.6 (Kac’s Lemma): Let f : Y Ñ R be a continuous function and

ν P MΦ an invariant measure that can be written as

ν “ μ ˆm

pμ ˆmqpY q ,
where μ P Mσ. Then ż

Y

f dν “
ş
ΣΔf dμş
Σ
τ dμ

.

Propositions 2.5 and 2.6 together with the relation between the spaces of

invariant measures for the flow and for the shift established by Ambrose and

Kakutani (see Subsection 2.3) allow us to study thermodynamic formalism for

the flow by means of the corresponding one on the base.
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2.6. Thermodynamic formalism for suspension flows. Let pΣ`, σq be a
topologically mixing countable Markov shift and τ : Σ` Ñ R a positive func-

tion bounded away from zero of summable variations. Denote by pY,Φq the

suspension semi-flow over pΣ`, σq with roof function τ . Thermodynamic for-

malism has been studied in this context by several people with different degrees

of generality: Savchenko [Sav98], Barreira and Iommi [BI06], Kempton [Kem11]

and Jaerisch, Kesseböhmer and Lamei [JKL14]. Thermodynamic formalism for

suspension flows where the base pΣ`, σq is a sub-shift of finite type defined on a

finite alphabet has been studied, for example, in [BR75, PP90]. The next result

provides equivalent definitions for the pressure, PΦp¨q, on the flow.

Theorem 2.7: Let f : Y Ñ R be a function such that Δf : Σ` Ñ R is of

summable variations. Then the following equalities hold:

PΦpfq :“ lim
tÑ8

1

t
log

ˆ ÿ
ϕspx,0q“px,0q,0ăsďt

exp

ˆ ż s

0

fpϕkpx, 0qq dk

˙
χCi0

pxq
˙

“ inftt P R : PσpΔf ´ tτq ď 0u “ suptt P R : PσpΔf ´ tτq ě 0u
“ suptPΦ|Kpfq : K P KpΦqu,

where KpΦq denotes the space of compact Φ-invariant sets.

In particular, the topological entropy of the flow is the unique number htoppΦq
satisfying

(5) htoppΦq “ inftt P R : P p´tτq ď 0u.
Note that in this setting the Variational Principle also holds (see [BI06, JKL14,

Kem11, Sav98]).

Theorem 2.8 (Variational Principle): Let f : Y Ñ R be a function such that

Δf : Σ` Ñ R is of summable variations. Then

PΦpfq “ sup

"
hνpΦq `

ż
Y

f dν : ν P MΦ and ´
ż
Y

f dν ă 8
*
.

A measure ν P MΦ is called an equilibrium measure for f if

PΦpfq “ hνpΦq `
ż
f dν.

It was proved in [IJT15, Theorem 3.5] that potentials f for which Δf is locally

Hölder have at most one equilibrium measure. Moreover, the following result

(see [BI06, Theorem 4]) characterises functions having equilibrium measures.
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Theorem 2.9: Let f : Y Ñ R be a continuous function such that Δf is of

summable variations. Then there is an equilibrium measure νf P MΦ for f

if and only if PσpΔf ´ PΦpfqτq “ 0 and there exists an equilibrium measure

μf P Mσ for Δf ´ PΦpfqτ such that
ş
τdμf ă 8.

Remark 2.10: We stress that the situation is more complicated when τ is not

assumed to be bounded away from zero. For results in that setting see [IJT15].

3. Entropy and escape of mass

Over the last few years there has been interest, partially motivated for its con-

nections with number theory, in studying the relation between entropy and the

escape of mass of sequences of invariant measures for diagonal flows on homoge-

nous spaces (see [EKP15, ELMV12, KKLM17]). Some remarkable results have

been obtained bounding the amount of mass that an invariant measure can give

to an unbounded part of the domain (a cusp) in terms of the entropy of the

measure (see for example [EKP15, Theorem A] or [KKLM17, Theorem 1.3]).

The purpose of this section is to prove similar results in the context of suspen-

sion flows defined over countable Markov shifts. As we will see, the proofs in

this setting suggest a geometrical interpretation that we pursue in Section 5.

Let pΣ`, σq be a topologically mixing countable Markov shift of infinite topo-

logical entropy and τ : Σ` Ñ R` a potential of summable variations bounded

away from zero. Denote by pY,Φq the associated suspension flow, which we

assume to have finite topological entropy. Note that since pΣ`, σq has infi-

nite entropy and τ is non-negative, the entropy htoppΦq of the flow satisfies

Pσp´htoppΦqτq ď 0 (see equation (5)). Therefore, there exists a real number

s8 P p0, htoppΦqs such that

Pσp´tτq “
$&%infinite if t ă s8;

finite if t ą s8.

As it turns out the number s8 will play a crucial role in our work.

For geodesic flows defined in non-compact manifolds there are vectors that

escape through the cusps; they do not exhibit any recurrence property. That

phenomenon is impossible in the symbolic setting; every point will return to the

base after some time. The following definition describes the set of points that

escape on average (compare with an analogous definition given in [KKLM17]).
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Definition 3.1: We say that a point px, tq P Y escapes on average if

lim
nÑ8

1

n

n´1ÿ
i“0

τpσixq “ 8.

We denote the set of all points which escape on average by EApτq.
Remark 3.2: Note that if ν P MΦ is ergodic and ν “ pμˆmq{pμˆmqpY q with

μ P Mσ then Birkhoff’s theorem implies that

lim
nÑ8

1

n

n´1ÿ
i“0

τpσixq “
ż
τdμ.

Thus, no measure in MΦ is supported on EApτq. We can, however, describe the

dynamics of the set EApτq by studying sequences of measures νn P MΦ such

that the associated measures μn P Mσ satisfy

lim
nÑ8

ż
τdμn “ 8.

In our first result we show that a measure of sufficiently large entropy cannot

give too much weight to the set of points for which the return time to the base

is very high. More precisely,

Theorem 3.3: Let pY,Φq be a finite entropy suspension flow defined over an

infinite entropy countable Markov shift with roof function bounded away from

zero. Assume that s8 ă htoppΦq and let c P ps8, htoppΦqq. Then there exists a

constant C ą 0 such that for every ν P MΦ with hνpΦq ě c, we have thatż
τdμ ď C.

Proof. Let ν P MΦ with hνpΦq “ c and let μ P Mσ be the invariant measure

satisfying ν “ pμ ˆmq{ppμ ˆmqpY qq. By the Abramov formula we have

hμpσq ´ c

ż
τdμ “ 0.

We will consider the straight line Lptq :“ hμpσq ´ t
ş
τdμ. Note that Lpcq “ 0

and Lp0q “ hμpσq. Let s P ps8, cq. Note that Pσp´sτq ă 8 and by the

variational principle Lpsq ď Pσp´sτq. This remark readily implies a bound on

the slope of Lptq. Indeed, ż
τdμ ď Pσp´sτq

c ´ s
.
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Thus the constant C “ Pσp´sτq{pc´sq satisfies the theorem. In order to obtain

the best possible constant we have to compute the infimum of the function

defined for s P ps8, cq by

s ÞÑ Pσp´sτq
c´ s

.

Remark 3.4: We stress that the constant C in Theorem 3.3 depends only on

the entropy bound c and not on the measure ν.

Remark 3.5: In Section 4 we will see that in the geometrical context of geodesic

flows the assumption s8 ă htoppΦq in Theorem 3.3 has a very natural interpre-

tation. Indeed, it will be shown to be equivalent to the parabolic gap property

(see [DP98, Section III] or Definition 4.12 for precise definitions).

Corollary 3.6: If pΣ`, σq is a Markov shift defined countable alphabet satis-

fying the BIP condition, then the best possible constant C P R in Theorem 3.3

is given by

C “ Pσp´smτq
c´ sm

“
ż
τdμsm ,

where sm P R is such that the equilibrium measure μsm for ´smτ satisfies

c “ hμsm
pσqş

τdμsm

.

Proof. Since the system satisfies the BIP condition, the function Pσp´sτq, when
finite, is differentiable (see Theorem 2.3). Moreover, its derivative is given by

(see [Sar15, Theorem 6.5])

d

ds
Pσp´sτq

ˇ̌̌
s“sm

“ ´
ż
τdμsm ,

where μsm is the (unique) equilibrium measure for ´smτ . The critical points

of the function s ÞÑ Pσp´sτq
c´s are those which satisfy

(6) pc´ sqP 1
σp´sτq ` Pσp´sτq “ 0.

Equivalently,

´pc´ sq
ż
τdμs ` hμspσq ´ s

ż
τdμs “ 0.

Therefore, equation (6) is equivalent to

c “ hμspσqş
τdμs

.
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In the next Theorem we prove that the entropy of the flow on EApτq is

bounded above by s8 and that, under some additional assumptions, it is actu-

ally equal to it. This result could be thought of as a symbolic estimation for the

entropy of a flow in a cusp. Theorem 3.7 describes a phenomenon first observed

in [FJLR15, Lemma 2.5] in a dimension theory context and used in the setting

of suspension flows in [IJ13].

Theorem 3.7: Let pY,Φq be a finite entropy suspension flow defined over an

infinite entropy countable Markov shift and with roof function bounded away

from zero. Assume that s8 ă htoppΦq. Let pνnqn Ă MΦ be a sequence of

invariant probability measures for the flow of the form

νn “ μn ˆm

pμn ˆmqpY q ,

where μn P Mσ. If limnÑ8
ş
τdμn “ 8, then

lim sup
nÑ8

hνnpΦq ď s8.

Moreover, there exists a sequence pνnqn P MΦ such that limnÑ8
ş
τdμn “ 8

and

lim
nÑ8 hνnpΦq “ s8.

