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ABSTRACT

We present a homogenization theorem for isotropically-distributed point

defects, by considering a sequence of manifolds with increasingly dense

point defects. The loci of the defects are chosen randomly according to

a weighted Poisson point process, making it a continuous version of the

first passage percolation model. We show that the sequence of manifolds

converges to a smooth Riemannian manifold, while the Levi-Civita con-

nections converge to a non-metric connection on the limit manifold. Thus,

we obtain rigorously the emergence of a non-metricity tensor, which was

postulated in the literature to represent continuous distribution of point

defects.
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1. Introduction

The study of defects in solids with imperfections is a longstanding theme in

materials science. One of the prototypical crystalline defects are point defects

(see, e.g., [Krö81, Krö90]). In crystalline materials, point defects may be caused

by vacancies, interstitials, or impurities. In amorphous materials, point defects

can be viewed as either a contraction or a dilatation of local equilibrium distan-

ces between adjacent material elements. Assuming that a defect-free body is

modeled by a smooth Euclidean manifold (see, e.g., [KMS15]), a body contai-

ning isotropic (i.e., ball-shaped) point defects is modeled by a subset D ⊂ Rd



Vol. 223, 2018 NON-METRICITY 77

endowed with a Riemannian metric of the form

(1.1) gR = φ · e, φ(x) =

⎧⎨⎩ξ2, |x− xi| ≤ 1
R for some i = 1, . . . ,m,

1, |x− xi| > 1
R for every i = 1, . . . ,m,

where e is the Euclidean metric on Rd, the points x1, . . . , xm are the centers of

the defects, | · | is the Euclidean norm, 1/R is the radius of a defect, and ξ is

the dilatation factor. In this work we focus on defects of vacancy type, hence

ξ < 1; xi can be thought of as the loci of “missing”, or “smaller” atoms in the

material; “neighboring” atoms thus occupy the vacant location and get closer.

In mechanics and materials science, a major theme is the modeling of mate-

rials that contain distributed defects (see, e.g., [Nol67, Wan67]). In continuum

models, bodies with distributed defects are modeled as smooth manifolds, in

which the singularities are smoothed out (or homogenized) and their density is

represented by an additional geometric field. For example, bodies with distribu-

ted dislocation-type defects have been modeled since the 1950s as a Riemannian

manifold endowed with a metrically-consistent, non-symmetric flat connection

(e.g., [Nye53, BBS55, BS56]). In this model, the density of the dislocations is

represented by the torsion field of the connection.

A model for distributed point defects has been much more elusive. It has

been suggested that bodies with distributed point defects could be modeled

as Riemannian manifolds with a flat, symmetric, non-metric connection (e.g.,

[Krö81] pp. 300–304 and [MR02]). There is, however, a big difference between

the continuum models of dislocations and point defects. Since the 1950s, there

has been a clear rationale—even if not a rigorous derivation—relating disloca-

tions to torsion. We are not aware of a similar rationale relating point defects

to non-metricity. In the words of Kröner in his seminal review ([Krö81] p. 304):

We are, however, completely aware of the fact that these . . .

identifications [of point defects and non-metricity] have not the

same degree of certainty as the . . . identification . . . of dislocati-

ons and torsion.

In this paper we present a rigorous analysis of the homogenization of point

defects. Similarly to the homogenization of edge-dislocations [KM15, KM15b],

we obtain a manifold endowed with a non-metric connection as a limit of mani-

folds with distributed defects. Specifically, we consider a sequence of manifolds
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with increasingly-dense point defects. As the density of the defects tends to in-

finity, the sequence of locally-smooth manifolds with singularities converges to a

smooth Riemannian manifold. The Levi-Civita connection on each manifold in

the sequence is, wherever it is defined, the Levi-Civita connection of Rd. When

the distribution of the point defects is not uniform, the Levi-Civita connection

of Rd is inconsistent with the limit metric, i.e., has a non-zero non-metricity

tensor. This is the source of non-metricity in the limit. A surprising feature of

our result is that the limit metric (and hence the non-metricity tensor) is not

that expected from volume vs. length considerations; see Section 2.1.3.

In this paper, we investigate isotropic distributions of isotropic point defects.

That is, the distribution is locally invariant to rotations (isotropy of the dis-

tribution), and the defects are ball shaped (isotropy of the defects). A natural

way to achieve such a distribution is to randomly select the loci of the defects

using a weighted Poisson point process. The precise model, which is detailed

in Section 2.2, turns out to be a continuous version of the first passage percola-

tion model on the Euclidean lattice, thus making it an interesting probabilistic

model on its own; see Subsection 2.2 for more details.

The structure of this paper is as follows: In Section 2.1 we give a rather

informal presentation of the main results (without getting into the probabilis-

tic details), and discuss their geometric and materials science/mechanics con-

sequences. Section 2.1 is the most relevant for the geometric and material-

science-oriented reader. In Section 2.2 we describe the probabilistic model for

the distribution of the point defects and discuss its connections to the probabi-

listic literature. After a list of definitions and notations in Section 2.3, we state

the main results in Section 2.4. Since the proofs are rather technical, we provide

in Section 3 a sketch of the proof of our main results. The detailed proofs are

presented in Sections 4–8.
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discussions. We are also grateful to the anonymous referees, who pointed out

some errors and helped us to improve the readability of the paper. The first

author is partially supported by the Israel Science Foundation and by the Israel–

US Binational Foundation. The third author is partially supported by an ETH

fellowship.
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2. Setting and main results

2.1. Overview of the results and discussion. Let d ≥ 2 be the dimen-

sion and let ξ ∈ (0, 1) be the dilatation factor of the point defects. Ignoring

momentarily the probabilistic details, our main result (Theorem 2.2) is roughly

as follows:

There exists a u∗>0 and a continuous monotonically-decreasing

function η : [0, u∗) → (0, 1] such that the following holds: Let

D ⊂ Rd be a compact d-dimensional manifold with corners. Let

u : D → [0, u∗) be a continuous function. Let (D, gR)R>0 be a

family of manifolds containingRd·∫D u point defects of intensity

ξ and radius 1/R, randomly distributed in D with distribution

u. Then (D, gR) converges (in the Gromov–Hausdorff sense) as

R → ∞ to the Riemannian manifold (D, (η ◦ u) · e).
This result holds also if ξ = 0 (i.e., if point defects correspond to the removal

of a ball and the identification of its boundary as a single point). The case of

ξ = 0 involves however semi-metrics, hence to simplify the presentation we will

only consider in this subsection the case ξ > 0.

The next subsections discuss geometric and material-science consequences of

our main theorem.

2.1.1. Non-metricity. The Riemannian (Levi-Civita) connection for each of the

manifolds (D, gR) coincides with the Euclidean Levi-Civita connection ∇ of

Rd, whenever it is defined, i.e., everywhere except for the boundaries of the

defects. Thus, as R → ∞, the connection converges (in L∞) to the Euclidean

connection. If u is not constant (i.e., the point defects are distributed non-

uniformly), then the limiting Riemannian metric is not Euclidean, hence the

limit connection does not coincide with the Levi-Civita connection of the limit

metric. In other words, parallel transport with respect to the limit connection

∇ is not an isometry in the limit manifold.

In fact, one can consider the convergence of Riemannian manifolds with con-

nections,

(D, gR,∇) → (D, (η ◦ u) · e,∇),

in which case Riemannian manifolds with metric connections converge to a

Riemannian manifold with a non-metric connection.
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If η ◦ u is differentiable, then the non-metricity tensor Qkij of ∇ is given in

coordinates by

(2.1) Qkij = ∇kgij = ∂kgij − Γl
ikglj − Γl

jkgil = ∂k(η ◦ u) δij = ∂k(η ◦ u)
η ◦ u gij ,

where gij are the coordinate components of the metric (η ◦ u) · e, and Γl
jk are

the Christoffel symbols of ∇, which are identically zero.

In particular, the non-metricity tensor is diagonal with respect to the metric.

This is consistent with the model presented in [YG12] for bodies with distri-

buted point defects: Riemannian manifolds with flat, symmetric, non-metric

connections with a non-metricity tensor diagonal with respect to the metric (in

[YG12] such manifolds are called Weyl manifolds).

We believe that the fact that the off-diagonal components of the non-metricity

tensor are zero is only a result of our choice of isotropic point defects (i.e., ball-

shaped). For different choices of point defects we expect the emergence of

non-diagonal non-metricity tensors; see open questions below.

2.1.2. Curvature. An immediate corollary of our main result is that any subset

of Rd endowed with a conformally-flat Riemannian metric can be obtained as a

limit of Euclidean manifolds with point defects.

In particular, the limit manifold can have non-zero curvature, even though

the point defects do not carry any curvature charge. This is similar to the case

of dislocations, where it is only the limit connection that is flat—not the limit

metric (see [KM15b]).

2.1.3. Length-volume inconsistency. The Gromov–Hausdorff convergence of

(D, gR) to (D, (η ◦ u) · e) as R → ∞ is a convergence of distance functions

in metric spaces. Another property that converges as R → ∞ is the measure

νR induced by the Riemannian metric gR. It converges weakly to the measure

μσ◦u induced by the Riemannian metric (σ ◦ u) · e on D, where

σ(u) = (e−uκd + ξd(1− e−uκd))1/d,

and

κd =
πd/2

Γ(d/2 + 1)

is the volume of the d-dimensional unit ball. Indeed, for constant distribution

u, as R → ∞ the defects cover a fraction of (1 − e−uκd) of the manifold; this

remains true locally for non-constant u. In other words, the sequence of metric
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measure spaces (D, distDR , μR) converges in the measured-Gromov–Hausdorff

topology (see Definition 2.1 below) to the metric measure space (D,dD
η◦u, μσ◦u),

where distDR and dD
η◦u are the intrinsic distance functions induced on D by gR

and (η ◦ u) · e, respectively. See part (2) of Theorem 2.2 and Corollary 2.3 for

details.

A näıve guess would be that η equals σ, since then both the limit distance

function and the limit measure are derived from the same Riemannian metric

(σ is the d-th root of the volume reduction), like the distance functions and

measures for every finite R. Even though our analysis does not yield an explicit

formula for η, we show that, in fact, η<σ (part (3) of Theorem 2.2) and in

the case ξ = 0, even η ≤ σd (actually η < σd is achievable, see a remark in

Section 6.2). Hence, the limit metric and the limit measure are inconsistent

with each other. This can be viewed as another type of non-metricity, not

related to the connection which, to our knowledge, has not been mentioned in

the material-science literature so far.

2.1.4. Open questions. We conclude this section by raising several natural que-

stions awaiting further analysis:

(1) In the present work we assume that point defects are spherically sym-

metric (“isotropic” point defects). A natural question is: what is the

limit if one takes non-isotropic point defects, say ellipsoids? In the

non-isotropic case, our analysis predicts convergence to some limiting

metric space; the latter is not conformally Euclidean, unlike the isotro-

pic case. It is not clear, however, whether the limit distance function

is induced by a Riemannian metric (a plausible alternative would be a

Finsler metric).

If the limit distance function is induced by a Riemannian metric,

then we expect the resulting non-metricity tensor not to be diagonal

with respect to the metric as in (2.1). Either way, whether the limit

metric is Riemannian or Finsler, this will show that Weyl manifolds

(in the sense of [YG12]) are not the most general model for distributed

point defects, as suggested in [YG12].

(2) A similar question arises if the defects are placed on a grid determi-

nistically (or if the distribution is not isotropic). As the grid spacing

tends to zero, we conjecture the appearance of a non-Riemannian limit



82 R. KUPFERMAN, C. MAOR AND R. ROSENTHAL Isr. J. Math.

metric, even if the entire structure is symmetric (say, cubic defects on

a cubic grid).

(3) This work focuses on the phenomenological question of describing bo-

dies with distributed point defects. Another natural question is: how

do the non-metricity and the length–volume inconsistency manifest in

the mechanical or elastic properties of the body? That is, if each mani-

fold (D, gR) represents an elastic body with some elastic energy density

related to its metric, what is the elastic energy functional in the limit

R → ∞?

2.2. Probabilistic setting. Let d ≥ 2. We consider the space of locally

finite point measures,

(2.2) Ω =

{
ω =

∑
i≥0

δxi :
xi ∈ Rd for all i ≥ 0 and ω(A) < ∞
for all compact A ⊂ Rd

}

with its natural σ-algebra F generated by the evaluation maps ω 
→ ω(A), with

A running over all Borel-measurable sets in Rd.

For x ∈ Rd and r ≥ 0, let

B(x, r) = {y ∈ Rd : |x− y| ≤ r}
be the closed Euclidean ball of radius r around x.

Let ξ ∈ [0, 1). Given ω ∈ Ω and R > 0 we denote

SR(ω) =
⋃

x∈supp(ω)

B(x, 1/R),

and define a Riemannian (semi-)metric on Rd

(2.3) gR(x;ω) =

⎧⎨⎩e, x /∈ SR(ω),

ξ2 · e, x ∈ SR(ω),

where e is the Euclidean metric on Rd. We will often remove ω from the notation

when no confusion occurs. For ξ > 0, gR is a Riemannian metric, and for ξ = 0

it is a semi-metric. Let distR be the distance function induced by gR, that is

(2.4) distR(x, y;ω) = inf{lenR(γ) : γ ∈ Γ(x, y)},
where Γ(x, y) denotes all the paths from x to y, and lenR(γ) is the length of γ

induced by gR. If ξ = 0, distR is a semi-distance.
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A note on nomenclature: the term “metric” is commonly used in two different

contexts—for a Riemannian metric on a smooth manifold and for a distance

function in a metric space. Since the distinction between the two is at the heart

of the present work, we will consistently call the first a metric and the second

a distance.

Finally, denote by νR the measure on Rd induced by gR,

(2.5) νR(A;ω) = Lebd(A \ SR(ω)) + ξd Lebd(A ∩ SR(ω)),

where Lebd is the d-dimensional Lebesgue measure and A ⊆ Rd is a Lebesgue

measurable set.

The triple (Rd, distR, νR) is a metric measure space if ξ > 0. In order to

obtain a metric measure space for ξ = 0, we define the equivalence relation,

(2.6) x
ω,R∼ y ⇔ x=y or x, y are in the same connected component of SR(ω).

In other words, for every x ∈ supp(ω), we identify all the points in B(x, 1/R).

For given ω ∈ Ω and R > 0 the equivalence relation yields a metric measure

space (MR, distR, νR), where

(2.7) MR = Rd/
R∼ .

Denoting by πR : Rd → MR the equivalence class map associated with
R∼ (and

with a slight abuse of notation),

(2.8) distR(x, y) := distR(π
−1
R (x), π−1

R (y)), ∀x, y ∈ MR

and

(2.9) νR(A) := νR(π
−1
R (A)), ∀ Borel set A ⊂ MR.

Note that in (2.8) both π−1
R (x) and π−1

R (y) may contain more than one ele-

ment. However, the distance doesn’t depend on the choice of the representatives

by definition (2.4) of distR. We denote byM′
R the set {x ∈ MR : |π−1

R (x)| = 1},
where here and below | · | denotes the cardinality of a set.

Comment: In simple words, given ω ∈ Ω and R > 0 the metric measure space

MR = MR(ω) is the metric measure space induced from Rd by identifying all

the points in the closed balls B(xi, 1/R), where xi are the points in the support

of ω.



