
ISRAEL JOURNAL OF MATHEMATICS 222 (2017), 867–920

DOI: 10.1007/s11856-017-1608-6

LOCALIZATION OF CHERN–SIMONS TYPE INVARIANTS
OF RIEMANNIAN FOLIATIONS

BY

Oliver Goertsches

Fachbereich Mathematik und Informatik der Philipps-Universität Marburg

Hans-Meerwein-Straße, 35032 Marburg, Germany

e-mail: goertsch@mathematik.uni-marburg.de

AND

Hiraku Nozawa
∗

Department of Mathematical Sciences, Colleges of Science and Engineering

Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan

e-mail: hnozawa@fc.ritsumei.ac.jp

AND

Dirk Töben
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ABSTRACT

We prove an Atiyah–Bott–Berline–Vergne type localization formula for

Killing foliations in the context of equivariant basic cohomology. As an

application, we localize some Chern–Simons type invariants, for example

the volume of Sasakian manifolds and secondary characteristic classes of

Riemannian foliations, to the union of closed leaves. Various examples are

given to illustrate our method.
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1. Introduction

1.1. Background and motivation. Given a torus action on an oriented com-

pact manifold, the Atiyah–Bott–Berline–Vergne localization formula [AB84,

BV83a] allows one to calculate the integral of certain top cohomology clas-

ses like characteristic classes, as a related integral over the fixed point set. This

is a generalization of an old result by Bott [Bo67]: Given an oriented compact

Riemannian manifold M with a Killing vector field X , the Pontryagin numbers

of M can be computed in terms of the zero set ofX . If there are no zeroes, these

numbers are zero. But even in this case M can have nontrivial Chern–Simons

invariants. As we will see, a natural example is the volume of a Sasakian, or

more generally a K-contact manifold.

The purpose of this paper is to prove a foliated version of the ABBV formula;

for certain Riemannian foliations we want to localize Chern–Simons type inva-

riants to the union of closed leaves. We will apply the formula to compute the

volume of K-contact manifolds and some secondary characteristic numbers of

Riemannian foliations.

In our ABBV-type formula, we decompose Chern–Simons type invariants

of foliations into leafwise cohomology classes (the tangential part) and ba-

sic cohomology classes (the transverse part). This idea is similar to those
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of Duminy [Du82], Cantwell–Conlon [CC84], Heitsch–Hurder [HH84], Hurder–

Katok [HK87] and Asuke [As04] to prove vanishing theorems of secondary cha-

racteristic classes of foliations. However, while they localized the tangential

part called the Godbillon or Weil measures, we will localize the transverse part,

primary characteristic classes of the normal bundle of foliations, based on equi-

variant basic cohomology defined in a paper by the first and third author [GT10];

see also [Tö14].

1.2. Main result: an ABBV-type localization formula for Killing

foliations. Our foliated ABBV-type formula applies to Killing foliations, of

which the main example in this paper is the orbit foliation F of a nonsingular

Killing vector field ξ on a (2n + 1)-dimensional oriented compact Riemannian

manifold (M, g) with only finitely many closed ξ-orbits. For simplicity, let us

state the formula for this case—see Theorem 3.16 for the general statement.

Let T be the closure of the flow generated by ξ in Isom(M, g), which is a

torus. Let t = Lie(T ). Take b ∈ t so that the fundamental vector field of b

equals ξ and let a = t/Rb. Then a acts transversely on (M,F) (Definition 2.1).

Let H(M,F) and Ha(M,F) denote the basic respectively a-equivariant basic

cohomology of F (see Section 2.2). For a 1-form η on M such that ιξdη = 0, we

have the transverse integration operator
∫
(F ,η)

: H(M,F) → R; [σ] �→ ∫
M

η ∧ σ

associated to η (Definition 3.6), which extends to equivariant basic cohomology∫
(F ,η)

: Ha(M,F) → S(a∗).

Theorem 1 (Foliated ABBV-type localization formula for nonsingular Killing

vector fields with isolated closed orbits): For any σ ∈ Ha(M,F), we have an

equality ∫
(F ,η)

σ = (−2π)n
∑
k

lk ·
i∗Lk

σ∏
j α

k
j

,

in the fraction field of S(a∗), where iLk
: Lk → M are the closed ξ-orbits,

{αk
j }nj=1 ⊂ a∗ are the weights of the transverse isotropy a-representation at Lk

and lk =
∫
Lk

η.

The general ABBV-type theorem, Theorem 3.16, is proved in Section 4. This

result can be seen as an improvement of a localization result obtained by the

third author [Tö14, Theorem 7.1]. See Remark 3.21 for a comparison.

1.3. Application I: localization of the volume of Sasakian mani-

folds. We can apply the ABBV-type formula in the last section to localize the
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volume of Sasakian manifolds, or more generally K-contact manifolds, to the

union of closed Reeb orbits. Recall that a K-contact structure on a manifold M

is a contact metric structure (ξ, η, J, g) whose Reeb flow preserves the Riemann-

ian metric g. For simplicity of the presentation, we assume that the action of

the closure T of the Reeb flow admits only finitely many S1-orbits. For v ∈ t,

denote its fundamental vector field on M by v#. With the same notation as

in the last theorem, with ξ the Reeb vector field and η the contact form, we

obtain the following application of Theorem 1 (see Section 5.6):

Theorem 2: Let (M, ξ, η, J, g) be a (2n + 1)-dimensional compact K-contact

manifold with only finitely many closed Reeb orbits L1, . . . , LN . Denote the

weights of the transverse isotropy a-representation at Lk by {αk
j }nj=1 ⊂ a∗ for

k = 1, . . . , N . Then, the volume of M is given by

Vol(M, g) = (−1)n
πn

n!

N∑
k=1

lk · η|Lk
(v#)n∏

j α
k
j (v + Rb)

,

where lk =
∫
Lk

η is the length of the closed Reeb orbit Lk, and the fractions on

the right-hand side are considered as rational functions in the variable v ∈ t.

The total expression is independent of v ∈ t.

Two motivations to find computable formulas for the volume of Sasakian ma-

nifolds were given by Martelli–Sparks–Yau [MSY06, MSY08]: they calculated

that, restricted to a space of Sasakian metrics on a manifold M , the Einstein–

Hilbert functional equals, up to a constant, the volume functional (see [MSY08,

Eq. (3.14)]). Thus understanding the volume of Sasakian manifolds is closely

related to the problem of finding Sasaki–Einstein metrics on M . A second mo-

tivation comes from string theory: restricting to 5-dimensional Sasaki–Einstein

manifolds M , the AdS/CFT correspondence is a conjectural duality between

type IIb string theory on AdS5 ×M and an N = 1 superconformal field theory

on the conformal boundary of AdS5. Under this duality, the volume of M cor-

responds to the central charge a of the field theory. With these motivations in

mind, Martelli–Sparks–Yau applied a noncompact orbifold version of the clas-

sical ABBV localization theorem to an orbifold resolution of the Kähler cone of

a Sasakian manifold M in order to find a formula for the volume. Our method

is purely intrinsic and does not make use of the Kähler cone, and as such does

not need any technical assumptions on the existence of certain metrics on the

cone (see [MSY08, Footnote 35]).
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As an important special case, we apply Theorem 2 to obtain a computable

formula for the volume of toric Sasakian manifolds (see Theorem 6.2). Together

with the observation of Martelli–Sparks–Yau [MSY08] that the volume of a

toric Sasakian manifold equals, up to a constant, the volume of its momentum

polytope (see Proposition 6.5), our formula also follows from Lawrence’s formula

(Theorem 6.6) for the volume of a simple polytope.

A further class of Sasakian manifolds to which we apply our formula is that

of (deformations of) homogeneous Sasakian manifolds. We obtain in Corollary

6.9 a formula for the Sasakian volume in this case which, to our knowledge, has

not appeared in the literature before.

1.4. Application II: localization of secondary characteristic clas-

ses of Riemannian foliations. The classifying space FRΓq of codimension

q Riemannian foliations with framed normal bundles is constructed based on

Haefliger’s work [Ha70, Ha71]. Secondary characteristic classes of codimen-

sion q Riemannian foliations with framed normal bundle (Lazarov–Pasternack

[LP76a] and Morita [Mo79]) are the pull-back of certain cohomology classes of

the classifying space FRΓq by the classifying map (see [Hu09] for a survey).

The topology of FRΓq is rather complicated. Instead of analysing it directly,

it is classical to investigate the behavior of secondary classes on well-chosen ex-

amples of foliations to retrieve cohomological information of FRΓq. This is the

motivation for the computation of secondary classes of examples of foliations.

Here we will apply our localization formula to compute these invariants. Gi-

ven a codimension q Riemannian foliation F on a smooth manifold with framed

normal bundle, we have a characteristic homomorphism

ΔF : H(RWq) −→ H(M ;R),

where RWq is the dga of the universal characteristic classes consisting of Pon-

tryagin classes pi, Euler class e and their transgressions hi (see Section 7.1).

The elements in the image of ΔF are called the secondary characteristic classes

of F . It is simple but remarkable that the transgression hi of Pontryagin classes

are relatively closed (Lemma 7.2). This fact allows us to apply our localization

formula (Corollary 7.4) to compute some characteristic numbers of Killing foli-

ations. The secondary classes of transversely Kähler foliations can be localized

similarly.
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For simplicity, we will state the localization formula for transversely Kähler

flows. For a complex codimension m transversely Kähler foliation F on M

with framed normal bundle, Matsuoka–Morita [MM79] defined a characteristic

homomorphism

ΔF : H(KWm) −→ H(M ;R),

where KWm is a differential graded algebra given by

KWm =
∧

(u1, . . . , um)⊗ (R[s1, . . . , sm,Φ]/{P | degP > m}) ,

which consists of the universal Chern classes, its transgression and the transverse

Kähler class. Below we use the multi-index notation

uIsJ := ui1 ∧ · · · ∧ uik ∧ sj1 ∧ · · · ∧ sj�

for I = {i1, . . . , ik} and J = {j1, . . . , j�}. We will denote sJ(νF ,F) = ΔF(sJ ),
uI(F) = ΔF (uI) and uIsJ(F) = ΔF (uIsJ).

Let (M,F) be a manifold with a transversely Kähler foliation of codimension

m such that ∧m,0ν∗F = ∧m(ν1,0F)∗ is topologically trivial. We fix a trivia-

lization ϕ of ∧m,0ν∗F . Using ϕ we obtain a 1-form u1(F) on M which is a

primitive of the first Chern form of ν1,0F (see Definition 7.8). Thus we can ex-

tend the definition of secondary characteristic classes u1sJ(F) to transversely

Kähler foliations such that ∧m,0ν∗F is topologically trivial.

Theorem 3: Let (M,F) be a compact manifold with an orientable taut trans-

versely Kähler foliation of dimension one and complex codimension m. Assume

that ∧m,0ν∗F is trivial as a topological line bundle and that F has only finitely

many closed leaves L1, . . . , LN . For a given multi-index J = {j1, . . . , jl} with

j1 + · · ·+ jl = 2m, we have∫
M

u1sJ (F) =

N∑
k=1

(∫
Lk

u1(F)

)
i∗Lk

sJ,a(νF ,F)

i∗Lk
sm,a(νF ,F)

,

where the Lk are the isolated closed leaves of F and sJ,a(νF ,F) is the equivari-

ant characteristic form of F associated to sJ . In particular, in the case where

J = {m}, we obtain

(1.1)

∫
M

u1sm(F) =
∑
k

∫
Lk

u1(F).
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As a consequence (see Corollary 7.12), we recover a formula for some secon-

dary characteristic numbers of certain foliations on S2n+1 due to Bott [Bo72a],

Baum–Bott [BB72] and Asuke [As10].

1.5. Organization of the article. Section 2 is devoted to recalling fun-

damentals of equivariant basic cohomology. The main result, an ABBV-type

localization formula, is stated in Section 3, together with necessary facts on

transverse integration operators and Killing foliations. It is proved in Section 4,

modulo the introduction of the equivariant basic Thom homomorphism which

is contained in the Appendix. In Section 5, we apply the localization formula

to the Reeb flow of K-contact manifolds. We present examples of computa-

tions on toric Sasakian manifolds and deformations of homogeneous Sasakian

manifolds in Section 6. Section 7 is devoted to applying the localization for-

mula to secondary characteristic classes of Riemannian and transversely Kähler

foliations.

Acknowledgements. We are grateful to Lana Casselmann for pointing out

a mistake in the proof of Theorem 3.16 in a previous version, as well as to

the anonymous referee for several helpful remarks. This paper was partially

written during the stay of the second author at Centre de Recerca Matemàtica

(Bellaterra, Spain), Institut Mittag-Leffler (Djursholm, Sweden) and Institut

des Hautes Études Scientifiques (Bures-sur-Yvette, France); he is very grateful

for their hospitality.

2. Equivariant basic cohomology

2.1. Transverse actions on foliated manifolds. Let us recall the notion

of a transverse action on a foliated manifold introduced in [ALK08], which is

essential to define equivariant basic cohomology in the next section.

Let M be a smooth manifold, and Ξ(M) the Lie algebra of vector fields on

M . Given a foliation F on M , the Lie algebra of vector fields on M that are

tangent to the leaves of F is denoted by Ξ(F). A vector field X on M is said to

be foliated if [X,Y ] ∈ Ξ(F) for all Y ∈ Ξ(F). A vector field is foliated if and

only if its flow maps leaves of F to leaves of F (see [Mo88, Proposition 2.2]).

We call the projection of a foliated field X to C∞(TM/TF) a transverse field.

By definition, Ξ(F) is an ideal in L(M,F), and hence the set

l(M,F) = L(M,F)/Ξ(F)
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of transverse fields is a Lie algebra with Lie bracket induced from L(M,F).