Proof. Observe that the first claim is a direct consequence of Theorem 3.3. Let

us construct now a sequence pνnqn P MΦ with limnÑ8
ş
τdμn “ 8 such that

limnÑ8 hνnpΦq “ s8. First note that it is a consequence of the approximation

property of the pressure, that there exists a sequence of compact invariant sets

pKN qN Ă Σ such that limNÑ8 PKN p´tτq “ Pσp´tτq. In particular, for every

n P N we have that

(7) lim
NÑ8PKN p´ ps8 ´ 1{nq τq “ 8.

For the same reason, for any n P N and N P N we have that

(8) PKN p´ ps8 ` 1{nq τq ď Pσ p´ ps8 ` 1{nq τq ă 8.

Thus, given n P N there exists N P N such that

n2 ă PKN p´ ps8 ´ 1{nq τq ´ PKN p´ ps8 ` 1{nq τq
2{n .

Since the function t ÞÑ PKN p´tτq is real analytic, by the mean value theorem

there exists tn P rs8 ´ 1{n, s8 ` 1{ns such that P 1
KN

p´tnτq ą n2. Denote by
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μn the equilibrium measure for ´tnτ in KN . We have that

n2 ă P 1
KN

p´tnτq “
ż
τdμn.

In particular, the sequence pμnqn satisfies

lim
nÑ8

ż
τdμn “ 8.

Since s8 ă htoppΦq, we have that for n P N large enough

hμnpσq ´ tn

ż
τdμn ą 0.

In particular,

tn ă hμnpσqş
τdμn

.

Since tn P ps8 ´ 1{n, s8 ` 1{nq, we have that

(9) s8 “ lim
nÑ8 tn ď lim

nÑ8
hμnpσqş
τdμn

“ lim
nÑ8 hνnpΦq.

But we already proved that the limit cannot be larger than s8, thus the result

follows.

4. The geodesic flow on extended Schottky groups

4.1. Some preliminaries in negative curvature. Let X be a Hadamard

manifold with pinched negative sectional curvature, that is a complete simply

connected Riemannian manifold whose sectional curvature K satisfies

´b2 ď K ď ´1 (for some fixed b ě 1). Denote by BX the boundary at in-

finity of X . Finally, denote by d the Riemannian distance on X . A crucial

object in the study of the dynamics of the geodesic flow is the Busemann func-

tion. Let ξ P BX and x, y P X . For every geodesic ray t ÞÑ ξt pointing to ξ, the

limit

Bξpx, yq :“ lim
tÑ8rdpx, ξtq ´ dpy, ξtqs

always exists, and is independent of the geodesic ray ξt since X has negative

sectional curvature. The Busemann function B : BX ˆ X2 Ñ R is the

continuous function defined as Bpξ, x, yq ÞÑ Bξpx, yq. A (open) horoball based

in ξ and passing through x is the set of y P X such that Bξpx, yq ą 0. In the

hyperbolic case, when X “ D, a horoball based in ξ P S1 and passing through

x P D is the interior of a euclidean circle containing x and tangent to S
1 at ξ.
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Recall that every isometry of X can be extended to a homeomorphism of

X Y BX . A very important property of the Busemann function is the fact that

it is invariant by isometries. More precisely, if ϕ : X Ñ X is an isometry of X ,

then for every x, y P X we have

(10) Bϕξpϕx, ϕyq “ Bξpx, yq.
Let o P X be a reference point, which is often called the origin of X . The

unit tangent bundle T 1X of X can be identified with B2X ˆ R via Hopf’s

coordinates, where B2X “ pBX ˆ BXqzdiagonal. A vector v P T 1X is iden-

tified with pv´, v`, Bv` po, πpvqqq, where v´ (resp. v`) is the negative (resp.

positive) endpoint of the geodesic defined by v. Here π : T 1X Ñ X is the

natural projection of a vector to its base point. Observe that the geodesic flow

pgtq : T 1X Ñ T 1X acts by translation in the third coordinate of this identifi-

cation. Another crucial object in this setting is the Poincaré series.

Definition 4.1: Let G be a discrete subgroup of isometries of X and let x P X .

The Poincaré series PGps, xq associated with G is defined by

PGps, xq :“
ÿ
gPG

e´sdpx,gxq.

The critical exponent δG of G is the number

δG :“ inf ts P R : PGps, xq ă 8u .
The group G is said to be of divergence type (resp. convergence type) if

PGpδG, xq “ 8 (resp. PGpδG, xq ă 8).

Remark 4.2: By the triangle inequality, the critical exponent of a discrete group

of isometries of X is independent of x P X . Moreover, as the sectional curvature

of X is bounded from below, it is finite.

The isometries of X are categorized in three types: those fixing a unique

point in X called elliptic isometries, those fixing a unique point in BX called

parabolic isometries, and finally, those fixing uniquely two points in BX
called hyperbolic isometries. For g a non-elliptic isometry of X , denote by

δg the critical exponent of the group ă g ą. If g is a hyperbolic isometry, it

is fairly straightforward to see that δg “ 0 and that the group ă g ą is of

divergence type. If g is parabolic, it was shown in [DP98, Theorem III.1] that

δg ě 1
2 .
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Let Γ be a discrete subgroup of isometries of X . Denote by Λ the limit set

of Γ, that is, the set

Λ “ Γ ¨ ozΓ ¨ o.
The group Γ is non-elementary if Λ contains infinitely many elements. We

recall the following fact proved in [DOP00, Proposition 2].

Theorem 4.3: Let Γ be a non-elementary discrete subgroup of isometries of a

Hadamard manifold X . If G is a divergence type subgroup of Γ and its limit

set is strictly contained in the limit set of Γ, then δΓ ą δG.

In particular, if Γ is a non-elementary discrete group of isometries and there

is an element g P Γ such that ă g ą is of divergence type, then δΓ ą δăgą (see

also [DP98, Theorem III.1]). Note that a non-elementary group always contains

a hyperbolic isometry (in fact, infinitely many non-conjugate of them), hence a

non-elementary group Γ always satisfies δΓ ą 0.

We end this subsection by giving an important relation between the critical

exponent of a group and the topological entropy of the geodesic flow on the

associated quotient manifold. Let X be a Hadamard manifold with pinched

negative sectional curvature and let Γ be a non-elementary torsion free discrete

subgroup of isometries of X . Denote by

pgtq : T 1X{Γ Ñ T 1X{Γ
the geodesic flow on the unit tangent bundle of the quotient manifold X{Γ. Otal

and Peigné [OP04, Theorem 1] proved that, if the derivatives of the sectional

curvature are uniformly bounded, then the topological entropy htoppgq of the

geodesic flow equals the critical exponent of the Poincaré series of the group Γ,

that is

(11) htoppgq “ δΓ.

We stress the fact that the assumption on the derivatives of the sectional curva-

ture is crucial in order to compute the topological entropy of the geodesic flow.

This assumption implies the Hölder regularity of the strong unstable and stable

foliations (see for instance [PPS15, Theorem 7.3]), which is used in the proof of

[OP04, Theorem 1].

4.2. The symbolic model for extended Schottky groups. In this sec-

tion we recall the definition of an extended Schottky group. To the best of our
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knowledge this definition was introduced in [DP98] by Dal’bo and Peigné. The

basic idea is to extend the classical notion of Schottky groups to the context of

manifolds where the non-wandering set of the geodesic flow is non-compact.

Let X be a Hadamard manifold as in Subsection 4.1. Let N1, N2 be two non-

negative integers such that N1 ` N2 ě 2 and N2 ě 1. Consider N1 hyperbolic

isometries h1, . . . , hN1 andN2 parabolic ones p1, . . . , pN2 satisfying the following

conditions:

(C1) For 1 ď i ď N1 there exist in BX a compact neighbourhood Chi of the

attracting point ξhi of hi and a compact neighbourhood Ch´1
i

of the

repelling point ξh´
i
of hi, such that

hipBXzCh´1
i

q Ă Chi .

(C2) For 1 ď i ď N2 there exists in BX a compact neighbourhood Cpi of the

unique fixed point ξpi of pi, such that

@n P Z
˚ pni pBXzCpiq Ă Cpi .

(C3) The 2N1 ` N2 neighbourhoods introduced in p1q and p2q are pairwise

disjoint.

(C4) The elementary parabolic groups ă pi ą, for 1 ď i ď N2, are of diver-

gence type.

The group

Γ “ă h1, . . . , hN1 , p1, . . . , pN2 ą

is a non-elementary free group which acts properly discontinuously and freely

on X (see [DP98, Corollary II.2]). Such a group Γ is called an extended

Schottky group. Note that if N2 “ 0, that is the group Γ only contains

hyperbolic elements, then Γ is a classical Schottky group and its geometric

and dynamical properties are well understood. Indeed, in that case, the non-

wandering set Ω Ă T 1X{Γ of the geodesic flow is compact, which implies that

pgtq|Ω is an Axiom A flow. If N2 ě 1, then X{Γ is a non-compact manifold and

Ω is a non-compact subset of T 1X{Γ. Figure 1 is an example of a Schottky

group acting on the hyperbolic disk D. It has two generators, one hyperbolic

and the other parabolic.
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o

Cp‚

p

h

Figure 1. Schottky group Γ “ă h, p ą.

‚

Ch´1

‚ ‚
Ch

In [DP98] the authors proved that there exists a pgtq-invariant subset Ω0 of

T 1X{Γ, contained in the non-wandering set of pgtq, such that pgtq|Ω0 is topolog-

ically conjugated to a suspension flow over a countable Markov shift pΣ, σq. The
Theorem below summarizes their construction together with some dynamical

properties.

Theorem 4.4: Let X be a Hadamard manifold with pinched negative sec-

tional curvature and let Γ be an extended Schottky group. Then there exists a

pgtq-invariant subset Ω0 of T 1X{Γ, a countable Markov shift pΣ, σq and a func-

tion τ : Σ Ñ R, such that:

(1) the function τ is locally Hölder and bounded away from zero,

(2) the geodesic flow pgtq|Ω0 over Ω0 is topologically conjugated to the sus-

pension flow over Σ with roof function τ ,

(3) the Markov shift pΣ, σq satisfies the BIP condition,

(4) if N1 `N2 ě 3, then pΣ, σq is topologically mixing.

