
ISRAEL JOURNAL OF MATHEMATICS 222 (2017), 815–840

DOI: 10.1007/s11856-017-1606-8

UNDER-RECURRENCE IN
THE KHINTCHINE RECURRENCE THEOREM

BY

Michael Boshernitzan

Department of Mathematics, Rice University, Houston, TX 77005, USA

e-mail: michael@rice.edu

AND

Nikos Frantzikinakis

Department of Mathematics, University of Crete

Voutes University Campus, Heraklion 71003, Greece

e-mail: frantzikinakis@gmail.com

AND
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ABSTRACT

The Khintchine recurrence theorem asserts that in a measure preserving

system, for every set A and ε > 0, we have μ(A ∩ T−nA) ≥ μ(A)2 − ε

for infinitely many n ∈ N. We show that there are systems having under-

recurrent sets A, in the sense that the inequality μ(A ∩ T−nA) < μ(A)2

holds for every n ∈ N. In particular, all ergodic systems of positive en-

tropy have under-recurrent sets. On the other hand, answering a question

of V. Bergelson, we show that not all mixing systems have under-recurrent

sets. We also study variants of these problems where the previous strict

inequality is reversed, and deduce that under-recurrence is a much more

rare phenomenon than over-recurrence. Finally, we study related problems

pertaining to multiple recurrence and derive some interesting combinato-

rial consequences.
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1. Introduction and main results

1.1. Introduction. One of the most classic results in ergodic theory is the

Khintchine recurrence theorem which provides a quantitative refinement of the

celebrated recurrence theorem of Poincaré:

Khintchine Recurrence Theorem ([11]): Let (X,X , μ, T ) be a measure

preserving system and A ∈ X be a set. Then for every ε > 0 we have

μ(A ∩ T−nA) ≥ μ(A)2 − ε

for infinitely many n ∈ N.

By considering mixing systems it is easy to see that the lower bound μ(A)2

cannot be in general improved. It is less clear whether the ε that appears on

the right-hand side of Khintchine’s estimate is a necessity or can be removed.

This raises the following question:

Question 1: Is there a measure preserving system (X,X , μ, T ) and a setA ∈ X
such that μ(A∩T−nA) < μ(A)2 holds for every n ∈ N ? Can we take this system

to be mixing?

We show that the answer to both questions is affirmative (see Theorem 2.1).

Moreover, we construct examples that answer affirmatively analogous questions

pertaining to multiple recurrence (see Theorem 2.3).

Another natural question, first raised by V. Bergelson in [4, Problem 1], is

whether such constructions can be carried out on every mixing system:

Question 2: Is it true that for every mixing measure preserving system

(X,X , μ, T ) there exists a set A ∈ X such that μ(A∩ T−nA) ≤ μ(A)2 holds for

every n ∈ N?

Rather surprisingly, the answer to this question is negative. In fact, we show

(see the remark after Theorem 2.2) that if a system has an under-recurrent

set, then it necessarily has a Lebesgue component (these notions are defined in

the next section). Hence, if a system has singular maximal spectral type, then

for every set A ∈ X with 0 < μ(A) < 1 we have μ(A ∩ T−nA) > μ(A)2 for

infinitely many n ∈ N. Systems with singular maximal spectral type include

all rigid systems and several (potentially all, as conjectured in [12]) rank one

transformations. So, in a sense, systems that have under-recurrent sets are

rather rare.
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Another interesting fact is that although there are examples of over-recurrent

sets for which the sequence μ(A ∩ T−nA) − μ(A)2 converges to 0 arbitrarily

slowly (see Theorem 2.4), for under-recurrent sets some stringent conditions

apply which force this sequence to always be (absolutely) summable (see the

remark after Theorem 2.5). In a sense, sets do not like to be under-recurrent.

In the next section, we give the precise statements of the results alluded

to in the previous discussion and also give several relevant refinements and

combinatorial consequences.

2. Main results

To facilitate our discussion we first introduce some notation.

A measure preserving system, or simply a system, is a quadruple

(X,X , μ, T ) where (X,X , μ) is a probability space and T : X → X is a me-

asure preserving transformation. Throughout, all functions are assumed to be

real valued and with Tf we denote the composition f ◦ T .
Definition: Let (X,X , μ, T ) be a system. We say that:

(i) The set A ∈ X is under-recurrent if 0 < μ(A) < 1 and

μ(A ∩ T−nA) ≤ μ(A)2 for every n ∈ N.

(ii) The set A ∈ X is over-recurrent if 0 < μ(A) < 1 and

μ(A ∩ T−nA) ≥ μ(A)2 for every n ∈ N.

(iii) The function f ∈ L2(μ) is under-recurrent if it is non-constant and

∫
f · T nf dμ ≤

(∫
f dμ

)2

for every n ∈ N.

(iv) The function f ∈ L2(μ) is over-recurrent if it is non-constant and

∫
f · T nf dμ ≥

(∫
f dμ

)2

for every n ∈ N.

(v) If we have strict inequality, we say that the set or the function is

strictly under-recurrent and over-recurrent respectively.



818 M. BOSHERNITZAN ET AL. Isr. J. Math.

It is not hard to see using the von Neumann ergodic theorem that for every

system (X,X , μ, T ) and function f ∈ L2(μ) we have

lim sup
n→∞

∫
f · T nf dμ ≥

(∫
f dμ

)2

.

If in addition the system is ergodic, then

lim inf
n→∞

∫
f · T nf dμ ≤

(∫
f dμ

)2

.