Definition 2.1 ([ALK08, Section 2]): A transverse action of a finite-dimen-

sional real Lie algebra g on the foliated manifold (M,F) is a Lie algebra homo-

morphism g → l(M,F).

If F is the trivial foliation by points, this notion coincides with the usual

notion of an infinitesimal action on the manifold M .

2.2. Definition of equivariant basic cohomology. Let us recall the de-

finition of equivariant basic cohomology for foliated manifolds (M,F) with a

transverse action ([GT10, Definition 3.13]), which is a generalization of ordinary

equivariant cohomology of Lie group actions on manifolds.

Given a foliation F on a manifold M , recall that the basic de Rham com-

plex of (M,F) is defined by

Ω(M,F) = {σ ∈ Ω(M) | ιXσ = LXσ = 0 for all X ∈ Ξ(F)}
equipped with the restriction of the ordinary exterior differential d. An element

of Ω(M,F) is called a basic differential form and the cohomology

H(M,F) := H(Ω(M,F), d)

is called the basic cohomology of (M,F). It was introduced by Reinhart

[Re59]. It may be regarded as a replacement for the de Rham cohomology of the

leaf space which is well-defined also in case the leaf space is not a differentiable

manifold.

Remark 2.2: Take a foliated chart (x, y) = (x1, . . . , xp, y1, . . . , yq) so that the

leaves are defined by y = const. Then it is easy to see that any basic form α

is of the form α =
∑

fI(y)dyI , i.e., the pull-back of a differential form on the

local space of leaves. In this sense basic cohomology is a natural generalization

of the de Rham cohomology of the leaf space.

It is not difficult to check (see [GT10, Proposition 3.12]) that we obtain well-

defined derivations ιX and LX on Ω(M,F) for all X ∈ l(M,F), which induces a

structure of an l(M,F)-differential graded algebra on Ω(M,F). Namely, it satis-

fies the usual compatibility relations d2=0, ι2X =0, LX=dιX+ιXd, [d, LX ]=0,

[LX , ιY ] = ι[X,Y ] and [LX , LY ] = L[X,Y ]. Thus a g-action g → l(M,F) on

(M,F) induces a structure of a g-differential graded algebra on Ω(M,F). Then
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the Cartan complex of Ω(M,F) [Ca50b] (see also [GS99]) is defined by

Ωg(M,F) := (S(g∗)⊗ Ω(M,F))g,

where the superscript denotes the subspace of g-invariant elements, namely,

those σ ∈ S(g∗) ⊗ Ω(M,F) for which LXσ = 0 for all X ∈ g. The grading

of Ω(M,F) is defined by Ωk
a(M,F) =

⊕
k=2u+v(S

u(g∗) ⊗ Ωv(M,F))g. The

differential dg of the Cartan complex Ωg(M,F) is given by

(dgσ)(X) = d(σ(X)) − ιX(σ(X)),

where σ ∈ Ωg(M,F) is regarded as a g-equivariant polynomial map

g −→Ω(M,F);

X �−→σ(X).

Definition 2.3 ([GT10, Section 3.6]): The equivariant basic cohomology of

a transverse g-action on (M,F) is defined as

Hg(M,F) := H(Ωg(M,F), dg).

If F is the trivial foliation by points, the transverse action is just an infini-

tesimal action on the manifold M and equivariant basic cohomology reduces to

ordinary equivariant de Rham cohomology.

3. An ABBV-type localization formula in equivariant basic cohomo-

logy

3.1. Definition of Riemannian foliations. To have a foliated version of

an ABBV-type localization formula, one needs good transverse dynamics of

foliations. Here we recall the definition of Riemannian foliations, which are the

main object in this paper.

A codimension q Riemannian Haefliger cocycle on a manifold M is a

quadruple ({Ui}, {gi}, {πi}, {γij}) consisting of

(1) an open covering {Ui} of M ,

(2) submersions πi : Ui → Rq,

(3) Riemannian metrics gi on πi(Ui),

(4) transition maps γij : πj(Ui ∩ Uj) → πi(Ui ∩ Uj) such that πi = γij ◦ πj

and γ∗
ijgi = gj.
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Two Riemannian Haefliger cocycles on M are said to be equivalent if their

union is a Riemannian Haefliger cocycle on M . A codimension q Riemannian

foliation is defined to be an equivalence class of codimension q Riemannian

Haefliger cocycles.

Given a codimension q Riemannian foliation onM , the connected components

of the union of the fibers of πi define a codimension q foliation on M , which

is denoted by F . We will see that the normal bundle νF admits a natural

metric. We obtain a metric on νF|Ui by pulling back the metric gi on πi(Ui)

by the isomorphism (πi)∗ : νxF → Tπi(x)R
q at each point x ∈ Ui. Since {gi} is

invariant under the transition maps γij , these metrics give rise to a well-defined

metric g on νF , which satisfies LXg = 0 for any X ∈ C∞(TF). Note that one

can recover the Riemannian foliation from F and g. In this article, the pair of

F and g is also called a Riemannian foliation on M .

In general, for a codimension q foliated manifold (M,F), a metric g on

νF is called a transverse metric on (M,F) if it satisfies LXg = 0 for any

X ∈ C∞(TF). A Riemannian metric on M is bundle-like with respect to F
if the metric induced on νF via the identification νF ∼= (TF)⊥ is a transverse

metric on (M,F). It is easy to see that any Riemannian foliation admits a com-

patible bundle-like metric (see [Mo88, Proposition 3.3]). The following is the

notion of the completeness in the transverse direction of Riemannian foliations.

Definition 3.1: A Riemannian foliation F on a connected manifold M is trans-

versely complete if there exists a bundle-like metric on (M,F) which is trans-

versely complete, namely, any maximal geodesic orthogonal to the leaves is

defined on all of R.

Remark 3.2: Transverse completeness in this definition is different from the one

in [Mo88, Definition 4.1]. Álvarez–Masa [ALM08, Proposition 15.1] proved that

a transversely complete bundle-like metric becomes complete after a conformal

change on the leaves.

3.2. Integration of basic differential forms. To formulate the locali-

zation formula for equivariant basic cohomology, one needs to integrate basic

cohomology classes of maximal degree. But, in general, there is no good no-

tion of fundamental classes for the leaf spaces. Instead we will use a classical

method in foliation theory based on the pairing of differential forms on foliated

manifolds. Namely, to integrate a basic cohomology class, we multiply it with
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a leafwise volume form and then integrate it over the ambient manifold. This

can be interpreted in terms of the spectral sequence associated to a foliation.

Let F be a foliation of dimension p and codimension q on an oriented manifold

M of dimension n = p+ q.

Definition 3.3: A p-form η on M is relatively closed if

dη(v1, . . . , vp+1) = 0

whenever p of the p+ 1 vectors vi are tangent to the foliation.

Example 3.4: The contact form of a K-contact manifold is relatively closed with

respect to the orbit foliation of the Reeb flow; see Section 5.2. The same holds

for certain Chern–Simons forms of Riemannian foliations; see Section 7.2.

Let η be a compactly supported relatively closed p-form on (M,F). Consider

the map

(3.1)

∫
(F ,η)

: Ωq(M,F) −→ R; σ �−→
∫
M

η ∧ σ.

The following is well-known.

Proposition 3.5:

∫
(F ,η)

descends to a map
∫
(F ,η)

: Hq(M,F) → R.

Proof. We show that
∫
(F ,η)

is trivial on the space dΩq−1(M,F) of exact forms:

For a basic (q − 1)-form α, we have
∫
(F ,η)

dα =
∫
M

d(η ∧ α) − ∫
M

dη ∧ α = 0:

the first summand is zero due to Stokes theorem, and dη ∧ α = 0 because η is

relatively closed and α basic.

Definition 3.6: The map
∫
(F ,η)

: Hq(M,F) → R induced from (3.1) on coho-

mology is called the transverse integration operator with respect to η.

Here we briefly discuss the ambiguity of transverse integration operators on

foliated manifolds which comes from the choice of η. Let Ωk
c (F) = C∞

c (∧kT ∗F),

where the subscript c indicates compact support. Then Ωc(F) is a differential

complex with the usual differential dF on each leaf.

Definition 3.7: The cohomology H(Ωc(F), dF ) is called the compactly sup-

ported leafwise cohomology of (M,F).

Remark 3.8: The leafwise cohomology Hc(F) is often of infinite dimension and

non-Hausdorff with the C∞-topology (see [ALH01]).
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Let rF : Ωk
c (M) → Ωk

c (F) be the restriction map. Given a compactly suppor-

ted relatively closed p-form η, it is easy to see that the transverse integration

operator Ωq(M,F) → R with respect to η on the differential form level depends

only on the leafwise cohomology class of the tangential part rF (η). Let Es,t
r

(resp. Es,t
r,c) be the spectral sequence associated to F , which is defined by a na-

tural filtration on Ω(M) (resp. Ωc(M)) and converges to H(M) (resp. Hc(M)).

It is known that

E0,t
1 = Ht(F), Es,0

1 = Ωs(M,F), Es,0
2 = Hs(M,F).

We have analogous equalities in the compactly supported case. Then E0,p
2,c is

the space of leafwise cohomology classes represented by a compactly supported

relatively closed p-form. The wedge product on Ω(M) induces a pairing of E0,p
2,c

and Eq,0
2 that reads

(3.2) E0,p
2,c ⊗Hq(M,F) −→ Hp+q

c (M) ∼= R

(see, e.g., [Sa78, Section 2]). In summary, we have the following.

Proposition 3.9: E0,p
2,c is the space of compactly supported leafwise coho-

mology classes represented by a relatively closed p-form. Via the above pai-

ring (3.2), they correspond one-to-one to transverse integration operators.

Originally Kamber and Tondeur [KT83] developed Poincaré duality theory for

basic cohomology and the spectral sequence of tense Riemannian foliations on

closed manifolds. By theorems of Masa [Ma92] and Domı́nguez [Do98] obtained

later, their results can be applied to general Riemannian foliations on closed

manifolds. The second author [No12] generalized their results for complete

Riemannian foliations whose space of leaf closures is compact. The case of

Riemannian foliations of dimension one was established by the second author

and Royo Prieto [NRP12]. A part of these works is summarized as follows.

Theorem 3.10 ([Ma92, Do98, KT83, No12, NRP12]): Let (M,F) be an orien-

table connected manifold with an orientable transversely complete Riemannian

foliation whose space of leaf closures is compact. Then one of the following two

cases occurs:

(1) Hq(M,F) ∼= R, E0,p
2,c

∼= R and the pairing (3.2) is nondegenerate. In

particular, (M,F) admits a nontrivial transverse integration operator,

uniquely up to constants.
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(2) Hq(M,F) = {0}, E0,p
2,c = {0} and the pairing (3.2) is trivial. In parti-

cular, (M,F) admits no nontrivial transverse integration operator.

Remark 3.11: It is well known that, if M is compact, by a theorem of Masa

[Ma92], the first case occurs if and only if (M,F) is taut; namely, M admits

a Riemannian metric g such that every leaf of F is a minimal submanifold of

(M, g). Note that, for transversely complete Riemannian foliations whose space

of leaf closures is compact, the only if part is true (see [No12, Corollary 1.11])

while the if part is not true anymore (see [No12, Example 9.2]).

3.3. Killing foliations. Here we recall the notion of Killing foliations. A

Killing foliation admits a natural transverse action with respect to which we

localize.

The Molino sheaf C of a Riemannian foliation (M,F) is a locally constant

sheaf of Lie algebras, whose stalks consist of certain local transverse vector

fields. Precisely, a stalk of C consists of germs of local transverse vector fields

on (M,F) whose natural lifts to the orthonormal frame bundle M1 of (M,F)

commute with any global transverse field of (M1,F1), where F1 is the canonical

horizontal lift of F (see [Mo88, Section 4]).

Definition 3.12: A Riemannian foliation is called a Killing foliation if its Mo-

lino sheaf is globally constant.

Example 3.13: Riemannian foliations on simply connected manifolds are Kil-

ling. By a theorem of Molino–Sergiescu [MS85, Théorème A], any taut orien-

table 1-dimensional Riemannian foliation on a compact manifold is Killing. In

particular, the orbit foliation of a nonsingular Killing vector field on a compact

Riemannian manifold is Killing.

Any global section of the Molino sheaf C of a Riemannian foliation (M,F) is

a transverse field on (M,F) which commutes with any global transverse field of

(M,F). So the space a of global sections of C is central in l(M,F), hence it is an

abelian Lie algebra acting transversely on (M,F). For a Killing foliation F , we

will, following [GT10], call the Lie algebra a the structural Killing algebra

of F . By [Mo88, Theorem 5.2], the orbits of the leaves under the action of the

structural Killing algebra are the leaf closures; cf. also [GT10, Section 4.1]. In

summary, we have the following.
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Proposition 3.14: For a Killing foliation (M,F), the space a of global sections

of the Molino sheaf, the structural Killing algebra, is abelian and acts transver-

sely on (M,F) in a canonical way. Its orbits are the leaf closures of F .

Sergiescu’s orientation sheaf is trivial for a Killing foliation by definition.

Then, if M is connected and the space of leaf closures of (M,F) is compact,

by [Se85, Théorème I], we have Hq(M,F) ∼= R, where q = codimF . Combining

this result with Theorem 3.10, we get the following.

Corollary 3.15: An orientable transversely complete Killing foliation on a

connected orientable manifold whose space of leaf closures is compact admits a

nontrivial transverse integration operator which is unique up to a constant.

3.4. The localization formula. The analogue of the classical localization

formula for transverse integration operators with respect to a relatively closed

form reads as stated below. Let C be the union of the closed leaves of F , and

denote the connected components of C by Ck. The Ck are submanifolds of M .