Proof. Let A “ th1, . . . , hN1 , p1, . . . , pN2u and consider the symbolic space Σ

defined by

Σ “ tpami

i qiPZ : ai P A,mi P Z and ai`1 ‰ ai@i P Zu.
Note that the space Σ is a sequence space defined on the countable alphabet

tami : ai P A,m P Zu. Let Λ0 be the limit set Λ minus the Γ-orbit of the

fixed points of the elements of A. We denote by Ω̃0 the set of vectors in T 1X
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identified with pΛ0 ˆ Λ0zdiagonalq ˆ R via Hopf’s coordinates. Finally, define

Ω0 :“ Ω̃0{Γ, where the action of Γ is given by

γ ¨ pξ´, ξ`, sq “ pγpξ´q, γpξ`q, s ´Bξ` po, γ´10qq.
Observe that Ω0 is invariant by the geodesic flow.

Fix now ξ0 P BXz Ť
aPACa˘ , where Ca˘ “ Ca Y Ca´1 . Dal’bo and Peigné

[DP98, Property II.5] established the following coding property: for every ξ P Λ0

there exists a unique sequence ωpξq “ pami

i qiě1 with ai P A, mi P Z˚ and

ai`1 ‰ ai such that

lim
kÑ8 am1

1 ¨ ¨ ¨amk

k ξ0 “ ξ.

For each a P A define Λ0
a˘ “ Λ0 X Ca˘ and set B2Λ0 “ Ť

α,βPA
α‰β

Λ0
α˘ ˆ Λ0

β˘ . For

any pair pξ´, ξ`q P B2Λ0, if am is the first term of the sequence ωpξ`q, define
τ̃0pξ`q “ Bξ` po, amoq and T pξ´, ξ`q “ pa´mξ´, a´mξ`q. Define also T τ̃0 by

the formula

T τ̃0pξ´, ξ`, sq “ pT pξ´, ξ`q, s ´ τ̃0pξ`qq.
Observe that T τ̃0 maps B2Λ0 ˆ R to itself.

Lemma 4.5: The set Ω0 can be identified with the quotient B2Λ0ˆR{ ă T τ̃0 ą.

Proof. Let pξ´, ξ`q P B2Λ0. The geodesic determined by pξ´, ξ`q in X in-

tersects the horosphere based in ξ` and passing through o in only one point

x0o,ξ´,ξ` . Denote by v0o,ξ´,ξ` P T 1X the unit vector based in x0o,ξ´,ξ` and point-

ing to ξ`. Finally, set

(12) S “ tv0o,ξ´,ξ` : pξ´, ξ`q P B2Λ0u Ă T 1X{Γ.
To prove this lemma we first observe that the set S is a cross-section in T 1X{Γ,
so for any v P Ω0 there exists a minimal time t ě 0 such that g´tv P S. If

v0o,ξ´,ξ` denotes the vector g´tv, then pξ´, ξ`, tq corresponds to v. Observe

that gsv R S for every 0 ď s ă τ̃0pξ`q ´ t, so τ̃0pξ`q is the first return time of

v0o,ξ´,ξ` into S. This give us the identification.

The coding property implies that the set B2Λ0 is identified with Σ by consid-

ering pξ´, ξ`q as a bilateral sequence pω˚pξ´q, ωpξ`qq. If ωpξ´q “ pbni

i qiě1, we

define ω˚pξ´q as the sequence p. . . , b´n2
2 , b´n1

1 q; then pω˚pξ´q, ωpξ`qq represent

the concatenated sequence. Let Σ` be the one-sided symbolic space obtained
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from Σ by forgetting the negative time coordinates. We define the function

τ0 : Σ` Ñ R as

τ0pxq “ τpω´1pxqq “ Bω´1pxqpo, amoq,
where w : Λ0 Ñ Σ is the coding function and am the first symbol in w´1pxq.
We extend τ to Σ by making it independent of the negative time coordinates.

Lemma 4.6: The function τ0 : Σ Ñ R is cohomologous to a Hölder-continuous

positive function τ : Σ Ñ R bounded away from zero and depending only on

future coordinates.

Proof. By [DP98, Proposition V.1], there exists N ě 1 such that for every

n ě N and every x P Σ, we have

nÿ
i“0

τ0pσipxqq ě c ą 0.

Let ε “ 1
N andmi “ 1´iε for every i “ 0, . . . , N . Define the function f : Σ Ñ R

as

fpxq “
N´1ÿ
i“0

miτ0pσipxqq.

Then

fpxq ´ fpσpxqq “
N´1ÿ
i“0

miτ0pσipxqq ´
N´1ÿ
i“0

miτ0pσi`1pxqq

“ m0τ0pxq ´mNτ0pσN pxqq `
Nÿ
i“1

miτ0pσipxqq ´
Nÿ
i“1

mi´1τ0pσipxqq.

Since m0 “ 1, mN “ 0 and mi ´mi´1 “ ´ε for every i “ 1, . . . , N , we get

(13) fpxq ´ fpσpxqq “ τ0pxq ´ ε
Nÿ
i“1

τ0pσipxqq.

Define the function τ : Σ Ñ R as τpxq “ ε
řN

i“1 τ0pσipxqq. It is positive bounded
away from zero since τpxq ě c

N and depends only on future coordinates by

construction. By equation (13) it is cohomologous to τ0. Finally, the Hölder-

regularity of τ follows from the Hölder-regularity of τ0, which is proved in [DP98,

Lemma VII] together with a standard recoding argument. All points above

conclude the proof of this lemma.
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Lemma 4.6 implies (1) in the conclusion of Theorem 4.4. Using the identifi-

cation given by Lemma 4.5 together with the previous construction, we deduce

that the geodesic flow pgtq on Ω0 can be coded as the suspension flow on

Y “ tpx, tq P Σ ˆ R : 0 ď t ď τpxqu{ „,
which gives us (2).

Lemma 4.7: Under the hypothesis of Theorem 4.4 the countable Markov shift

pΣ, σq satisfies the BIP condition. Moreover, if N1 `N2 ě 3, then the countable

Markov shift pΣ, σq is topologically mixing.

Proof. It is not hard to see that the set A satisfies the required conditions in

order for pΣ, σq to be BIP (see Definition 2.2). Suppose now that N1 `N2 ě 3.

Recall that the Markov shift pΣ, σq is topologically mixing if for every

a, bPtami :ai PA,mPZu there exists Npa, bq P N, such that for every n ą Npa, bq
there exists an admissible word of length n of the form ai1i2 ¨ ¨ ¨ in´1b. The set

of allowable sequences is given by

tpami

i qiPZ : ai P A,mi P Z and ai`1 ‰ ai@i P Nu.
Since N1 `N2 ě 3, then given any pair of symbols in tami : ai P A,m P Zu, say
am1
1 , am2

2 , we can consider the symbol a3 R ta1, a2u. Hence the following words

are admissible:

am1
1 a3a1a3 ¨ ¨ ¨ a1am2

2 , am1
1 a3a1a3a1 ¨ ¨ ¨ a3am2

2 .

Thus the system is topologically mixing.

Since Lemma 4.7 above shows the points (3) and (4), we have concluded the

proof of Theorem 4.4.

Remark 4.8: Under the condition N1 ` N2 ě 3 we have proved that pΣ, σq
is a topologically mixing countable Markov shift satisfying the BIP condition

(Lemma 4.7) and that the roof function τ is locally Hölder and bounded away

from zero (Lemma 4.6). Therefore, the associated suspension semi-flow pY,Φq
can be studied with the techniques presented in Section 2.

So far we have proved that the geodesic flow restricted to the set Ω0 can

be coded by a suspension flow over a countable Markov shift. We now de-

scribe, from the ergodic point of view, the geodesic flow in the complement
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`
T 1X{Γ˘ zΩ0 of Ω0. We denote by MΩ0 the space of pgtq-invariant probabil-

ity measures supported in the set where we have coding, in other words in

B2Λ0 ˆR{ ă T τ ą. We describe the difference between the space MΩ0 and the

space Mg of all pgtq-invariant probability measures. Recall that in Γ there are

hyperbolic isometries h1, . . . , hN1 , each of which fixes a pair of points in BX .

The geodesic connecting the fixed points of hi will descend to a closed geodesic

in the quotient by Γ. We denote νhi the probability measure equidistributed

along such a geodesic.

Proposition 4.9: The set of ergodic measures in MgzMΩ0 is finite, those are

exactly the set tνhi : 1 ď i ď N1u. Moreover, for every ν P Mg with support in

XzΩ0, we have hνpgq “ 0.

Proof. Let ν P MgzMΩ0 be an ergodic measure. Take v a generic vector for ν.

Since a generic vector is recurrent, the orbit gtv does not go to infinity, therefore

v` is not parabolic. Now consider the case when v points toward a hyperbolic

fixed point z. Let γ : R Ñ X be a geodesic flowing at positive time to z with

initial condition γ1p0q “ v and let γi be the geodesic connecting z with the

associated hyperbolic fixed point. By reparametrization we can assume

γip`8q “ z

and that γip0q lies in the same horosphere centered at z rather than v. By

estimates in [HIH77] we have dpγiptq, γptqq Ñ 0 exponentially fast (here d stands

for hyperbolic distance, actually in [HIH77] the stronger exponential decay in

the horospherical distance is obtained). Since the vectors along the geodesics are

perpendicular to the horospheres centered at z, we have the desired geometric

convergence in TX . Observe that γi descends to a periodic orbit in TX{Γ.
This gives the convergence of γ to the periodic orbit and the Birkhoff ergodic

theorem gives that the measure generated by such a geodesic is exactly one of

νhi .

The fact that hνpgq “ 0 for every ergodic ν P MgzMΩ0 is a classical result

for measures supported on periodic orbits.