This explains why we use the constants μ(A)2 and (
∫
f dμ)2 in the above defini-

tions. Furthermore, we note that over-recurrent functions are not hard to come

by; for instance, on a cartesian product system for each zero mean f ∈ L2(μ)

the function f ⊗ f is over-recurrent.

2.1. Under- and over-recurrent sets. We start by stating some results

related to under- and over-recurrent sets.

Our first result gives an affirmative answer to Question 1 in the introduction.

Theorem 2.1: There exists a mixing system that has strictly under-recurrent

and strictly over-recurrent sets.

Remark: We give two proofs of this result. One uses an explicit construction

on Bernoulli systems and implies that every positive entropy system has under-

and over-recurrent sets (see Theorem 7.1). The other is an indirect construction

that is somewhat more versatile (see Section 4.2); for a large class of systems

we establish the existence of under- and over-recurrent functions with values

on [0, 1] (see Proposition 3.4) and we then deduce using Proposition 4.1 the

existence of under- and over-recurrent sets on different systems. Using this

second method we can prove more delicate results like the following: For any

partition N = S+ ∪ S−, there exist a mixing system and a set A, such that

μ(A ∩ T−nA) > μ(A)2 for every n ∈ S+ and μ(A ∩ T−nA) < μ(A)2 for every

n ∈ S−.

V. Bergelson asked in [4, Problem 1] whether every mixing system has a

strictly under-recurrent set and whether it has a strictly over-recurrent set.

We show that the answer to the first question (and thus to Question 2 in the

introduction) is negative. The second question remains open; see Problem 1 in

Section 2.4.
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Theorem 2.2: There exists a mixing system with no under-recurrent sets.

Remark: We show something stronger: Any system with singular maximal

spectral type (with respect to the Lebesgue measure on T) has no under-

recurrent functions and in fact, for every non-constant f ∈ L2(μ) we have∫
f · T nf dμ > (

∫
f μ)2 for infinitely many n ∈ N (see the remark after The-

orem 2.5). Examples of mixing systems with singular maximal spectral type

include the Chacon map and several other rank one transformations [5, 12] as

well as certain Gaussian systems.

It is natural to inquire whether variants of Theorem 2.1 hold that deal with

the concept of multiple under-recurrence. It is not hard to prove the following

extension of the Khintchine recurrence theorem: For every system (X,X , μ, T ),
set A ∈ X , and every ε > 0, we have for every � ∈ N that

μ(A ∩ T−n1A ∩ · · · ∩ T−n�A) ≥ μ(A)�+1 − ε

for infinitely many distinct n1, . . . , n� ∈ N. The next result shows that the ε in

the above estimate cannot be removed.

Theorem 2.3: For every d ∈ N there exist a multiple mixing system1

(X,X , μ, T ) and a set A ∈ X with 0 < μ(A) < 1 and such that for � = 1, . . . , d

we have

μ(A ∩ T−n1A ∩ · · · ∩ T−n�A) < μ(A)�+1

for all distinct n1, . . . , n� ∈ N.

A similar result also holds with the strict inequality reversed.

Finally, we remark that if we do not impose any ergodicity assumptions on

the system, we can prove a variant of Theorem 2.1 which gives more information

about the possible values of the difference

dA(n) := μ(A ∩ T−nA)− μ(A)2.

We say that the sequence (an)n∈N decreases convexly to 0 if it converges to 0

and satisfies an−1 + an+1 − 2an ≥ 0 for every n ≥ 2. Note that then (an)n∈N is

necessarily non-negative and decreasing.

1 A system (X,X , μ, T ) is multiple mixing if for every � ∈ N and f0, f1, . . . , f� ∈ L∞(μ) one

has limn1,...,n�

∫
f0 · Tn1f1 · · ·Tn�f� dμ =

∏�
i=1

∫
fi dμ where the limit is taken when

min{n1, n2 − n1, . . . , n� − n�−1} → ∞.
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Theorem 2.4: Let (an)n∈N be a real valued sequence. If either
∑∞

n=1|an|<1/16,
or (an)n∈N decreases convexly to 0 and satisfies a1 ≤ 1/8, then there exist a

system (X,B, μ, T ) and a set A ∈ X such that dA(n) = an for every n ∈ N.

Remarks: • We show something stronger: If σ is a symmetric probability

measure on T, then there exist a system (X,B, μ, T ) and a set A ∈ X
such that dA(n) =

1
8 σ̂(n) for every n ∈ N.

• When it comes to under-recurrence, the first hypothesis is not so severe;

if A is an under-recurrent set, then the proof of Proposition 3.1 gives∑∞
n=1 | dA(n)| < 1/2.

2.2. Under- and over-recurrent functions. Next, we state results rela-

ted to under- and over-recurrence properties of functions. For a particular class

of systems, which we define next, it is possible to guarantee the existence of

under- and over-recurrent functions.

Definition: We say that the system (X,X , μ, T ) has a Lebesgue component

if there exists a function f ∈ L2(μ) with spectral measure equal to the Lebesgue

measure on T, that is, satisfies ‖f‖L2(μ)=1 and
∫
f ·T nf dμ=0 for every n∈N.

Systems having a Lebesgue component include ergodic nilsystems that are

not rotations [2, Theorem 4.2], [9, Proposition 2.1], and positive entropy sys-

tems [15].

The next result includes a convenient characterization of systems that have

under-recurrent functions (it is the equivalence (i)⇐⇒(iii)).

Theorem 2.5: Let (X,X , μ, T ) be a system. Then the following are equivalent:

(i) The system has an under-recurrent function.

(ii) The system has a strictly under-recurrent function.

(iii) The system has a Lebesgue component.