Theorem 3.16 (ABBV-type localization formula for transverse integration ope-

rators): Let F be a transversely complete and transversely oriented Killing fo-

liation on an oriented Riemannian manifold M whose space of leaf closures is

compact. Furthermore, let η be a compactly supported relatively closed p-form.

Then for any σ ∈ Ha(M,F), where a is the structural Killing algebra of F , we

have an equality∫
(F ,η)

σ =
∑
k

∫
(F|Ck,i∗Ck

η)

i∗Ck
σ

ea(νCk,F)
=
∑
k

lk

∫
Ck/F

i∗Ck
σ

ea(νCk,F)
,

in the fraction field of S(a∗), where Lk is a leaf of F|Ck without holonomy,

lk =
∫
Lk

η and ea(νCk,F) is the equivariant basic Euler form of the normal

bundle of Ck (see Section A.1).

Corollary 3.17: If, in the situation of Theorem 3.16, the closed leaves of F
are isolated, then we have for any σ ∈ Ha(M,F) that∫

(F ,η)

σ = (−2π)q/2
∑
k

lk ·
i∗Lk

σ∏
j α

k
j

,

where q is the codimension of F , iLk
: Lk → M are the closed leaves of F ,

{αk
j }q/2j=1 ⊂ a∗ are the weights of the transverse isotropy a-representation at Lk

and lk =
∫
Lk

η.
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Example 3.18: A Riemannian foliation on a compact manifold is always trans-

versely complete and the space of leaf closures is compact.

Example 3.19: The orbit foliation F of a nonsingular Killing vector field X on a

complete Riemannian manifold (M, g) satisfies the assumption if and only if the

space of the orbit closures is compact. Here the closure T of the one-parameter

subgroup generated by T is an abelian subgroup of the isometry group of (M, g).

The space of leaf closures of F is nothing but the orbit space of the T -action

on M .

Remark 3.20: Since Ck is a union of closed leaves, Ck/F is an orbifold. The

integration
∫
Ck/F is defined as follows: We choose orientations of Ck and νCk

(see [Tö14, Corollary 4.8] for orientability) compatible with the orientation of

M . The integration on the right side is taken with respect to the orientation

of Ck. The integration of a volume form σ on an orbifold, as it appears on the

right-hand side, is defined in terms on the orbifold fundamental class similarly

to the manifold case. Via a partition of unity, one can assume the support of σ

to lie in the domain of an orbifold chart U = Ũ/Γk, where Ũ is open in Rn and

Γ is a finite group acting on Ũ . By definition σ has a lift σ̃ in Ũ . We define∫
U

σ :=
1

|Γ|
∫
˜U

σ̃

where the right hand is the usual integral.

Remark 3.21: This theorem can be regarded as an improvement of [Tö14, The-

orem 7.2]. The ambiguity in the choice of transverse integration operator men-

tioned in Theorem 3.10 results there in constants on the right side of [Tö14,

Theorem 7.2] which are hard to determine. In contrast, because of the coherent

use of a relatively closed form η in both sides of the equation, here the constants

turn out to be 1 (see Section 4.1).

This localization formula is also more versatile. Whereas the corresponding

formula in [Tö14] was used to compute basic primary characteristic numbers,

we can now also compute secondary characteristic numbers and the volume of

K-contact manifolds as we will see later.

Remark 3.22: Our localization formula applies only to the action of the struc-

tural Killing algebra; as its fixed point set is the union of closed leaves, this is

for us the geometrically most interesting action. It should however be possible
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to prove variants of our localization formula for different types of actions. Lo-

calization formulae for more general torus actions on K-contact manifolds, in

the context of equivariant basic cohomology, both of ABBV-type as well as a

residue formula as in [JK95], are proven in [CF16].

Our proof of this theorem runs along the lines of the classical proof of Atiyah

and Bott [AB84], but makes use of several transverse analogues of classical

objects, like the (equivariant) basic Thom isomorphism (see the appendix).

Remark 3.23: The hypothesis of Theorem 3.16 that the foliation is Killing is

essential in the proof. For example, for an arbitrary isometric transverse action

of an abelian Lie algebra on a Riemannian foliation, we do not know whether a

Borel type localization theorem [GT10, Theorem 5.2] holds (see, for example,

[GT10, Proof of Proposition 3.6]).

4. Proof of the ABBV-type localization formula

4.1. Some facts on transverse integration operators. Let M be an

oriented connected manifold. Let F be an oriented transversely complete Rie-

mannian foliation. LetN be a connected component of the union of closed leaves

of F . By transverse completeness, the normal exponential map exp: νF → M

is well-defined. By using exp, we can take a saturated tubular neighborhood U

of N with a projection u : U → N which maps the leaves of (U,F) to the leaves

of (N,F). Let u∗ : Ωr+•
cv (U) → Ω•(N) be the integration along the fibers (see

for instance in [GHV72, I.7.12]), where Ωcv denotes the vertically compactly

supported de Rham complex and r is the dimension of the fibers of u. Since

u : (U,F) → (N,F) is foliated, the fiber integration u∗ descends to a chain map

u∗ : Ωr+•
cv (U,F) → Ω•(N,F) of basic complexes (see [Tö14, Proposition 4.1]).

We will use the following well-known fact.

Lemma 4.1: Let I : Ωk
cv(U × [0, 1]) → Ωk−1

cv (U) be the integration along the

[0, 1]-fibers. Then, we have

j∗1α− j∗0α = dIα + Idα

for any α ∈ Ωk
cv(U × [0, 1]), where jt : U → U × [0, 1] is defined by jt(x) = (x, t)

for t = 0 and 1.
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Lemma 4.2: Let p = dimF and q = codimF . For any compactly supported,

relatively closed p-form η on (M,F) and any σ ∈ Ωq
cv(U,F), we have

(4.1) u∗(η ∧ σ) = i∗η ∧ u∗σ + dθ

for some θ ∈ Ωc(N).

Proof. By the projection formula for integration along fibers [GHV72, Prop. IX,

I.7.13], we have

(4.2) u∗((u∗i∗η) ∧ σ) = i∗η ∧ u∗σ.

Let ζ = η − u∗i∗η. Then we have

(4.3) u∗(η ∧ σ)− i∗η ∧ u∗σ = u∗(ζ ∧ σ).

Let f : U × [0, 1] → U be a smooth fiberwise contraction of U to N ; f is a

smooth map such that, denoting ft(x) = f(x, t),

• f1 = idU , f0 = u and

• ft preserves F for each t ∈ [0, 1].

Here, by the last lemma, we have

ζ = η − u∗i∗η = f∗
1 η − f∗

0 η = j∗1f
∗η − j∗0f

∗η = dIf∗η + Idf∗η.

By taking the wedge product with σ, we obtain

ζ ∧ σ = (dIf∗η) ∧ σ + (Idf∗η) ∧ σ.

By the projection formula for I, we have

(Idf∗η) ∧ σ = I((f∗dη) ∧ pr∗1 σ),

where pr1 : U × [0, 1] → U is the first projection. Here,

ι ∂
∂t
((f∗dη) ∧ pr∗1 σ) = (ι ∂

∂t
(f∗dη)) ∧ pr∗1 σ = (f∗ιf∗ ∂

∂t
dη) ∧ pr∗1 σ.

Since η is relatively closed and ft preserves F , it follows that the right-hand

side of the last equation is zero, which implies that (Idf∗η) ∧ σ = 0. Hence we

obtain

ζ ∧ σ = (dIf∗η) ∧ σ = d(I(f∗η) ∧ σ).

With θ = u∗(I(f∗η) ∧ σ), Equation (4.1) follows from Equation (4.3). We see

that θ is compactly supported in the following way. If ηx = 0 for an x ∈ N ,

then f∗(η) is zero on every point in f−1(x). Therefore supp θ is contained in

the intersection of N , which is closed, and supp η, which is compact. Therefore

supp θ is compact.
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As a consequence, the next proposition follows.

Proposition 4.3: For a compactly supported, relatively closed p-form η on

(M,F), we have ∫
(F ,η)

σ =

∫
(F|N,i∗η)

u∗σ

for any σ ∈ Ωq
cv(U,F).

Proof. Since supp(η ∧ σ) is contained in U , we have∫
(F ,η)

σ
def
=

∫
M

η ∧ σ =

∫
N

u∗(η ∧ σ)

=

∫
N

i∗η ∧ u∗σ

def
=

∫
(F|N,i∗η)

u∗σ

for any σ∈Ωq
cv(U,F), where the third equation is due to the previous lemma.

Remark 4.4: The last proposition corresponds to [Tö14, Lemma 5.4] with ci = 1,

N = Ci and the transverse integration operator defined in a different way.

4.2. Proof of the localization formula (Theorem 3.16). We will fol-

low the original argument of [AB84] adapted to our foliated setting. Let (M,F)

be an oriented manifold with a transversely complete oriented Killing foliation

with structural algebra a. Let C be the union of all closed leaves in (M,F), and

p : νC → C its normal bundle. Here C has only finitely many connected com-

ponents C1, . . . , CN by the compactness of the space of leaf closures of (M,F).

Since (M,F) is transversely complete, by using the normal exponential map of

Ck, we can construct a foliated tubular neighborhood ρk : (Uk,F) → (Ck,F)

of Ck in (M,F) so that U1, . . . , UN are mutually disjoint. Let rk be the co-

dimension of Ck in M . According to [Tö14, Corollary 4.8], the chain map

ρ∗ :
⊕

Ωrk+•
cv (Uk,F) → ⊕

Ω•(Ck,F) induces an isomorphism in basic coho-

mology. The basic Thom homomorphism i∗ : H(C,F) → H(M,F) is

obtained by concatenating (ρ∗)−1 : H(C,F) → Hcv(U,F) with the inclusion

Hcv(U,F) → H(M,F). This map has an equivariant extension,

i∗ : Ha(C,F) → Ha(M,F),

which is called the equivariant basic Thom homomorphism (see Definition A.6).
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Proposition 4.5: We have

i∗i∗1 = ea(νC,F),

where we understand ea(νC,F) ∈ H(C,F) =
⊕

H(Ck,F) as the direct sum

of the basic Euler classes ea(νCk,F) of the normal bundles of (Ck,F) (see

Definition A.1).

Proof. Using Lemma A.5 and Equation (A.6) we compute

i∗i∗1 = i∗(p∗1 ∧ Φa) = i∗Φa = ea(νC ,F).

The transverse integration operators for a transversely complete orientable

Killing foliation F on an oriented manifold M with respect to a compactly sup-

ported relatively closed form η extend equivariantly to
∫
(F ,η) :Ha(M,F)→S(a∗)

(see [Tö14, Section 7.2] for details).

The equivariant basic Euler class ea(νC,F) is not a zero-divisor in Ha(C,F);

indeed, its restriction to a leaf of C is the product of weights of the trans-

verse isotropy a-representation as in the classical case of manifolds with Lie

group actions (see Proposition A.2). There is a basic version of the classical

Borel localization theorem for the transverse a-action of Killing foliations, in

which the role of the fixed point set of a torus action is played by the clo-

sed leaves of F ; see [GT10, Theorem 5.2]. It states that the restriction map

i∗ : Ĥa(M,F) → Ĥa(C,F) is an isomorphism on the level of localized modu-

les; recall that Ĥa(M,F) = Q(a∗)⊗S(a∗) Ha(M,F), where Q(a∗) is the field of

fractions of S(a∗). Therefore, by Proposition 4.5, i∗ : Ĥa(C,F) → Ĥa(M,F) is

an isomorphism with inverse

S =
∑
k

i∗Ck

ea(νCk,F)
.

Thus, for any σ ∈ Ha(M,F), we have

(4.4) σ = i∗Sσ =
∑
k

iCk∗ i∗Ck
σ

ea(νCk,F)

after localization. By localizing
∫
(F ,η) : Ha(M,F) → S(a∗), one obtains a map∫

(F ,η)
: Ĥa(M,F) → Q(a∗). Applying this map to both sides of (4.4) and then

using Proposition 4.3 for the right side on the the level of equivariant basic

cohomology proves Theorem 3.16.
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5. Localization on K-contact manifolds

5.1. K-contact manifolds. Let M be a (2n + 1)-dimensional compact ma-

nifold with a contact 1-form η. The conditions η(ξ) = 1 and ιξdη = 0 deter-

mine the Reeb vector field ξ. The two-form dη gives the contact structure

D := ker η the structure of a symplectic vector bundle. We assume that we

are given an almost complex structure J on D which is compatible with dη in

the sense that dη(JX, JY ) = dη(X,Y ) for all X,Y and dη(X, JX) > 0 for all

X �= 0, and extend J to an endomorphism of TM by setting J(ξ) = 0. Then,

we equip M with the associated Riemannian metric

(5.1) g =
1

2
dη ◦ (1⊗ J) + η ⊗ η.

The tuple (ξ, η, J, g) is called a contact metric structure (see [BG07, De-

finition 6.4.4]). Let F be the one-dimensional foliation on M defined by the

Reeb vector field ξ. We are interested in the case when F is a Riemannian

foliation. By [BG07, Proposition 6.4.8], this condition is equivalent to M being

a K-contact manifold:

Definition 5.1: The contact metric structure (ξ, η, J, g) on M is called K-con-

tact if ξ is a Killing vector field with respect to the Riemannian metric g. In

this case, M is called a K-contact manifold.

Yamazaki [Ya99, Proposition 2.1] showed that a contact manifold admits a

K-contact structure if the Reeb flow is a Riemannian foliation. In the rest of

Section 5 we will consider only compact K-contact manifolds.

The most important examples of K-contact manifolds are Sasakian manifolds:

Definition 5.2: If the contact metric structure (ξ, η, J, g) on M is K-contact and

the CR structure (D, J) is integrable, then M is called a Sasakian manifold.