4.3. Geometric meaning of s8. One of our main technical results is the

following. Let τ be the roof function constructed in subsection 4.2. In the next

Theorem we give a geometrical characterisation of the value s8 defined as the
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unique real number satisfying

Pσp´tτq “
$&%infinite if t ă s8;

finite if t ą s8.

One of the key ingredients in this paper, and the important result of this section,

is the relation between s8 and the largest parabolic critical exponent. This

relation will allow us to translate several results at the symbolic level into the

geometrical one.

Theorem 4.10: Let Γ be an extended Schottky group satisfying N1 `N2 ě 3.

Let pΣ, σq and τ : Σ Ñ R be the base space and the roof function of the symbolic

representation of the geodesic flow pgtq on Ω0. Then s8 “ maxtδpi , 1 ď i ď N2u.
Proof. Since τ is cohomologous to τ0, we have Pσp´tτq “ Pσp´tτ0q. We first

show that s8 ď maxtδpi , 1 ď i ď N2u. Now

Pσp´tτ0q “ lim
nÑ8

1

n ` 1
log

ÿ
x:σn`1x“x

exp

˜
nÿ

i“0

´tτ0pσixq
¸
χCh1

pxq

“ lim
nÑ8

1

n ` 1
log

ÿ
ξ“h1x2...xnxn`1ξ0

exp

˜
nÿ

i“0

´tBω´1pσixqpo, xi`1oq
¸

ě lim
nÑ8

1

n ` 1
log

ÿ
ξ“h1x2...xn`1ξ0

exp

˜
nÿ

i“0

´tdpo, xi`1oq
¸
.

The last inequality follows from dpx, yq ě Bξpx, yq. By removing words having

hm1 (some m) in more places than just the first coordinate, we conclude that

the argument of the function log in the limit above is greater than

e´tdpo,h1oq ÿ
pc1,...,cnqPpAzh1qn˚

ÿ
pm1,...,mnqPZn

exp

˜
nÿ

i“1

´tdpo, cmi

i oq
¸
,

where pAzh1qn˚ represent the set of admissible words of length n for the code,

i.e. ci ‰ c˘1
i`1. Let k ě 1. For all 0 ď j ď k ´ 1 and 1 ď i ď N1 `N2 ´ 1, define

bi`jpN1`N2´1q “
$&%hi`1, if 1 ď i ď N1 ´ 1,

pi`1´N1 , if N1 ď i ď N1 `N2 ´ 1.

Consider n` 1 “ kpN1 `N2 ´ 1q. By restricting the above sum to words with

ci “ bi for every i “ 1, . . . , n, we can continue the sequence of inequalities above
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to get

Pσp´tτq ě
ÿ

m1,...,mnPZ
exp

˜
nÿ

i“1

´tdpo, bmi

i oq
¸
,

where the right-hand side is equal to

nź
i“1

ÿ
mPZ

expp´tdpo, bmi oqq.

By definition of the bi’s, the last term is equal to˜
N1ź
i“2

ÿ
mPZ

expp´tdpo, hmi oqq
¸k˜

N2ź
i“1

ÿ
mPZ

expp´tdpo, pmi oqq
¸k

.

Hence, it follows that

Pσp´tτq

ě 1

N1 `N2
log

˜
N1ź
i“2

ÿ
mPZ

expp´tdpo, hmi oqq
¸˜

N2ź
i“1

ÿ
mPZ

expp´tdpo, pmi oqq
¸

“ 1

N1 `N2
log

ź
aPAzh1

Păaąpt, oq.

In particular, if t ă maxtδpi , 1 ď i ď N2u then Pσp´tτq “ `8. This shows

that s8 ě maxtδpi , 1 ď i ď N2u.
Before proving the other inequality we need to prove first a technical lemma.

Let A˘ “ th˘1
1 , . . . , h˘1

N1
, p1, . . . , pN2u and consider for every a P A˘ the convex

hull Ua in X Y BX of the set Ca.

Lemma 4.11: Let X be a Hadamard manifold with pinched negative sectional

curvature and let Γ be an extended Schottky group. Fix o P X . Then there

exists a universal constant C ą 0 (depending only on the generators of Γ and

the fixed point o) such that for every a1, a2 P A˘ satisfying a1 ‰ a˘1
2 , and for

every x P Ua1 and y P Ua2 , we have

(14) dpx, yq ě dpx, oq ` dpy, oq ´ C.

Proof. Since Ca1 and Ca2 are disjoint, for every a1, a2 P A˘ satisfying a1 ‰ a˘1
2 ,

the same happens for the sets Ua1 and Ua2 . Let x P Ua1 and y P Ua2 . The

geodesic segments ro, xs and ro, ys form an angle uniformly bounded below,

hence dpx, yq ě dpx, oq ` dpy, oq ´ C for a universal constant C ą 0.
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Let pξitq be the geodesic ray ro, ω´1pσi`1xqq. Using (14), we have

τ0pσixq “ Bω´1pσixqpo, xioq
“ Bω´1pσi`1xqpx´1

i o, oq
“ lim

tÑ8 dpξit , xioq ´ dpξit , oq
ě rdpξit , oq ` dpo, xioq ´ Cs ´ dpξit , oq
“ dpo, xioq ´ C.

Thus

expp´tτ0pσixqq ď expptCq expp´tdpo, xioqq.
Therefore

Pσp´tτ0q ď lim
nÑ8

1

n
log

ÿ
a1,...,an

ÿ
m1,...,mn

nź
i“1

expptCq expp´tdpo, ami

i oqq

“ log

˜
Ct

ź
aPA

Păaąpt, oq
¸
.

In particular,

the pressure Pσp´tτq is finite for every t ą maxtδpi , 1 ď i ď N2u.
Denote δp,max :“ maxtδpi , 1 ď i ď N2u. The simplest example to consider

is a real hyperbolic space X . In this case δăpią “ 1{2 for any i P t1, . . . , N2u.
In particular, δp,max “ 1{2. More generally, if we replace hyperbolic space by a

manifold of constant negative curvature equal to ´b2, then δăpą “ b{2. In the

case of non-constant curvature some bounds are known, indeed if the curvature

is bounded above by ´a2 then δăpą ě a{2 (see [DOP00]).

Recall that at a symbolic level we have htoppΦq “ inf tt : Pσp´tτq ď 0u. In

particular, if the derivatives of the sectional curvature are uniformly bounded,

then Theorem 4.4, Proposition 4.9 and equality (11) imply

(15) htoppgq “ δΓ “ htoppΦq.
The existence of a measure of maximal entropy for the flow pgtq is related

to convergence properties of the Poincaré series at the critical exponent. In-

deed, using the construction of Patterson and Sullivan ([Pat76], [Sul84]) of a

Γ-invariant measure on B2X , it is possible to construct a measure on T 1X which

is invariant under the action of Γ and the geodesic flow. This measure induces a

pgtq-invariant measure on T 1X{Γ called the Bowen–Margulis measure. It turns
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out that, if the group Γ is of convergence type, then the Bowen–Margulis mea-

sure is infinite and dissipative. Hence the geodesic flow does not have a measure

of maximal entropy. On the other hand, if the group Γ is of divergence type,

then the Bowen–Margulis measure is ergodic and conservative. If finite, it is

the measure of maximal entropy.

It is therefore of interest to determine conditions that will ensure that the

group is of divergence type and that the Bowen–Margulis measure is finite.

It is along these lines that Dal’bo, Otal and Peigné [DOP00] introduced the

following:

Definition 4.12: A geometrically finite group Γ satisfies the parabolic gap

condition (PGC) if its critical exponent δΓ is strictly greater than the one of

each of its parabolic subgroups.

It was shown in [DOP00, Theorem A] that if a group satisfies the PGC-

condition, then the group is divergent and the measure of Bowen–Margulis is

finite [DOP00, Theorem B]. In particular, it has a measure of maximal entropy.

Note that a divergent group in the case of constant negative curvature satisfies

the PGC-property.

In our context, an extended Schottky group is a geometrically finite group

such that all the parabolic subgroups have rank 1. Moreover, by Condition (C4)

and Theorem 4.3, it satisfies the PGC-condition. Thus, the following property

is a direct consequence of Theorem 4.10, Theorem 4.3 and (15).

Proposition 4.13: Let X be a Hadamard manifold with pinched negative sec-

tional curvature and let Γ be an extended Schottky group satisfying

N1 ` N2 ě 3. Assume that the derivatives of the sectional curvature are uni-

formly bounded. If pY,Φq is the symbolic representation of the geodesic flow on

T 1X{Γ, then s8 ă htoppΦq.

5. Escape of mass for geodesic flows

This section contains our main results relating the escape of mass of a sequence

of invariant probability measures for a class of geodesic flows defined over non-

compact manifolds. We prove that there is a uniform bound, depending only

on the entropy of a measure, for the amount of mass a measure can give to the

cusps. We also characterise the amount of entropy that the cusp can have. These
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results are similar in spirit to those obtained in [EKP15, ELMV12, KKLM17]

for other types of flows.

Theorem 5.1: Let X be a Hadamard manifold with pinched negative sectional

curvature and let Γ be an extended Schottky group of isometries of X satis-

fying N1 ` N2 ě 3. Assume that the derivatives of the sectional curvature

are uniformly bounded. Then, for every c ą δp,max there exists a constant

M “ Mpcq ą 0 such that for every ν P MΩ0 with hνpgq ě c, we haveż
τdμ ď M,

where ν has a symbolic representation as pμˆmq{ppμˆmqpY qq. Moreover, the

value δp,max is optimal in the following sense: there exists a sequence pνnq Ă
MΩ0 of g-invariant probability measures such that limnÑ8

ş
τdμn “ 8 and

lim
nÑ8 hνnpgq “ δp,max.

Proof. This is a direct consequence of Theorems 3.3 and 3.7 using the symbolic

model for the geodesic flow on T 1X{Γ.