(iv) For every non-negative φ ∈ L1(mT) there exists g ∈ L2(μ) such that∫
g dμ = 0 and

∫
g · T ng dμ = φ̂(n) for every n ∈ N.

Remark: Our argument shows that if f ∈ L2(μ) is under-recurrent, then the

spectral measure of f is absolutely continuous with respect to the Lebesgue

measure on T and
∞∑
n=1

∣∣∣∣
∫
f · T nf dμ−

(∫
f dμ

)2∣∣∣∣ <∞.
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We deduce from the previous result the following:

Corollary 2.6: Suppose that the system (X,X , μ, T ) has an under-recurrent

function. Then it also has a strictly over-recurrent function. Furthermore, if

the real valued sequence (an)n∈N is either absolutely summable or decreases

convexly to 0, then there exists f ∈ L2(μ) such that df (n) = an for every

n ∈ N, where

df (n) :=

∫
f · T nf dμ−

(∫
f dμ

)2

.

Finally, we record a variant of Theorem 2.5 which can be used (via Proposi-

tion 4.1 below) in order to deduce the existence of under- or over-recurrent sets

for certain classes of systems.

Theorem 2.7: If the system (X,X , μ, T ) has a Lebesgue (spectral) measure

realized by a bounded function, then it has a strictly under-recurrent function

with values in [0, 1] and a strictly over-recurrent function with values in [0, 1].

Remark: For a stronger statement see Proposition 3.4. Note also that by a

theorem of V. M. Alexeyev [1] our assumption is satisfied for every system that

has Lebesgue maximal spectral type.

2.3. Combinatorial consequences. Finally, we use under- and over-recur-

rence properties of ergodic measure preserving systems in order to deduce some

combinatorial consequences. In what follows, with d(E) and d̄(E) we denote

the density and the upper density of a set E ⊂ N respectively. Whenever we

write d(E) we implicitly assume that the density of the set E exists. Using the

remark made immediately after Theorem 2.1 we deduce the following:

Theorem 2.8: For any partition N = S+ ∪ S− there exists E ⊂ N, such that

(i) d(E ∩ (E − n)) > d(E)2 for every n ∈ S+;

(ii) d(E ∩ (E − n)) < d(E)2 for every n ∈ S−;
(iii) limn→∞ d(E ∩ (E − n)) = d(E)2.

Note that even the existence of a set of positive integers E that satisfies

Property (ii) for S− = N seems non-trivial to establish.

It can be shown (one way is to deduce this from the corresponding ergodic sta-

tement via the Furstenberg correspondence principle) that for every set E ⊂ N
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and every � ∈ N and ε > 0, we have

d̄(E ∩ (E − n1) ∩ · · · ∩ (E − n�)) ≥ d̄(E)�+1 − ε

for infinitely many distinct n1, . . . , n� ∈ N. Using Theorem 2.8 we show that

for every � ∈ N the ε in the above statement cannot in general be removed.

Theorem 2.9: For every r ∈ N there exists a set of positive integers E such

that for � = 1, . . . , r we have

(i) d(E∩(E−n1)∩· · ·∩(E−n�)) < d(E)�+1 for all distinct n1, . . . , n� ∈ N;

(ii) limn1,...,n�
d(E ∩ (E − n1) ∩ · · · ∩ (E − n�)) = d(E)�+1,

where in (ii) the limit is taken when min{n1, n2 − n1, . . . , n� − n�−1} → ∞.

Moreover, there exists E ⊂ N that satisfies Property (i) with the strict ine-

quality reversed, and Property (ii).

2.4. Open problems. Theorem 2.2 asserts that there exist mixing systems

with no under-recurrent functions and the key to our construction was the fact

that every under-recurrent function has spectral measure absolutely continuous

with respect to the Lebesgue measure. This property is not shared by over-

recurrent functions (see the example in Section 8), and in fact, constructing

weakly mixing systems that have no over-recurrent functions (or sets) turns

out to be much harder, perhaps even impossible.2 This leads to the following

question (a variant of it was also asked by V. Bergelson in [4, Problem 1]):

Problem 1: Does every (weakly) mixing system have an over-recurrent set or a

bounded over-recurrent function?

C. Badea and V. Müller showed in [3] that every mixing system has a strictly

over-recurrent function in L2(μ). In fact, on every mixing system, for every

sequence (an)n∈N of positive reals that converges to 0, and every ε > 0, there

exists a function f ∈ L2(μ) with

‖f‖L2(μ) ≤ sup
n
an + ε

and such that ∫
f · T nf dμ > an

for every n ∈ N.

2 On the other hand, it is not hard to verify that ergodic Kronecker systems do not have

over-recurrent functions.
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It is possible (via Proposition 4.1 below) to transfer recurrence properties of

a function with values in [0, 1] in a given system, to recurrence properties of a

set in a different system. It is not clear whether a similar construction can take

place without changing the system.

Problem 2: If a system has an under-recurrent function with values in [0, 1]

does it always have an under-recurrent set?

Acknowledgments. We would like to thank V. Bergelson for bringing to our

attention the article [3], B. Host for a construction used in Section 8, and the

referee for useful comments.

3. Under- and over-recurrent functions

In this section, we give the proofs of the results pertaining to under- and over-

recurrence properties of functions; in the next section, we use some of these

results in order to deduce analogous properties for sets.

3.1. Proof of Theorem 2.5 and Corollary 2.6. In this subsection, it is

convenient to think of a correlation sequence (
∫
f · T nf dμ)n∈N as the sequence

of Fourier coefficients of the spectral measure σf of the function f . This way,

if
∫
f dμ = 0, then under- or over-recurrence properties of a function f ∈ L2(μ)

correspond to statements about the sign of the sequence (σ̂f (n))n∈N. Keeping

this in mind, the key to the proof of Theorem 2.5 is the following simple Fourier

analysis result:

Proposition 3.1: Let σ be a probability measure on T such that Re(σ̂(n)) ≤ 0

for every n ∈ N. Then
∞∑
n=1

|Re(σ̂(n))| ≤ 1/2.