84 R. KUPFERMAN, C. MAOR AND R. ROSENTHAL Isr. J. Math.

Similarly to the full space, for a path-connected Lebesgue-measurable subset

D ⊂ Rd, we denote by distDR the intrinsic distance/semi-distance induced by gR

on D, that is

(2.10) distDR = inf{lenR(γ) : γ ∈ Γ(x, y), γ ⊂ D},
and denote by νDR the restriction of νR to D. For ξ > 0, this yields a metric

measure space (D, distDR , νDR ). For ξ = 0, we denote

(2.11) DR = D/
R∼,

obtaining a metric measure space (DR, dist
D
R , νDR ), where distDR and νDR are

defined (with a slight abuse of notation) as the pullback of distDR and νDR by

πR, similarly to the definitions in (2.8) and (2.9).

Note: in order to address at the same time the cases ξ = 0 and ξ > 0, we will

sometimes write DR and πR even if ξ > 0. In this case DR = D and πR is the

identity map (when ξ > 0, all points in D are distinct).

Given a function u : Rd → [0,∞) and R > 0, we denote by Pu,R the probabi-

lity measure on (Ω,F) under which ω is a Poisson point process with intensity

Rdu(x) ·Lebd(dx); see [Res87, Chapter 3] for details on Poisson point processes.

We denote by Eu,R the corresponding expectation. Note that as R → ∞, the

number of point defects grows like Rd whereas the volume in Rd of each point

defect scales like 1/Rd, which is why we expect the measure to converge.

We will show below (Lemma 4.1) that for ξ = 0 and for every density function

u : Rd → [0,∞) taking values in a compact set of an interval [0, u∗), u∗ =

u∗(d) > 0, the metric space MR is Pu,R-a.s. simply-connected and locally

isometric to the Euclidean space, everywhere except for a nowhere dense set.

This is also trivially true for the case ξ > 0, in which (Rd, gR) is locally isometric

to the Euclidean plane at every continuity point of gR.

2.2.1. Discussion on the probabilistic model. If the function u : Rd → [0,∞)

is spatially invariant (i.e., constant), one can view our model as a continuous

version of first passage percolation on Zd, in which one associates a random

weight with each edge independently according to some weight distribution

F ; see, for example, [Kes86]. Our specific choice of point defects is related

to the function F (ξ) = p and F (1) = 1 − p for a certain choice of p that

depends on u. Note, however, that one can easily generalize the model to

general weights by sampling the dilation factor of each ball randomly according

to some distribution.
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The discrete model of first passage percolation was introduced by Hammersley

and Welsh [HW65], and was studied extensively since then; see, e.g., [Kes86,

GK84, Kes93, BKS03] and the references therein. The continuous version of

this model is based on its continuous counterpart for percolation (known as the

Boolean model); see [Hal85, MR96]. To the best of our knowledge, there is no

existing work on a continuous version of first passage percolation.

For a general continuous function u, the discrete counterpart of the model is

first passage percolation with independent but not identically distributed edge

weights.

2.3. Notation and definitions. In this subsection we list notation and de-

finitions that will be used throughout the paper.

2.3.1. Norms.

• | · | – The inner-product (Euclidean) norm on Rd.

• | · |∞ – The supremum norm on Rd.

• ‖ · ‖∞ – The supremum norm on continuous functions.

2.3.2. Riemannian metrics.

• e – The Euclidean metric on Rd.

• gR = gR(·;ω) – The (random) metric on Rd induced by point defects

according to (2.3) (or equivalently (1.1)).

2.3.3. Distance functions.

• Given a continuous function ρ : Rd → (0,∞),

(2.12) dρ =
the distance function induced

by the Riemannian metric ρ(x) · e.
• For a path-connected compact subset D ⊂ Rd,

(2.13) dD
ρ =

the intrinsic distance function induced

by the Riemannian metric ρ(x) · e on D.

• distR = distR(·;ω) – The distance function induced by gR on Rd or MR

(see (2.4) and (2.8)).

• dist – A shortened notation for dist1 used in Sections 4–6.

• distDR = distDR (·;ω) – The intrinsic distance function induced by gR on

a path-connected Lebesgue-mesurable set D ⊂ Rd, or on DR (see (2.10)

and (2.11)).
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• For two compact sets A,B ⊂ Rd, we denote by dH(A,B) their Hausdorff

distance with respect to the Euclidean metric on Rd,

dH(A,B) = inf

{
ε > 0 :

∀x ∈ A∃y ∈ B, s.t. |x− y| < ε and

∀x ∈ B ∃y ∈ A, s.t. |x− y| < ε

}
.

• For compact metric spaces X and Y , we denote by dGH(X,Y ) their

Gromov–Hausdorff distance (see Definition 2.1 below).

2.3.4. Measures.

• Lebd – The Lebesgue measure on Rd.

• μρ – The measure induced on Rd by the volume form of the Riemannian

metric ρ · e.
• μD

ρ – The restriction of μρ to D.

• νR = νR(·;ω) – The measure induced by gR on Rd or MR (see (2.5)

and(2.9)).

• νDR = νDR (·;ω) – The restriction of νR to a subset D ⊂ Rd (or to DR).

2.3.5. Other notations.

• B(x, r) – The (open) Euclidean ball of radius r > 0 around x ∈ Rd.

• A – The closure of a set A ⊂ Rd.

• diame(A) = sup{|x− y| : x, y ∈ A} – The Euclidean diameter of a set

A ⊂ Rd.

• Sd−1 – The Euclidean sphere {x ∈ Rd : |x| = 1}.
• SO(d) – The special orthogonal group in Rd with respect to the Eucli-

dean inner-product.

• κd = πd/2

Γ(d/2+1) – The volume of the d-dimensional unit ball.

• By a path in Rd we will always mean a continuous parametrized path

[0, 1] → Rd.

• lene(γ) – The Euclidean length of a path γ.

• lenR(γ) = lenR(γ;ω) – The length of a path γ induced by gR.

• len(γ) – A shortened notation for len1(γ) used in Sections 4–6.

• [x, y] – The linear segment connecting x and y in Rd.

• Lip(f) – The Lipschitz constant of a continuous function f : D → R for

some D ⊂ Rd (with respect to the Euclidean metric).

• C(D) - The space of continuous functions on D.
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2.3.6. Measured Gromov–Hausdorff convergence.

Definition 2.1: In the following (Z, dZ) is a compact metric space and (Z, dZ , μZ)

is a compact metric measure space.

(1) For a function f : (X, dX) → (Y, dY ) between two metric spaces, we

define the distortion of f by

(2.14) dis f = sup
x,y∈X

|dX(x, y) − dY (f(x), f(y))|.

A function f : D(f) ⊂ X → Y is called an ε-approximation if

dis f < ε, BX(D(f), ε) = X and BY (Im(f), ε) = Y,

where BX(A, ε) is the ε-neighborhood in X around a subset A, with a

similar definition for neighborhoods of sets in Y .

(2) The Gromov–Hausdorff distance is a distance function between iso-

metry classes of compact metric spaces. For the purpose of this paper,

it is enough to state that dGH((X, dX), (Y, dY )) < 4ε if there exists

an ε-approximation f : D(f) ⊂ X → Y . For further details see, e.g.,

[Pet06], Chapter 10.

(3) A sequence (Xn, dn, μn) of compact metric measure spaces converges to

a compact metric measure space (X, d, μ) in the measured Gromov–

Hausdorff topology if there exists a sequence fn : D(fn) ⊂ Xn → X

of εn-approximations, with εn → 0, such that the pushforward measures

(fn)#μn weakly converge to μ. That is, for every continuous function

Φ : X → R,

lim
n→∞

∫
D(fn)

Φ ◦ fn dμn =

∫
X

Φ dμ.

2.3.7. Remark about constants. Throughout the paper, constants are denoted

by C and c. The dependence of constants on parameters will be denoted by

brackets. For example, C = C(d) implies that C only depends on the dimension

d. Note that the value of such constants may change from one line to the next.

Numbered constants C1, C2, . . . have a fixed value which is determined in their

first appearance.

2.4. Main results. Our main result is the following:

Theorem 2.2: Let d ≥ 2. There exists a real number u∗ > 0 depending only

on d, and there exists a continuous, non-constant, monotonically-decreasing
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function η : [0, u∗) → (0, 1] with η(0) = 1 that depends only on d and ξ ∈ [0, 1),

such that for every compact d-dimensional submanifold D ⊂ Rd with corners

and every continuous function u : D → [0, u∗):

(1) Metric convergence: For every ε > 0,

(2.15) lim
R→∞

Pu,R( sup
x,y∈D

|dD
η◦u(x, y)− distDR (πR(x), πR(y))| < ε) = 1.

(2) Measure convergence: For every ε > 0,

(2.16) lim
R→∞

Pu,R

{
∀f ∈ W (D),

∣∣∣∣ ∫
D

f dμD
σ◦u −

∫
DR

f ◦ π−1
R dνDR

∣∣∣∣ < ε

}
= 1,

where

W (D) = {f ∈ C(D) : ‖f‖∞ ≤ 1 and Lip(f) ≤ 1},
and

σ(u) = (e−uκd + ξd(1− e−uκd))1/d.

(3) Length-volume incompatibility:

η(u) ≤ e−uκd + ξ(1 − e−uκd),

and in particular η(u) < σ(u); if ξ = 0, then η(u) ≤ σd(u) < σ.

(4) The following is of interest when ξ = 0: for every ε > 0,

(2.17) lim
R→∞

Pu,R(dH(D, π−1
R (D′

R)) < ε) = 1,

where D′
R = {x ∈ DR : |π−1

R (x)| = 1}. In other words, π−1
R : D′

R → D

is asymptotically surjective.

Theorem 2.2 implies the following corollary:

Corollary 2.3:

(1) Part (1) of Theorem 2.2 implies that for every ε > 0,

(2.18) lim
R→∞

Pu,R(dGH((DR, dist
D
R ), (D,dD

η◦u)) < ε) = 1.

Moreover, for every sequence (ωn, Rn, εn), where ωn ∈ Ω, Rn > 0 and

εn → 0 such that the events in (2.15)–(2.17) hold with εn and Rn, the

sequence of metric measure spaces (DRn , dist
D
Rn

, νDRn
)(ωn) converges in

the measured-Gromov–Hausdorff topology to the metric measure space

(D,dD
η◦u, μ

D
σ◦u).
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(2) Part (3) in Theorem 2.2 implies that while the measures μD
Rn

and the

distance functions distDRn
on DRn are consistent, the limit measure μσ◦u

is strictly larger than the measure μη◦u induced by the metric (η ◦ u) · e
associated with the limit distance dD

η◦u.

Comments: (1) The constant u∗ is the percolation threshold; for u > u∗,
S1 contains almost surely a unique infinite connected component (see

also a remark at the end of Section 4.2).

(2) The assumption of u being continuous can be relaxed; for example,

the theorem holds if the d-dimensional Hausdorff measure of the set of

discontinuous points of u is zero.

(3) The bound η ≤ σd when ξ = 0 is not tight. With a more complicated

argument it is possible to show η < σd. See a remark at the end of

Section 6.2.

(4) Throughout this paper, we assume that “manifolds with corners” do

not include cusps. This assumption can be presumably relaxed.

3. Sketch of the proof

In the remaining sections of this paper, we prove Theorem 2.2 and Corollary 2.3.

For the sake of brevity, we assume that ξ = 0, which is the most difficult case;

the proofs for ξ > 0 are similar and, in certain parts, much simpler. Since the

proof is long and technical, this section describe its main stages.

In Sections 4–7, we consider a uniform distribution of point defects, that is,

the case where u is a constant function. In Section 8, we generalize the results

to arbitrary continuous functions u : D → [0, u∗).

Section 4: For a constant u, a uniform rescaling of Rd enables the introduction

of a natural coupling between the probability measures (Pu,R)R>0 using a single

measure Pu that is used in the rest of the proof for the uniform case.

We show the existence of a sub-critical regime, i.e., a constant u∗ = u∗(d) > 0,

such that for u ∈ [0, u∗), the process Pu-a.s. does not percolate. In this regime,

MR is “nice”; it is Pu-a.s. a simply-connected metric space, which is locally

isometric to the Euclidean space but for a nowhere-dense set. From this point

onward we work only in the subcritical regime u < u∗.
We then use the subadditive ergodic theorem to obtain the existence of a

limit distance function in MR. We show that for every u ∈ [0, u∗) there exists
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an η(u) ∈ [0, 1) such that

Pu( lim
R→∞

distR(πR(x), πR(y)) = η(u) · |x− y|, ∀x, y ∈ Rd) = 1.

Moreover, this limit is uniform in every compact K ⊂ Rd. This establishes the

Pu-a.s. Gromov–Hausdorff convergence of (KR, distR) to (K,dη(u)).

Note, however, that this is not quite the metric convergence we want in (2.15)

for a uniform u, since we want to prove that (KR, dist
D
R ) converges to (K,dD

η(u))

(i.e., the intrinsic distances converge and not only the induced distances). Mo-

reover, we need to prove that η(u) > 0 for u ∈ (0, u∗). This is done in the next

sections.

Section 5: In this section we prove large deviation results for the distance

function in MR. An immediate corollary is that η(u) > 0 for u ∈ (0, u∗).
The key idea here is to exploit the independence structure of the Poisson point

process, manifested in the BK inequality, in order to show that distances do not

deviate significantly from their expected value.

Section 6: In this section we prove several results regarding the geometry of

geodesics in (MR, distR), and properties of the function η that controls the

limit metric.

By using the concentration results of Section 5, we prove that geodesics inMR

are, with high probability, very close to straight lines between their endpoints.

Using a coupling between the probability measures (Pu)u≥0, we prove that

η(u) is a continuous, monotonically-nondecreasing function, and give an upper

bound on the value of η(u) that implies that η < σ (which proves part (3) of

Theorem 2.2).

Finally, we use the ergodicity of the model to prove that νR([0, 1]
d) converges

Pu-a.s. to μσ(u)([0, 1]
d) (which is a step towards proving the measure conver-

gence in part (2) of Theorem 2.2).

Section 7: In this section we prove Parts (1) and (4) of Theorem 2.2 for uni-

form distributions on a convex, compact d-dimensional manifold with corners

D ⊂ Rd. The idea behind the proof of Part 1 is as follows: from Section 4 we

know that Pu-a.s. (DR, distR) Gromov–Hausdorff converges to (D,dη(u)). Since

D is convex and u is constant, dη(u) = dD
η(u) on D, so we only need to replace

(DR, distR) with (DR, dist
D
R ). We do so by showing that the identity mapping

between (DR, distR) and (DR, dist
D
R ) has Pu-a.s. vanishing distortion. Here we
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use the result from Section 6 that geodesics in MR are very close to straight

lines, which implies that distR-geodesics between points tend to remain within

D, i.e., they are also distDR -geodesics with high probability.

Section 8: In this section, we conclude the proof of Theorem 2.2 and Corol-

lary 2.3 for a general continuous distribution u of defects over a d-dimensional

manifold with corners D ⊂ Rd.

The idea is the following: we partition D into small cubes, such that u is

approximately constant in each cube. We show that the results of Sections 6 and

7 apply approximately to each of the cubes, in the sense that for every cube �,

when R is large, the distance between the metric measure spaces (�R, dist
�
R, ν

�
R )

and (�,d�
η◦u, μ

�
σ◦u) is bounded with high probability by the variation of u in �.

Finally, we glue the cubes together and obtain results for the whole manifold

D. For measure convergence, the gluing is straightforward. For metric conver-

gence, we use the control on the distortion in each cube and a bound on the

number of cubes each geodesic crosses to control the Gromov–Hausdorff distance

between (DR, dist
D
R ) and (D,dD

η(u)) (in a similar way as in [KM15, KM15b]).

4. Uniform distribution of point defects

In this section, as well as in the three to follow, we study the simplest version

of the model: we assume that the function u : Rd → (0,∞) is constant. In this

section, we prove the existence of a subcritical regime (Lemma 4.1), and obtain

our first main result regarding distances in the manifolds MR (Theorem 4.2).