5.2. Volume of K-contact manifolds. As the top form η∧(dη)n is nowhere

vanishing, we can use it to fix an orientation on M . Then the Riemannian

volume form on M of the metric in (5.1) is

(5.2) η ∧ (dη)n

2nn!
.

Remark 5.3: Note that [BG07] and [MSY08] use slightly different conventi-

ons. For example, the transverse metric is defined to be dη instead of 1
2dη in
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[BG07, Eq. 6.4.2]. Consequently, the Sasakian volume form in [BG07] reads

η ∧ (dη)n

n!
.

Here we follow the convention of [MSY08].

Then we observe the following:

Lemma 5.4: The differential form dη is basic with respect to the characteristic

foliation F , i.e., η is relatively closed on (M,F). Thus the volume of a compact

K-contact manifold (M, ξ, J, g) is given by

Vol(M, g) =
1

2nn!

∫
M

η ∧ (dη)n =
1

2nn!

∫
(F ,η)

(dη)n.

5.3. Deformation of Reeb vector fields. It is well-known that one can

use symmetries of K-contact manifolds to deform a given K-contact structure

to new ones, with the same CR structure, but different Reeb vector field. Let

G be a Lie group with Lie algebra g. Consider a compact K-contact manifold

(M, ξ, η, J, g) with a G-action which leaves the K-contact structure invariant,

and define

S := {X ∈ g | η(X#) > 0},
whereX# is the fundamental vector field associated toX . Then, for anyX ∈ S,
we have a K-contact structure such that

• the CR structure is equal to (J, ker η),

• the Reeb vector field is equal to X#,

• the contact form is equal to η
η(X#) .

The metric is determined by the formula (5.1).

Remark 5.5: As the CR structure does not change during the deformation, the

deformed structure is Sasakian if and only if the original one was Sasakian.

This construction for Sasakian manifolds goes back to Takahashi [Ta78] in

the case where G is a torus. It is now known as a deformation of type I (see

[BG07, Section 8.2.3]). For K-contact manifolds, this type of construction was

considered in [BR95, Proposition 1] and [No09, Lemma 2.5] (see also [GNT12,

Lemma 2.7]).

Since the contact form is determined by the contact structure and the Reeb

vector field:
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Proposition 5.6: We have a map

S −→ R>0

sending X ∈ g to the volume of the deformed K-contact structure with Reeb

vector field X#.

This map has been investigated by Martelli–Sparks–Yau [MSY08] in order to

find Sasaki–Einstein metrics on a given manifold.

Note that for any X ∈ S we have [X#, ξ] = 0. The Killing vector fields X#

and ξ thus arise as fundamental vector fields of an action of a torus leaving

invariant the K-contact structure. We will hence restrict our attention to the

case when G is a torus.

Remark 5.7: For a compact K-contact manifold the closure T of the Reeb flow

in the isometry group is a torus. If the K-contact manifold admits a Reeb

orbit which is not closed, then dimT ≥ 2. Hence, the Reeb vector field of such

K-contact manifolds can be deformed in the way described in this section.

5.4. The canonical transverse action on a K-contact manifold. Let

M be a compact K-contact manifold. Since the Reeb flow of η preserves g,

by [MS85, Théorème A], the orbit foliation F of the Reeb flow is Killing. The

structural Killing algebra a is easily identified as mentioned in [GT10, Exam-

ple 4.3]: Consider the closure T of the flow of the Reeb vector field ξ inside

the isometry group Isom(M, g). As a connected Abelian compact Lie group, it

is isomorphic to a torus. Let b ∈ t be the element corresponding to the Reeb

vector field, i.e., for which b# = ξ. Then, the structural Killing algebra of F
is isomorphic to the Lie algebra t/Rb, where t is the Lie algebra of T , which

naturally admits an isometric transverse action

(5.3) t/Rb −→ l(M,F)

on (M,F). Below, we will identify a = t/Rb.

We will use our ABBV-type formula (Theorem 3.16) to calculate the volume

of the K-contact manifold M . To apply the theorem directly, those cases are

most relevant for us in which not all leaves of the Riemannian foliation F are

closed, i.e., irregular K-contact structures.
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5.5. Equivariant extension of dη. Let M be a compact K-contact mani-

fold. In order to apply Theorem 3.16, we need to extend the basic cohomo-

logy class [(dη)n] ∈ H2n(M,F) to an equivariant basic cohomology class in

H2n
a (M,F). We will do so by defining an explicit equivariant extension of the

two-form dη to a closed equivariant basic form. Choose an embedding E : a → t

such that its concatenation with t → t/Rb = a is the identity. Then we can

define an equivariant basic form ω by

(5.4) ω(X) = dη − η(E(X)#),

where ω∈Ωg(M,F) is regarded as a g-equivariant polynomial map g→Ω(M,F).

Lemma 5.8: ω is equivariantly closed and satisfies

ω(0) = dη;

namely [ω] extends [dη] to equivariant basic cohomology.

Proof. Clearly we have ω(0) = dη. We see that ω is equivariantly closed by the

following calculation:

(daω)(X) =d(ω(X))− ιX#ω(X)

=− d(η(E(X)#))− ιX#dη

=− LE(X)#η = 0.

One can thus apply the Localization Theorem 3.16 to 1
2nn!ω

n in order to

calculate the volume of M .

5.6. Volume localization. For simplicity, we restrict in this section to the

case of a K-contact manifold with only finitely many closed Reeb orbits. Note

that in this case, if T is the torus given by the closure of the Reeb field, and

S ⊂ t the set of admissible Reeb fields that can be obtained by a deformation

of type I, then a dense subset of vector fields in S has only isolated closed

flow lines. In the examples in Section 6 we will apply the formula below to

Reeb fields in this dense subset, and obtain by continuity the full volume map

S → R>0. Note that, since the isotropy action is symplectic at any point on

M , its weights are well defined by using the decomposition into irreducible

representations (see [Le04, Lemma 3.11]).
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Theorem 5.9: Let M be a (2n+ 1)-dimensional compact K-contact manifold

with only finitely many closed Reeb orbits L1, . . . , LN . Denote the weights of

the transverse isotropy a-representation at Lk by {αk
j }nj=1 ⊂ a∗ for k = 1, . . . , N .

Then the volume of M is given by

(5.5) Vol(M, g) =
πn

n!

N∑
k=1

lk · η|Lk
(v#)n∏

j α
k
j (v + Rb)

,

where lk =
∫
Lk

η is the length of the closed Reeb orbit Lk, and the fractions on

the right-hand side are considered as rational functions in the variable v ∈ t. In

particular, the right-hand side of (5.5) is independent of v.

Proof. Let v ∈ t, and define Y = v+Rb ∈ a. Then we can choose an embedding

E : a → t that sends Y to v and is right-inverse to the projection t → t/Rb = a.

Denote the corresponding equivariant extension of dη defined in (5.4) by ω. In

particular,

ω(Y ) = dη − η(v#).

By Corollary 3.17 and Lemma 5.8 we have

Vol(ξ) =
1

2nn!

∫
(F ,η)

ωn(Y )

=
(−π)n

n!

N∑
i=1

∫
Lk

η ∧
(
i∗Lk

ωn(Y )∏
j α

k
j (Y )

)
.

As Lk is one-dimensional, the numerator simplifies to (−1)nη(v#)n|Lk
.

5.7. K-contact Duistermaat–Heckman. Before turning to the application

of Theorem 5.9 to concrete situations, we derive a K-contact version of the

Duistermaat–Heckman formula. Atiyah–Bott [AB84] and Berline–Vergne

[BV83b] observed that the Duistermaat–Heckman formula [DH82] is an easy

corollary of the localization formula. In this section, we proceed analogously to

their argument.

Let M be a compact K-contact manifold of dimension 2n+1, with K-contact

metric structure (ξ, η, J, g), and denote the Riemannian volume form of g as in

(5.2) by

β =
1

2nn!
η ∧ (dη)n.
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Theorem 5.10: Let M be a (2n+1)-dimensional compact K-contact manifold

with only finitely many Reeb orbits L1, . . . , LN . Denote the weights of the

transverse isotropy a-representation at Lk by {αk
j }nj=1 ⊂ a∗ for k = 1, . . . , N .

Then we have for all v ∈ t∫
M

eη(v
#)β = πn

N∑
k=1

lk · eη(v
#)(Lk)∏

j α
k
j (v + Rb)

,

where lk =
∫
Lk

η is the length of the closed Reeb orbit Lk.

Proof. Consider the equivariant extension ω of dη as in (5.4):

ω(X) = dη − η(E(X)#);

we choose E : a → t such that E(X) = −v for some X ∈ a. We would like to

apply Theorem 3.16 to eω, but as this is not an equivariant basic differential

form in our sense, we apply it separately to each summand in the power series:∫
M

eη(v
#)β =

1

2n

∞∑
s=0

∫
M

η ∧ ωs(X)

s!

=
1

2n

∞∑
s=0

∫
(F ,η)

ωs(X)

s!

=(−π)n
∞∑
s=0

N∑
k=1

lk
(−η(E(X)#))s(Lk)

s!
∏

j α
k
j (X)

=πn
N∑

k=1

lk
eη(v

#)(Lk)∏
j α

k
j (v + Rb)

.

6. Examples

6.1. Deformation of standard Sasakian spheres. We will compute the

volume of deformations of the standard Sasakian structure on S2n+1 (see [BG07,

Examples 7.1.5 and 7.1.12]). The Riemannian metric g is the standard one, with

sectional curvature 1, inherited from the flat metric on R2n+2, and the contact

one-form is

η =
n∑

i=0

(xidyi − yidxi).
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Let {2πei}i=0,...,n be the standard basis of t, i.e., in particular each element is

in the integral lattice; the fundamental vector field on S2n+1 induced by ei is

Hi = −yi
∂

∂xi
+ xi

∂

∂yi
.

Then the standard Reeb vector field is ξ =
∑

iHi =
∑

i e
#
i . For any vector

w = (w0, . . . , wn) with wi > 0 we consider the deformed Reeb vector field

ξw = b#w , where bw =
∑

i wiei ∈ t. The contact form of the deformed Sasakian

structure is given by

ηw =
η∑n

i=0 wi(x2
i + y2i )

.

For generic choice of w, the only closed leaves of Fw are the n + 1 circles

x2
i + y2i = 1. We denote these by L0, . . . , Ln.

We will now prove the following consequence of Theorem 5.5, which are also

consequences of results of Martelli–Sparks–Yau and Lawrence (see the next

section for the statement of their results).

Corollary 6.1: We have

Vol(S2n+1, gw) =
2πn+1

n!

n∑
i=0

1

wn+1
i

βn
i∏

j=0,...,n, j �=i(
βi

wi
wj − βj)

(6.1)

=
2πn+1

n!
· 1

w0 · · · · · wn
.(6.2)

Proof. We need to calculate
∫
Li

ηw, as well as the numerator and the denomi-

nator of the right-hand side of (5.5).

It is easy to see that
∫
Li

ηw = 2π
wi

. The weights {αi
j}j=0,...,̂i,...,n of the trans-

verse isotropy representation at Li (see Appendix A.1) are given by the negative

of the dual basis of {ek + Rbw}k=0,...,̂i,...n. Explicitly,

αi
j(ek + Rbw) = −δjk

for j, k �= i. This is because [e#k , · ] = [Hk, · ], with respect to { ∂
∂xj

, ∂
∂yj

}, has
block diagonal shape

δjk

(
0 1

−1 0

)
=

(
0 −αj(ek + Rbw)

αj(ek + Rbw) 0

)
.

Writing

v =
n∑

i=0

βjej,
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we calculate v +Rbw =
∑

j �=i βj(ej +Rbw)− βi

wi

∑
k �=i wk(ek +Rbw). Then the

denominator is given by∏
j �=i

αi
j(v + Rbw) =

∏
j �=i

( βi

wi
wj − βj

)
.

Because the t-isotropy subalgebra at Li is spanned by {ej}j=0,...,̂i,...,n, we have

that v − βi

wi
bw ∈ tLi . The numerator is therefore given by

ηw|Li(v
#)n =

( βi

wi

)n
.

Substituting these equations, (6.1) follows from (5.5).

As the right-hand side of (6.1) is independent of βj , we can send β0 to +∞ in

order to simplify the expression. When doing so, the summands for i �= 0 tend

to zero, and the summand for i = 0 tends to 1
w0·····wn

. Hence, we get (6.2).

6.2. Toric Sasakian manifolds. Let (M, η, g) be a Sasakian manifold of

dimension 2n + 1, and denote by T the torus obtained as the closure of the

Reeb flow in Isom(M). By a result of Rukimbira [Ru94, Corollary 1], one has

dim T ≤ n + 1. If dimT = n + 1 holds, one calls (M, η, g) a toric Sasakian

manifold.

We briefly describe the Delzant-type correspondence between toric Sasakian

(2n+1)-manifolds and certain cones in a Euclidean space due to Lerman [Le04]

and Boyer–Galicki [BG00]. Letting t = Lie(T ), the contact moment map is

defined by

Φ: M −→ t∗

x �−→ (X �→ η(X#)(x)).

We define a cone in t∗ by

Δ = R≥0 · Φ(M),

and put Δt = t · Φ(M). Note that

Φ(M) = Δ1 = H ∩Δ,

where

H = {ϕ ∈ t∗ | ϕ(b) = 1}.
Denote the element of t whose fundamental vector field is the Reeb field by

b ∈ t. Lerman showed in [Le04, Theorem 2.18] that Δ is a good rational

polyhedral cone (because M is a contact toric manifold of Reeb type), i.e.,
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there exists a minimal set of primitive vectors {vi}i∈I ⊂ tZ in the integral

lattice tZ = ker(exp : t → T ) such that

(1) Δ = {ϕ ∈ t∗ | ϕ(vi) ≤ 0}, and
(2) for any face of Δ of the form Δ ∩⋂k

j=1{ϕ ∈ t∗ | ϕ(vij ) = 0} �= {0}, we
have ( k⊕

j=1

R · vij
)
∩ tZ =

k⊕
j=1

Z · vij

and vi1 , . . . , vik are linearly independent over Z.