Remark: Our argument shows that if σ is a symmetric probability measure on T

with a convergent sum of positive Fourier coefficients, then

−
∑
n∈F−

σ̂(n) ≤
∑
n∈F+

σ̂(n) +
1

2
,

where

F+ := {n ∈ N : σ̂(n) > 0} and F− := {n ∈ N : σ̂(n) < 0}.
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Proof of Proposition 3.1. For every N ∈ N we have

0 ≤
∫ ∣∣∣∣

N∑
n=1

e(nt)

∣∣∣∣2 dσ(t) = N + 2Re
∑

1≤m<n≤N

∫
e((n−m)t) dσ(t)

= N + 2

N∑
k=1

(N − k)Re(σ̂(k))

= N + 2

N−1∑
k=1

Sk,

where Sk =
∑k

n=1 Re(σ̂(n)) and e(t) := e2πit. We conclude that

(1)
1

2
+

1

2N
+

1

N

N∑
n=1

Sn ≥ 0 for every N ∈ N.

Since (−Sn) is a non-decreasing sequence in [0,∞), it has a limit

L =

∞∑
n=1

|Re(σ̂(n))| ∈ [0,∞].

Taking N → ∞ in (1) results in the inequality 1
2 − L ≥ 0, completing the

proof.

Corollary 3.2: Let σ be a symmetric probability measure on T such that

σ̂(n) ≤ 0 for every n ∈ N. Then σ is equivalent to the Lebesgue measure on T.

Proof. Using Proposition 3.1 we get that

∞∑
n=1

|cn| ≤ 1/2

where cn := σ̂(n), n ∈ N. Then dσ = φdmT where

φ(t) := 1 + 2

∞∑
n=1

cn cos(2πnt).

We have that φ(t) ≥ 0 for all t ∈ R, with equality only if

∞∑
n=1

|cn cos(2πnt)| =
∞∑

n=1

|cn| = 1/2.

This can happen only for finitely many t ∈ T. It follows that σ is equivalent to

the measure mT.
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We also need the following classic result from the spectral theory of unitary

operators:

Proposition 3.3: Let (X,X , μ, T ) be a system, f ∈ L2(μ) be a function, and

let ρ be a finite measure that is absolutely continuous with respect to σf . Then

there exists g ∈ L2(μ) with σg = ρ.

Proof. We have that dρ = φdσf for some non-negative function φ ∈ L1(σf ).

Then φ = ψ2 for some real valued ψ ∈ L2(σf ). Let g := ψ(T )f (see [14,

Corollary 2.15] for the definition of the operator ψ(T )). Then g is real valued,

g ∈ L2(μ), and dσg = ψ2 dσf = dρ, that is, σg = ρ.

Proof of Theorem 2.5. We show that (i)=⇒(iii). Suppose that f is an under-

recurrent function. Then the spectral measure of the real valued function

g := f − ∫
f dμ is symmetric, not identically 0 (since our standing assumption

is that f is non-constant), and satisfies

σ̂g(n) =

∫
f · T nf dμ−

(∫
f dμ

)2

≤ 0 for every n ∈ N.

Hence, by Corollary 3.2, the measure σg is equivalent to mT. We deduce from

this and Proposition 3.3 that there exists a function h ∈ L2(μ) with σh = mT.

Hence, the system has a Lebesgue component.

We show that (iii)=⇒(iv). Let f ∈ L2(μ) have spectral measure σf = mT

and let φ ∈ L1(mT) be non-negative. By Proposition 3.3 there exists a zero

mean g ∈ L2(μ) such that dσg = φdmT. Then∫
g · T ng dμ = σ̂g(n) = φ̂(n) for every n ∈ N.

Furthermore, since
∫
g · T ng dμ = φ̂(n) → 0 as n → ∞, we deduce from the

ergodic theorem that(∫
g dμ

)2

≤ lim
N→∞

1

N

N∑
n=1

∫
g · T ng dμ = 0.

Hence,
∫
g dμ = 0.

We show that (iv)=⇒(ii). We apply (iv) for the non-negative (real valued)

function φ ∈ L∞(T) defined by

φ(t) := 1−
∞∑
n=1

1

2n+2
(e(nt) + e(−nt)).
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We get that there exists g ∈ L2(μ) such that σg = φdmT. Then∫
g · T ng dμ = − 1

2n+2
< 0 =

(∫
g dμ

)2

for every n ∈ N.

Hence, the function g is strictly under-recurrent.

Finally, the implication (ii)=⇒(i) is obvious.

Proof of Corollary2.6. The proof follows by combining the implication (i)=⇒(iv)

of Theorem 2.5 and the fact that under the stated assumptions there exists a

non-negative even function φ ∈ L1(mT) such that φ̂(n) = an for every n ∈ N.

Indeed, if (an)n∈N decreases convexly to 0, then this is a classic result (see

for example [10, Theorem 4.1]); on the other hand, if
∑∞

n=1 |an| = A, we let

φ(t) := 2A+
∑∞

n=1 an(e(nt) + e(−nt)).

3.2. Proof of Theorem 2.7. We prove a more general result:

Proposition 3.4: Let (X,X , μ, T ) be a system that has a Lebesgue component

defined by an L∞(μ) function. Then for any partition N = S+∪S− there exists

f ∈ L∞(μ), with values in [0, 1], such that

(i)
∫
f · T nf dμ > (

∫
f dμ)2 for every n ∈ S+;

(ii)
∫
f · T nf dμ < (

∫
f dμ)2 for every n ∈ S−.