Many of the results obtained in these sections are adaptations to the continuous

setting of the results obtained in [HW65, Kes86] for the discrete case.

4.1. Rescaling for uniform distributions. The parameter R > 0 is a sca-

ling factor that affects both the density of the point defects and their magnitude,

or volume. In particular, to every R corresponds a different probability mea-

sure Pu,R. For spatially invariant u, the intensity measures are translationally-

invariant. By a uniform rescaling of space, we may obtain a probabilistic model

that does not depend on R, and in particular allows us to construct a natural

coupling of the measures Pu,R.

This is done as follows: construct a Poisson point process on Rd with intensity

u · Lebd(dx), i.e., set R = 1. We denote the probability measure by Pu = Pu,1,

and the corresponding expectation by Eu = Eu,1. Two points in M1 are
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identified, x
ω,1∼ y, if they are in the same ball of radius R = 1 centered at a

point in the support of ω. We denote by dist = dist1 the corresponding distance

function on Rd, which can also be written as

(4.1) dist(x, y;ω) = inf

{ N∑
i=1

|xi − yi| : N ∈ N, x1
1∼x, xi+1

1∼yi, yN
1∼y

}
.

Given R > 0, let TR : Rd → Rd be defined by TR(x) = Rx. Then,

(T1/R)#ω is a Poisson point process with intensity Rdu · Lebd(dx), namely

Pu,R = (T1/R)#Pu. Here, (T1/R)# is the push forward of measures by T1/R,

where the push forward of Pu is the one induced by the push forward of ω.

That is

(T1/R)#ω =
∑
i

δT1/Rxi for ω =
∑
i

δxi

and

(T1/R)#Pu(A) = Pu({ω : (T1/R)#ω ∈ A}).
Similarly, we identify MR with M1 via the scaling T1/R. The distance

function distR on Rd is derived from the distance function dist = dist1 by

the following relation:

(4.2) distR(x, y;ω) =
1

R
dist(π1(Rπ−1

R (x)), π1(Rπ−1
R (y));ω), ∀x, y ∈ MR.

Note that there is a slight abuse of notation here: strictly speaking,

distR(x, y;ω) as defined in (4.2) coincides with distR(x, y; (T1/R)#ω), as de-

fined in (2.4). However, the distribution of (4.2) with respect to Pu is the same

as the distribution of (2.4) with respect to Pu,R. In Sections 4–7, where the

above coupling is used, we use distR(x, y;ω) in the sense of (4.2), so that Pu

can be used for all values of R.

4.2. The sub-critical regime. We start our analysis by proving the exis-

tence of a subcritical regime:

Lemma 4.1: For ω ∈ Ω let S(ω) = S1(ω) =
⋃

x∈supp(ω) B(x, 1). Then:

(1) Each of the connected components of S(ω) is Pu-almost surely closed.

(2) There exists a constant u∗ > 0, depending only on d, such that for all

u ∈ (0, u∗)

(4.3) Pu

(
The set S doesn’t contain an

infinite connected component

)
= 1
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and for every u > u∗

(4.4) Pu

(
The set S contains a unique

infinite connected component

)
= 1.

In particular, recalling that ξ = 0, whenever u ∈ (0, u∗) the simply

connected metric spaceMR is Pu-a.s. locally isometric to the Euclidean

space, up to a nowhere dense set.

Comment: If ξ > 0, MR is almost everywhere locally isometric to a Euclidean

space, with a scaling constant depending on whether the point is the interior of

S or in the complement of S.
Comment: The subset M′

R of MR that is locally isometric to the Euclidean

space can be identified with Rd \S(ω), not only as sets, but also as Riemannian

manifolds. However, they are not globally isometric. Note that M′
R is Pu-

a.s. not connected.

Proof. The fact that each connected component of S(ω) is Pu-almost surely

closed follows from the fact that with Pu-probability one, every bounded set

contains only finitely many points of supp(ω). This implies that Pu-almost

surely, the point process does not have accumulation points, hence the comple-

ment of S(ω) is Pu-almost surely open.

The existence of u∗ > 0 such that S(ω) doesn’t contain Pu-a.s. infinite clus-

ters for every u ∈ (0, u∗) and contains Pu-a.s. an infinite cluster for u > u∗ is

the content of [Hal85]; see also Theorem 3.3 in [MR96]. The uniqueness of the

infinite cluster for u > u∗ can be found in [MR96] Theorem 3.6.

Since MR is obtained from Rd by a similarity transformation and an iden-

tification of points in simply-connected subsets, MR is simply connected. As

proved above, Rd \ S(ω), which is identical to M′
R up to a similarity transfor-

mation, is open. It follows that M′
R is locally isometric to Euclidean space.

Finally, we need to show that for u ∈ (0, u∗) the set MR\M′
R is nowhere

dense. This follows from the fact that any compact subset of Rd contains Pu-

a.s. only finitely many points in supp(ω), hence every compact subset of MR

contains only finitely many points in MR\M′
R.

Comment: It can be shown that for u > u∗ and d = 2, in every box of sufficiently

large radius R, the distance of every point from the unique infinite component
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is at most O(logR). As a result, the limiting distance distR between every pair

of points is zero.

4.3. Distances in MR in the uniform case. The main result of this section

proves the existence of a limit distance function in MR. The precise statement

is as follows:

Theorem 4.2: For every u ∈ [0, u∗) there exists an η(u) ∈ [0, 1] such that

(4.5) Pu( lim
R→∞

distR(πR(x), πR(y)) = η(u) · |x− y|, ∀x, y ∈ Rd) = 1.

The limits also exist in the L1(Ω,Pu) sense: for every x, y ∈ Rd,

(4.6) lim
R→∞

Eu[| distR(πR(x), πR(y))− η(u) · |x− y||] = 0.

Furthermore, the convergence of the distance function is uniform in every

compact K ⊂ Rd (and in particular in Sd−1; this particular case is used below),

(4.7) Pu

( ∀ε > 0 ∃R0 such that ∀R > R0,

supx,y∈K | distR(πR(x), πR(y))− η(u) · |x− y|| < ε

)
= 1

and

(4.8) lim
R→∞

sup
x,y∈K

Eu[| distR(πR(x), πR(y))− η(u) · |x− y||] = 0.

In Sections 5–6 below we prove certain properties of η(u) and, in particular,

that η(u) > 0 for every u ∈ [0, u∗).
Equation (4.5) and similar equations hereafter should be interpreted as fol-

lows:

Pu({ω ∈ Ω : lim
R→∞

distR(πR(x), πR(y);ω) = η(u) · |x− y|, ∀x, y ∈ Rd}) = 1,

where distR is understood as in (4.2).

An immediate corollary of Theorem 4.2 is:

Corollary 4.3: For every u ∈ [0, u∗) and compact K ⊂ Rd, the sequence of

metric spaces (KR, distR) defined by (2.11) Pu-a.s. Gromov–Hausdorff conver-

ges to (K,dη(u)), where η(u) should be considered as a constant function on

Rd.

Note that this convergence is with respect to the induced distances distR on

KR and not with respect to the intrinsic metric distKR on KR, defined in (2.10).
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Proving the convergence of the intrinsic metric is more involved and requires

more assumptions on K. This is done in Section 7.

4.4. Proof of Theorem 4.2. We start by reformulating Theorem 4.2 using

the relation between dist and distR and the definition of πR:

Theorem 4.4 (Rephrasing of Theorem 4.2): For every u ∈ [0, u∗) there exists

η(u) ∈ [0, 1] such that

(4.9) Pu

(
lim

R→∞
dist(Rx,Ry)

R
= η(u) · |x− y|, ∀x, y ∈ Rd

)
= 1.

The limits also exist in L1(Ω,Pu): for every x, y ∈ Rd,

lim
R→∞

Eu

[∣∣∣dist(Rx,Ry)

R
− η(u) · |x− y|

∣∣∣] = 0.

Furthermore, the convergence of the dist(Rx,Ry)/R is uniform over x, y in

every compact K ⊂ Rd (and in particular in Sd−1; this particular case is used

below).

The proof of Theorem 4.4 is separated into several parts and starts with the

observation that the system (Ω,F ,Pu) is ergodic with respect to translations.

Lemma 4.5: For x ∈ Rd define τx : Ω → Ω by τx(
∑

i≥0 δxi) =
∑

i≥0 δxi−x.

Then, for every x ∈ Rd \ {0} the quartet (Ω,F ,Pu, τx) defines a translation

invariant ergodic system.

Proof. See, for example, [MR96] Proposition 2.6.

Next, we prove the existence of the limit in (4.9) for x = 0.

Lemma 4.6: Let u ∈ [0, u∗). For every y ∈ Rd the limit

(4.10) ρu(y) = lim
R→∞

dist(0, Ry)

R

exists Pu-a.s. and in L1(Ω,Pu).

Proof. If u = 0, then ω(Rd) = 0 Pu-a.s., i.e., dist(x, y) = |x − y| with Pu-

probability one, which implies that

lim
R→∞

dist(0, Ry)

R
= |y|, Pu-a.s.

Thus the result holds with ρ0(y) = |y|.
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We turn to the case u > 0. For y = 0 the statement is trivial, so fix y ∈ Rd\{0}
and define for 0 ≤ m < n

(4.11) Ym,n = dist(my, ny).

The triangle inequality for dist implies that

(4.12) Y0,n ≤ Y0,m + Ym,n, ∀0 ≤ m < n.

Thus we are in a good position to use Kingman’s subadditive ergodic theorem

[Kin73]. More specifically, we will exploit Liggett’s version [Lig85], which states

that if (Xm,n)0≤m<n are nonnegative random variables such that

(1) X0,n ≤ X0,m +Xm,n for all 0 < m < n,

(2) {Xnk,(n+1)k : n ≥ 1} is stationary and ergodic for each k ≥ 1,

(3) the law of {Xm,m+k : k ≥ 1} is independent of m ≥ 1, and

(4) X0,1 has finite expectation, E[X0,1] < ∞,

then the limit limn→∞ X0,n/n exists almost surely and in L1 and almost surely

equals

inf
n>0

E[X0,n]

n
= lim

n→∞
E[X0,n]

n
< ∞.

Taking Xm,n = Ym,n, (1) is given by (4.12). For (2) and (3) note that

(4.13) dist(u+ z, v + z;ω) = dist(u, v; τzω), ∀u, v, z ∈ Rd,

and therefore Ym,n = Y0,n−m◦τmy . Condition (2) and (3) hold by the translation

invariance and the ergodicity of the law Pu under the shift τy; see Lemma 4.5.

As for (4), it follows immediately from the fact that Y0,1 = dist(0, y) ≤ |y|.
Thus, the family {Ym,n}0≤m<n satisfies conditions (1)–(4) and

lim
n→∞n−1 dist(0, ny),

which we denote by ρu(y), converges Pu-a.s. and in L1. We then prove that

(4.14) ρu(y) = lim
R→∞

dist(0, Ry)

R
, Pu-a.s.

Indeed, ρu(y)=limR→∞
dist(0,
R�y)


R� and since dist(�R�y,Ry)≤|�R�y−Ry|≤|y|,
it follows that ∣∣∣dist(0, Ry)

R
− dist(0, �R�y)

�R�
∣∣∣ ≤ 2|y|

R
.

This completes the proof.
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Lemma 4.7: The function ρu in Lemma 4.6 satisfies

(4.15) ρu(αy) = αρu(y), ∀α ∈ (0,∞), y ∈ Rd,

and

(4.16) ρu(y + z) ≤ ρu(y) + ρu(z), ∀y, z ∈ Rd.

Proof. The positive homogeneity follows from the existence of the limit since

ρu(αy) = lim
R→∞

dist(0, Rαy)

R
= lim

R→∞
α
dist(0, Rαy)

Rα
= αρu(y).

For the triangle inequality note that by the translation invariance of Pu

(4.17)
Eu[dist(0, R(y + z))] ≤ Eu[dist(0, Ry)] +Eu[dist(Ry,R(y + z))]

= Eu[dist(0, Ry)] +Eu[dist(0, Rz)].

Diving both sides by R, taking the limit R → ∞ and using the L1 convergence

of dist(0, Ry)/R gives the required inequality.

Lemma 4.8: The function ρu in Lemma 4.6 is invariant under the action of

SO(d).

Proof. Since Pu is invariant under the action of SO(d), it follows that for every

two points y1, y2 ∈ Rd with the property that there exists R ∈ SO(d) such that

y2 = Ry1,

dist(0, y2)
d
= dist(0, y1).

Thus, ρu inherits the symmetries of SO(d) as the L1(Ω,Pu) limit Lemma 4.6.

Corollary 4.9: For u ∈ [0, u∗), the function ρu in Lemma 4.6 is of the form

(4.18) ρu(y) = η(u) · |y|
for some η(u) ∈ [0, 1].

Proof. This follows from the positive homogeneity, the sub-additivity and the

isotropy of ρu proved in Lemmas 4.7 and 4.8.

Next, we consider general x, y ∈ Rd:

Lemma 4.10: Fix u ∈ [0, u∗). Then, for every x, y ∈ Rd,

lim
R→∞

dist(Rx,Ry)

R
= η(u) · |x− y|

converges Pu-a.s. and in L1.
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Proof. For every x, y∈Rd and ω∈Ω the relation dist(x, y;ω)=dist(0, y−x, τxω)

holds and therefore

dist(Rx,Ry;ω)

R
=

dist(0, R(y − x); τxω)

R
,

which implies that the limit R → ∞ exists Pu-a.s., is in L1(Ω,Pu) and equals

η(u) · |x− y|.

Proof of Theorem 4.4. By Lemmas 4.6–4.10, dist(Rx,Ry)/R converges as

R → ∞ both Pu-a.s. and in L1 for every fixed pair of points x, y ∈ Rd. It

remains to verify that the limit exists Pu-a.s. simultaneously for all pairs of

points x, y ∈ Rd.

To this end, let ε ∈ (0, 2π) and let (vi)
N
i=1 with N = �c(d)/εd� be a set

of points on the unit sphere Sd−1 that form an ε/2-net for Sd−1 (c(d) is a

constant that depends only on d). Since the set (vi)
N
i=1 is finite, it follows from

Lemma 4.10 that

(4.19) Pu

(
lim

R→∞
dist(Rvi, Rvj)

R
= η(u) · |vi − vj |, ∀1 ≤ i, j ≤ N

)
= 1.

Given x, y ∈ Rd\{0}, there exist 1 ≤ i, j ≤ N such that

(4.20) |x̂− vi| ≤ ε and |ŷ − vj | ≤ ε,

where x̂ = x/|x| and ŷ = y/|y|. By the triangle inequality,

(4.21)∣∣∣dist(Rx,Ry)

R
− dist(R|x|vi, R|y|vj)

R

∣∣∣ ≤dist(Rx,R|x|vi)
R

+
dist(Ry,R|y|vi)

R

≤|Rx−R|x|vi|
R

+
|Ry −R|y|vi|

R

≤ε(|x|+ |y|)
and

(4.22) |η(u) · |x− y| − η(u) · ||x|vi − |y|vj || ≤ ε(|x|+ |y|).
Combining both estimates, it follows from (4.19) that

Pu

(
lim sup
R→∞

∣∣∣dist(Rx,Ry)

R
−η(u)·|x−y|

∣∣∣ ≤ 2ε(|x|+|y|), ∀x, y ∈ Rd\{0}
)
= 1.

The cases x = 0, y = 0 can be included by a similar argument, except that no

approximation for 0 is needed. Since this holds for every ε > 0, the limit as

R → ∞ exists Pu-a.s.
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To justify the uniformity over compact sets, note that there are only finitely

many vi’s for a fixed ε > 0 and that for compact sets we have a uniform bound

on the Euclidean norm of both x and y. The same applies for the L1(Ω,Pu)

convergence.