In particular, for any closed Reeb orbit L, Φ(L) is a vertex of Δ1, and thus there

exist precisely n of the vectors vi, denoted vL1 , . . . , v
L
n , such that Φ(L)(vLi ) = 0.

We fix a determinant det ∈ ∧nt∗ such that a chosen integer basis of t is sent to

1 by the determinant. We then assume that the vectors vLi are ordered in such

a way that det(b, vL1 , . . . , v
L
n ) > 0.

Using our localization formula we can now prove:

Theorem 6.2: We have

Vol(M, ηb)

=
1

2nn!

∑
L

1

det(b, vL1 , . . . , v
L
n )

· det(v, vL1 , . . . , v
L
n )

n∏n
i=1 det(b, v

L
1 , . . . , v

L
i−1, v, v

L
i+1, · · · , vLn )

.

Proof. We first show

(6.3)

∫
L

ηb =
1

det(b, vL1 , . . . , v
L
n )

.

Let TL be the isotropy group of the t-action at L and tL its Lie algebra. We

identify L with T/TL and let pL : T → T/TL be the projection. We identify

Lie(T/TL) with R so that ker exp is identified with Z and such that b + tL is

sent to a positive number. Since TL is connected by [Le04, Lemma 3.13], the

Reeb vector field ξb on T/TL is (pL)∗b. By ηb(ξb) = 1, we get

(6.4)

∫
L

ηb =
1

(pL)∗b
.

On the other hand, we now argue that (pL)∗b = det(b, vL1 , . . . , v
L
n ): for this we

first observe that tL is spanned by the vLi (see, e.g., [Le04, Proof of Lemma

6.4]: there it is argued that if F is the face of Δ containing Φ(p) in its interior,

then the real span of F is equal to the annihilator t◦x). That shows that the

linear forms (pL)∗ and det(·, vL1 , . . . , vLn ) have the same kernel. To see that
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they are actually equal we choose, using the fact that Δ is a good rational

polyhedral cone, a vector vL0 completing the vLi to an integer basis of tZ, such

that det(vL0 , v
L
1 , . . . , v

L
n ) = 1. With the help of this basis we can identify t with

Rn+1 in such a way that tZ is sent to Zn+1 and tL to Rn. Because TL is connected

[Le04, Lemma 3.13], this implies that (pL)∗(vL0 ) = 1. This implies (6.3).

Denoting by pa : t → a the canonical projection, {pa(vLi )}ni=1 is a basis of a.

We will show next that the weightswL
i of the a-representation on νL are given by

2π times the corresponding dual basis; i.e., wL
i ∈ a∗ so that wL

i (pa(v
L
j )) = 2πδij .

Via the natural isomorphism t∗L ∼= a∗ induced by tL ⊂ t → a the weights are

identified with the ordinary weights of the symplectic slice representation at L.

In the proof of [Le04, Lemma 6.4] it is shown that the momentum image of

this symplectic slice representation is the cone given as the intersection of the

half-spaces {ϕ ∈ t∗L | ϕ(vLi ) ≤ 0}. Thus, the edges of this cone are spanned

by the negative of the dual basis of the vLi . On the other hand, it is known

that (with our sign convention) the negatives of the weights of the symplectic

slice representation also span the edges of the cone. Because it is shown in the

proof of [Le04, Lemma 6.4] that the vLi form a basis of the integer lattice (and

hence also the dual basis), the weights are necessarily given by 2π times the

corresponding dual basis.

In other words we have shown that

(6.5) wL
i (v + Rb) =

2π det(b, vL1 , . . . , v
L
i−1, v, v

L
i+1, . . . , v

L
n )

det(b, vL1 , . . . , v
L
n )

for all v ∈ t, as can be easily checked by inserting v = vLj .

Inserting b and vLi on both sides of the following equality shows

(6.6) ηb(v
#)|L =

det(v, vL1 , . . . , v
L
n )

det(b, vL1 , . . . , v
L
n )

.

By substituting (6.3), (6.5) and (6.6) into the localization formula (5.5), we get

Vol(M, ηb)

=
πn

n!

∑
L

lL · η|L(v#)n∏
iw

L
i (v + Rb)

=
1

2nn!

∑
L

1

det(b, vL1 , . . . , v
L
n )

· det(v, vL1 , . . . , v
L
n )

n∏n
i=1 det(b, v

L
1 , . . . , v

L
i−1, v, v

L
i+1, . . . , v

L
n )

.
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Remark 6.3: We can eliminate the variable v from the formula in Theorem (6.2)

by cutting Δ1 into a finite union of n-simplices and taking a limit of the term

corresponding to each simplex in a similar way as in the case of spheres in the

last section.

Remark 6.4: Of course Corollary 6.1 is a special case of Theorem 6.2. For a

toric deformation of the standard Sasakian sphere the cone Δ is, using the

notation of Section 6.1, spanned by the basis dual to the ei. The primitive

vectors vi are given by vi = −2πei. For the closed Reeb orbit Lj the vectors

v
Lj

i are precisely those vi with i �= j. The simplest way to compute the right-

hand side of Theorem 6.2 is then to expand the vector v in the basis ei, and

send one coefficient to infinity. Note that the apparently missing factors of 2π,

when comparing with Corollary 6.1, are accounted for by our choice of the

determinant.

In the remainder of this section we will show that this formula for the volume

of a toric Sasakian manifold can also be proven differently, by combining the fact

that the volume of M is closely related to the volume of a truncated momentum

cone, as shown by Martelli–Sparks–Yau, and a formula for the volume of a

simple polytope due to Lawrence.

Let C(M) ∼= R+×M be the Kähler cone of (M, g, η) with metric g′ = dr2⊕r2g

and symplectic form ω with g′(X,Y ) = ω(X, JY ). For η′ := 1
r ι∂/∂rω we have

d(12 (r
2η′)) = ω, because Lr∂/∂rω = 2ω (as in [MSY06, Eqs. (2.3) and (2.4)]),

and η′|r=1 = η. We define the moment map μ : C(M) → t∗ by

μX =
r2

2
η′(X#);

note that we use the convention dμX = −ιX#ω. Observe that

μ(M) = Δ1/2 =
1

2
Φ(M).

Let yi := μei = r2

2 η
′(e#i ) so that dyi = −ιe#i

ω.

Let {ei}i=0,...,n be a basis of t such that {2πei}i=0,...,n is an integer basis of

the integral lattice tZ. Let φ = (φ0, . . . , φn) : t → R2n+1/2πZ2n+1 denote the

coordinates with respect to the basis. We first understand the dφi as forms

on the principal orbits dual to the fundamental fields. We then extend these

leafwise forms to forms, also denoted by dφi, on the regular part of C(M) such

that its kernel contains the span of the Je#i . Then ω =
∑n

i=0 dyi ∧ dφi on the

regular part. The volume with respect to e0 ∧ · · · ∧ en on t∗ is (2π)n+1.
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We can regard b ∈ t as a 1-form on t∗. Then ΩH is the unique translation

invariant n-form on t∗ such that b∧ΩH = e0 ∧ · · · ∧ en. The volume of the dual

integral lattice with respect to the latter volume form is 1
(2π)n+1 . Let VolH(Δ1/2)

(resp. VolH(Δ1)) be the volume of Δ1/2 (resp. VolH(Δ1)) with respect to the

n-form ΩH .

Proposition 6.5 ([MSY06, Eq. (2.74) and (2.86)]):

(6.7) Vol(M, ηb) = 2πn+1 VolH(Δ1).

Proof. We fix a metric on t such that the ei are orthonormal, and the dual

metric on t∗. Let Ω0 be the volume form on H determined by orthonormal

frames. Then we have Ω0 = ‖b‖ΩH . Let Vol0(Δ1/2) be the volume of Δ1/2

with respect to Ω0. We have Vol0(Δ1/2) = ‖b‖VolH(Δ1/2). From

1

n!

∫
μ−1(Δ≤1/2)

ωn =

∫
μ−1(Δ≤1/2)

|dφ0 . . . dφndy0 . . . dyn| = (2π)n+1 Vol(Δ≤1/2),

where Δ≤1/2 = {w ∈ Δ | w(b) ≤ 1/2}, it follows that we have

Vol(M, ηb) = 2(n+ 1)Vol(μ−1(Δ≤1/2)) = 2(n+ 1)(2π)n+1 Vol(Δ≤1/2);

see [MSY06, Eqs. (2.72)–(2.74)]. Since Δ≤1/2 is a pyramid of height 1/2‖b‖ with
the base Δ1/2 (if we write b =

∑
i biei, then Δ1/2 = {∑ aie

∗
i | ∑ aibi = 1

2},
hence the shortest element is (

∑
bie

∗
i )/2‖b‖2, which has length 1/2‖b‖), we have

Vol(Δ≤1/2) =
1

2(n+ 1)‖b‖ Vol0 Δ1/2 =
1

2(n+ 1)
VolH Δ1/2.

Since we have 2nVolH(Δ1/2) = VolH(Δ1), (6.7) follows.

The following application of a formula of Lawrence for the volume of a simple

polytope gives a method to compute VolH(Δ1).

Theorem 6.6 ([La91, Theorem on p. 260]): Take u ∈ t and d ∈ R so that the

function f(x) = u(x) + d on t∗ is nonconstant on each edge of Δ1. Then

(6.8) VolH(Δ1) =
1

n!

∑
L

f(Φ(L))n

δLγL
1 · · · γL

n

,

where L runs over the set of closed Reeb orbits, γL
i ∈ R is determined by

u = γL
0 b+ γL

1 v
L
1 + · · ·+ γL

n v
L
n ,

and δL = det(b, vL1 , . . . , v
L
n ).
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Proof. Lawrence’s Theorem applies to simple polytopes

P = {v ∈ V | 〈v, ai〉 ≤ bi}

in a Euclidean vector space (V, 〈·, ·〉), where ai ∈ V , and bi ∈ R. In order to

apply the Theorem of Lawrence, we identify the affine hyperplane H with the

vector space b⊥ = {v ∈ t∗ | v(b) = 0} using the map

Ψ: H = {w ∈ t∗ | w(b) = 1} −→ b⊥; w �−→ w − 1

‖b‖2 b
∗,

where v �→ v∗ denotes the identification t → t∗. Let ai ∈ b⊥ and bi ∈ R be

defined as

ai := v∗i − 〈vi, b〉
‖b‖2 b∗, bi = −〈vi, b〉

‖b‖2 ,

where 〈·, ·〉 is the chosen inner product on t. Denoting with the same symbol

the dual inner product on t∗ we then have

〈Ψ(w), ai〉 =
〈
w − 1

‖b‖2 b
∗, v∗i − 〈vi, b〉

‖b‖2 b∗
〉
= w(vi)− 〈vi, b〉

‖b‖2 = w(vi) + bi

for w ∈ H , hence

Ψ(Δ1) = {v ∈ b⊥ | 〈v, ai〉 ≤ bi}.
Noting that Vol0(Δ1) = Vol(Ψ(Δ1)), where the volume on the right-hand side is

defined using the inner product 〈·, ·〉, we apply Lawrence’s Theorem: we choose

a function f on t∗ of the form f(v) = 〈u, v〉 + d for some u ∈ b⊥, and obtain

(note that f(Ψ(w)) = f(w))

Vol0(Δ1) =
1

n!

∑
L

f(Φ(L))n

εLγL
1 · · · γL

n

,

where εL = | det(aL1 , . . . , aLn)| and u = γL
1 a

L
1 + · · · + γL

n a
L
n . Here, det is a

Euclidean determinant on b⊥, hence εL = 1
‖b‖ | det(b, aL1 , . . . , aLn)| = 1

‖b‖δ
L. Be-

cause ai and v∗i differ only by a multiple of b∗, the numbers γL
1 , . . . , γ

L
n coincide

with those defined in the statement of the theorem. The proof follows from

Vol0(Δ1) = ‖b‖VolH(Δ1).

By combining Proposition 6.5 with Theorem 6.6 we obtain a second proof

of Theorem 6.2, because γL
i = det(b, vL1 , . . . , v

L
i−1, u, v

L
i+1, . . . , v

L
n ). In fact, any

two of these results imply the third.
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6.3. The homogeneous Sasakian manifold SO(5)/ SO(3). In this section,

we calculate the volume of deformations of the homogeneous Sasaki structure on

the Stiefel manifold SO(5)/ SO(3). We use the notation of [GNT12, Section 8]:

consider the real cohomology 7-sphere SO(5)/ SO(3); here, SO(3) is embedded

in SO(5) as I2 × SO(3), where I2 is the (2 × 2)-identity matrix.

Now T 3 = T 2 × T 1 = (SO(2)× SO(2)× 1)× SO(2) ⊂ SO(5)× SO(2) acts on

SO(5)/ SO(3) via

(g, h) · k SO(3) = gkh−1 SO(3).

We identify the Lie algebra t3 of T 3 = T 2 × T 1 ⊂ SO(5) × SO(2) with R3; a

vector w ∈ R3 corresponds to an element bw ∈ t3. The Reeb vector field ξ of the

homogeneous K-contact structure is the fundamental vector field of b = b(0,0,1).