Proof. First note that it suffices to find f ∈ L∞(μ) that satisfies Properties (i)

and (ii) without imposing any other restriction on its range. Indeed, then

f̃ := 1
2‖f‖∞ (‖f‖∞ + f) still satisfies Properties (i) and (ii) and takes values in

[0, 1].

Our assumptions imply that there exists a function g ∈ L∞(μ) such that∫
g · T ng dμ = 0 for every n ∈ N and ‖g‖L2(μ) = 1.

Note that then
∫
g dμ = 0; indeed, the ergodic theorem implies that(∫

g dμ

)2

≤ lim
N→∞

1

N

N∑
n=1

∫
g · T ng dμ = 0.

Now let (an)n∈N be a sequence of real numbers such that

(i) (|an|)n∈N is decreasing;

(ii) ak > 0 for k ∈ S+ and ak < 0 for k ∈ S−;
(iii)

∑∞
k=1 |ak| < 1.
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Consider the function

f := g +

∞∑
k=1

akT
kg.

Then f ∈ L∞(μ) and
∫
f dμ = 0. We set a0 := 1. Then∫

f · T nf dμ =
∑
k,l≥0

ak · al
∫
T lg · T k+ng dμ for every n ∈ N.

Since, by assumption, {g, T g, T 2g, . . .} is an orthonormal set, we deduce that∫
f · T nf dμ = an +

∞∑
k=1

ak · ak+n for every n ∈ N.

Hence, using Properties (i)–(iii), we get for n ∈ S+ that∫
f · T nf dμ ≥ an −

∞∑
k=1

|ak| · |ak+n| ≥ an − an

∞∑
k=1

|ak| > 0,

and for n ∈ S− that∫
f · T nf dμ ≤ an +

∞∑
k=1

|ak| · |ak+n| ≤ an − an

∞∑
k=1

|ak| < 0.

This completes the proof.

4. Under- and over-recurrent sets

4.1. From functions to sets. We will use the following “correspondence

principle” in order to translate statements about correlation sequences of functi-

ons with values on the interval [0, 1] to statements about correlation sequences

of sets.

Proposition 4.1: Let (X,X , μ, T ) be a system and f ∈ L∞(μ) be a function

that takes values in [0, 1]. Then there exist an invertible system (Y,Y, ν, S) and
a set A ∈ Y such that

ν(S−n1A ∩ · · · ∩ S−n�A) =

∫
T n1f · · ·T n�f dμ

holds for every � ∈ N and all distinct non-negative integers n1, . . . , n�.

Moreover, if the system (X,X , μ, T ) is ergodic, weak-mixing, mixing, or

multiple-mixing, then so is the system (Y,Y, ν, S).
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Proof. In the sequence space Y := {0, 1}Z we denote the cylinder sets by

[εmεm+1 · · · εn] := {x = (xm)m∈Z : xm = εm, xm+1 = εm+1, . . . , xn = εn},

where m,n ∈ Z, m ≤ n, and εi ∈ {0, 1} for i ∈ Z. We let

f0 := f, f1 := 1− f,

and define the measure ν on cylinder sets by

(2) ν([ε0ε1 · · · εn]) :=
∫
fε0 · Tfε1 · · ·T nfεn dμ.

We extend ν to all cylinder sets in a stationary way. The consistency conditions

of Kolmogorov’s extension theorem are satisfied, thus ν extends to a stationary

measure on the Borel σ-algebra of the sequence space Y . If

A := {x ∈ Y : x0 = 1},

and S is the shift transformation on Y , then

ν(S−n1A ∩ · · · ∩ S−n�A) =

∫
T n1f · . . . · T n�f dμ

holds for every � ∈ N and all distinct non-negative integers n1, . . . , n�.

Finally, suppose that the system (X,X , μ, T ) is mixing (ergodicity, weak-

mixing, and multiple-mixing can be treated similarly). Let

A := [ε0ε1 · · · εk], B := [ε̃0ε̃1 · · · ε̃l]

be two cylinder sets, and let

g := fε0 · Tfε1 · . . . · T kfεk , h := fε̃0 · Tfε̃1 · . . . · T lfε̃l .

Then for n > max{k, l}, by the defining property of ν (see (2)), we have

ν(A ∩ S−nB) =

∫
g · T nh dμ→

∫
g dμ ·

∫
h dμ = ν(A) · ν(B).

By stationarity, we get a similar statement for any two cylinder sets, and by

density for all Borel subsets of Y . This proves the asserted mixing property for

the system (Y,Y, ν, S).
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4.2. Proof of Theorems 2.1 and 2.2. We are now ready to prove results

about under- and over-recurrent sets.

Proof of Theorem 2.1. Let (X,X , μ, T ) be a mixing system with a Lebesgue

component defined by a bounded function (for example a Bernoulli system).

Then by Theorem 2.7 there exists a strictly under-recurrent function f with

values in [0, 1]. By Proposition 4.1 there exist a mixing system (Y,Y, ν, S) and
a set A ∈ Y with ν(A) =

∫
f dμ (then 0 < ν(A) < 1 since f is non-constant),

and such that for every n ∈ N we have

ν(A ∩ S−nA) =

∫
f · T nf dμ <

(∫
f dμ

)2

= ν(A)2.

Hence, the set A is strictly under-recurrent.