5. Large deviation results

In this section we prove large deviation results for the distance in MR. As an

immediate corollary we obtain that η(u) > 0 for every u ∈ [0, u∗).
The main result of this section is the following.

Theorem 5.1: For every u ∈ [0, u∗) and every ε > 0 there exists a positive

constant c1, depending only on d, u and ε, such that for large enough R,

(5.1) Pu(∃x ∈ Rd : |x| = R, | dist(0, x)− η(u)R| > εR) < e−c1R.

The proof of Theorem 5.1 follows the ideas developed for the discrete case by

Kesten [Kes86].

In addition, we will need a large deviation result for the existence of very

long geodesics in the Euclidean sense. In order to state it we need another

definition: Geodesics in MR can be identified with geodesics in Rd with respect

to the semi-distance function dist. Such geodesics are highly degenerate, as

there is nothing that limits their behavior in S(ω). For x, y ∈ Rd we denote by

Γ0(x, y) the set of geodesics between x and y with respect to dist that minimize

the Euclidean distance inside S(ω). We will call such paths true geodesics

(see Figure 1).

Theorem 5.2: For every u ∈ [0, u∗) there exist positive constants C2, c3 and

α � 1, depending only on d and u, such that:

(1) For every R > 0,

(5.2) Pu

( ∃ a true geodesic path starting at 0

such that lene(γ) ≥ R and len(γ) < 1
α lene(γ)

)
≤ C2e

−c3R.

(2) For every x, y ∈ Rd and for every R > α|x − y|,
(5.3) Pu(∃γ ∈ Γ0(x, y) : lene(γ) > R) ≤ C2e

−c3R.

As a corollary we obtain:

Corollary 5.3: η(u) is strictly positive for every u ∈ [0, u∗).
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Figure 1. The path on the left is a geodesic in MR, where the

gray regions correspond to SR(ω). Note that the part in SR

has zero length. The path on the right is the corresponding

true geodesic.

Proof. Let AR be the event in (5.2). By Part (1) of Theorem 5.2,

Pu(AR) ≤ C2e
−c3R, ∀R > 0.

Since the Euclidean length of a true geodesic connecting 0 and Re1 is at least

R, for ω ∈ Ac
R,

dist(0, Re1) ≥ 1

α
R.

Thus, for large enough R,

Eu[dist(0, Re1)] ≥ Eu[dist(0, Re1) · �Ac
R
] ≥ 1

α
R ·Pu(A

c
R) ≥

1

2α
R,

hence

η(u) = lim
R→∞

Eu[dist(0, Re1)]

R
≥ 1

2α
> 0.

Comment: A conjecture in percolation theory is that

lim
u↗u∗

η(u) = 0.

For d = 2, an adaptation of [Gri99, Lemma 11.12] to our setting will show that

this conjecture holds. In higher dimension this a famous open problem.

The proofs of Theorem 5.1 and Theorem 5.2 are quite technical. The main

idea behind the proof is to exploit the independence structure of the Poisson

point process, manifested in the BK inequality, in order to show that geodesics
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whose lengths deviate from the expected distance in the sense of (5.1), contain

sufficiently many disjoint sub-paths (which are roughly independent) whose

total length deviates significantly from its expected value. Such an event is

highly unlikely due to large deviation results for independent random variables.

Since the proofs in this section are technical and since one can use the the-

orems as “black boxes” in the rest of the paper, the reader might wish to skip

the rest of this section in a first reading.

5.1. The BK inequality. In this subsection we state the continuous version

of the well-known BK inequality for product measures. For this, we need some

additional definitions.

There is a natural partial ordering on Ω, which we denote by �, under which

ω � ω′ if and only if supp(ω) ⊆ supp(ω′). Using it one can define increasing and

decreasing events in F . An event A ∈ F is said to be increasing (respectively

decreasing) if for every ω � ω′, ω ∈ A implies ω′ ∈ A (i.e., A is closed under

increasing support).

For any bounded Borel set Y ⊂ Rd, define the set

ωY = supp(ω) ∩ Y,

and for ω ∈ Ω and Y as above let

L(ω, Y ) = {ω′ ∈ Ω : supp(ω) ∩ Y ⊆ supp(ω′) ∩ Y }.
In words, the event L(ω, Y ) contains all configurations that inside Y are larger

than ω. We say that an event A is an increasing event on Y if ω ∈ A implies

that L(ω, Y ) ⊆ A.

Definition 5.4: Let A and B be two increasing events on a bounded Borel set

Y . Then

A ◦B =

{
ω ∈ Ω :

there are disjoint sets V,W ⊂ Rd such that

V and W are finite unions of rational

cubes and L(ω, V ) ⊂ A,L(ω,W ) ⊂ B

}
,

where by a rational cube we mean an open d-dimensional cube with rational

coordinates. When A ◦B occurs, we say that A and B occur disjointly.

Example: To illustrate this definition, let d = 2, let Y = [0, 1]2, and let A be

the event that there exists a path in Y connecting the left boundary of Y to its

right boundary, whose length is less than x. Clearly, A is an increasing event,
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as increasing the support of ω can only shorten paths. For ω ∈ A and V ⊂ Y , it

is generally not true that L(ω, V ) ⊂ A; L(ω, V ) ⊂ A only if there exists a path

in V , such that its length is not more than x − α, where α is the sum of the

Euclidean distances of the path’s end points from the left and right boundaries

of Y . The event A ◦ A occurs if there exist two disjoint paths connecting the

left boundary of Y to its right boundary, whose length is at most x.

Theorem 5.5 (BK inequality): Suppose Y is a bounded Borel set in Rd and

A,B are two increasing events on Y . Then for every u > 0

Pu(A ◦B) ≤ Pu(A)Pu(B).

A proof of this inequality in a more general setting can be found in [MR96],

Theorem 2.3.

5.2. Key proposition. The proofs of Theorem 5.1 and Theorem 5.2 exploit

the invariance of the law of Pu under translations and rotations. This implies

that we only need to take care of large deviation results for the distance between

the origin and points of the form Re1, where e1 = (1, 0, . . . , 0). We therefore

restrict ourselves to the above case and define the following:

For r ∈ R let

Hr = {x ∈ Rd : 〈x, e1〉 = r}.
Given r < s and a path γ we write

Hr < γ < Hs

if all points of γ, except possibly its endpoints, lie strictly between the hyper-

planes Hr and Hs.

The following variants on the distance will stand in the core of the proofs.

For N,M > 0 define the random variables

(5.4) sM,N = inf

{
len(γ) :

γ is a path from {0} × [0, N ]d−1

to HM such that H0 < γ < HM

}
and

(5.5) ŝM,N =inf

⎧⎪⎨⎪⎩len(γ) :

γ is a path from {0} × [0, N ]d−1 to HM such

that with the exception of its endpoints,

γ ⊂ (0,M)× [−4M, 4M ]d−1

⎫⎪⎬⎪⎭ .

It follows from the definitions of sM,N and ŝM,N that

(5.6) sM,N ≤ ŝM,N .
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The main estimate used in the proofs of both theorems is stated in the next

proposition:

Proposition 5.6: Let (Xq(M,N))q≥0 and (X̂q(M,N))q≥0 be sequences of in-

dependent random variables having the same distribution as sM,N and ŝM,N .

For every two integers 2 ≤ N ≤ M ≤ R/2 and every real number x ≥ 0,

(5.7)

Pu(dist(0, Re1) < x) ≤
∑

Q≥ R
M+N −1

(
2d
(
16

M

N

)d)Q

Pu

(Q−1∑
q=0

X̂q(M,N) < x

)

≤
∑

Q≥ R
M+N −1

(
2d
(
16

M

N

)d)Q

Pu

(Q−1∑
q=0

Xq(M,N) < x

)
.

Proof. Since sM,N ≤ ŝM,N , the second inequality is immediate. Assume

γ : [0, 1] → Rd is a simple path from the origin to HR. We choose a se-

quence of points (x0, x1, . . . , xQ) along γ as follows: Define x0 = γ(0) = 0.

Assume that (x0, x1, . . . , xq) have already been chosen such that xi = γ(ti)

with 0 = t0 < t1 < · · · < tq. Then we define

(5.8) tq+1 = min{t ∈ (tq, 1] : |γ(t)− xq|∞ = M +N}, xq+1 = γ(tq+1),

provided such time t exists. If no such t exists, i.e., |γ(t) − xq|∞ < M +N for

all t ∈ (tq, 1], then we set Q = q and stop the process.

It follows from the definition of the points xq that

(5.9) Q ≥ R

M +N
− 1.

Indeed, the distance between 〈xq, e1〉 and 〈xq+1, e1〉 is at most M + N and

〈xQ, e1〉 ≥ R− (M +N).

Next, we analyze the path within the time interval [tq, tq+1] for 0 ≤ q ≤ Q− 1.

Since, by definition,

|xq − xq+1|∞ = M +N,

it follows that there exist j = j(q) ∈ {1, 2, . . . , d} and σ = σ(q) ∈ {−1, 1} such

that

〈xq+1 − xq, ej(q)〉 = σ(q)(M +N).

We introduce the hyperplanes

Hj
r = {x ∈ Rd | 〈x, ej〉 = r}, j = 1, . . . , d, r ∈ R,
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so that, in particular,H1
r = Hr. The path γ|[tq,tq+1] is strictly restricted between

the hyperplanes

H(q) = H
j(q)
〈xq,ej(q)〉 and H ′(q) = H

j(q)
〈xq,ej(q)〉+σ(q)(M+N).

Since the distance between these hyperplanes is M +N , we can find two hyper-

planes H ′′(q) and H ′′′(q) at a distance M one from the other that are strictly

between H(q) and H ′(q) (see Figure 2). Further, we denote by [t′′(q), t′′′(q)] the
sub-interval of [tq, tq+1] in which the path γ contains a unique crossing between

the two hyperplanes H ′′(q) and H ′′′(q).

Figure 2. Illustration of the times tq, tq+1, t
′′(q), t′′′(q),

the points xq, xq+1, γ(t
′′(q)), γ(t′′′(q)), the hyperplanes

H(q), H ′(q), H ′′(q), H ′′′(q), the box Λ(q) with its corner

Nm(q) and the path γq crossing from Λ(q) to the H ′′′(q).
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Specifically, let mj(q)(q) be the integer m such that H
j(q)
mN is the hyperplane

bounded between H(q) and H ′(q) that is the closest to H(q). Explicitly,

mj(q)(q) =
⌊ 〈xq, ej(q)〉

N

⌋
+

1

2
(σ(q) + 1).

We then define

H ′′(q) = H
j(q)
mN and H ′′′(q) = H

j(q)
mN+σ(q)M ,

and let [t′′(q), t′′′(q)] ⊂ [tq, tq+1] be the subinterval defined by

t′′(q) =max{t ∈ [tq, tq+1) : γ(t) ∈ H ′′(q)},
t′′′(q) =min{t ∈ (t′′(q), tq+1) : γ(t) ∈ H ′′′(q)}.

Finally, denote by γq the path γ restricted to the time interval [t′′(q), t′′′(q)].
We are interested in a bound on paths starting within a (d− 1)-dimensional

box of side length N within the hyperplane H0; see (5.5). We denote by

m(q) = (m1(q),m2(q), . . . ,md(q))

the unique point in Zd satisfying

γ(t′′(q)) ∈ Λ(q) = H ′′(q) ∩ (m(q)N + [0, N)d),

where Λ(q) is a (d− 1)-dimensional box of side length N within the hyperplane

H ′′(q).
Exploiting all the above definitions, the path segments γq satisfy the following

properties:

• The images of γq in Rd are pairwise disjoint.

• γq connects Λ(q) ⊂ H ′′(q) to H ′′′(q).
• The path γq lies strictly between H ′′(q) and H ′′′(q), except for its end-
points.

• The path γq is contained in the box

B(q) = Nm(q) + [−4M, 4M ]j(q)−1 × [0, σ(q)M ]× [−4M, 4M ]d−j(q),

where we used the fact that N +M ≤ 2M .

• The total length of the paths γq satisfies

Q−1∑
q=0

len(γq) ≤ len(γ).
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Fix x > 0, fix Q ≥ R
M+N − 1 and fix (j(q), σ(q),m(q)), q = 0, . . . , Q − 1.

We denote by A(j, σ,m, x) the event that there exists a piecewise-linear simple

path γ containing disjoint segments γq ⊂ B(q) crossing the box B(q) in the j(q)

direction from Λ(q) ⊂ H ′′(q) to H ′′′(q), with
∑Q−1

q=0 len(γq) ≤ x.

Since every true geodesic is piecewise linear, we conclude that the event

{dist(0, Re1) < x}
occurs only if there exists a Q ≥ R

M+N − 1 and there exist (j(q), σ(q),m(q)),

q = 0, . . . , Q− 1 such that A(j, σ,m, x) occurs, therefore

(5.10) Pu(dist(0, Re1) < x) ≤
∑

Q≥ R
M+N −1

∑
(j(q),σ(q),m(q))

Pu(A(j, σ,m, x)).

The event A(j, σ,m, x) is characterized by the existence of a path whose

properties are specified over disjoint segments. Denote by Aq(j, σ,m, x) the

event that there exists a piecewise-linear simple path γ containing a segment

γq ⊂ B(q) crossing the box B(q) in the j(q) direction from Λ(q) ⊂ H ′′(q) to

H ′′′(q) and satisfies len(γq) < x. Then,

(5.11)

Pu(A(j, σ,m, x))

=Pu

( ⋃
r0, r1, . . . , rQ−1∈Q+

∑Q−1
q=0 rq < x

A0(j, σ,m, r0)◦A1(j, σ,m, r1)◦· · ·◦AQ−1(j, σ,m, rQ−1)

)
.

Since the paths γq are disjoint and piecewise linear, the conditions of the BK

inequality are satisfied and we conclude that

Pu(A(j, σ,m, x)) ≤
∑

r0, r1, . . . , rQ−1 ∈ Q+
∑Q−1

q=0 rq < x

Q−1∏
q=0

Pu(Aq(j, σ,m, rq)).

Noting that for a given configuration (j, σ,m) the minimal length of a path

connecting Λ(q) to H ′′(q) inside B(q) has the same distribution as ŝM,N , we

conclude that

Pu(A(j, σ,m, x)) ≤
∑

r0, r1, . . . , rQ−1 ∈ Q+
∑Q−1

q=0 rq < x

Q−1∏
q=0

Pu(X̂q(M,N) ≤ rq)

=Pu

(Q−1∑
q=0

X̂q(M,N) < x

)
,
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which, combined with (5.10), yields

(5.12)

Pu(dist(0, Re1) < x)

≤
∑

Q≥ R
M+N −1

(
number of choices

for (j, σ,m)

)
·Pu

(Q−1∑
q=0

X̂q(M,N) < x

)
.

To complete the proof, we need to show that the number of ways to choose

the triplets (j, σ,m) is bounded by (2d(16M/N)d)Q. To this end, assume that

(j, σ,m) has already been chosen. By the definition of the times t′′(q), t′′(q+1),

tq and tq+1 and the points m(q) and m(q + 1),

N |m(q + 1)−m(q)|∞ ≤|Nm(q+1)−γ(t′′(q+1))|∞+|γ(t′′(q+1))−γ(tq+1)|∞
+|γ(tq+1)−γ(tq)|∞+|γ(tq)− γ(t′′(q))|∞
+|Nm(q)−γ(t′′(q))|∞

≤3M + 5N.