The following corollary is just an equivalence of the first conclusion in Theo-

rem 5.1 (see also Theorem 3.7).

Corollary 5.2: Assume X and Γ as in Theorem 5.1. If pνnq Ă MΩ0 is a

sequence of pgtq-invariant probability measures such that limnÑ8
ş
τdμn “ 8,

then

lim sup
nÑ8

hνnpgq ď δp,max.

We are now in position to prove the main result about escape of mass.

Theorem (1.2): Let X be a Hadamard manifold with pinched negative sec-

tional curvature and let Γ be an extended Schottky group of isometries of X

satisfying N1 ` N2 ě 3. Assume that the derivatives of the sectional curva-

ture are uniformly bounded. Then, for every c ą δp,max there exists a constant

m “ mpcq ą 0, with the following property: If pνnq is a sequence of ergodic

pgtq-invariant probability measures on T 1X{Γ satisfying hνnpgq ě c, then for

every vague limit νn á ν, we have

νpT 1X{Γq ě m.
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In particular, if νn á 0, then lim suphνnpgq ď δp,max. Moreover, the value

δp,max is optimal in the following sense: there exists a sequence pνnq of

pgtq-invariant probability measures on T 1X{Γ such that hνnpgq Ñ δp,max and

νn á 0.

Proof. Since every ergodic measure in Mg with support in XzΩ0 has zero en-

tropy, we can suppose that νn belongs to MΩ0 for every n P N. Observe now

that the cross-section S Ă T 1X{Γ defined in (12) is bounded. Hence, using the

identification Ψ : Ω0 Ñ Y given by Theorem 4.4 and fixing 0 ă r ď infxPΣ τpxq,
there exists a compact set Kr Ă T 1X{Γ such that

Σ ˆ r0, rs{ „ Ă ΨpKrq.

Let μn be the probability measure on Σ associated to the symbolic representa-

tion of νn. By Theorem 5.1, we haveż
τdμn ď M.

Hence

νnpKrq “ Ψ˚νnpΨpKrqq ě Ψ˚νnpΣ ˆ r0, rs{ „q

“
ş
Σ

şr
0 dtdμnş
τdμn

ě r

M
.

In other words, every vague limit ν of the sequence of ergodic probability mea-

sures pνnqn satisfies νpKrq ě r{M . In particular, we obtain νpT 1X{Γq ě r{M .

By setting m “ infxPΣ τpxq{M , the conclusion follows.

Before giving the proof of the optimality of δp,max, we need the following

result.

Proposition 5.3: Let Γ be an extended Schottky group of isometries of X .

Let p P A be a parabolic isometry. We can choose a hyperbolic isometry h P Γ

for which the groups Γn “ă p, hn ą satisfy the following conditions:

(1) The group Γn is of divergence type for every n ě 1.

(2) The sequence pδΓnqn of critical exponents satisfy δΓn Ñ δP as n goes

to 8.
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(3) The following limit holds:

lim
nÑ8

nř
γPP e´δΓndpx,γxq “ 0.

Proof. The proof is based on that of [DOP00, Theorem C]. Let G be a group; we

will use the notation G˚ for Gztidu. Define P “ă p ą and take UP Ă X Y BX
a connected compact neighbourhood of the fixed point ξp of p such that for

every m P Z˚ we have pmpBXzUPq Ă UP . We could take UP so that UP X BX
is a fundamental domain for the action of P in BXztξpu. Because Γ is non-

elementary and ΛΓ is not contained in UP , it is possible to choose h P Γ a

hyperbolic isometry of X such that its two fixed points ξh´ , ξh do not lie in UP .
We have used the fact that a pair of points fixed by a hyperbolic isometry is

dense in Λ ˆ Λ. Fix x P X over the axis of h. Since Γ is an extended Schottky

group, for every k P N the elements p and hk are in Schottky position. In

particular, for Hk “ă hk ą we can find a compact subset UHk
Ă X Y BX

satisfying the following three conditions:

(1) H˚pBXzUHk
q Ă UHk

.

(2) UHk
X UP “ H.

(3) x R UHk
Y UP .

Since P and UHk
are in Schottky position it is a consequence of the Ping

Pong Lemma that the group generated by them is a free product. By the same

argument as that of Lemma 4.11, there is a positive constant C P R such that

for every y P UHk
and z P UP , we have

(16) dpy, zq ě dpx, yq ` dpx, zq ´ C.

Applying inequality (16) and the inclusion properties described above we obtain

(17) dpx, pm1hkn1 ¨ ¨ ¨ pmjhknjxq ě ÿ
i

dpx, pmixq ` ÿ
i

dpx, hknixq ´ 2kC,

where mi P Z˚. As remarked in [DOP00] the sum

P̃ psq “
ÿ
jě1

ÿ
ni,miPZ˚

expp´sdpx, pm1hkn1 ¨ ¨ ¨ pmjhknjxqq

is comparable with the Poincaré series of Γk. Indeed, since h is hyperbolic both

have the same critical exponent. Using the inequality (17) we obtain

P̃ psq ď
ÿ
jě1

˜
e2sC

ÿ
nPZ˚

e´sdpx,hknxq ÿ
mPZ˚

e´sdpx,pmxq
¸j

.
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Because of our choice of x, if l :“ dpx, hxq then dpx, hNxq “ |N |l for all N P Z.

Thus ÿ
nPZ˚

e´sdpx,hknxq ď 2
e´slk

1 ´ e´slk
.

Let sε :“ δP ` ε ą δP and denote Ps “ ř
mPZ e´pδP`sqdpx,pmxq; then the sum Pε

is finite. Assuming ε small, we get a constant D such that

e2sεC2
e´sεkl

1 ´ e´sεkl

ÿ
mPZ˚

e´sεdpx,pmxq ă De´sεklPε.

Hence, if logpDPεq{sεl ă k, thenDe´sεklPε ă 1 and therefore δΓk
ď sε. Observe

that the function t ÞÑ logpDPtq{st is continuous, decreasing and unbounded

in the interval p0, ηq, for any 0 ă η ď 1. We can then solve the equation

logpDPtq{stl “ k ´ 1, where t P pδp, δp ` ηq and k is large enough. We call this

solution εk. By construction δΓk
ď sεk . It follows from the definition of εk that

limnÑ8 Pεk “ 8. Observe that

kř
γPP e

´δΓk
dpx,γxq ď k

Pεk

“ logpDPεkq{psεk lq ` 1

Pεk

,

but the RHS goes to 0 as k Ñ 8. Since p is of divergence type, it follows from

[DOP00, Theorem A] that Γn is of divergence type.

We proceed to show an explicit family of measures satisfying the property

claimed in the second part of Theorem 1.2. We remark that the measures

constructed in Theorem 5.1 cannot be used at this point, since a compact set in

T 1X{Γ is not necessarily a compact set in the topology of Y . Hence, the fact

that
ş
τdμn Ñ 8 does not imply that νn á 0. Despite this difficulty, we can

use the geometry to construct the desired family.

Denote by p a parabolic isometry in the generator set A with maximal critical

exponent, that is δp,max “ δp. Take Γn “ă p, hn ą as in Proposition 5.3. Let

mBM
n be the Bowen–Margulis measure on T 1X{Γn. Since an extended Schottky

group is a geometrically finite group, the measure mBM
n is finite [DOP00, The-

orem B]. Moreover, it maximises the entropy of the geodesic flow on T 1X{Hn

[OP04, Theorem 2]. In other words hmBM
n

pgq equals δΓn . Recall that the critical

exponent δΓn converges to δp,max as n goes to infinity, therefore

(18) hmBM
n

pgq Ñ δp,max.
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Using the coding property, we know that T 1X{Γn (except vectors defining

geodesics pointing to the Γn-orbit of the fixed points of h and p) is identified

with Yn “ tpx, tq P Σn ˆ R : 0 ď t ď τpxqu{ „, where

Σn “ tpami

i qiPZ : ai P tp, hnu,mi P Zu,
and the geodesic flow is conjugated to the suspension flow on pYn, τq (same τ as

before, but for this coding). It is convenient to think of pΣn, σq as a sub-shift

of pΣ, σq. Since the Bowen–Margulis measure mBM
n is ergodic and has positive

entropy, it needs to be supported in Yn under the corresponding identification,

i.e. in the space of geodesics modeled by the suspension flow. In particular, we

can consider mBM
n as supported in some invariant subset of Y . Let us call νBM

n

the image measure of mBM
n induced by the inclusion Yn ãÑ Y and normalized

so that νBM
n is a probability measure. Observe that (18) implies that

lim
nÑ8 hνnpgq “ δp,max.

We just need to prove that νBM
n á 0 to end the proof of Theorem 1.2. This se-

quence actually dissipates through the cusp associated to the parabolic element

p. Recall that ξp denotes the fixed point of p at infinity. Define

Nξppsq :“ tx P X : Bξppo, xq ą su,
where o P X is a reference point. Since Γ is geometrically finite, for s large

enough Nξppsq{ ă p ą embeds isometrically into T 1X{Γ, i.e. it is a standard

model for the cusp at ξp. By definition, the group ă p ą acts co-compactly on

ΛΓztξpu. In other words, if we consider a fundamental domain for the action

of P on ΛΓztξpu, say D, then ΛΓ

Ş
D is relatively compact in D. Clearly the

other fundamental domains are given by γD where γ P P .

In [DOP00] it is proven that for any geometrically finite group Γ the Bowen–

Margulis measure in the cusp C satisfies a bound of the type

(19)

1

AΓ,C

ÿ
pPP

dpx, pxqe´δΓdpx,pxq ď mΓ
BM pT 1Cq

ď AΓ,C

ÿ
pPP

dpx, pxqe´δΓdpx,pxq.

Here the point x is chosen inside C and the constant AΓ,C basically depend on

the size of C and the minimal distance between ΛΓ XD and BD.