A similar argument proves the existence of a strictly over-recurrent set B in

some other mixing system (Y,Y, ν, S).
To get a single system with a strictly under-recurrent and a strictly over-

recurrent set, we consider the direct product (X × Y,X × Y, μ × ν, T × S) of

the two systems. This system is still mixing, the set A × Y is strictly under-

recurrent, and the set X ×B is strictly over-recurrent.

To prove the statement in the remark following Theorem 2.1 we repeat the

previous argument replacing Theorem 2.7 with Proposition 3.4.

Proof of Theorem 2.2. It is known that there exist mixing systems with sin-

gular maximal spectral type (see the remark after Theorem 2.2). Then by

Theorem 2.5 any such system does not have under-recurrent functions, and as

a consequence, does not have under-recurrent sets.

The remark after Theorem 2.2 follows in a similar fashion since if f ∈ L2(μ)

satisfies
∫
f · T nf dμ ≤ (

∫
f dμ)2 for all large enough n ∈ N, then the argument

used in the proof of Corollary 3.2 shows that the spectral measure of f is

absolutely continuous with respect to the Lebesgue measure on T.

4.3. Proof of Theorem 2.4. Recall that for f ∈ L2(μ) and n = 0, 1, 2, . . .

we define

df (n) :=

∫
f · T nf dμ−

(∫
f dμ

)2

.

The proof of Theorem 2.4 is based on the following result:
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Proposition 4.2: Let σ be a symmetric probability measure on T. Then there

exist a system (X,B, μ, T ) and a function f ∈ L∞(μ) that takes values in [0, 1]

and such that

df (n) =
1

8
· σ̂(n) for n = 0, 1, 2 . . . .

Proof. Consider the system (T2,BT2 , μ, T ) where

T (x, y) := (x, y + x) (mod 1)

and μ = σ ×mT (mT is the Haar measure on T). Note that T preserves the

measure μ. Let

f(x, y) :=
1

2
(1 + cos(2πy)) =

1

2

(
1 +

e(y) + e(−y)
2

)
.

Then f takes values in [0, 1],
∫
f dμ = 1

2 , and for n = 0, 1, 2, . . . we have

∫
f · T nf dμ =

1

4
+
σ̂(n) + σ̂(−n)

16
=

(∫
f dμ

)2

+
1

8
σ̂(n).

Proof of Theorem 2.4. Combining Propositions 4.1 and 4.2, we get that for any

given symmetric probability measure σ on T, there exist a system (Y,Y, ν, S)
and a set A ∈ Y, with ν(A) = ∫

f dμ, and such that

ν(A ∩ S−nA) = ν(A)2 +
1

8
· σ̂(n) for n = 0, 1, 2 . . . .

In order to complete the proof, we choose the measure σ appropriately, as in

the proof of Corollary 2.6, taking this time into account that it is a probability

measure.

5. Multiple under- and over-recurrence

In this subsection, we prove Theorem 2.3. The next definition gives a substitute

for the notion of a Lebesgue component that is better suited for our multiple

recurrence setup.

Definition: Let (X,X , μ) be a probability space and S be a subset of Z. We say

that the sequence (fn)n∈S , of real valued functions in L∞(μ), is an orthogonal

sequence of order � ∈ N, if
∫
fn1 · fn2 · · · fn�

dμ = 0 whenever among the

indices n1, . . . , n� ∈ S there is at least one index not equal to each of the others.
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Example: Consider a Bernoulli (1/2, 1/2)-system on the sequence space

{−1, 1}Z. Then the sequence of functions (T kf)k∈Z, where f(x) = x(0) and

T is the shift transformation (defined by (Tx)(k) = x(k + 1), k ∈ Z), is an

orthogonal sequence of order � for every � ∈ N.

Proposition 5.1: Let (X,X , μ, T ) be a system and let � ∈ N. Suppose that

there exists g ∈ L∞(μ) with values in {−1, 1} such that (T ng)n≥0 is an ortho-

gonal sequence of order 2�. Then there exists f ∈ L∞(μ) with values in [0, 1]

such that for d = 2, . . . , �+ 1 we have that∫
T n1f · · ·T ndf dμ <

(∫
f dμ

)d

for all distinct n1, . . . , nd ∈ N. Furthermore, a similar statement holds with the

strict inequality reversed.

Proof. Let � ∈ N and g satisfies the asserted hypothesis. We can assume that

‖g‖L∞(μ) ≤ 1. Let (ak)k∈Z be a sequence of real numbers such that

(i) a0 = 0 and 0 < an = −a−n <
1

2d+1�! for every n ∈ N;

(ii)
∑∞

n=1 an ≤ 1
2 .

Consider the function

h := g ·
∞∑
k∈Z

akT
kg.

Then

‖h‖∞ ≤
∑
k∈Z

|ak| = 2

∞∑
k=1

ak ≤ 1.

Note that ∫
h dμ =

∑
k∈Z

ak

∫
g · T kg dμ = 0,

where the last equality follows from the order 2 orthogonality of the sequence

(T ng)n≥0 and the fact that a0 = 0. Let

f :=
1 + h

2
.

Then f takes values in [0, 1] and
∫
f dμ = 1

2 . We claim that f satisfies the

asserted under-recurrence property. For the reader’s convenience, we first ex-

plain how the argument works for d = 2, 3; the general case is similar but the

notation is more cumbersome.