(Note that at e SO(3) the Reeb vector field ξ is equal to −E12 + so(3), where

Eij is the matrix with all entries zero except 1 at the ij-entry and −1 at the

ji-entry.) Let w = (x, y, z) ∈ t3 be such that the corresponding one-parameter

subgroup has only finitely many closed orbits in SO(5)/ SO(3). The closed

orbits then coincide with the one-dimensional T 3-orbits, of which there exist

exactly 4 (see [GNT12, Section 8]). As explained in Section 5.3, the deformed

contact form ηw with Reeb vector field ξw = b#w is given by

ηw =
η

η(ξw)
,

where η = 〈b, ·〉, and 〈·, ·〉 is induced by a bi-invariant Riemannian metric on

SO(5), normalized so that ‖E12‖ = 1. We fix a vector v = (α, β, γ) ∈ t. We will

show the following by the localization theorem.

Theorem 6.7: We have

(6.9) Vol(M, gw) =
2π4

3

1

(z2 − y2)(z2 − x2)
.

Proof. Let us calculate in detail the relevant data at the closed Reeb orbit

through e SO(3). Along this closed Reeb orbit, ξw is exactly (z − x)b#, so its

length calculates as ∫
SO(2)·e SO(3)

ηw =
2π

z − x
.

Still along this closed Reeb orbit, we have η(ξw) = z − x; moreover,

η(v#)e SO(3) = γ − α.
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Therefore, the numerator in the localization formula is

ηw|SO(2)·eSO(3) (v
#)3 =

(γ − α

z − x

)3
.

We have t3eK = {(x, y, x) | x, y ∈ R}, and the projection t3eK → t2 = t2⊕{0} ⊂ t3

onto the first summand is an isomorphism. The natural projection

TeKG/K −→ TeHG/H,

where G/H = SO(5)/ SO(2)× SO(3) becomes equivariant with respect to this

homomorphism. Considering the induced isomorphism

(6.10) t2 −→ t3eK −→ t3 −→ t3/Rbw = a,

where the first map is the inverse of the projection t3eK → t2, we see that the

weights in a∗ are in one-to-one correspondence to the ordinary weights of the

isotropy t2-representation on SO(5)/ SO(2) × SO(3): if τ ∈ (t2)∗ is a weight,

then the induced weight in a∗ is given by

(α, β, γ) + Rbw �−→ τ
(
α+

α− γ

z − x
· x, β +

α− γ

z − x
· y
)
.

To see this, observe that the inverse a → t2 of the isomorphism (6.10) is given

by

(α, β, γ) + Rξ �→
(
α+

α− γ

z − x
· x, β +

α− γ

z − x
· y
)
.

The ordinary weights of the isotropy t2-representation are given by positive

roots of SO(5) which are not roots of SO(2) × SO(3). Denoting the standard

basis of t2 by {e1, e2}, the weights are e∗1, e∗1 + e∗2 and e∗1 − e∗2, because e∗2 is also

a root of SO(3)× SO(2).

Thus, the denominator is given by(
α+

α− γ

z − x
· x
)
·
(
α+

α− γ

z − x
· x+ β +

α− γ

z − x
· y
)

·
(
α+

α− γ

z − x
· x−

(
β +

α− γ

z − x
· y
))

.

We omit the calculations for the other three closed Reeb orbits, which are

parametrized by the quotient of Weyl groups W (SO(5))/W (SO(2) × SO(3)).

The four summands in the localization formula (5.5) and the final formula for
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the volume read as follows:

Vol(M, gw)

=− 2π4

3!

×
[ (γ − α)3

(z−x)4(α+ α−γ
z−x ·x)(α+ α−γ

z−x ·x+β+ α−γ
z−x ·y)(α+ α−γ

z−x ·x−(β+ α−γ
z−x ·y))

− (α+ γ)3

(z+x)4(α− α+γ
x+z ·x)(α− α+γ

x+z ·x+β− α+γ
x+z ·y)(α− α+γ

x+z ·x−β+ α+γ
x+z ·y)

+
(γ − β)3

(z−y)4(β+ γ−β
y−z ·y)(β+ γ−β

y−z ·y+α+ γ−β
y−z ·x)(β+ γ−β

y−z ·y−(α+ γ−β
y−z ·x))

− (β + γ)3

(z+y)4(β− γ+β
y+z ·y)(β− γ+β

y+z ·y−α+ γ+β
y+z ·x)(β− γ+β

y+z ·y+α− γ+β
y+z ·x)

]
=
2π4

3

1

(z2 − y2)(z2 − x2)
.

Since the long expression is independent of the vector v = (α, β, γ), we can show

the second equality by sending α to infinity. In this way, the third and fourth

summands vanish.

For w = (0, 0, 1), we obtain the volume of the homogeneous K-contact struc-

ture we started with.

Corollary 6.8:

Vol(M, g(0,0,1)) =
2

3
π4.

6.4. Homogeneous Sasakian manifolds: general case. We consider a

(2n+1)-dimensional compact homogeneous Sasakian manifold, which by [BG07,

Theorem 8.3.6] is the total space of a circle bundle of the form π : G/K → G/H ,

where H is the centralizer of a subtorus of the compact Lie group G. We can

assume that the Reeb vector field ξ of the homogeneous Sasaki structure on

G/K is the fundamental vector field of an element b ∈ g; it then follows that

b is in the center of G. The b-orbits are exactly the S1-fibers of the S1-bundle

G/K → G/H , so b is also contained in h. We assume the normalization condi-

tion that the Reeb orbits of G/K all have length 1 (by applying a transverse

homothety). Let T ⊂ H be a maximal torus in H (which is then also maximal
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in G), whose Lie algebra t contains b. Then, t splits as

(6.11) t = (t ∩ k)⊕ Rb.

Note that the example of the previous section fits into the notation of this

section if we write SO(5)/ SO(3) = SO(5) × SO(2)/ SO(3) × SO(2) = G/K,

where the group SO(2) in the denominator is embedded diagonally.

Let ξ′ = b′#, for b′ ∈ S(D, J), be the Reeb vector field of a deformed K-

contact structure; for generic, i.e., dense choice of b′, the number of closed Reeb

orbits is finite. In this case, they coincide with the one-dimensional orbits of the

T -action on G/K by left multiplication, which is the same as the π-preimage of

the T -fixed point set in G/H . Denoting the contact form of the homogeneous

K-contact structure by η, the deformed one with Reeb vector field ξ′ is given

by

η′ =
η

η(ξ′)
.

As ξ′ does not have zeros on G/K, certainly b′ /∈ k. Thus, the map

t ∩ k −→ t −→ t/Rb′ = a

is an isomorphism. Choose a vector v ∈ t.

We will apply our localization formula to show the following.

Corollary 6.9: We have

(6.12)

Vol(G/K, η′)

=
πn

n!
·

∑
w∈W (G)/W (H)

1

p(Adw−1(b′))n+1

× p(Adw−1 v)n∏
α∈ΔG\ΔH

α(Adw−1(v − p(Adw−1 v)

p(Adw−1 b′) · b′))
,

where W (G) (resp. W (H)) is the Weyl group of G (resp. H), ΔG (resp. ΔH) is

the root system of G (resp. H) with respect to t and p : t → Rb
b�→1→ R denotes

the projection along (6.11).

As always, the right-hand side of this formula is independent of v.

Proof. Let us calculate the summand in the localization formula (5.5) corre-

sponding to the closed Reeb orbit through wK, w ∈ W (G). Then, along the

Reeb orbit through wK, we have b′ = p(Adw−1 b′)b. Thus, by our normalization
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condition for the original homogeneous Sasakian structure, the length of this

closed Reeb orbit computes as∫
T ·wK

η′ =
1

p(Adw−1 b′)
.

A similar calculation shows that the numerator in the respective summand is

given by

(6.13) η′(v#)|wK =
p(Adw−1 v)

p(Adw−1 b′)
.

To calculate the weights of the transverse isotropy a-representation at wK, we

first note that for each w ∈ W (G), a is isomorphic to twK via

twK −→ t −→ t/Rb′ = a.

Moreover, the twK-slice representation on νwKT · (wK) is equivalent to the

twK-representation on TwHG/H , whose weights are given by

{α|t∩k ◦Adw−1 | α ∈ ΔG \ΔH}.
Then, the set of the weights of the transverse isotropy a-representation is given

by the set of all concatenations

(6.14) a �� twK

Adw−1 �� t ∩ k
α �� R,

where α runs through ΔG\ΔH . Concretely, we have that v−η′(v#)|wK ·b′∈ twK ;

using (6.13) we see that (6.14) is given by

v + Rb′ �−→ α
(
Adw−1

(
v − p(Adw−1 v)

p(Adw−1 b′)
· b′
))

.

In total, we obtain (6.12) by the localization formula (5.5).

7. Localization of secondary characteristic numbers of Killing folia-

tions

7.1. Secondary characteristic classes of Riemannian foliations.

Secondary characteristic classes for foliations are Chern–Simons invariants de-

fined by the vanishing of certain characteristic forms of the normal bundle of

foliations. See Section 1.4 for the introduction to secondary characteristic clas-

ses of foliations. We will show that certain secondary characteristic classes

of Riemannian foliations can be localized to closed leaves by our localization

formula (Theorem 3.16).



904 O. GOERTSCHES, H. NOZAWA AND D. TÖBEN Isr. J. Math.

Let us recall the construction of secondary characteristic classes of Riemann-

ian foliations with framed normal bundle [LP76a]. Let M be a smooth manifold

and F a Riemannian foliation of codimension q onM with trivial normal bundle.

We fix a trivialization of νF . Let ∇ be the canonical basic Riemannian con-

nection on νF (see [To97, Theorem 5.9]), which is determined by the transverse

metric. Let P be the orthonormal frame bundle of νF . In terms of the con-

nection form and the curvature of ∇, we have the Chern–Weil homomorphism

δ̂ : W (soq) −→ Ω(P ),

whereW (soq) =
∧
so∗q⊗S(so∗q) is the Weil algebra of soq. SinceH(W (soq)) = 0,

this map δ̂ does not give any nontrivial information. By construction, the

i-th Pontryagin form of δ̂ is a basic form of degree 4i. Therefore Pontrya-

gin forms of degree greater than q are trivial as proved by Pasternack. So

δ̂(
⊕

2k>q S
k(so∗q)) = 0. Letting Wq(soq) = W (soq)/

⊕
2k>q S

k(so∗q), we get the

following induced map:

δ : Wq(soq) −→ Ω(P ).

Let s : M → P be the global section corresponding to the trivialization of

νF . Then the characteristic homomorphism ΔF of (M,F) is obtained by the

composite

Wq(soq)
δ �� Ω(P )

s∗ �� Ω(M).

Elements in the image of the map induced in cohomology by ΔF are called

secondary characteristic classes of (M,F). The structure of H(Wq(soq))

was determined by Lazarov–Pasternack as follows: Let

RWq =
∧

(h1, . . . , h(q−1)/2)⊗ (R[p1, . . . , p(q−1)/2]/{P | degP > q})
if q is odd and

RWq =
∧

(h1, . . . , h(q−2)/2, he)⊗ (R[p1, . . . , p(q−2)/2, pe]/{P | degP > q})
if q is even. This RWq is a differential graded algebra (dga) with differential

determined by dhi = pi, dhe = pe, dpi = 0 and dpe = 0. Then we have a

natural isomorphism H(Wq(soq)) ∼= H(RWq). Denoting pi(νF ,F) = ΔF (pi),
hi(F) = ΔF (hi) and hIpJ(F) = ΔF (hIpJ),

• pi(νF ,F) is the i-th Pontryagin form of (νF ,∇),

• pe(νF ,F) is the Euler form of (νF ,∇) and

• hi(F) is the Chern–Simons form s∗Tδ(pi)[LP76a, Remark 1.7].
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Remark 7.1: Morita [Mo79] defined more characteristic classes of Riemannian

foliations by using the canonical affine Cartan connections on P and the Weil

algebra of affine groups.

As already mentioned the main formula in [Tö14] allowed the computation of

the primary basic characteristic numbers through localization to the union of

closed leaves. Now we will see how secondary characteristic numbers, i.e., the

integrals of secondary characteristic classes of top degree, can be computed by

localization.

7.2. Application of the ABBV-type formula to secondary charac-

teristic numbers of Riemannian foliations. Let us apply our localiza-

tion formula to compute secondary characteristic numbers of Killing foliations.

We use the multi-index notation hIpJ := hi1 ∧ · · · ∧ hik ∧ pj1 ∧ · · · ∧ pjm for

I = {i1, . . . , ik} and J = {j1, . . . , jm}.
Let M be a smooth manifold with a Riemannian foliation F of dimension p

and codimension q. Fix a trivialization of νF . Then, we have characteristic

forms hI(F) and pJ(νF ,F) of (M,F).

Lemma 7.2: A form of type hI(F) of degree p is relatively closed.

Proof. Since dhik(F) = pik(νF ,F) is basic and of degree larger than one, it

follows that dhik(F) ∧ hI−{ik}(F)(v1, . . . , vp+1) = 0 whenever p of the p + 1

vectors vi is tangent to F . Thus hI(F) is relatively closed.

In order to apply Theorem 3.16, we need to extend the basic form pJ equi-

variantly. Assume that F is a Killing foliation. Let a denote the structural

Killing algebra, which acts on (M,F) transversely (see Section 3.3). Let θ be

the a-invariant connection form of the basic Riemannian connection ∇. As in

the classical case of manifolds with Lie group actions, the equivariant curvature

form

F θ
a := daθ +

1

2
[θ, θ] ∈ Ω2

a(M,F)⊗ End(νF)

can be used to extend characteristic forms. By Chern–Weil construction, we

get equivariant Pontryagin form pJ(F
θ
a ), which is denoted by pJ,a(νF ,F).

Lemma 7.3 ([Tö14, Section 7.2]): We have pJ,a(νF ,F)(0) = pJ(νF ,F) and

dapJ,a(νF ,F) = 0. In other words, pJ,a(νF ,F) is a natural equivariant exten-

sion of pJ(νF ,F) and represents a class in Ha(M,F).
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As a corollary of our ABBV-type localization formula we obtain the following

result.