Since m(q + 1) ∈ Zd, it follows that there are at most (6M
N + 10)d ways to

choose m(q + 1) given m(q). Moreover, there are at most d choices for j(q + 1)

and 2 choice for σ(q + 1), hence given (j(q), σ(q),m(q)) there are at most

2d
(
6
M

N
+ 10

)d

≤ 2d
(
16

M

N

)d

choices for (j(q + 1), σ(q + 1),m(q + 1)) and in total at most(
2d
(
16

M

N

)d)Q

choices for the whole sequence.

5.3. Proof of Theorem 5.1. We separate the proof of Theorem 5.1 into two

parts: a lower bound estimation and an upper bound estimation. We start with

the first.

Formally, the claim for the lower bound is that for every u ∈ [0, u∗) and every

ε > 0 there exists a constant c, depending only on d, u and ε, such that for R

large enough

(5.13) Pu(∃x ∈ Rd : |x| = R, dist(0, x) < (η(u)− ε)R) < e−cR.

We start by showing that η(u) can also be obtained as the limiting distance

between a point and a hyperplane
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Lemma 5.7: For every u ∈ [0, u∗),

(5.14) lim
R→∞

dist(0, HR)

R
= η(u), Pu-a.s.

Proof. From the definition of dist(0, HR),

dist(0, HR) ≤ dist(0, Re1),

and therefore

lim sup
R→∞

dist(0, HR)

R
≤ lim

R→∞
dist(0, Re1)

R
= η(u), Pu-a.s.

If η(u) = 0, then there is nothing left to prove since dist(0, HR) ≥ 0, hence

assume that η(u) > 0. Let ω ∈ Ω be a realization such that

(5.15) lim inf
R→∞

dist(0, HR)

R
= η(u)− 2δ, for some δ > 0.

Then there exists an increasing sequence Rk that tends to infinity, a sequence

of points zk ∈ HRk
, and a sequence of paths γk from 0 to zk such that

dist(0, zk) = len(γk) ≤ dist(0, HRk
) + δRk ≤ Rk(η(u)− δ).

This, however, implies that

lim sup
k→∞

dist(0, zk)

|zk| ≤ lim sup
k→∞

Rk(η(u)− δ)

|zk| ≤ η(u)− δ,

contradicting the uniform convergence of the distance function on Sd−1 proved

in Theorem 4.4. Thus the event in (5.15) has probability zero and the claim

follows.

Next, we show that the value of sM,N defined in (5.4) cannot be much smaller

than Mη(u).

Lemma 5.8: For every ε > 0

(5.16) lim
M→∞

max
N≤M

Pu(sM,N ≤ M(η(u)− ε)) = 0.

Proof. If η(u) = 0, then there is nothing to prove since sM,N ≥ 0. We therefore

assume that η(u) > 0. Let

(5.17) rM,N = inf{len(γ) : γ is a path from {0} × [0, N ]d−1 to HM}.
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Since rM,N is an infimum of path lengths over a set larger than that defining

sM,N , it follows that rM,N ≤ sM,N , therefore

Pu(sM,N ≤ M(η(u)− ε)) ≤Pu(rM,N ≤ M(η(u)− ε))

≤Pu(rM,M ≤ M(η(u)− ε)),

where in the last passage we used the fact that rM,N is decreasing in N . Hence

it is enough to prove that

lim
M→∞

Pu(rM,M ≤ M(η(u)− ε)) = 0.

We now show that, in fact, it is sufficient to prove that for some fixed choice

of δ = δ(ε) ∈ (0, 1/2) ,

(5.18) lim
M→∞

Pu(rM,2δM ≤ M(η(u)− ε)) = 0.

Indeed, let δ ∈ (0, 1/2) and for v ∈ H0 define

rM (v) = dist(v,HM ).

Since {0} × [0,M ]d−1 is contained in the union of boxes

{{0} × (2δMk + [0, 2δM ]d−1)}k∈A(δ)

with

A(δ) = {k = (k2, . . . , kd) ∈ Zd−1 : 0 ≤ ki ≤ �1/(2δ)�, ∀2 ≤ i ≤ d},
it follows that

rM,M = inf{rM (v) : v ∈ {0} × [0,M ]d−1}
≥ min

k∈A(δ)
inf{rM (v) : v ∈ {0} × (2δMk + [0, 2δM ]d−1)}.

Since the set A(δ) is finite, and since each infimum for a fixed k has the same

distribution as rM,2δM , it is indeed sufficient to prove (5.18).

Finally, let us prove (5.18). For every v ∈ H0 such that |v|∞ ≤ 2δM we have

dist(0, v) ≤ 2δM , and therefore

rM (0) ≤ rM (v) + 2δM.

Taking the infimum over all such v’s yields

rM (0) ≤ rM,2δM + 2δM,
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and therefore for δ < ε/4 ,

Pu(rM,2δM ≤ M(η(u)− ε)) ≤ Pu(rM (0)− 2δM ≤ M(η(u)− ε))

= Pu(dist(0, HM )− 2δM ≤ M(η(u)− ε))

≤ Pu(dist(0, HM ) ≤ M(η(u)− ε/2))

which, by Lemma 5.7, tends to zero as M tends to infinity.

Proof of Theorem 5.1 (lower bound). For η(u) = 0 the claim is trivial since

Pu(dist(0, x) < 0) = 0. For η(u) > 0, let

N = min
{
M,

⌊ Mε

4η(u)

⌋}
.

For Q ≥ R
M+N − 1 and β > 0,

(5.19)

Pu

(Q−1∑
q=0

Xq(M,N) < R(η(u)− ε)

)

≤eβR(η(u)−ε) · Eu

[
exp

(
− β

Q−1∑
q=0

Xq(M,N)

)]
=eβR(η(u)−ε) · Eu[e

−βX1(M,N)]Q

≤eβ(Q+1)(M+N)(η(u)−ε) ·Eu[e
−βX1(M,N)]Q

=eβ(M+N)(η(u)−ε) · (eβ(M+N)(η(u)−ε) ·Eu[e
−βX1(M,N)])Q

≤eβ(M+N)(η(u)−ε)

×(eβ(M+N)(η(u)−ε)·(e−βM(η(u)−ε/2)+Pu(X1(M,N)<M(η(u)−ε/2))))Q

≤eβ(M+N)(η(u)−ε)

× (e−βMε/4 + e2βM(η(u)−ε)Pu(X1(M,N) < M(η(u)− ε/2)))Q.

In the first line we used Markov’s inequality; in the passage to the second

line we used the fact that the Xq(M,N) are i.i.d.; in the passage to the third

line we used the fact that R ≤ (Q+ 1)(M +N); the passage to the fourth line

is an immediate algebraic identity; the passage to the fifth line follows from

the inequality Eu[e
−βX ] ≤ e−βa +Pu(X < a), valid for every positive random

variable X ; finally, the passage to the sixth line follows from the choice of N .
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Recalling that X1(M,N) ∼ sM,N , we obtain from Lemma 5.8 that

0 < Pu(X1(M,N) < M(η(u)− ε/2)) < 1

for large enough values of M . For every such value of M one can find βM ,

depending only on M,d, ε, u, such that

(Pu(X1(M,N) < M(η(u)− ε/2)))−1/3

≤e2βMM(η(u)−ε)

≤(Pu(X1(M,N) < M(η(u)− ε/2)))−1/2.

When combined with (5.19) this implies

(5.20)

Pu

(Q−1∑
q=0

Xq(M,N) < R(η(u)− ε)

)
≤eβM(M+N)(η(u)−ε)((Pu(X1(M,N) < M(η(u)− ε/2)))

3ε
24(η(u)−ε)

+ (Pu(X1(M,N) < M(η(u)− ε/2)))1/2)Q.

Using Lemma 5.8 one more time, we can choose M = M(ε, d, u) large enough

so that

(5.21)

(Pu(X1(M,N) < M(η(u)−ε/2)))
3ε

24η(u)−ε)

+ (Pu(X1(M,N) < M(η(u)− ε/2)))1/2

≤
(
32d ·max

{
2,

8η(u)

ε

})−d

≤
(
32d

M

N

)−d

.

For such choices of M and β, we get from (5.20), (5.21) and Proposition 5.6

Pu(dist(0, Re1) < R(η(u)− ε))

≤eβ(M+N)(η(u)−ε) ·
∑

Q≥ R
M+N −1

(
2d
(
16

M

N

)d)Q(
32d

M

N

)−dQ

≤eβ(M+N)(η(u)−ε) ·
∑

Q≥ R
M+N −1

2−dQ

≤eβ(M+N)(η(u)−ε) · 2− dR
2M +d+1.

Recalling that M , N and β are fixed, this gives the desired exponential decay

in R.
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Given the result for x = Re1 we now deal with general points, x ∈ Rd,

|x| = R. Due to the invariance of Pu under rotations, dist(0, x) for |x| = R has

the same distribution as dist(0, Re1), and therefore for large enough R

Pu(dist(0, x) < (η(u)− ε/2)R) < e−c1R, ∀x ∈ Rd, such that |x| = R.

Taking an ε/2-net N on Sd−1 such that |N | ≤ C(d)
εd we get that

Pu(∃x ∈ N such that dist(0, Rx) < (η(u)− ε/2)R) ≤ C(d)

εd
e−c1R.

For every x∈Rd such that |x|=R there exists a y∈N such that |x/R− y|<ε/2,

and therefore

dist(0, Ry) ≤ dist(0, x) + |Ry − x| ≤ dist(0, x) +
ε

2
R.

Hence

Pu(∃x ∈ Rd : |x| = R,dist(0, x) < (η(u) − ε)R)

≤Pu(∃y ∈ N such that dist(0, Ry) < (η(u)− ε/2)R)

≤C

εd
e−c1R,

which concludes the proof.

Next, we prove the upper bound in Theorem 5.1, which states that for every

u ∈ [0, u∗) and every ε > 0 there exists a constant c1, depending only on d, u

and ε, such that for R large enough

(5.22) Pu(∃x ∈ Rd : |x| = R, dist(0, x) > (η(u) + ε)R) < e−c1R.

We start with the following lemma.

Lemma 5.9: For S < R let

pS,R = inf

{
len(γ) :

γ is a path from Se1 to Re1

such that HS < γ < HR

}
.

Then

lim
R→∞

Eu[p0,R]

R
= η(u).

Proof. We follow [HW65, Theorem 4.3.7]. Since dist(0, Re1) ≤ p0,R,

(5.23) lim inf
R→∞

Eu[p0,R]

R
≥ lim

R→∞
Eu[dist(0, Re1)]

R
= η(u).
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For k ≥ 0 define

pkS,R = inf

{
len(γ) :

γ is a path from Se1 to Re1

such that HS−k < γ < HR+k

}
,

so in particular, pS,R = p0S,R. Since for every k ≥ 0 and 0 < R1 < R2

(5.24) pk0,R1+R2
≤ pk0,R1

+ pkR1,R1+R2
,

one can apply the subadditive ergodic theorem [Kin73] for pk0,R to obtain

lim
R→∞

Eu[p
k
0,R]

R
= ηk(u)

which, by the definition of pk0,R, satisfies

(5.25) η(u) ≤ ηk(u) ≤ ηk−1(u) ≤ η0(u), ∀k ≥ 1.

Noting that for every R, k > 0

p−k,R+k ≤ p−k,0 + pk0,R + pR,R+k,

it follows by fixing k, taking expectation, dividing by R and taking the limit

R → ∞ that

η0(u) ≤ ηk(u),

which together with (5.25) implies that η0(u) = ηk(u) for every fixed k > 0.

Since for every fixed ω ∈ Ω and R > 0, pk0,R is a monotonically decreasing

function in k converging to dist(0, Re1), it follows from the monotone conver-

gence theorem that

(5.26) lim
k→∞

Eu[p
k
0,R] = Eu[dist(0, Re1)].

Using once again the subadditivity (5.24) we conclude that

Eu[p
k
0,R]

R
≥ ηk(u) = η0(u)

for every R > 0 by Fekete’s subadditive lemma. Combined with (5.26) this

yields

Eu[dist(0, Re1)]

R
≥ η0(u).

Letting R → ∞ implies η0(u) ≤ η(u). Together with (5.23), this completes the

proof.
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Proof of Theorem 5.1 (upper bound). Proving the upper bound is in fact much

simpler than proving the lower bound. Fix ε > 0. By Lemma 5.9 there exists a

sufficiently large R0 > 2 such that

(5.27)
E[p00,R0

]

R0
< η(u) +

ε

5
.

For i ≥ 0 let Xi = piR0,(i+1)R0
. The random variables (Xi)i≥0 are i.i.d. (with

the same distribution as p0,R0) and

(5.28) dist(0, Re1) ≤

R/R0�−1∑

i=0

Xi +R0.

Using (5.27) and (5.28) we deduce that for every R > 5R0/ε,

Pu(dist(0, Re1) > (η(u) + ε)R)

≤Pu

( 
R/R0�−1∑
i=0

Xi > (η(u) + ε−R0/R)R

)

≤Pu

( 
R/R0�−1∑
i=0

(Xi − Eu[Xi]) >
(
η(u) + ε− R0

R
− Eu[X1]

R0

)
R

)

≤Pu

( 
R/R0�−1∑
i=0

(Xi − Eu[Xi]) >
3

5
εR

)
.

Applying the function x 
→ eβx (for some β > 0) to both sides in the last term,

using the Markov inequality and then the independence of the Xi’s, we can

bound the last term on the right-hand side by

(5.29)

e−
3βε
5 R ·Eu[e

β(
∑�R/R0�−1

i=0 (Xi−Eu[Xi]))]

=e−
3βε
5 R ·Eu[e

β(p0,R0−Eu[p0,R0 ])]

 R
R0

�

≤e−
3βε
5 R ·Eu[e

β(p0,R0−Eu[p0,R0 ])]
R
R0 .

Since Eu[e
β(p0,R0−Eu[p0,R0 ])] ≤ Eu[e

βp0,R0 ] ≤ eβR0 < ∞ we can expand the

exponential inside the expectation into a power series in β and obtain that

Eu[e
β(p0,R0−Eu[p0,R0 ])] = 1 +O(β2).

Hence (5.29) is bounded by exp((O(β2)
R0

− 3βε
5 )R). By taking β = β(ε) > 0 small

enough we can make the last term exponentially decaying in R, thus completing

the proof.
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5.4. Proof of Theorem 5.2. The proof of Theorem 5.2 also follows ideas of

Kesten [Kes86]. Unlike the proof of Theorem 5.1, some additional elements are

needed in order to apply to the continuous case. We start with some preliminary

results.

Lemma 5.10: There exists a constant C4 = C4(d) such that for every M > 1,

the Euclidean length of every true geodesic contained in a box of side length M

is at most C4M
d.

Proof. Denote the box by BM . Let ω ∈ Ω be a configuration, and let γ be a true

geodesic contained in BM . Since len(γ) ≤ diame(BM ) =
√
dM , the Euclidean

length that γ acquires in BM \ S(ω) is at most
√
dM . Therefore, it suffices to

show that the Euclidean length that γ acquires in S(ω) ∩BM is O(Md).

Let {Ai}Ni=1 be the connected components of S(ω) ∩ BM which γ intersects.

Note that γ ∩ Ai is connected (otherwise it would not be a true geodesic), so

there are well-defined entry and exit points to γ ∩ Ai. Denote by xI
i ∈ Ai

(resp. xL
i ∈ Ai) the point in supp(ω) from which the entry point (resp. exit

point) of γ ∩ Ai is of distance at most 1. Let xI
i = x1

i , x
2
i , . . . , x

ki

i = xL
i be

points in supp(ω) ∩ Ai such that |xj
i − xk

i | ≤ 2 if |k − j| ≤ 1, |xj
i − xk

i | > 2

if |k − j| > 1. We can always find such points by taking supp(ω) ∩ Ai and

omitting points. By construction, xj
i ∈ Ai for every j, and therefore the length

γ acquires in Ai is at most 2ki (the length of connecting xj
i with xj+1

i plus the

length of connecting the entry and exit points with xI
i and xL

i ).