832 M. BOSHERNITZAN ET AL. Isr. J. Math.

Proof for d = 2, 3. A simple computation that uses the order 4 orthogonality of

the sequence (T ng)n≥0, that g
2 = 1, and the properties of the sequence (ak)k∈Z,

shows that ∫
T n1h · T n2h dμ = an1−n2an2−n1 = −a2n1−n2

for all distinct n1, n2 ∈ N. We deduce that for distinct n1, n2 ∈ N we have

4

∫
T n1f · T n2f dμ =1 + 2

∫
h dμ+

∫
T n1h · T n2h dμ

=1− a2n1−n2
< 1,

where we used that
∫
h dμ = 0. Hence, for all distinct n1, n2 ∈ N we have∫
T n1f · T n2f dμ <

1

4
=

(∫
f dμ

)2

.

A similar computation, this time using the order 6 orthogonality of the se-

quence (T ng)n≥0, shows that∫
T n1h · T n2h · T n3h dμ = an1−n2an2−n3an3−n1 + an1−n3an2−n1an3−n2 = 0

for all distinct n1, n2, n3 ∈ N. Furthermore, for distinct n1, n2, n3 ∈ N we have

8

∫
T n1f · T n2f · T n3f dμ =1 + 3

∫
h dμ+

∫
T n1h · T n2h dμ

+

∫
T n1h · T n3h dμ+

∫
T n2h · T n3h dμ

+

∫
T n1h · T n2h · T n3h dμ

which is equal to

1− a2n1−n2
− a2n1−n3

− a2n2−n3
< 1.

Hence, for all distinct n1, n2, n3 ∈ N we have∫
T n1f · T n2f · T n3f dμ <

1

8
=

(∫
f dμ

)3

.

Proof for d ≥ 4. First note that since
∫
h dμ = 0, we have that

(3) 2d
∫
T n1f · . . . · T ndf dμ = 1 +A+B,

where

(4) A :=
∑

1≤i<j≤d

∫
T nih · T njh dμ = −

∑
1≤i<j≤d

a2ni−nj
,
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and

(5) B := sum of at most 2d terms of the form

∫
Tm1h · · ·Tmd′h dμ

where d′ ∈ {3, . . . , d} and m1, . . . ,md′ ∈ {n1, . . . , nd} are distinct integers. Let

(6) α := max
1≤i	=j≤d

{|ani−nj |}.

Generalizing the computation done in the case d = 2, 3, this time using the

order 2d orthogonality of the sequence (T ng)n≥0, we get for every d ≥ 2 and

distinct n1, . . . , nd ∈ N that

(7)

∫
T n1h · · ·T ndh dμ =

∑
π∈Σ[d]

an1−π(n1) · · · and−π(nd)

where Σ[d] denotes the set of all permutations of the set {1, . . . , d} that have

no fixed points. Combining (5), (6), (7), and using that |an| ≤ 1
2d+1d!

for all

n ∈ N, we get that

|B| ≤ 2dd!α3 ≤ 2dd!
1

2d+1d!
α2 =

α2

2
.

Combining this with (4), we deduce that

1 +A+B ≤ 1− α2 +
α2

2
< 1.

Hence, (3) gives that

∫
T n1f · · ·T ndf dμ <

1

2d
=

(∫
f dμ

)d

for all distinct n1, . . . , nd ∈ N, as required.

A similar (and simpler) argument proves the asserted over-recurrence pro-

perty. The only change needed is that in the definition of the sequence (ak)k∈Z

we impose that a−n = an for every n ∈ N.

Proof of Theorem 2.3. Consider a multiple mixing system that satisfies the as-

sumptions of Proposition 5.1 (for example, any Bernoulli system). Using Pro-

position 4.1 we get a multiple mixing system and a set satisfying the asserted

properties.
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6. Combinatorial consequences

In this short section, we deduce Theorems 2.8 and 2.9 from their ergodic coun-

terparts.

Proof of Theorem 2.8. Let (X,X , μ, T ) be the mixing system and let A be the

set given by the remark following Theorem 2.1. The ergodic theorem guarantees

that for some x0 ∈ X and for every non-negative integer n we have

lim
N→∞

1

N

N∑
k=1

fn(T
kx0) =

∫
fn dμ

where fn := 1A∩T−nA. Let E := {m ∈ N : Tmx0 ∈ A}. Then
d(E) = μ(A) and d(E ∩ (E − n)) = μ(A ∩ T−nA) for every n ∈ N.

Hence,

d(E ∩ (E − n)) = μ(A ∩ T−nA) > μ(A)2 = d(E)2 for every n ∈ S+

and, similarly,

d(E ∩ (E − n)) = μ(A ∩ T−nA) < μ(A)2 = d(E)2 for every n ∈ S−.

Moreover, since the system is mixing, we have that

d(E ∩ (E − n)) = μ(A ∩ T−nA) → μ(A)2 = d(E)2

as n→ ∞.

In a similar fashion, we deduce Theorem 2.9 from Theorem 2.3. We include

the details for the reader’s convenience.

Proof of Theorem 2.9. For r ∈ N, let (X,X , μ, T ) be the multiple mixing system

and A be the set given by Theorem 2.3. The ergodic theorem guarantees that

for some x0 ∈ X and for all non-negative integers n1, . . . , nr we have

lim
N→∞

1

N

N∑
k=1

fn1,...,nd
(T kx0) =

∫
fn1,...,nr dμ

where fn1,...,nr := 1A∩T−n1A∩···∩T−nrA. Let E := {m ∈ N : Tmx0 ∈ A}. One

concludes the proof of Property (i) exactly as in the proof of Theorem 2.8.

Property (ii) follows in a similar way using the fact that the system is assumed

to be multiple mixing.
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The existence of a set E that satisfies Property (ii) with the strict inequa-

lity reversed and also satisfies Property (ii), follows in a similar fashion from

Theorem 2.3.

7. Under- and over-recurrent sets in positive entropy systems

In this section we give explicit constructions of under- and over-recurrent sets

in Bernoulli systems and deduce that every system with positive entropy has

under- and over-recurrent sets.