Corollary 7.4: Let M be a compact oriented manifold with an orientable

Killing foliation F of dimension p and codimension q. Assume that νF is

trivial, and fix a trivialization to define secondary classes. If deg hI = p and

deg pJ = q, then we have

(7.1)

∫
M

hIpJ(F) =
∑
k

lk

∫
Ck/F

i∗Ck
pJ,a(νF ,F)

ea(νCk,F)
,

where iCk
: Ck → M are the connected components of the submanifold of M

given by the union of closed leaves, Lk is a leaf of F|Ck without holonomy and

lk =
∫
Lk

hI(F). In particular, if (M,F) has only finitely many closed leaves

L1, . . . , LN , then we have

(7.2)

∫
M

hIpJ(F) =
∑
k

(∫
Lk

hI(F)

)∫
Lk

i∗Lk
pJ,a(νF ,F)

i∗Lk
pe,a(νF ,F)

and
∫
M

hIpe(F) =
∑

k

∫
Lk

hI(F).

Proof. By Lemma 7.2, we have
∫
M hIpJ(F) =

∫
(F ,hI(F)) pJ(νF ,F). Then (7.1)

follows from Lemma 7.3 and Theorem 3.16. If (M,F) has only finitely many

closed leaves L1, . . . , LN , then we have νLk = i∗Lk
νF for k = 1, . . . , N . Because

ea(νLk,F) = i∗Lk
pe,a(νF ,F), we obtain (7.2) from (7.1). The last equation

follows from
i∗Lk

pe,a(νF ,F)

i∗Lk
pe,a(νF ,F) = 1.

7.3. The case of transversely Kähler flows. Transversely Kähler fo-

liations are defined in a similar way as for Riemannian foliations, and their

secondary classes are richer than those of Riemannian foliations. A transver-

sely Kähler Haefliger cocycle of complex codimension m on a manifold M

is a quintuple ({Ui}, {gi}, {ωi}, {πi}, {γij}) consisting of

(1) an open covering {Ui} of M ,

(2) submersions πi : Ui → R2m,

(3) Riemannian metrics gi on πi(Ui),

(4) symplectic form ωi on πi(Ui) such that gi and ωi determine an integrable

complex structure Ji on πi(Ui) by the equation gi(X, JiY ) = ωi(X,Y ),

(5) transition maps γij : πj(Ui ∩Uj) → πi(Ui ∩Uj) such that πi = γij ◦ πj ,

γ∗
ijgi = gj and γ∗

ijωi = ωj.



Vol. 222, 2017 LOCALIZATION OF CHERN–SIMONS TYPE INVARIANTS 907

The invariance of ωi under transition maps implies that ωi yields a 2-form ω

on M , which is called the transverse Kähler form. A transversely Kähler

foliation is defined to be an equivalence class of transversely Kähler Haefliger

cocycles, where the equivalence relation is defined by union as in the case of

Riemannian foliations.

Here we recall the characteristic classes of transversely Kähler foliations con-

structed by Matsuoka–Morita. Let (M,F) be a transversely Kähler foliation

of complex codimension m with framed normal bundle νF . We have the ei-

genspace bundle decomposition νCF = ν1,0F ⊕ ν0,1F of the complex structure.

Let pr : TCM → νCF be the projection and E = pr−1(ν0,1F). Take a bundle-

like metric on TM which induces the underlying transverse metric under the

identification (TF)⊥ ∼= νF . Define a connection ∇ on ν1,0F by

(7.3) ∇XY =

⎧⎨⎩pr[X, Ỹ ], X ∈ C∞(TCF), Y ∈ C∞(ν1,0F),

pr(∇LC
X Ỹ ), X ∈ C∞(νCF), Y ∈ C∞(ν1,0F),

where pr(X̃) = X and pr(Ỹ ) = Y . Since E is involutive, ∇ is well defined.

Remark 7.5: One can show that ∇XY = pr[X, Ỹ ] for X ∈ C∞(E) and

Y ∈ C∞(ν1,0F) by using the fact that the (0, 1)-part of the Levi-Civita con-

nection of Kähler manifolds is equal to ∂. Namely, ∇ in (7.3) is a complex Bott

connection in the sense of [As10, Definition 1.1.7].

Lemma 7.6: The curvature form F∇ of ∇ is a basic (1, 1)-form valued in

End(ν1,0F).

Proof. Here ∇ is obtained by complexifying the canonical basic connection in

the sense of [To97, p. 21]. Thus, by the same computation as [To97, Proof of

Proposition 3.6], one sees that F∇ is a basic 2-form valued in End(ν1,0F). The

fact that F∇ is of degree (1, 1) follows from a local argument. Take any element

πi : Ui → R2m of the Haefliger cocycle. Here πi(Ui) has a Kähler structure

(gi, ωi). It is well known that the Levi-Civita connection ∇i of gi on T 1,0πi(Ui)

is a Chern connection, which implies that the curvature form F∇i is of type

(1, 1) by a well known argument. By the definition of ∇, it is easy to see that

we have π∗
i ∇XY = ∇i

(πi)∗X(πi)∗Y for basic X , Y ∈ C∞(TCM), namely, ∇ is

the pull-back of ∇i by πi. Thus we have that the curvature form F∇ of ∇ is

the pull-back of that of ∇i. Then it follows that F∇|Ui is of degree (1, 1).
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By the last lemma, the Chern forms of ∇ of degree greater than m are trivial.

Thus the Chern–Weil homomorphism of ∇ induces

δ : H(KWm) −→ H(U(ν1,0F);R),

where U(ν1,0F) is the unitary frame bundle of ν1,0F and

KWm =
∧

(u1, . . . , um)⊗ (R[s1, . . . , sm,Φ]/{P | degP > m})
is a dga with differential d determined by dui = si, dsi = 0 and dΦ = 0. Here

ΔF (Φ) is equal to the transverse Kähler form of F . Then, as in the last section,

the characteristic homomorphism

ΔF : H(KWm) −→ H(M ;R)

is obtained by the composite of δ̂ and s∗ : H(U(ν1,0F);R) → H(M ;R), where

s is the section induced by the trivialization of ν1,0F . We use the multi-index

notation uIsJ as in the introduction and will denote sJ (νF ,F) = ΔF(sJ ),
uI(F) = ΔF (uI) and uIsJ(F) = ΔF (uIsJ).

Remark 7.7: The original construction of Matsuoka–Morita of these classes was

based on the canonical affine Cartan connection of ν1,0F . They proved that it

is equivalent to the construction above.

Here s1(ν
1,0F) =

√−1
2π tr(F∇) is equal to the first Chern class of ∧m,0ν∗F .

This fact allows us to define u1(F) for a transversely Kähler foliation with

trivialized ∧m,0ν∗F but not necessarily framed normal bundle.

Definition 7.8: Let (M,F) be a manifold with a transversely Kähler foliation

of complex codimension m such that ∧m,0ν∗F is trivial as a topological line

bundle. Let ϕ be a trivialization of U(1)-bundle U(∧m,0ν∗F) → M associated

to ∧m,0ν∗F . Then we define u1(F) by

u1(F) =

√−1

2π
ϕ∗θ,

where θ ∈ Ω1(U(∧m,0ν∗F)) ⊗ u(1) is the connection form of the Chern con-

nection on ∧m,0ν∗F induced from ν1,0F .

Remark 7.9: The characteristic class u1s
m
1 is called the Bott class. The Bott

class of transversely holomorphic foliations is defined as a cohomology class of

coefficient C/Z even for transversely holomorphic foliations (M,F) with nontri-

vial ∧m,0ν∗F (see [As03]).
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It is easy to see that we have du1(F) = s1(νF ,F). Then, in the case where

dimF = 1, we see that u1(F) is also relatively closed like as in Lemma 7.2.

Therefore we obtain the following corollary of Theorem 3.16.

Corollary 7.10: Let (M,F) be a compact manifold with an orientable taut

transversely Kähler foliation of dimension one and complex codimension m.

Assume that ∧m,0ν∗F is trivial as a topological line bundle and (M,F) admits

only finite closed leaves L1, . . . , LN . For a given multi-index J = (j1, . . . , jl)

with j1 + · · ·+ jl = 2m we have

(7.4)

∫
M

u1sJ (F) =
N∑

k=1

(∫
Lk

u1(F)

)
i∗Lk

sJ,a(νF ,F)

i∗Lk
sm,a(νF ,F)

,

where the Lk are the isolated closed leaves of F and sJ,a(νF ,F) is the equivari-

ant characteristic form of F associated to sJ . In particular, in the case where

J = {m}, we obtain

(7.5)

∫
M

u1sm(F) =
∑
k

∫
Lk

u1(F).

Proof. We first remark that an orientable taut transversely Kähler foliation of

dimension one is a Killing foliation by [MS85, Théorème A]. Since the equivari-

ant Euler class of νLk is equal to i∗Lk
sm,a(νF ,F), Eq. (7.4) is a direct conse-

quence of Theorem 3.16. Then Eq. (7.5) follows from
i∗Lk

sm,a(νF ,F)

i∗Lk
sm,a(νF ,F) = 1.

Below we will apply Corollary 7.10 to an example considered previously by

Bott, Baum–Bott and Asuke. We will need the following well known computa-

tion of u1(F).

Lemma 7.11: Let (M,F) be a manifold with a transversely Kähler foliation of

complex codimensionm. Let ϕ be a trivialization of ∧m,0ν∗F , which is regarded

as an m-form on M . Assume that a 1-form α on M satisfies dϕ = 2π
√−1α∧ϕ.

If ϕ is induced from a trivialization of ν1,0F , then we have α(X) = u1(F)(X)

for any tangential vector field X ∈ C∞(TCF).

Proof. Since we will prove a local formula, we can assume that ν1,0F is tri-

vialized with a trivialization Z1, . . . , Zm such that ϕ(Z1, . . . , Zm) = 1. Let

pr be the canonical projection pr : TCM → ν1,0F . Take Yi ∈ C∞(TCM) so

that prYi = Zi. Recall that E denotes the vector subbundle of TCM such
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that TCM/E = ν1,0F . For X ∈ C∞(TCF), we have

(7.6)

2π
√−1α(X)=dϕ(X,Y1, . . . , Ym)

=Xϕ(Y1, . . . , Ym) +

m∑
i=1

(−1)iYiϕ(X,Y1, . . . , Ŷi, . . . , Ym)

+
∑

1≤i<j≤m

(−1)i+jϕ([Yi, Yj ], X, Y1, . . . , Ŷi, . . . , Ŷj , . . . , Ym)

+

m∑
i=1

(−1)iϕ([X,Yi], Y1, . . . , Ŷi, . . . , Ym).

Here the first three terms are zero. Since ∇XZi = pr[X,Yi], we have

pr[X,Yi] = ∇XZi =
m∑
j=1

κji(X)Zj ,

where κ is the connection form of ∇ with respect to the framing {Zi}. Thus it
follows that the right hand side of (7.6) is equal to

m∑
i=1

(−1)iϕ([X,Yi], Y1, . . . , Ŷi, . . . , Ym) =

m∑
i=1

(−1)iϕ(κii(X)Yi, Y1, . . . , Ŷi, . . . , Ym)

=−
m∑
i=1

κii(X) = − trκ(X).

Since

u1(F) =

√−1

2π
trκ

by [CS74, Eq. (3.5)], one obtains that α(X) = u1(F)(X).

Let w = (w0, . . . , wm) ∈ (R>0)
m+1, and consider the deformation of type I of

the standard Sasakian structure on S2m+1 whose Reeb vector field ξw is given

by

ξw =

m∑
i=0

wi

(
xi

∂

∂yi
− yi

∂

∂xi

)
.

Let Fw be the orbit foliation of the Reeb flow. Then Fw admits a transversely

Kähler structure induced from the Sasakian structure. We choose w generically

so that the only closed leaves of Fw are those given by |zi| = 1, i = 0, . . . ,m.

We denote these by L0, . . . , Lm, respectively. We embed S2m+1 to C
m+1 as a
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unit sphere. Then

σ =
√−1

m∑
j=0

(−1)jwjzjdz0 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzm

is a nowhere vanishing global section of ∧m,0ν∗Fw. The trivialization of ν1,0Fw

by σ now gives to secondary classes. The following result is due to Bott [Bo72a,

p. 76], Baum–Bott [BB72, Example 1 in Section 11] and Asuke [As10, Example

5.6]. Note that in these references the authors consider transversely holomorphic

foliations allowing w to be complex. The difference in techniques is as follows.

The computation of Baum–Bott and Asuke is based on localization of the Chern

classes s1sJ to the singular point of the foliation extended to Cn+1, while our

computation is based on localization to the closed leaves of F , which is an

intrinsic process.

Corollary 7.12: We have

(7.7)

∫
S2m+1

u1sJ (Fw) =
s1sJ
sm+1

(w0, . . . , wm).

Proof. By Lemma 7.11, we have

u1(Fw)(X) =
w0 + · · ·+ wm

2π
√−1

(∑
j

zjdzj
wj

)
(X)

for X ∈ C∞(TLk). Then we have

(7.8)

∫
Lk

u1(Fw) =
w0 + · · ·+ wm

wk

for k = 0, . . . ,m.