The length γ acquires in S(ω) ∩ BM is therefore 2k1 + · · · + 2kN . However,

by construction, the unit balls centered at {x2j
i }i≤N,2j≤ki are mutually disjoint.

By a volume consideration, the number of disjoint unit balls in BM is at most

κdM
d, where κd is the volume of the Euclidean unit ball in Rd. Therefore

k1 + · · · + kN ≤ 2κdM
d, and so the total length γ acquires in S(ω) ∩ BM is

bounded by 4κdM
d.

We also recall the following variant of a result by Roy [Roy90]; see also [MR96,

Lemma 3.3]:

Theorem 5.11 ([Roy90]): For x ∈ Rd denote

S(x;ω) =
⎧⎨⎩the connected component of x in S(ω), x ∈ S(ω),
∅, x /∈ S(ω).
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Then there exist for every u < u∗ positive constants C, c depending only on u

and d such that

Pu(diame(S(0;ω)) > t) ≤ Ce−ct.

In order to prove Theorem 5.2, as well as for future use, we will need a

stronger version of Theorem 5.11:

Lemma 5.12: Let

W =
⋃

x∈[0,1]d

S(x;ω).

Then for every u < u∗ there exist positive constants C5, c6 depending only on

u and d, such that

Pu(diame(W ) > t) ≤ C5e
−c6t.

Proof. Observe that every unit ball B(x, 1) for x ∈ Rd contains a point in the

grid 1
2Z

d. Therefore, each connected component in W must contain a point

from the set

L =
{
q ∈ 1

2
Zd : |q|2 < 2

}
whose size is finite (and depends only on d).

Assume that diame(W ) > t. Then there exists a connected component whose

Euclidean diameter is at least (t/2−√
d). By Theorem 5.11,

Pu(diame(W ) > t) ≤
∑
x∈L

Pu(diame(S(x)) > t/2−
√
d) ≤ Ce−ct.

Proof of Theorem 5.2. The proof follows by an argument very similar to the

one used in the proof of Theorem 5.1. We start with Part (1), showing that

there exist constants α, C2 and c3 such that for every R > 0,

Pu

( ∃ a true geodesic path starting at 0

such that lene(γ) ≥ R and len(γ) < 1
α lene(γ)

)
≤ C2e

−c3R.

First observe that

Pu

( ∃ a true geodesic path starting at 0

such that lene(γ) ≥ R and len(γ) < 1
α lene(γ)

)

≤
∞∑

S=
R�
Pu

( ∃ a true geodesic path starting at 0

such that lene(γ) ∈ [S, S + 1] and len(γ) < 1
α (S + 1)

)
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so it is enough to show that there exist constants α,C, c3 such that for every

natural number S

Pu

( ∃ a true geodesic path starting at 0

such that lene(γ) ∈ [S, S + 1] and len(γ) < 1
α (S + 1)

)
≤ Ce−c3S .

Fix S ∈ N and let γ be a true geodesic path starting at the origin such

that lene(γ) ∈ [S, S + 1]. Fix M ∈ N and N = 1 and define the sequences tq

and xq , q = 1, . . . , Q in the same way as in the proof of Proposition 5.6. By

construction, each of the segments γ|[tq,tq+1] is contained in a box of side length

M + 1. By Lemma 5.10 the Euclidean length of a true geodesic in each of the

boxes is at most C4(M + 1)d, hence

Q ≥ S

C4(M + 1)d
− 1.

By repeating the argument of Proposition 5.6 we get that for every β ≥ 0

Pu

( ∃ a true geodesic path starting from 0

such that lene(γ) ∈ [S, S + 1] and len(γ) < 1
α (S + 1)

)

≤
∑

Q≥ S

C4(M+1)d
−1

(2d(16M)d)QPu

(Q−1∑
q=0

Xq(M, 1) <
1

α
(S + 1)

)

≤
∑

Q≥ S

C4(M+1)d
−1

(2d(16M)d)Qeβ(S+1)/αEu

[Q−1∏
q=0

e−βXq(M,1)

]

=eβ(S+1)/α ·
∑

Q≥ S

C4(M+1)d
−1

(2d(16M)d)QEu[e
−βX1(M,1)]Q.

With W as in Lemma 5.12,

Pu

(
diame(W ) >

M

2

)
≤ C5e

−c6M/2.

Each connected component of S is composed Pu-a.s. of finitely many balls;

see Lemma 4.1. Hence connected components of S, as well as W , are compact

sets. Therefore, one can find a small enough δ = δ(M) > 0 such that

Pu(dist(W,S \W ) ≥ δ(M)) ≥ 1− C5e
−c6M/2.

It follows that with Pu-probability at least 1 − 2C5e
−c6M/2 the set W is con-

tained within the box [−M/2,M/2+1]d and is at a distance at least δ(M) from
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any other cluster of S, which in particular implies that e−βX1(M,1) ≤ e−βδ.

Consequently,

Eu[e
−βX1(M,1)] ≤ e−βδ(M) + 2C5e

−c6M/2

and thus

Pu

( ∃ a true geodesic path starting at 0

such that lene(γ) ∈ [S, S + 1] and len(γ) < 1
α (S + 1)

)
≤eβ(S+1)/α

∑
Q≥ S

C4(M+1)d
−1

(2d(16M)d)Q(e−βδ(M) + 2C5e
−c6M/2)Q.

Taking M large enough so that 2d(16M)d · 4C5e
−c6M/2 < 1

4 , and then β large

enough so that e−βδ(M) ≤ 2C5e
−c6M/2, and finally α large enough so that

eβ/α < 2
1

C4(M+1)d gives

Pu

( ∃ a true geodesic path starting from 0

such that lene(γ) ∈ [S, S + 1] and len(γ) < 1
α (S + 1)

)
≤eβ/α

(1
2

) S

C4(M+1)d

,

proving Part (1) of Theorem 5.2.

We next prove Part (2), namely that for every x, y ∈ Rd and for every

R > α|x− y|

Pu(∃γ ∈ Γ0(x, y) : lene(γ) > R) ≤ C2e
−c3R.

By the invariance of the measure Pu under translations and rotations, it is

sufficient to prove the result for the case x = 0, y = Se1 for some S > 0.

If γ ∈ Γ0(0, Se1) is a path such that lene(γ) > R > αS, then we can find

times tq and points xq, q = 0, . . . , Q, as in Proposition 5.6 (with N = 1), with

Q > αS(M + 1)− 1. Since len(γ) = dist(0, Se1) ≤ S the result follows by the

same argument used to prove Part (1).

6. Further results for uniform point distributions

In this section we exploit the results obtained in the previous two sections to

prove more results for uniform point distributions. These include the geometric

concentration of geodesics and further properties of the function η(u).
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6.1. Geometry of geodesics. In order to obtain results on the limiting dis-

tance in the setting of general intensity measures, we will need control over the

geometry of geodesics, or approximate geodesics, connecting pairs of points.

For x, y ∈ Rd, we call a path γ between x and y an ε-geodesic if

(6.1) len(γ)− dist(x, y) ≤ ε|x− y|.
We denote by Γε(x, y) the set of ε-geodesics which are also Euclidean geodesics

inside S. In particular, Γ0(x, y) is the set of true geodesics between x and y

defined in Section 5.

The goal of this subsection is to show that there exist geodesics that do not

deviate significantly from Euclidean segments.

Proposition 6.1: Let u ∈ [0, u∗). There exist C7, c8 > 0 such that for every

ε > 0 and sufficiently large (depending on ε) |x− y|,
(6.2) Pu(∀γ ∈ Γε(x, y) : dH(γ, [x, y]) > ε|x− y|) ≤ C7e

−c8|x−y|1/2 ,

where [x, y] is the linear segment connecting x and y.

Proof. We follow the proof of [BLPR15, Proposition 3.2]. Fix ε > 0 and

x, y ∈ Rd. We will show that if |x − y| is large enough, then there exists with

Pu-probability ≥ 1− C7e
−c8|x−y| a curve γ ∈ Γε(x, y) satisfying

dH(γ, [x, y]) ≤ ε|x− y|.
Let N = �20α/ε�, with α as in Theorem 5.2. Define the sequence of vertices

zk, k = 0, . . . , N , along [x, y] by

zk =
(
1− k

N

)
x+

k

N
y, ∀0 ≤ k ≤ N.

For 0 ≤ k ≤ N − 1, let γk = γk(ω) ∈ Γ0(zk, zk+1) be a true geodesic connecting

zk and zk+1 and define γ = (. . . (γ0∗γ1)∗. . . ∗)∗γN−1) to be their concatenation,

connecting x and y.

Since |zk − zk+1| = |x− y|/N is of order |x− y| it follows from Theorem 5.1

that once |x− y| is large enough

(6.3) | dist(zk, zk+1)− η(u) · |zk − zk+1|| ≤ ε

2
|zk − zk+1|, ∀0 ≤ k ≤ N − 1,

with Pu-probability at least 1−Ne−c1|x−y|. Similarly, whenever |x− y| is large
enough we have with Pu-probability at least 1− e−c1|x−y| that

(6.4) | dist(x, y)− η(u) · |x− y|| ≤ ε

2
|x− y|.
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Consequently, under the events in (6.3) and (6.4),

(6.5)

len(γ) ≤
N−1∑
k=0

len(γk) =

N−1∑
k=0

dist(zk, zk+1)

≤
N−1∑
k=0

(η(u) · |zk − zk+1|+ ε

2
|zk − zk+1|)

= η(u) · |x− y|+ ε

2
|x− y|

≤ dist(x, y) + ε|x− y|,
which implies that γ ∈ Γε(x, y). Finally, by Theorem 5.2(2) we have with Pu-

probability at least 1− C2Ne−c3|x−y| ≥ 1− C7e
−c8|x−y|1/2, assuming |x− y| is

sufficiently large, that

(6.6) lene(γk) ≤ ε

10
|x− y|, ∀0 ≤ k ≤ N − 1

which implies that for every 0 ≤ k ≤ N − 1,

(6.7) γk ⊂ [zk, zk+1] +B
(
0,

ε

5
|x− y|

)
,

and thus

(6.8) γ ⊂ [x, y] +B
(
0,

ε

5
|x− y|

)
,

thus proving the existence of the required ε-geodesic.

6.2. An upper bound on η(u). The goal of this subsection is to prove an

upper bound on the function η(u).

Proposition 6.2: For every u ∈ [0, u∗)

η(u) ≤ e−uκd .

Proof. First observe that x ∈ S(ω) if and only if there is a point

y ∈ supp(ω) ∩B(x, 1).

Since the number of points in the support of ω inside B(x, 1) is distributed like

a Poisson random variable with parameter uκd, it follows that

Pu(x /∈ S(ω)) = e−uκd .

For R > 0 let γR : [0, 1] → Rd denote the path γR(t) = tRe1. Then

dist(0, Re1)

R
≤ len(γR)

R
=

1

R

∫ R

0

�xe1 /∈S(ω) Leb1(dx).
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Taking expectation on both sides and using Fubini’s theorem,

Eu[dist(0, Re1)]

R
≤ 1

R

∫ R

0

e−uκd Leb1(dx) = e−uκd .

Taking the limit R → ∞ and using Theorem 4.4 gives η(u) ≤ e−uκd .

Remark: In fact, one can show that the bound e−uκd is not tight, and that

η(u) < e−uκd actually holds, by considering several paths instead of one as

follows. Take large balls around 0 and Re1 (whose radii are independent of R).

An < e−uκd-bound is then obtained by considering several paths from 0 to Re1,

which are at distance > 2 from each other outside these balls.

6.3. Continuity of η(u).

Proposition 6.3: The function η : [0, u∗) → (0, 1] is continuous. In addition,

η is monotonically decreasing in u and η(0) = 1.

We start the proof by introducing a natural coupling of the probability mea-

sures Pu for u ≥ 0. Let

Ω̂=

{
ω̂=

∑
i≥0

δ(xi,ui) :
xi∈Rd, ui∈ [0,∞) for all i≥0 and ω̂(A×[0, u])<∞
for all bounded, Borel-measurable A⊂Rd and u≥0

}

and for u ≥ 0 and ω̂ ∈ Ω̂ define

ω̂u =
∑

(xi, ui) ∈ suppω̂,

ui ≤ u

δxi .

Note that ω̂u ∈ Ω, so dist(·; ω̂u) is well-defined. Finally, let P be the proba-

bility measure on Ω̂ under which ω̂ is distributed like a Poisson point process

on Rd × [0,∞) with intensity Lebd(dx) × Leb1(dx)|[0,∞).

One can verify that for every u ≥ 0, the distribution of ω under Pu is the

same as the distribution of ω̂u under P. That is, we constructed a coupling of

the probability measures Pu for u ≥ 0 under which

(6.9) ω̂u ≤ ω̂u′ , ∀0 ≤ u ≤ u′.

We will denote by E expectation with respect to the probability measure P.
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Proof of Proposition 6.3. Fix u ∈ [0, u∗) and ε > 0. Choose δ0 > 0 such that

[u − δ0, u + δ0] ⊂ [0, u∗) if u > 0 and [0, δ0] ⊂ [0, u∗) if u = 0. We denote this

compact interval by I.

Denote

(6.10)
AR ={∃γ ∈ Γ0(0, Re1) : lene(γ) > αR}

∪ {| dist(0, Re1)− η(u)R| > εR/6},
where α is as in Theorem 5.2(2).

For every u′ ∈ I, using the fact that η(u), η(u′) ∈ [0, 1], we have

(6.11)

|η(u′)− η(u)|
≤|E[(η(u′)− η(u))�Ac

R
(ω̂u′)�Ac

R
(ω̂u)]|+P(AR(ω̂u′)) +P(AR(ω̂u))

≤ 1

R
|E[[dist(0, Re1; ω̂u′)− dist(0, Re1; ω̂u)] · �Ac

R
(ω̂u′)�Ac

R
(ω̂u)]|

+
ε

3
+P(AR(ω̂u′)) +P(AR(ω̂u)).

By going back to the proofs of Theorem 5.1 and Theorem 5.2(2) one can verify

that both α and the constants c1, C2, c3 can be chosen uniformly on the compact

interval I. That is, there exist positive constants α, C9 and c10 depending on

u and δ0 such that for every u′ ∈ I, Pu′(AR) ≤ C9e
−c10R.

Due to the uniform bound on the probability of AR on the interval I one can

choose R large enough (depending only on ε > 0 and I) so that

(6.12) P(AR(ω̂u′)) +P(AR(ω̂u)) ≤ ε

3
.

Combining (6.11) and (6.12), it is enough to show the existence of δ > 0 such

that for |u− u′| < δ,

1

R
|E[[dist(0, Re1; ω̂u′)− dist(0, Re1; ω̂u)] · �Ac

R
(ω̂u′)�Ac

R
(ω̂u)]| < ε

3
.

This holds, since on the event ω̂u′ , ω̂u ∈ Ac
R the values of dist(0, Re1; ω̂u′) and

dist(0, Re1; ω̂u) are the same whenever

supp(ω̂u′) ∩B(0, Rα+ 1) = supp(ω̂u) ∩B(0, Rα+ 1),

and therefore

1

R
|E[[ dist(0, Re1; ω̂u′)− dist(0, Re1; ω̂u)] · �Ac

R
(ω̂u′)�Ac

R
(ω̂u)]|

≤2 ·P(supp(ω̂u′) ∩B(0, Rα+ 1) �= supp(ω̂u) ∩B(0, Rα+ 1)).
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Assume without loss of generality that u′ ≤ u. Due to the coupling, the point

measure ω̂u is obtained from ω̂u′ by adding to it an additional independent point

measure in Ω which is distributed as a Poisson point process with intensity

measure (u − u′) · Lebd(dx). In particular, the probability that there is an

additional point inside the ball B(0, Rα+ 1) is

1− e−(u−u′)κd(Rα+1)d ≤ 1− e−δκd(Rα+1)d .