Define Qi “ Nξppsiq{ ă p ą, where the sequence psiqiě1 is increasing with

limi si “ 8. We assume Q1 provides a standard cusp neighborhood. Denote
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by pn the projection

pn : T 1X{Γn Ñ T 1X{Γ,
induced by the inclusion at the level of groups. By definition

νBM
n “ 1

mBM
n pT 1X{Γnq ppnq˚mBM

n .

We will prove that limnÑ8 νBM
n pT 1ppX{ΓqzQiqq “ 0 for any i. For this it is

enough to prove the limit

lim
nÑ8

mBM
n pp´1

n T 1ppX{ΓqzQiqq
mBM

n pp´1
n T 1Qiq “ 0.

Observe that, if πn : X{Γn Ñ X{Γ is the natural projection, then the sets

π´1
n Qi are represented by the same one in the universal covering. We denote

by Si this cusp neighborhood.

Lemma 5.4: The measure mBM
n pp´1

n T 1ppX{ΓqzQiqqq grows at most linearly in

kn, that is, for a certain positive constant Ci we have

(20) mBM
n pp´1

n T 1ppX{ΓqzQiqq ď Cin.

Proof. LetD0 (resp. Dn) be the fundamental domain of Γ (resp. Γn) containing

o P X . By the definition of fundamental domain, there exists a set Tn Ă Γ such

that

(1) for any γ1, γ2 P Tn and γ1 ‰ γ2, we have γ1intpD0q X γ2intpD0q “ H,

and

(2)
Ť

γPTn
γD0 “ Dn.

Denote by Ki the compact Ki “ pX{ΓqzQi and let rKi be the lift of Ki into

X intersecting D0. By definition, any lift of Ki into X intersecting Dn is a

translation of rKi by an element in Tn. Since mBM
n is supported in ΛΓn , the

Bowen–Margulis measure m̃BM
n on X satisfies

mBM
n pp´1

n T 1pKiqq ď
ÿ

γPTn

γĂKiXCpΓnq‰H

m̃BM
n pT 1pγ rKiqq,

where CpΓnq is the convex hull of LpΓnq ˆ LpΓnq in X Y BX . By construction

and convexity of the domains Cγ , we obtain

#tγ P Tn : γ rKi X CpΓnq ‰ Hu ď 2n´ 1.
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In particular, we have

mBM
n pp´1

n T 1pKiqq ď p2n´ 1qm̃BM
n pT 1p rKiqq.

But again, by estimates given in [DOP00], the measure m̃BM
n pT 1p rKiqq satisfies

mBM
n pT 1p rKiqq ď Li,

where Li is a constant depending on the diameter of rKi. By setting Ci “ 2Li,

the conclusion follows.

Using the comments just below equation (19) we know that the constants

AHn,Qi can all be considered equal to AH1,Qi . We have then

(21) mBM
n pT 1Siq —AH1,Qi

ÿ
pPP

dpx, pxqe´δΓndpx,pxq.

Hence, from (20) and (21), we get

mBM
n pp´1

n T 1pXzQiqq
mBM

n pp´1
n T 1Qiq ď AH1,QiCinř

pPP dpx, pxqe´δΓndpx,pxq

ď C 1
inř

pPP e´δΓndpx,pxq .

Finally, property (3) in Proposition 5.3 implies that the last term above

converges to 0. Therefore

lim
nÑ8

mBM
n pp´1

n T 1pXzQiqq
mBM

n pp´1
n T 1Qiq “ 0,

which concludes the proof of Theorem 1.2.

Corollary 5.5: Let X and Γ be as in Theorem 1.2. Then the entropy at

infinity of the geodesic flow is equal to the maximal parabolic critical exponent,

that is

h8pg, T 1X{Γq “ δp,max.

6. Thermodynamic formalism

In this section we always consider X a Hadamard manifold with pinched nega-

tive sectional curvature and Γ an extended Schottky group of isometries of X

satisfying N1 ` N2 ě 3. We also assume that the derivatives of the sectional

curvature are uniformly bounded. Our goal is to obtain several results on ther-

modynamic formalism for the geodesic flow over X{Γ. Some of these results
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were already obtained, without symbolic methods, by Coudène (see [Cou03])

and Paulin, Pollicott and Schapira (see [PPS15]). However, the strength of

our symbolic approach will be clear in the study of regularity properties of the

pressure (subsection 6.2).

Here we keep the notation of subsection 4.2. Thus, the geodesic flow pgtq in

the set Ω0 can be coded by a suspension semi-flow pY,Φq with base pΣ, σq and

roof function τ : Σ Ñ R.

6.1. Equilibrium measures. We will consider the following class of poten-

tials.

Definition 6.1: A continuous function f : T 1X{Γ Ñ R belongs to the class

of regular functions, that we denote by R, if the symbolic representation

Δf : Σ Ñ R of f |Ω0 has summable variations.

We begin studying thermodynamic formalism for the geodesic flow restricted

to the set Ω0. The following results can be deduced from the general theory

of suspension flows over countable Markov shifts and from the symbolic model

for the geodesic flow. With a slight abuse of notation, using the identification

explained before, we still denote by f : Y Ñ R the given map f : Ω0 Ñ R.

Definition 6.2: Let f P R. Then the pressure of f with respect to the geodesic

flow g :“ pgtq restricted to the set Ω0 is defined by

PΩ0pfq :“ lim
tÑ8

1

t
log

¨̋ ÿ
ϕspx,0q“px,0q,0ăsďt

exp

ˆż s

0

fpϕkpx, 0qq dk

˙
χCi0

pxq‚̨.
This pressure satisfies the following properties:

Proposition 6.3 (Variational Principle): Let f P R. Then

PΩ0 pfq “ sup

"
hνpgq `

ż
Ω0

f dν : ν P MΩ0 and ´
ż
Ω0

f dν ă 8
*
,

where MΩ0 denotes the set of pgtq-invariant probability measures supported in

Ω0.

Proposition 6.4: Let f P R. Then

PΩ0pfq “ suptPg|Kpfq : K P KΩ0pgqu,
where KΩ0 pgq denotes the space of compact g-invariant sets in Ω0.
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Remark 6.5 (Convexity): It is well known that for any K P KΩ0pgq the pressure
function Pg|Kp¨q is convex. Since the supremum of convex functions is a convex

function, it readily follows that PΩ0p¨q is convex.

Proposition 6.6: Let f P R. Then there is an equilibrium measure νf P MΩ0 ,

that is,

PΩ0pfq “ hνf pgq `
ż
Ω0

f dνf ,

for f if and only if we have that PσpΔf ´ PΦpfqτq “ 0 and there exists an

equilibrium measure μf P Mσ forΔf ´PΦpfqτ such that
ş
τdμf ă 8. Moreover,

if such an equilibrium measure exists, then it is unique.

In order to extend these results to the geodesic flow in T 1X{Γ we use the

second conclusion of Proposition 4.9.

Definition 6.7: Let f P R. Then the pressure of f with respect to the geodesic

flow g :“ pgtq in T 1X{Γ is defined by

Pgpfq :“ max

"
PΩ0pfq,

ż
f dνh1 , . . . ,

ż
f dνhN1

*
.

Proposition 6.8 (Variational Principle): Let f P R. Then

Pgpfq “ sup

"
hνpgq `

ż
f dν : ν P Mg and ´

ż
f dν ă 8

*
.

Proposition 6.9: Let f P R. Then

Pgpfq “ suptPg|Kpfq : K P Kpgqu,
where Kpgq denotes the space of compact g-invariant sets.

Proposition 6.10: Let f P R be such that sup f ă Pgpfq. Then there is an

equilibrium measure νf P Mg for f if and only if we have that

PΩ0 pΔf ´ PΦpfqτq “ 0 and there exists an equilibrium measure μf P Mσ for

Δf ´ PΦpfqτ such that
ş
τdμf ă 8. Moreover, if such an equilibrium measure

exists, then it is unique.

Proof. Note that if sup f ă Pgpfq, then an equilibrium measure for f , if it

exists, must have positive entropy, since the measures νhi , with i P t1, . . . , N1u,
have zero entropy (see Proposition 4.9). The result follows from Proposition

6.6.
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The next result shows that potentials with small oscillation do have equilib-

rium measures; this result can also be deduced from [Cou03, PPS15]. Our proof

is short and uses the symbolic structure.

Theorem 6.11: Let f P R. If

sup f ´ inf f ă htoppgq ´ δp,max,

then f has an equilibrium measure.

Proof. Assume that the measures νhi are not equilibrium measures for f , oth-

erwise the theorem is proved. Therefore, we have that Pgpfq “ PΩ0pfq. We

first show that PσpΔf ´ Pgpfqτq “ 0. Note that for every x P Σ,

τpxq inf f ď Δf pxq ď τpxq sup f.
By monotonicity of the pressure we obtain

Pσppinf f ´ tqτq ď PσpΔf ´ tτq ď Pσppsup f ´ tqτq.
Let t P ps8 ` sup f, htoppgq ` inf fq and recall that s8 “ δp,max. Then

0 ă Pσppinf f ´ tqτq ď PσpΔf ´ tτq ď Pσppsup f ´ tqτq ă 8.

Since Pgpfq ă 8 and the function t Ñ PσpΔf ´ tτq is continuous with

limtÑ8 PσpΔf ´ tτq “ ´8, we obtain that PσpΔf ´ Pgpfqτq “ 0. Since the

system Σ has the BIP condition and the potential Δf ´Pgpfqτ is of summable

variations, it has an equilibrium measure μ. It remains to prove the integrability

condition. Recall that

B
BtPσpΔf ´ tτq

ˇ̌̌
t“Pgpfq

“ ´
ż
τdμ.

But we have proved that the function t Ñ PσpΔf ´ tτq is finite (at least) in

an interval of the form rPgpfq ´ ε, Pgpfq ` εs. The result now follows, because

when finite the function is real analytic.

6.2. Phase transitions. This subsection is devoted to studying the regularity

properties of pressure functions t ÞÑ Pgptfq for a certain class of functions f .