We compute i∗Lk
sJ,a(νF ,F) for k = 0, . . . ,m. Consider the equivariant cur-

vature form

F θ
a = daθ +

1

2
[θ, θ] ∈ Ω2

a(Lk,F)⊗ End(ν1,0F)

of i∗Lk
ν1,0F . Since Lk is of dimension one, we have F θ

a (X) = −ιXθ for X ∈ a,

where θ is the connection form of the Chern connection of i∗Lk
ν1,0F . Let-

ting {αk
j }j=0,...,k̂,...,m be the weights of the transverse isotropy a-representation

at Lk, one can express ιXθ as a diagonal matrix whose diagonal entries are

{αk
j (X)}j=0,...,m,j �=k. It follows that

i∗Lk
sJ,a(νF ,F)(X) = (−1)msJ((α

k
j (X))j �=k).
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But we computed the weights {αj
k} of this example in Section 6.1: Identifying a

with t/Rbw, where t is the standard torus acting on Cm+1 with standard basis

{ej}, for v+Rbw =
∑m

i=0 βjej +Rbw ∈ a, it is αk
j (v+Rbw) =

βk

wk
wj −βj . Thus,

by Corollary 7.10, we get∫
S2m+1

u1sJ(Fw) =(w0 + · · ·+ wm)

m∑
k=0

1

wk

sJ((
βk

wk
wj − βj)j �=k)∏

j �=k(
βk

wk
wj − βj)

=(w0 + · · ·+ wm)
m∑

k=0

1

wk

sJ((wj − wk)j �=k)∏
j �=k(wj − wk)

where in the second line we have set βj = 1, using the fact that the expression

is independent of the chosen vector v. To finish the proof we have to show the

following identity for elementary symmetric polynomials:

(7.9)

m∑
k=0

1

wk

sJ ((wj − wk)j �=k)∏
j �=k(wj − wk)

=
sJ (w0, . . . , wm)∏

j wj
.

By multiplying
∏

j wj on both sides, this is equivalent to

(7.10)
m∑

k=0

sJ((wj − wk)j �=k)
∏

j �=k wj∏
j �=k(wj − wk)

= sJ(w0, . . . , wm).

Let P (w0, . . . , wm) be the left-hand side. First we prove that P (w0, . . . , wm)

is a polynomial in the variables wj . By reducing the fraction to a common

denominator, we have

P (w0, . . . , wm) =

∑m
k=0 sJ((wj − wk)j �=k)(

∏
j �=k wj)Fk(w0, . . . , wm)∏

i<h(wi − wh)
,

where Fk(w0, . . . , wm) = (−1)m−k
∏

i<h, i,h �=k(wi −wh). Note that for s �= t we

have Ft = (−1)t−s−1Fs on the subspace ws = wt. The numerator

(7.11)

m∑
k=0

sJ ((wj − wk)j �=k)

(∏
j �=k

wj

)
Fk(w0, . . . , wm)

is divisible by ws −wt for any s < t: Indeed, if we substitute ws = wt in (7.11),

only the s-th and t-th summands are nonzero, and they cancel each other due

to Ft = (−1)t−s−1Fs. This shows that P (w0, . . . , wm) is a polynomial in the

variables wj , and it is obviously homogeneous of degree 2|J | = m.

We see that P (w0, . . . , wm) = sJ(w0, . . . , wm) holds when at least one of the

wj is zero. Indeed, if ws = 0, then only the s-th summand of P (w0, · · · , wm)

is nonzero, and of the form sJ((wj)j �=s) = sJ(w0, . . . , ws−1, 0, ws+1, . . . , wm),
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which is exactly the right-hand side of Equation (7.10). It follows that all the

monomials on the left- and right-hand side of Equation (7.10) which do not

involve all the variables wj coincide. But as both sides are polynomials of

degree m in m+ 1 variables, all monomials are of this form.

Appendix A. The equivariant basic Thom homomorphism

A.1. Equivariant basic Euler classes. Let us recall the definition of the

equivariant basic Euler class. It is a special case of equivariant basic cha-

racteristic classes (see [Tö14, Section 7.1]). Consider a foliated SO(r)-bundle

(P, E) → (N,F) (see [Tö14, Section 2]), with a transverse h-action on total and

base space that commutes on the former with the SO(r)-action, and with an

h-invariant connection θ ∈ Ω1(P, E) ⊗ so(r).

Definition A.1: The equivariant basic Euler form eh(P, E) of (P, E)→(N,F)

is defined by

(A.1) eh(P, E)(X) =
1

(2π)r/2
det1/2(F θ

h (X)) =
1

(2π)r/2
det1/2(F θ − ιXθ),

where F θ
h = dhθ+

1
2 [θ, θ] ∈ Ω2

h(P, E)⊗so(r) is the equivariant curvature form and
1

(2π)r/2
det1/2 ∈ S(so(r)∗)so(r) is the Pfaffian, where det1/2 of a 2n×2n block dia-

gonal matrix whose i-th block matrix is ( 0 −λi

λi 0 ) is defined to be (−1)nλ1 · · ·λn.

The connection form θ, on which the Euler form depends, is suppressed in the

notation for simplicity.

For our applications the most important special case is the equivariant basic

Euler form of the normal bundle of a connected component N of the union of

closed leaves C of a Killing foliation F . We assume νN to be oriented. Let P be

the corresponding principal foliated bundle of its oriented orthonormal frames.

It carries a Riemannian foliation E , where a leaf through a given orthonormal

frame ξ of νN with foot point p consists of all those frames obtained by sliding

ξ along the leaf through p. Then the projection (P, E) → (N,F|N) is a foliated

principle bundle. Since the a-action on (M,F) is trivial on N and preserves

each normal space νpN , the foliated bundle is equivariant with respect to the

restricted a-action. By ea(νN,F) := ea(P, E) we denote the equivariant basic

Euler form of this foliated bundle. Let us explain that in this case, similarly

to the ordinary equivariant Euler form, it is just the product of the weights of
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the transverse isotropy a representation. The weights appear in the following

way. As a acts transversely isometrically ([GT10]), we have the representation

a → so(νpN); X �→ [X�, ·], p ∈ N arbitrary, where X� denotes the associated

transverse vector field for X ∈ a. Since a is abelian, with respect to some

oriented orthonormal frame ξ : Rk → νpN , every X ∈ a is a block diagonal

matrix with blocks of the form(
0 −αj(X)

αj(X) 0

)
which defines the weights αj ∈ a∗ and weight subbundles Vj of νN .

Proposition A.2: Let F be a Killing foliation of codimension k, and let N

be a connected component of the union of closed leaves, with oriented normal

bundle νN . Then νN can be decomposed as

(A.2) νN =
⊕
j

Vj ,

where Vj is an a-invariant vector bundles of rank 2 whose weight is given by αj .

Then

(A.3) ea(νN,F)(X)=
1

(−2π)k/2

∏
j

αj(X)+(terms of lower polynomial degree).

If, in particular, N consists of only one leaf, then the terms of lower polynomial

degree vanish.

Proof. The purely polynomial part of the equivariant basic Euler form

ea(νN,F) ∈ Ha(N,F) = H(N,F) ⊗ S(a∗) is the equivariant basic Euler form

ea(νN |L,F) ∈ Ha(L,F) = S(a∗) of its restriction to a generic leaf L of F|N .

Let ξ : Rk → νpN be an adapted orthonormal frame of the normal space

as before and denote by θ the so(k)-connection associated to the Levi-Civita

connection of the transverse metric on νN . We consider the induced transverse

action of a on the bundle of orthonormal frames of νN . We claim that θξ(−X�
ξ),

X ∈ a, is the same block diagonal matrix described above with blocks of the

form (
0 −αj(X)

αj(X) 0 ). Below, we consider the flow on local leaf spaces generated

by the transverse vector field X�. Now observe

{Rk � v �−→ [X�, ξ(v)](p)} =
{
v �−→ d

dt

∣∣∣
t=0

d exp(−tX�)ξ(v)
}

=
d

dt

∣∣∣
t=0

(d exp(−tX�) ◦ ξ) = −X�
ξ = ξ ◦ θξ(−X�

ξ).
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In the second equality we pass from the isometric action on the local leaf space

to the induced action on the orthonormal frame bundle of the tangent bundle

of the local leaf space; we see that exp(−tX�)◦ ξ is a vertical curve in the frame

bundle with tangent vector −X�
ξ in ξ. This proves our claim. Since Ω(L,F)

is trivial for degrees greater than 0, the restriction of F θ to L vanishes and we

have

ea(νN |L,F)(X) =
1

(2π)k/2
det1/2(−ιX�θ)

=
1

(2π)k/2

∏
j

det1/2

(
0 −αj(X)

αj(X) 0

)

=
1

(−2π)k/2

∏
j

αj(X).

A.2. The basic Thom form. In this section we define equivariant basic Thom

classes by adapting the construction of Mathai and Quillen [MQ86] of a universal

Thom form to our basic setting. We follow [GS99, Sections 10.2 and 10.3]. The

basic steps of this construction have also been indicated in [Tö14, Section 6].

Assume that F is Killing, so that we have the natural transverse action of

the structural Killing algebra a. Let i : N → M be a closed stratum of the

a-action, i.e., N is a connected component of the union C of closed leaves of F .

Let r be the codimension of N . Denote by p : νN → N the normal bundle of

N , which we identify with a small saturated tubular neighborhood around N

by the normal exponential map νN → M . We denote the induced foliation on

νN by F̂ . Let P be the SO(r)-bundle of oriented frames in νN . On P we have

a natural foliation E ; a leaf of E through a given frame ξ consists of all frames

that are obtained by sliding ξ along the leaf of F containing the foot point of ξ.

Now the projection π : P ×Rr → P ×SO(r)R
r = νN sends the product foliation

E × {∗} to F̂ .

Let μ ∈ Ωso(r)(R
r) be the universal Thom form of Mathai and Quillen gi-

ven by

μ(X) =
e−‖x‖2

πr/2

∑
I

εIdet
1/2
(XI

2

)
dxIc ;

see also [Me06, Eq. (40)]. Here, the sum is taken over all subsets I of {1, . . . , r}
with an even number of elements. For X ∈ so(r), XI denotes the matrix

obtained from X by deleting those rows and columns that are not in I, and Ic
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denotes the complement of I. The sign εI ∈ {±1} is defined by

dxIdxIc = εIdx1 · · · dxr .

We let ρ be the SO(r)-equivariant diffeomorphism from the open unit ball

B ⊂ Rr to Rr given by

ρ(x) =
x

1− ‖x‖2 .
Then ρ∗μ can be extended to an equivariant differential form of compact sup-

port on Rr by setting it to zero outside of B. We consider now the form

ρ∗μ⊗ 1 ∈ Ωa×so(r),cv(R
r), where a is supposed to act trivially on Rr.

Note that the connection form θ on P of the canonical basic Riemannian

connection is a-invariant. The Cartan map with respect to θ is defined by

κa : Ωa×so(r),cv(P × Rr, E × {∗}) −→ Ωa,cv(νN, F̂);

f ⊗ ω �−→ f(F θ
a ) ∧ ωhor so(r),

where F θ
a = daθ + 1

2 [θ, θ] ∈ Ω2
a(P, E) ⊗ so(r) is the a-equivariant curvature of

θ, and the subscript hor so(r) denotes projection on the horizontal component

(for the projection see e.g., [GS99, p. 58]). Moreover, we consider here equi-

variant differential forms with compact vertical support (on the left hand side

with respect to the vector bundle projection P × Rr → P ). These do not form

a differential graded algebra of type (C), as the connection form does not ne-

cessarily have compact support, but still they are a W ∗-module in the sense of

[GS99, Section 3.4].

Let pr2 : P × Rr → Rr be the second projection.

Definition A.3: The equivariant basic Thom class Φa of (N,F) in (M,F) is

defined as the cohomology class of the image of ρ∗μ⊗ 1 under the composition

Ωa×so(r),cv(R
r)

pr∗2−→ Ωa×so(r),cv(P × R
r, E × {∗}) κa−→ Ωa,cv(νN, F̂),

where the compact vertical support in the middle refers to the projection

P × Rr → P . So

(A.4) Φa := κa(pr
∗
2(ρ

∗μ⊗ 1)).

We state two fundamental properties of equivariant basic Thom classes.

The map p : νN → N as a foliated map is equivariant with respect to the

transverse action of the structural Killing algebra a. Therefore the fiber in-

tegration p∗ : Ωr+•
cv (νN, F̂) → Ω•(N,F) is an a-dga map. Thus we obtain
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an S(a∗)-homomorphism p∗ : Hr+•
cv,a(νN, F̂) → H•

a (N,F), which is an isomor-

phism (see [Tö14, p. 560]).

Lemma A.4: We have

p∗Φa = 1,(A.5)

j∗Φa = ea(νN,F),(A.6)

where j : N → νN is the canonical inclusion and ea(νN,F) is the equivariant

basic Euler class of the bundle P → N (see Eq. (A.1)).

For the proof, we refer to [GS99, Section 10.4] and [GS99, Section 10.5],

respectively (see also [Me06]). As p∗ is an isomorphism as mentioned above,

(A.5) characterizes the equivariant basic cohomology class [Φa].

A.3. The equivariant basic Thom homomorphism. The following is a

well-known result in the classical context, which is necessary to define the equi-

variant basic Thom homomorphism. Recall that N is a connected component

of the union C of closed leaves.

Lemma A.5: A map τa : Ω•
a(N,F) −→ Ωr+•

a,cv(νN, F̂) defined by

τa(ω) = p∗ω ∧Φa,

where Φa ∈ Ωr
a,cv(νN, F̂) is the basic Thom form (see (A.4)), induces the inverse

of p∗ : Hr+•
a,cv (νN, F̂) → H•

a (N,F).

Proof. For each equivariant basic form ω we can verify

(p∗ ◦ τa(ω))(X) = p∗(p∗ω(X) ∧ Φa(X)) = ω(X) ∧ p∗(Φa(X)) = ω(X)

for all X ∈ a∗ by using the projection formula for forms [GHV72, Prop. IX,

I.7.13] and Equation (A.5).

Definition A.6: The composition

H•
a (N,F)

τa �� Hr+•
a,cv (νN, F̂) �� Hr+•

a (M,F)

is denoted by i∗ and called the equivariant basic Thom homomorphism,

where the second map is induced by the inclusion (νN, F̂) → (M,F).
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