Thus, with probability at most 1− e−δκd(Rα+1)d the point measures ω̂u′ and ω̂u

do not coincide inside the ball B(0, Rα+ 1). Recalling that R depends only on

ε and I we can choose δ small enough so that 2(1− e−δκd(Rα+1)d) < ε/3, thus

completing the proof.

6.4. Volume convergence.

Proposition 6.4: For every u ≥ 0, Pu-almost surely

(6.13)

lim
R→∞

νR([0, 1]
d) = lim

M→∞
Lebd([0,M ]d \ S(ω))

Lebd([0,M ]d)

=e−uκd

=μσ(u)([0, 1]
d).

Proof. As observed in Proposition 6.2

Pu(0 /∈ S(ω)) = e−uκd .

Using the ergodicity of the model (see Lemma 4.5) and the ergodic theorem we

can conclude that

lim
M→∞

Lebd([0,M ]d \ S(ω))
Lebd([0,M ]d)

= lim
M→∞

1

Lebd(B(0,M))

∫
B(0,M)

�x/∈S(ω) Lebd(dx)

=Eu[�0/∈S(ω)] = e−uκd .

7. Convergence for uniform point distributions

In this section, we exploit the results proved in Sections 4–6 to prove Parts (1)

and (4) of Theorem 2.2 for the case when u is uniform and D is convex. These

assumptions are relaxed in the next section. Since for uniform u, we have a

natural coupling of the measures Pu,R using a single measure Pu, we will have

in fact a slightly stronger result than stated in Theorem 2.2.

The main result of this section is the following:
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Theorem 7.1: Let u ∈ [0, u∗) and let D ⊂ Rd be a convex, compact d-

dimensional manifold with corners. Then

(7.1) lim
R→∞

sup
x,y∈D

|dD
η(u)(x, y)− distDR (πR(x), πR(y))| = 0, Pu-a.s.

In particular, since πR is onto, the sequence (DR, dist
D
R ) converges Pu-a.s. to

(D,dD
η(u)) with respect to the Gromov–Hausdorff metric, where dD

η(u) should be

interpreted as in (2.13).

Proof. Denote AD
R = (DR, dist

D
R ), BD

R = (DR, distR) and CD = (D,dD
η(u)). We

denote by πD
R the projection D → DR when considered as a mapping between

CD and AD
R . We will use the space BD

R as an intermediate metric space in order

to bound the distortion of πD
R . We denote by π̃D

R the projection D → DR when

considered as a mapping between CD and BD
R and by Id the identity from DR

to itself when considered as a map between BD
R and AD

R . See Figure 3 for an

illustration.

CD = (D,dD
η(u))

πD
R ��

π̃D
R

����
���

���
���

��
AD

R = (DR, dist
D
R )

BD
R = (DR, distR)

Id

����������������

Figure 3. The spaces AD
R , BD

R and CD.

By the triangle inequality

dis πD
R ≤ dis π̃D

R + dis Id,

where the distortion is defined as in Subsection 2.3.6. Thus it is enough to prove

that with Pu-probability one, both dis π̃D
R and dis Id go to zero as R → ∞.

For dis π̃D
R , observe that D is compact and convex, and since u is constant, it

follows that D is convex with respect to dη(u), hence dD
η(u) = dη(u). The map-

ping π̃D
R : CR

D → BR
D is onto and, by Theorem 4.2, has Pu-a.s. an asymptotically

vanishing distortion.

The rest of the proof shows that the distortion of Id : AD
R → BD

R also vanishes

asymptotically. We use the concentration result Proposition 6.1 as follows: Fix

δ > 0, and denote by D(δ) the set of points in D whose distance from the

boundary ∂D is greater than δ. For R > 0, let NR,δ denote a finite 1/
√
R-net
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of D(δ) such that |NR,δ| < CRd/2 and for every x, y ∈ NR,δ, |x − y| > c/
√
R,

with C and c depending only on d and D. Denote 0 < ε = δ/(2 diam(D)), and

let x, y ∈ NR,δ. By Proposition 6.1 we have that for R > R0(δ),

(7.2)

Pu(∀γ ∈ Γε(Rx,Ry) : dH(γ, [Rx,Ry]) > εR|x− y|) ≤ C7e
−c8(R|x−y|)1/2

< C9e
−c10R

1/4

,

and therefore by a union bound argument and the fact that |NR,δ|2 ≤ C Rd, we

have

(7.3)
Pu(∃x, y ∈NR,δ ∀γ ∈ Γε(Rx,Ry) : dH(γ, [Rx,Ry]) > εR|x− y|)

≤C11R
de−c10R

1/4

.

Considering the sequence of events in (7.3) with R replaced by m ∈ N, we get

that the sum of the probabilities is finite, hence by the Borel–Cantelli lemma,

we have that Pu-a.s. there exists M0(δ, ω) such that for every m ≥ M0(δ, ω),

∀x, y ∈ Nm,δ ∃γ ∈ Γε(mx,my) : dH(γ, [mx,my]) ≤ εm|x− y| < mδ

2
.

Since D is convex, [x, y] ⊂ D. Therefore by the definition of δ, it follows that

for every m ≥ M0 and every x, y ∈ Nm,δ there exists an ε-geodesic with respect

to distR that remains in DR for R large enough, hence

lim
m→∞ sup

x,y∈Nm,δ

| distm(x, y)− distDm(x, y)| ≤ ε, Pu-a.s.

Since Nm,δ is a 1/
√
m-net of D(δ) it follows that

lim
m→∞ sup

x,y∈D(δ)

| distm(x, y)− distDm(x, y)| ≤ ε, Pu-a.s.

and therefore

lim
m→∞ sup

x,y∈D
| distm(x, y)− distDm(x, y)| ≤ ε+ 4δ = δ

(
4 +

1

2 diam(D)

)
, Pu-a.s.

Since for every R > 0 there exists an m such that |m − R| < 1, it follows that

for such a choice of m, for every x, y ∈ D,

| distm(x, y)−distR(x, y)|=
∣∣∣dist(mx,my)

m
− dist(Rx,Ry)

R

∣∣∣
≤dist(mx,Rx)

m
+
dist(my,Ry)

m
+dist(Rx,Ry)

∣∣∣ 1
m

− 1

R

∣∣∣
≤ |x|∞
R− 1

+
|y|∞
R− 1

+
|x− y|∞
R− 1

≤ 4 supz∈D |z|∞
R− 1

.
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Similarly,

| distDm(x, y) − distDR (x, y)| ≤ 4 supz∈D |z|∞
R− 1

.

It follows that

lim sup
R→∞

sup
x,y∈D

| distR(x, y)−distDR (x, y)| ≤ ε+4δ = δ
(
4+

1

2 diam(D)

)
, Pu-a.s.

Since δ is arbitrary we finally have that

(7.4) lim
R→∞

sup
x,y∈D

| distR(x, y)− distDR (x, y)| = 0, Pu-a.s.

This shows that the identity mapping Id : BD
R → AD

R has an asymptotically

vanishing distortion Pu-a.s., which completes the proof.

The following proposition proves Part (4) of Theorem 2.2 for the case of

constant u, namely, that (πD
R )−1 : D′

R → D is asymptotically surjective.

Proposition 7.2:

lim
R→∞

dH(D, π−1
R (D′

R)) = 0, Pu-a.s.

Proof. It follows from Lemma 5.12 that

Pu

( ∃ a connected component C in
⋃

x∈[−M,M ]d S(x;ω)
such that diame(C) ≥ log2 M

)

≤
∑

z∈Zd∩[−M−1,M ]d

Pu

( ∃ a connected component C in
⋃

x∈z+[0,1]d S(x;ω)
such that diame(C) ≥ log2 M

)
≤C5(2M + 2)de−c6 log2(M).

The choice of log2 M is dictated by the need of satisfying two conditions: we

need a term which is o(M), and the probability must decay sufficiently fast; see

(7.5).

Taking M = KR, with K = diame(D) and R > 0, we get that with Pu-

probability at least 1−C5(2KR+ 1)de−c6 log2(KR) the distance from any point

in S ∩R ·D to R ·D \ S is at most log2(KR). Thus

(7.5) Pu

(
dH(D, (πD

R )−1(D′
R)) ≥

log2(KR)

R

)
≤ C5(2KR+ 2)de−c6 log2(KR).

Given ε > 0, consider the sequence (dH(D, (πD
mε)

−1(D′
mε)))m≥1. Since the

righthand side of (7.5) is summable in m, it follows from the Borel–Cantelli
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lemma that Pu-almost surely dH(D, (πD
mε)

−1(D′
mε)) ≤ log2(Kεm)

εm for all but

finitely many m’s and, in particular, that

lim
m→∞ dH(D, (πD

mε)
−1(D′

mε)) = 0.

Since for every 0 < R ≤ S we have

dH((πD
R )−1(D′

R), (π
D
S )−1(D′

S)) ≤ |R− S|
and since the sequence (dH(D, (πD

mε)
−1(D′

mε)))m≥1 is ε-dense in [0,∞), it fol-

lows that Pu-a.s. lim supR→∞ dH(D, (πD
R )−1(D′

R)) ≤ ε. Since ε > 0 is arbitrary

we get that Pu-a.s. limR→∞ dH(D, (πD
R )−1(D′

R)) = 0.

8. Proof of Theorem 2.2

In this section we prove Parts (1), (2) and (4) of Theorem 2.2. Part 3 was

proved in Proposition 6.2. Let D ⊂ Rd, a compact d-dimensional manifold with

corners, and let u : D → [0, u∗) be a continuous function. Since D is compact,

we can always extend u continuously to Rd without enlarging its upper bound.

Therefore, we can assume without loss of generality that u : Rd → [0, u∗),
with supu < u∗. The parameters u and R > 0 define a process with probability

measure Pu,R. Similarly to the proof of Proposition 6.3, we start by introducing

a natural coupling of the probability measures Pu,R for a given R > 0.

Let

Ω̂ =

⎧⎪⎨⎪⎩ω̂ =
∑
i≥0

δ(xi,ui) :

xi ∈ Rd, ui ∈ [0,∞) for all i ≥ 0

and ω̂(A× [0, u]) < ∞
for all compact A ⊂ Rd and u ≥ 0

⎫⎪⎬⎪⎭
and for a continuous function u : Rd → [0,∞) and ω̂ ∈ Ω̂ define

ω̂u =
∑

(xi, ui) ∈ suppω̂,

ui ≤ u(xi)

δxi .

Finally, let PR be the probability measure on Ω̂ under which ω̂ is distributed

like a Poisson point process on Rd × [0,∞) with intensity

2Rd Lebd(dx) × Leb1(dx)|[0,∞).

One can now verify that for every continuous u : Rd → [0,∞), the distribution

of ω under Pu,R is the same as the distribution of ω̂u underPR. That is, we have
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constructed a coupling of the probability measures Pu,R, for u : Rd → [0,∞),

under which

ω̂u ≤ ω̂u′ , ∀u, u′ : Rd → [0,∞), u ≤ u′.

8.1. Metric convergence. In this section we prove Part (1) of Theorem 2.2,

which with the coupling constructed above states that:

For every ε > 0,

(8.1) lim
R→∞

PR( sup
x,y∈D

|dD
η◦u(x, y)− distDR (πR(x), πR(y); ω̂u)| < ε) = 1.

In particular, this implies that for every ε > 0,

lim
R→∞

PR(dGH((DR, dist
D
R (·; ω̂u)), (D,dD

η◦u)) > ε) = 0.

Theorem 7.1 states that this holds when D is convex and u = u0 is uniform.

We start with a proposition showing that if D is convex and u : D → [0, u∗)
only takes values within a small interval [umin, umax], then we can bound (with

high probability) the distortion of the projection πR between (D,dD
η◦u) and

(DR(ω̂u), dist
D
R (·; ω̂u)).

Proposition 8.1: Assume thatD is a compact, path-connected and convex set

with a non-empty interior, and let umin = minD u ≥ 0 and umax = maxD u < u∗.
Consider πR as a function (D,dD

η◦u) → (DR(ω̂u), dist
D
R (·; ω̂u)). Then

lim
R→∞

PR(dis πR > 3Δη · diame D) = 0,

where Δη = η(umin)− η(umax).

Proof. Consider the coupling as above between ω̂u, ω̂umin and ω̂umax , with umin

and umax viewed as constant functions. Then

distDR (·; ω̂umin)≥distDR (·; ω̂u)≥distDR (·; ω̂umax) and dD
η(umin)≥dD

η◦u≥dD
η(umax),

and, in particular,

(8.2) | distDR (·; ω̂umin)− distDR (·; ω̂u)| ≤ | distDR (·; ω̂umin)− distDR (·; ω̂umax)|

and

(8.3) |dD
η(umin) − dD

η◦u| ≤ |dD
η(umin) − dD

η(umax)| ≤ Δη · diameD.
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Using (8.2) and (8.3), and by a repeated application of the triangle inequality,

(8.4)

disπR = sup
x,y∈D

{|dD
η◦u(x, y)− distDR (x, y; ω̂u)|}

≤ sup
x,y∈D

{|dD
η◦u(x, y)− dD

η(umin)(x, y)|

+ |dD
η(umin)(x, y)− distDR (x, y; ω̂umin)|

+ | distDR (x, y; ω̂umin)− distDR (x, y; ω̂u)|}
≤ sup

x,y∈D
{|dD

η(umax)(x, y)− dD
η(umin)(x, y)|

+ |dD
η(umin)(x, y)− distDR (x, y; ω̂umin)|

+ | distDR (x, y; ω̂umin)− distDR (x, y; ω̂umax)|}
≤ sup

x,y∈D
{2|dD

η(umax)(x, y)− dD
η(umin)(x, y)|

+ 2|dD
η(umin)(x, y)− distDR (x, y; ω̂umin)|

+ |dη(umax)(x, y)− distDR (x, y; ω̂umax)|}
≤ 2Δη · diameD + 2|dD

η(umin)(x, y)− distDR (x, y; ω̂umin)|
+ |dη(umax)(x, y)− distDR (x, y; ω̂umax)|.

The result now follows by applying Theorem 7.1 to the last two addends.

We now prove Part (1) of Theorem 2.2. The idea behind the proof is the

following: We partition D into small convex sets; in each u varies only a little.

Proposition 8.1 states that with high probability, the distortion of the projection

in each set is small. We then glue the sets together and show that the accumu-

lated distortion remains small. A technical complication arises when D cannot

be partitioned into finitely many convex sets. We overcome this problem by

considering sets slightly larger and slightly smaller than D, denoted by D and

D, that can be partitioned in such a way.

Step I: Partitioning D. Let n be a large natural number to be chosen

later (independent of R). CoverD with cubes of edge length 1/n, whose corners

are on the lattice 1
nZ

d; henceforth, “vertices” refers to the corners of the cubes.

Denote the cubes that intersect D but not ∂D by �n,1, . . . ,�n,kn , and those

that intersect ∂D by �n,kn+1, . . . ,�n,kn+mn . Since D is compact, there exists

a slightly larger compact set � containing
⋃kn+mn

i=1 �n,i for all n ≥ 1. The

function η ◦ u varies on each cube �n,i, by some Δn,i. Denote Δn = maxi Δn,i.
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Since η◦u is continuous (Proposition 6.3) and � is compact, Δn → 0 as n → ∞.

Denote by Tn the union of the facets of the cubes and let

D =

kn⋃
i=1

�n,i, D =

kn+mn⋃
i=1

�n,i.