We say that the pressure function t ÞÑ Pgptfq has a phase transition at

t “ t0 if the pressure function is not real analytic at t “ t0. The set of points at

which the pressure function exhibits phase transitions might be a very large set.

However, since the pressure is a convex function it can only have a countable

set of points where it is not differentiable. Regularity properties of the pressure
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are related to important dynamical properties, for example exponential decay

of correlations of equilibrium measures. In the Axiom A case the pressure is real

analytic. Indeed, this can be proved noting that, in that setting, the function

t ÞÑ PσpΔf ´ tτq is real analytic and that PσpΔf ´ PΦτq “ 0. The result then

follows from the implicit function theorem noticing that the non-degeneracy

condition is fulfilled:

B
BtPσpΔf ´ tτq “ ´

ż
τdμ ă 0,

where μ is the equilibrium measure corresponding to Δf ´ tτ . The inequality

above, together with the coding properties established in [Bow73, BR75, Rat73],

allow us to establish that the pressure is real analytic for regular potentials in

the Axiom A setting. In the non-compact case the situation can be different.

However, the only results involving the regularity properties of the pressure

function for geodesic flows defined on non-compact manifolds, that we are aware

of, are those concerning the modular surface (see [IJ13, Section 6]). In this

section we establish regularity results for pressure functions of geodesic flows

defined on extended Schottky groups. We begin by defining conditions (F1)

and (F2) on the potentials.

Definition 6.12: Consider a non-negative continuous function f : T 1X{Γ Ñ R.

We will say f satisfies Condition (F1) or (F2) if the corresponding property

below holds.

(F1) The symbolic representation Δf : Σ` ÑR is locally Hölder and bounded

away from zero in every cylinder Cam Ă Σ`, where a P A, m P Z.

(F2) Consider any indexation pCnqnPN of the cylinders of the formCam . Then

lim
nÑ8

suptΔf pxq : x P Cnu
inftτpxq : x P Cnu “ 0.

We say f belongs to the class F if it satisfies (F1) and (F2).

In the following Lemma we establish two properties of potentials in F that

will be used in the sequel.

Lemma 6.13: Let f be a potential satisfying (F1) and pνnq a sequence of mea-

sures in MΩ0 such that νn “ μnˆm|Y
pμnˆmqpY q . Then:

(1) if limnÑ8
ş
Ω0
fdνn “ 0, then limnÑ8

ş
τdμn “ 8;

(2) if f satisfies (F2) and limnÑ8
ş
τdμn “ 8, then limnÑ8

ş
Ω0
fdνn “ 0.
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Proof. To prove (1) we will argue by contradiction. Assume, passing to a sub-

sequence if necessary, that

lim
nÑ8

ż
τdμn “ C.

Let ε ą 0. There exists N P N such that for every n ą N we have thatˇ̌̌̌ż
τdμn ´ C

ˇ̌̌̌
ă ε.

Lemma 6.14: Let r ą 1. Then for every n ą N we have that

μnptx : τpxq ď ruq ą 1 ´ C ` ε

r
.

Proof of Lemma 6.14. Since the function τ is positive we haveż
τdμn ě rμnptx : τpxq ě ruq `

ż
tx:τpxqďru

τdμn.

Thus

C ` ε ě rμnptx : τpxq ě ruq,
C ` ε

r
ě μnptx : τpxq ě ruq.

Finally

μnptx : τpxq ď ruq ą 1 ´ C ` ε

r
.

Note that the set tx : τpxq ď ru is contained in a finite union of cylinders on

Σ. This follows from the inequality dpo, amoq´C ď τpxq, which is a consequence

of Lemma 4.11, and the fact that A is finite. Since Δf is bounded away from

zero in every one of them, there exists a constant Gprq ą 0 such that

Δf pxq ą Gprq,
on tx : τpxq ď ru. Thusż

Ω0

fdνn “
ş
Σ
Δf pxqdμnş
Σ
τdμn

ě
ş

tx:τpxqďru Δf pxqdμnş
Σ
τdμn

ě Gprq `
1 ´ C`ε

r

˘
C ´ ε

.

If we choose r large enough so that 1 ´ C`ε
r ą 0 we obtain the desired contra-

diction.

To prove (2), observe that for every ε ą 0 there exists N ě 1 such that for

every k ě N we have
suptΔf pxq : x P Cku
inftτpxq : x P Cku ă ε.
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Hence

lim
nÑ8

ż
fdνn “ lim

nÑ8
1ş
τdμn

ÿ
kě1

ż
Ck

Δfdμn

“ lim
nÑ8

1ş
τdμn

ÿ
kěN

ż
Ck

Δfdμn

ď lim
nÑ8

1ş
τdμn

ÿ
kěN

ż
Ck

suptΔf pxq : x P Cku
inftτpxq : x P Cku inftτpxq : x P Ckudμn

ď lim
nÑ8

1ş
τdμn

ÿ
kěN

ż
Ck

ε inftτpxq : x P Ckudμn

ď ε.

Since ε ą 0 is arbitrary, the conclusion of the second claim follows.

Combining Theorem 3.7 and Lemma 6.13, we obtain the following

Lemma 6.15: Let Γ be an extended Schottky group satisfying N1 ` N2 ě 3

and let f be a function satisfying property (F1). If pνnqn Ă Mg is a sequence

of invariant probability measures for the geodesic flow such that

lim
nÑ8

ż
T 1X{Γ

fdνn “ 0,

then

lim sup
nÑ8

hνnpgq ď δp,max.

Proof. If νn P MΩ0 , the Lemma follows directly from (1) in Lemma 6.13 and

Theorem 3.7. If νn P Mg with support in XzΩ0, then we can consider the

measure ν̃n :“νn´řN1

i“1 c
n
i ν

hi where the constants cni ě0 are chosen so that ν̃n

(periodic orbit associated to hyperbolic generator hiq“0. Let Cn“ ν̃npX{Γq. If
Cn“0, then hνnpgq “ 0 and there is no contribution to the desired lim suphνnpgq.
Otherwise define un “C´1

n ν̃n. By definition un is a probability measure in MΩ0 ;

we claim limnÑ8
ş
fdun “ 0. Observe that

ş
fdνn “ ş

fdν̃n`řN1

i“1 c
n
i ν

hipfq has
non-negative summands and it is converging to zero, it follows that

ş
fdν̃n Ñ 0,

cni Ñ 0 as n Ñ 8. By definition Cn “ 1´ řN1

i“1 c
n
i , therefore Cn Ñ 1. Recalling

un “ C´1
n ν̃n we get lim

ş
fdun “ 0.

Because νn “Cnuǹ p1´Cnqp1´Cnq´1
řN1

i“1 c
n
i ν

hi , we have hνnpgq“Cnhunpgq.
Finally, since Cn Ñ 1 and lim supnÑ8 hunpgq ď δp,max (because un PMΩ0), we

get lim supnÑ8 hνnpgqďδp,max.
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The next Theorem is the main result of this subsection and it is an adaptation

of results obtained at a symbolic level in [IJ13]. It is possible to translate those

symbolic results into this geometric setting thanks to Theorem 4.10.

Theorem (1.3): Let X be a Hadamard manifold with pinched negative sec-

tional curvature and let Γ be an extended Schottky group of isometries of X

satisfying N1 `N2 ě 3. Assume that the derivatives of the sectional curvature

are uniformly bounded. If f P F , then

(1) For every t P R we have that Pgptfq ě δp,max.

(2) We have that limtÑ´8 Pgptfq “ δp,max.

(3) Let t1 :“ suptt P R : Pgptfq “ δp,maxu. Then

Pgptfq “
$&%δp,max if t ă t1;

real analytic, strictly convex, strictly increasing if t ą t1.

(4) If t ą t1, the potential tf has a unique equilibrium measure. If t ă t1 it
has no equilibrium measure.

Note that Theorem 1.3 shows that when t1 is finite, then the pressure function

exhibits a phase transition at t “ t1, whereas when t1 “ ´8 the pressure

function is real analytic where defined (see Figure 2). Recall that δp,max “ s8.

Figure 2.

No phase transitions Phase transition at t “ t1
t t

Pgptfq Pgptfq

‚δΓ ‚δΓ

‚δp,max ‚δp,max

‚
t1

Proof of (1). The first claim follows from the variational principle. By The-

orem 5.1 there exists a sequence pνnq Ă Mg such that limnÑ8 hνnpgq “ s8
and their corresponding probability σ-invariant measures pμnq in Σ satisfy

limnÑ8
ş
τdμn “ 8. Therefore, by (2) in Lemma 6.13, we also have that
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limnÑ8
ş
fdνn “ 0. Hence, for every t P R, we have

s8 “ δp,max “ lim
nÑ8

ˆ
hνnpgq ` t

ż
Ω0

fdνn

˙
ď sup

"
hνpgq ` t

ż
fdν : ν P Mg

*
“ Pgptfq.

Proof of (2). Since t ÞÑ Pgptfq is non-decreasing and bounded below, the follow-

ing limit limtÑ´8 Pgptfq exists. Define A P R as the limit limtÑ´8 Pgptfq :“ A.

Using the Variational Principle, we can choose a sequence of measures pνnqn in

Mg for which

lim
nÑ8hνnpgq ´ n

ż
fdνn “ A.

Since A is finite it follows that limnÑ8
ş
fdνn “ 0. Hence, from Lemma 6.15,

we obtain lim supnÑ8 hνnpgq ď s8. In particular,

s8 ď lim
tÑ´8Pgptfq

“ lim
nÑ8 hνnpgq ´ n

ż
fdνn

ď lim
nÑ8 hνnpgq ď s8.

Therefore, we have that A “ δp,max.