It follows from the definition of D and D that

D ⊂ D ⊂ D

and both | diamD−diamD| and | diamD−diamD| are of order 1/n. Moreover,

we claim that

(8.5) lim
n→∞ sup

x,y∈D
|dD

η◦u(x, y)− dD
η◦u(x, y)| = 0.

Indeed, note that dD
η◦u ≤ dD

η◦u for any pair of points in D, and therefore we only

need to prove that for every x, y ∈ D and every simple curve γ ⊂ D between x

and y, there exists a simple curve γ′ ⊂ D between x and y such that

(8.6) lendη◦u(γ
′) < lendη◦u(γ) + o(1),

where o(1) is with respect to n, independent of R, x and y. To prove (8.6),

note that since D ⊂ Rd is compact, D and D are homotopic whenever n is

large enough (∂D is a compact submanifold with corners and therefore its 1/n-

neighborhood is homotopic to itself for n large enough) and dH(D,D) <
√
d/n.

Then, for every simple curve γ ⊂ D between x and y in D, there exists a

simple curve γ′ ⊂ D between x and y such that the dH(γ, γ′) < 2
√
d/n and

lene(γ
′) < lene(γ) + c/n for some c = c(d,D) > 0 (see Figure 4). Since η ◦ u

is continuous, γ and γ′ are simple, and their Hausdorff distance is o(1), (8.6)

follows.

Step II: Each geodesic (w.r.t. either dD
η◦u or distDR) intersects only

O(n) cubes (in each of which the distortion is small).

Consider a vertex of one of the cubes, and a facet of the same cube that

does not intersect it. Since distances with respect to dη◦u are bounded from

below by η = minD η(u) times the Euclidean distances, the distance between

the vertex and the facet is at least η/n. Therefore, a ball in (D,dD
η◦u) of radius

η/2n intersects at most 2d cubes. It follows that all geodesics in (D,dD
η◦u) (or,

more generally, every curve of length diame D or less) intersect at most

diame D

η/2n
· 2d =

2d+1 diameD

η
· n



Vol. 223, 2018 NON-METRICITY 131

Figure 4. Illustration of the construction of step I of the proof.

The boundary of the domain D is marked in black, and the

dotted lines represent the grid that forms �n,i. The boundaries

of D and D are marked with dashed lines. For every simple

curve γ ⊂ D between two points in D there is a curve γ′ ⊂ D

of similar length which is close to γ in the Hausdorff distance

(see (8.6)). Therefore, the inclusion of D in D has a vanishing

distortion as n → ∞, as stated in (8.5).

of the cubes �n,1, . . . ,�n,kn+mn (see Lemma 5.3 in [KM15b] for a similar ar-

gument). By the same reasoning, each geodesic in either (D,dD
η◦u) or (D,dD

η◦u)
intersects at most 2d+1n diam eD/η cubes.

Next, cover similarly DR by “cubes” �R
n,i = πR(�n,i); also, define DR and

DR in an analogous way. Applying Proposition 8.1 to each cube �n,i, we obtain

that

(8.7) lim
R→∞

Pu,R(dis πR|�n,i
< 3

√
dΔn/n ∀i = 1, . . . , kn +mn) = 1.

For a given R, denote

AR = {dis πR|�n,i
< 3

√
dΔn/n ∀i = 1, . . . , kn +mn}.
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Assume that AR holds, and consider a vertex in one of the cubes in DR, and a

facet of the same cube that does not intersect the vertex. The distance between

the vertex and the facet is at least (η − 3
√
dΔn)/n, which is positive for large

enough n. By the same reasoning as above, each geodesic in either DR or DR

intersects at most 2d+1n diamD/(η − 3
√
dΔn) cubes.

Step III: Bounding the distortion.

We now want to show that when AR holds, i.e., the distortion within each

cube is small, then the distortion of πR : (D,dD
η◦u) → (DR, dist

D
R ) is small as

well (and similarly with D). The idea, which is similar to the proof of Theorem

3.1 in [KM15], is that a geodesic γ in (D,dD
η◦u) crosses O(n) cubes at points

x1, . . . , xm, and at each crossing it accumulates a distance dη◦u(xi, xi+1). When

AR holds,

|dη◦u(xi, xi+1)− distDR (πR(xi), πR(xi+1))| ≤ 3
√
dΔn

n
,

i.e., the distortion accumulated in each cube is O(Δn/n), so the total distortion

is

O(n) · O(Δn/n) = O(Δn) → 0.

Here and below, the constants in O(·) only depend on d, diamε D and η, which

are fixed throughout the proof.

Formally, let x, y ∈ D, and let γ be a geodesic in (D,dD
η◦u) between x and y.

If γ does not intersect the facets of the boxes transversely, we can take γ to be

infinitesimally longer such that it does. Therefore, without loss of generality γ

intersects the facets of the boxes at a finite number of points x1, . . . , xm, with

m < 2d+1n diamD/η = O(n). Denote x = x0 and y = xm+1. When the event

AR holds,

distDR (πR(x), πR(y)) ≤
m∑
i=1

distDR (πR(xi), πR(xi+1))

≤
m∑
i=1

(
dη◦u(xi, xi+1) +

3
√
dΔn

n

)

≤
m∑
i=1

dD
η◦u(xi, xi+1) +m ·O(Δn/n)

= len
dD
η◦u

(γ) +O(Δn)

=dD
η◦u(x, y) +O(Δn).
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A similar argument, on a geodesic σ between πR(x) and πR(y), shows that

dD
η◦u(x, y) ≤ distDR (πR(x), πR(y)) +O(Δn).

Therefore, we obtain that when AR holds,

(8.8) sup
x,y∈D

|dD
η◦u(x, y)− distDR (πR(x), πR(y))| ≤ CΔn,

for some C > 0 independent of n. Similarly, when AR holds,

(8.9) sup
x,y∈D

|dD
η◦u(x, y)− dist

D
R (πR(x), πR(y))| ≤ CΔn.

If D = D, then the proof is complete. The rest of the proof deals with the

case where D � D � D. In D we have that dD
η◦u ≤ dD

η◦u ≤ dD
η◦u, hence

(8.10) |dD
η◦u − dD

η◦u| ≤ |dD
η◦u − dD

η◦u|.

Similarly, distDR ≤ distDR ≤ dist
D
R in DR, hence

(8.11) | distDR − distDR | ≤ | distDR − distDR |.
Using (8.5), (8.8)–(8.11), we obtain (similarly as in (8.4)) that when AR holds,

sup
x,y∈D

{|dD
η◦u(x, y)− distDR (πR(x), πR(y))|}

≤ sup
x,y∈D

{|dD
η◦u(x, y)− dD

η◦u(x, y)|+ |dD
η◦u(x, y)− dist

D
R (πR(x), πR(y))|

+ | distDR (πR(x), πR(y))− distDR (πR(x), πR(y))|}
≤ sup

x,y∈D
{|dD

η◦u(x, y)− dD
η◦u(x, y)|+ |dD

η◦u(x, y)− dist
D
R (πR(x), πR(y))|

+ | distDR (πR(x), πR(y))− distDR (πR(x), πR(y))|}
≤ sup

x,y∈D
{2|dD

η◦u(x, y)− dD
η◦u(x, y)|+ 2|dD

η◦u(x, y)− dist
D
R (πR(x), πR(y))|

+ |dD
η◦u(x, y)− distDR (πR(x), πR(y))|}

≤ sup
x,y∈D

{2|dD
η◦u(x, y)− dD

η◦u(x, y)|} + 3CΔn = o(1),

where o(1) here is with respect to n and independent of R. The first inequality

is a triangle inequality; the second follows from (8.10) and (8.11); the third is

again a triangle inequality; and the last one follows from (8.8) and (8.9).
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Since D is a 1/n-net in D and DR is a 1/n-net in DR, we obtain that for

πR : (D,dD
η◦u) → (DR, dist

D
R ),

(8.12) dis πR = o(1).

Finally, let ε > 0, and choose n large enough such that dis πR < ε when AR

holds. Note that this choice of n is independent of R. It follows that as R → ∞,

Pu,R(dGH((DR, dist
D
R ), (D,dD

η◦u)) > ε) ≤Pu,R(dis πR > ε)

≤Pu,R(A
c
R) → 0.

8.2. Measure convergence. In this section we prove part (2) of Theorem 2.2:

For every ε > 0,

lim
R→∞

Pu,R

(
∃f ∈ W (D), s.t.

∣∣∣∣ ∫
D

f dμσ◦u −
∫
DR

f ◦ π−1
R dνR

∣∣∣∣ > ε

)
= 0,

where

W (D) ={f ∈ C(D) : ‖f‖∞ ≤ 1 and Lip(f) ≤ 1},
σ(u) =e−uκd/d,

and κd is the volume of the d-dimensional unit ball.

We start with a proposition which is a measure analog of Proposition 8.1.

Proposition 8.2: Let D be a cube in Rd and let umin = minD u ≥ 0 and

umax = maxD u < u∗. Then

lim
R→∞

Pu,R(|νR(DR)− μσ◦u(D)| > 5Δσ Lebd(D)) = 0,

where

Δσ = σ(umin)
d − σ(umax)

d.

Proof. As in the proof of Proposition 8.1 consider the coupling between ω̂u,

ω̂umin and ω̂umax . Since umin ≤ u ≤ umax, it follows that

νR(·; ω̂umin) ≥ νR(·; ω̂u) ≥ νR(·; ω̂umax).
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Then

|νR(DR;ω̂u)− μσ◦u(D)|
≤|νR(DR; ω̂u)− νR(DR; ω̂umax)|+ |νR(DR; ω̂umax)− μσ(umax)(D)|
+ |μσ(umax)(D)− μσ◦u(D)|

≤|νR(DR; ω̂umin)− νR(DR; ω̂umax)|+ |νR(DR; ω̂umax)− μσ(umax)(D)|
+ |μσ(umax)(D)− μσ(umin)(D)|

≤|νR(DR; ω̂umin)− μσ(umin)(D)| + 2|νR(DR; ω̂umax)− μσ(umax)(D)|
+ 2|μσ(umax)(D)− μσ(umin)(D)|

≤|νR(DR; ω̂umin)− μσ(umin)(D)| + 2|νR(DR; ω̂umax)− μσ(umax)(D)|
+ 2Δσ Lebd(D),

from which the result follows by Proposition 6.4.

We now prove part (2) of Theorem 2.2. In order to simplify the notation, we

will consider νR as a measure on D (assigning zero measure to SR), rather than

on DR. In this way there is no composition with π−1
R .

As in the proof of the first part, partition D into cubes �n,1, . . . ,�n,kn+mn ,

and let D =
⋃kn+mn

i=1 �n,i. We extend both μσ◦u and νR to D by setting D \D
to be a null-set.

Let ε > 0 and choose n >
√
d/ε large enough such that Δσ < ε in each

�n,i ∩D and Lebd(D) < 2 Lebd(D). By applying Proposition 8.2 to each �n,i

we obtain that

lim
R→∞

Pu,R(GR) = 1,

where

GR = {|νR(�n,i)− μσ◦u(�n,i)| < 5εLebd(�n,i) ∀i = 1, . . . ,kn +mn}.

Let f ∈ W (D). Due to the choice of n and since Lip(f) ≤ 1, it follows that

sup
�n,i∩D

f − inf
�n,i∩D

f < ε

for every i. Denote

fi = inf
�n,i∩D

f.
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Assume that GR holds. Then∣∣∣∣ ∫
D

f dμσ◦u −
∫
D

f dνR

∣∣∣∣
≤

kn+mn∑
i=1

∣∣∣∣ ∫�n,i

f dμσ◦u −
∫
�n,i

f dνR

∣∣∣∣
≤

kn+mn∑
i=1

∣∣∣∣ ∫�n,i

f dμσ◦u − fi μσ◦u(�n,i)

∣∣∣∣+ |fi||μσ◦u(�n,i)− νR(�n,i)|

+

∣∣∣∣fi νR(�n,i)−
∫
�n,i

f dνR

∣∣∣∣
≤

kn+mn∑
i=1

2εLebd(�n,i) + ‖f‖∞|μσ◦u(�n,i)− νR(�n,i)|

≤7ε

kn+mn∑
i=1

Lebd(�n,i) = 7εLebd(D) < 14εLebd(D).

Therefore, as R → ∞,

Pu,R

(
∃f ∈W (D), s.t.

∣∣∣∣ ∫
D

fdμσ◦u−
∫
D

f dνR

∣∣∣∣>14εLebd(D)

)
≤Pu,R(G

c
R)→0,

which completes the proof.

8.3. Asymptotic surjectivity. In this section we prove Part (4) of Theo-

rem 2.2:

For every ε > 0,

(8.13) lim
R→∞

Pu,R(dH(D, π−1
R (D′

R)) > ε) = 0,

where D′
R = {x ∈ DR : |π−1

R (x)| = 1} and dH is the Hausdorff

distance in Rd.

This is an immediate consequence of Proposition 7.2, using the above coupling

between u and umax = maxD u. Denote

D
′
R = {x ∈ DR(ω̂umax) : |π−1

R (x; ω̂umax)| = 1}.

Then

(8.14) π−1
R (D

′
R) ⊂ π−1

R (D′
R) ⊂ D.
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By Proposition 7.2, for every ε > 0

(8.15) lim
R→∞

PR(dH(D, π−1
R (D

′
R)) > ε) = 0,

and combining (8.15) with (8.14) we obtain (8.13).

8.4. Proof of Corollary 2.3. We follow here the definitions and notation

of Definition 2.1.

Since πR : D → DR is always defined on the whole space D and always

onto DR, Part (1) of Theorem 2.2 as stated in (8.1) immediately implies (2.18),

which proves the first part of Corollary 2.3.

For the second half of the first part, we need to prove that:

(i) π−1
R : D′

Rn
→ D is an εn-approximation.

(ii) For every f ∈ C(D),

(8.16) lim
n→∞

∫
D′

Rn

f ◦ π−1
Rn

dνRn =

∫
D

f dμσ◦u.

Note that since νR(DR \ D′
R) = 0 by definition, we can replace the

integrals on the left-hand side by integrals on DR.

Part (1) (the event in (2.15)) implies that dis π−1
Rn

< εn. Part (4) (the event

in (2.17)) implies that the εn-neighborhood of π−1
Rn

(D′
Rn

) with respect to the

Euclidean metric in Rd containsD, hence also with respect to dD
η◦u. By applying

πRn , it follows that the εn-neighborhood of D′
Rn

in DRn = πRn(D) with respect

to dDRn
is indeed the whole DRn . This shows that π

−1
R : D′

Rn
→ D is indeed an

εn-approximation.

To prove (8.16), note that it suffices to prove it for Lipschitz functions on D.

Indeed, suppose we proved (8.16) for Lipschitz functions, and let f ∈ C(D).

For every ε > 0 there is a Lipschitz function g on D such that ‖f − g‖∞ < ε,

hence

lim sup
n

∣∣∣∣ ∫
DRn

f ◦ π−1
Rn

dνRn −
∫
D

f dμσ◦u

∣∣∣∣
≤ lim sup

n

∣∣∣∣ ∫
DRn

g ◦ π−1
Rn

dνRn −
∫
D

g dμσ◦u

∣∣∣∣+ ενR(DRn) + εμσ◦u(D)

≤2εLebd(D).
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To prove (8.16) for a Lipschitz function f , note that for M > 0 large enough,

f/M ∈ W (D). Therefore, when Part 2 (the event in (2.16)) holds,∣∣∣∣ ∫
DRn

f ◦ π−1
Rn

dνRn −
∫
D

f dμσ◦u

∣∣∣∣ ≤ Mεn → 0,

which completes the proof.
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