Proof of (3). Real analyticity. We first prove Pgptfq “ PΩ0ptfq. After this is

done we can proceed with standard regularity arguments in the symbolic pic-

ture. Observe that for t ă 0 the pressure PΩ0ptfq is always positive while the

contribution of the pressure on pT 1X{ΓqzΩ0 is negative, so Pgptfq “ PΩ0ptfq
for every t ď 0. Consider now t ą 0. Pick νhi as in Proposition 4.9 (see also

Definition 6.7). Denote by x´ (resp. x`), the repulsor (attractor) of hi and γhi ,

the geodesic defined by those points. Consider p a parabolic element in A and

let γn be the geodesic connecting the points ξ´ and ξ` where ωpξ´q “ p´1h´n

and ωpξ`q “ hnp. Denote γ8 the geodesic connecting p´1x´ and x`. Observe

that γn descends to a closed geodesic in T 1X{Γ. By comparing γn and γ8 we

see that for any ε ą 0, the amount of time γn leaves a ε-neighborhood of γhi

is uniformly bounded for big enough n. Let νn be the invariant probability

measure defined by the closed geodesic γn; then we get the weak convergence

νn Ñ νhi . Then

t

ż
fdνhi “ lim

nÑ8 t
ż
fdνn ď lim

nÑ8phνnpgq ` t

ż
fdνnq ď PΩ0 ptfq.
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This give us Pgptfq “ PΩ0ptfq.
The pressure function t ÞÑ Pgptfq is convex, non-decreasing and bounded

from below by s8. We now prove that for t ą t1 it is real analytic. Note that

since t1 ă t we have that

PσptΔf ´ s8τq ą 0,

possibly infinity, and that there exists p ą s8 such that 0 ă PσptΔf ´ pτq ă 8
(see [IJ13, Lemma 4.2]). Moreover, Condition pF2q implies that Pgptfq ă 8
for every t ą t1, hence

PσpΔtf ´ Pgptfqτq ď 0.

Since τ is positive, the function s ÞÑ PσptΔf ´ sτq is decreasing and

lim
sÑ`8PσptΔf ´ sτq “ ´8.

Moreover, since the base map of the symbolic model satisfies the BIP condition,

the function ps, tq ÞÑ PσptΔf ´ sτq is real analytic in both variables. Hence,

there exists a unique real number sf ą s8 such that PσptΔf ´ sfτq “ 0 and

B
BsPσptΔf ´ sτq

ˇ̌̌
s“sf

ă 0.

Therefore, Pgptfq “ sf and, by the Implicit Function Theorem, the function

t ÞÑ Pgptfq is real analytic in pt1, t‹q.
Proof of (4). First note that the previous claims imply that no zero entropy

measure can be an equilibrium measure. Moreover, in the proof of (3) we

obtained that for t P pt1,8q we have that PσptΔf ´ Pgptfqτq “ 0. Since the

system satisfies the BIP condition, there exists an equilibrium measure μf P Mσ

for tΔf ´Pgptfqτ such that
ş
τdμf ă 8 (see Theorem 2.9). Therefore it follows

from Proposition 6.6 that tf has an equilibrium measure.

In order to prove the last claim, assume by contradiction that for some

t1 ă t1 the potential t1f has an equilibrium measure νt1 . Then

s8 “ Pgpt1fq “ hνt1 pgq ` t1

ż
Ω0

fdνt1 .

Since f ą 0 on Ω0, we have that
ş
Ω0
fdνt1 :“ B ą 0. Thus the straight line

r Ñ hνt1 pgq ` r
ş
Ω0
fdνt1 is increasing with r, therefore for t P pt1, t1q we have

that

hνt1 pgq ` t

ż
Ω0

fdνt1 ą s8 “ Pgptfq.
This contradiction proves the statement.
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6.3. Examples. We will use the following criterion, first introduced in [IJ13],

to construct phase transitions.

Proposition 6.16: Let f P F . Then:

(1) If there exists t0 P R such that Pσpt0Δf ´ s8τq ă 8, then there exists

t1 ă t0 such that for every t ă t1 we have

Pgptfq “ s8.

(2) Suppose that there exists an interval I such that PσptΔf ´ s8τq “ 8
for every t P I. Then t ÞÑ Pgptfq is real analytic on I. In particular, if

for every t P R we have PσptΔf ´ s8τq “ 8, then t ÞÑ Pgptfq is real

analytic in R.

The proof of this Lemma follows as in [IJ13, Lemma 4.5, Theorem 4,1]. We

now present an example of a phase transition (Example 6.18) and another one

with pressure real analytic everywhere (Example 6.19). A useful lemma in order

to construct an example of a phase transition is the following

Lemma 6.17: Let panqn be a sequence of positive real numbers such thatř8
n“1 a

t
n converges for every t ą t˚ and diverges at t “ t˚. Then there ex-

ists a sequence pεnqn of positive numbers such that

lim
nÑ8 εn “ 0

and
8ÿ

n“1

at
˚`εn
n ă 8.

Proof of Lemma 6.17. Let pαmqm be any sequence of real numbers in p0, 1s
converging to zero. Note that for every m ě 1 we have

8ÿ
n“1

at
˚`αm
n ă 8.

Then there exists an integer Nm ě 1 such that

8ÿ
n“Nm

at
˚`αm
n ă 1{m2.



Vol. 225, 2018 GEODESIC FLOWS 655

We can suppose without loss of generality that Nm ă Nm`1. Define εn for

every Nm ď n ă Nm`1 as εn “ αm, and εn “ 1 for 1 ď n ă N1. Thus

8ÿ
n“1

at
˚`εn
n “

N1´1ÿ
n“1

at
˚`εn
n `

8ÿ
m“1

Nm`1´1ÿ
n“Nm

at
˚`εn
n

“
N1´1ÿ
n“1

at
˚`1
n `

8ÿ
m“1

Nm`1´1ÿ
n“Nm

at
˚`αm
n

ď
N1´1ÿ
n“1

at
˚`1
n `

8ÿ
m“1

8ÿ
n“Nm

at
˚`αm
n

ď
N1´1ÿ
n“1

at
˚`1
n `

8ÿ
m“1

1{m2

ă8.

Example 6.18 (Phase transition): Let Γ be a Schottky group satisfying

N1 `N2 ě 3 and assume that there are at least 2 different cusps, i.e. N2 ě 2.

Moreover, assume there exists a unique parabolic generator p with δp “ δp,max.

Recall that the series
ř

mPZ e´δpdpo,pmoq diverges since p is a parabolic isometry

of divergence type. Take a decreasing sequence of real numbers εm ą 0, as

in Lemma 6.17, such that limmÑ8 εm “ 0 and
ř

mPZ e´pδp`εmqdpo,pmoq ă 8.

Define a function f0 : Σ Ñ R` by

(1) f0pxq “ εmτpxq if the first symbol of x is pm for some m P Z,

(2) f0pxq “ 1 otherwise.

Observe that since τ is locally Hölder, the function f0 is also locally Hölder. We

first see that f0 P F ; for this, it is enough to check that Condition

(F2) holds. There exists a constant C independent of m such that

dpo, pmoq ´ C ď τpxq whenever x P Cpm . Then, if x, y P Cpm we have

τpxq{τpyq ď dpo, pmoq{pdpo, pmoq ´ Cq,

i.e. supxPCpm
τpxq{ infxPCpm

τpxq is uniformly bounded in m; this implies Con-

dition (F2). As shown in [BRW04, Section 2], we can construct a continuous

function f : Y Ñ R with Δf “ f0. We define t : Σ Ñ R by tpxq “ ps8 ` εmq
if the first symbol of x is pm, and s8 otherwise. By simplicity we will denote

spamq “ tpxq if the first symbol of x is am. Following the notation and ideas of
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the second part of the proof of Theorem 4.10, we obtain

Pσp´Δf´s8τq

“ lim
nÑ8

1

n
log

ÿ
x:σnx“x

exp

˜
n´1ÿ
i“0

´pΔf pσixq ` s8τpσixqq
¸
χCh1

pxq

ď lim
nÑ8

1

n
log

ÿ
x:σnx“x

exp

˜
n´1ÿ
i“0

´τpσixqtpσixq
¸
χCh1

pxq

ď lim
nÑ8

1

n
log

ÿ
a1,...,an

ÿ
m1,...,mn

nź
i“1

Cspami
i qe´spami

i qdpo,ami
i oq

ď lim
nÑ8

1

n
logCnps8`1q ÿ

a1,...,an

ÿ
m1,...,mn

nź
i“1

e´spami
i qdpo,ami

i oq

“ lim
nÑ8

1

n
logCnps8`1q

˜ ÿ
aPA

ÿ
mPZ

e´spamqdpo,amoq
¸n

“ logCs8`1

˜ ÿ
aPA

ÿ
mPZ

e´spamqdpo,amoq
¸
.

Observe that
ř

m e´spamqdpo,amoq converges for every s ą δa and every a ‰ p.

On the other hand, the series
ř

mPZ e´pδp`εmqdpo,pmoq is finite by construction.

In particular Pσp´Δf ´ s8τq is finite. Observe that f is a potential belonging

to the family F . Then from Proposition 6.16 it follows that t ÞÑ Pgptfq exhibits
a phase transition.

Example 6.19 (No phase transition): Let Γ be a Schottky group satisfying

N1 `N2 ě 3. Define f0 : Σ Ñ R` to be constant of value 1 and construct

a continuous function f : Y Ñ R with Δf “ f0. Observe that

Pσpt ´ s8τq “ t ` Pσp´s8τq “ 8.

Recall that Pσp´s8τq “ 8, because the maximal parabolic generator is of

divergence type (see the first part of Theorem 4.10). Since τ is unbounded and

f0 is constant, we can apply Proposition 6.16 to show that t ÞÑ Pgptfq is real

analytic in R. In particular, it never attains the lower bound s8.
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Remark 6.20: In both examples above, the potential f is defined (a priori) only

on the set Ω0. To extend it continuously to the entire manifold T 1X{Γ, it is

enough to define it to be equal to 0 on the complement pT 1X{ΓqzΩ0.
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