Theorem 7.1: Every ergodic system with positive entropy has a strictly over-

recurrent and a strictly under-recurrent set.

Proof. Suppose that the system (X,X , μ, T ) has entropy h > 0. It is known [16]

that any Bernoulli shift with entropy smaller than h is a factor of the system

(X,X , μ, T ). Hence, it suffices to show that there exist Bernoulli shifts with

arbitrarily small entropy that have strictly under- and over-recurrent sets.

Thus, henceforth, we work with Bernoulli systems on the spaceX := {0, 1, 2}N
and for i = 0, 1, 2 we let

pi := μ([i]) ∈ (0, 1),

where with [x1 · · ·xk] we denote the cylinder set consisting of those x ∈ X whose

first k entries are x1, . . . , xk ∈ {0, 1, 2}.
We first deal with over-recurrence. Let

A := {x ∈ X : the first non-zero entry of x is 1}.
Then

A =

∞⋃
n=1

An

where

An := {x ∈ X : the first non-zero entry of x is 1 and it is at place n}.
Since μ(An) = pn−1

0 p1, we have

μ(A) =

∞∑
n=1

pn−1
0 p1 =

p1
1− p0

=
p1

p1 + p2
=: a.

Moreover, we have

A ∩ T−nA = A′
n ∩ T−nA
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where

A′
n :=

( n⋃
k=1

[(0)k−11]

)
∪ [(0)n]

and (0)i is used to denote i-consecutive zero entries. Since the set A′
n depends

on the first n entries of elements of X only, we have

μ(A ∩ T−nA) = μ(A′
n) · μ(T−nA) = a · μ(A′

n)

where

μ(A′
n) = pn0 +

n∑
k=1

pk0p1 = pn0 + p1 · 1− pn0
1− p0

= pn0 + a(1− pn0 ) = a+ pn0 (1− a).

It follows that

μ(A ∩ T−nA) = a2 + pn0 (1− a)a > a2 = μ(A)2 for every n ∈ N.

Hence, the set A is strictly over-recurrent. Note also that by choosing p1 suffi-

ciently close to 1 (then p0, p2 will be close to 0) we can make the Bernoulli shift

have arbitrarily small entropy.

Next we deal with under-recurrence. We let

A := {x ∈ X : the first two non-zero entries of x are 1 and 2 in this order}.
Then

A =
⋃

k,l≥0

Ak,l where Ak,l := [(0)k1(0)l2].

Hence,

μ(A) =
∑
k,l≥0

p1p2p
k+l
0 = p1p2

(∑
k≥0

pk0

)2

=
p1p2

(p1 + p2)2
=: a.

Next we fix n ∈ N and compute the measure of the set A ∩ T−nA. We

partition the set A into three sets. The first, call it A1, consists of those x ∈ A

whose first two non-zero entries (which are 1 and 2) occur at the first n places.

Then

μ(A1 ∩ T−nA) =a ·
∑

0≤k+l≤n−2

μ([(0)k1(0)l2]) = ap1p2

n−2∑
k=0

(k + 1)pk0

=a2(1 + npn0 − npn−1
0 − pn0 ).
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The second, call it A2, consists of those x ∈ A whose first two non-zero entries

occur after the first n places. Then

μ(A2 ∩ T−nA) = a · μ([0]n) = apn0 .

The third, call it A3, consists of those x ∈ A whose first non-zero entry (which

is 1) occurs at the first n places and the second (which is 2) occurs after the

first n places. Then clearly A3 ∩ T−nA = ∅, hence

μ(A3 ∩ T−nA) = 0.

Combining the above, we deduce that

(8) μ(A ∩ T−nA) = a2(1 + npn0 − npn−1
0 − pn0 ) + apn0 , n ∈ N.

Then

μ(A ∩ T−nA) < μ(A)2 = a2 ⇐⇒ n >
p0(1− a)

a(1− p0)
.

So it remains to choose p0, p1, p2 so that p0 < a; then the last estimate will be

satisfied for all n ∈ N and the set A will be strictly under-recurrent. We let

p1 = 1 − s and p2 = ts with s, t ∈ (0, 1). Then the estimate p0 < a = p1p2

(p1+p2)2

leads to the equivalent estimate 1−t < t(1−s)
(1−s+ts)2 which is satisfied, for example,

if t = 3
4 and s < 1

2 .

Summarizing, taking p0 = 1
4s, p1 = 1− s, p2 = 3

4s, we have that for all s <
1
2

the set A, defined above, is strictly under-recurrent. Taking s close to 0 we

deduce the existence of Bernoulli shifts with arbitrarily small entropy that have

strictly under-recurrent sets. This finishes the proof.

8. Singular over-recurrent functions on a mixing system

In Theorem 2.2 we showed that there exist mixing systems with no under-

recurrent sets, and the key to our construction was that a function with singular

spectral measure cannot be under-recurrent. In this section we show that a

similar approach cannot be used in order to construct mixing systems with no

over-recurrent functions. We will show that there exists a mixing system that

has a strictly over-recurrent function with singular spectral measure.
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First, we briefly review some basic facts regarding Riesz-products; their proofs

can be found in [14, pages 5–7] and [6, 13, 17]. If

PN (t) =

N−1∏
j=0

(1 + aj cos(3
jt)), N ∈ N,

where (aj)j≥0 are real numbers with |aj | ≤ 1, then the sequence of probability

measures (σN )N∈N, defined by

dσN := PN (t) dt, N ∈ N,

converges w∗ to a symmetric probability measure σ on [0, 1] with Fourier coef-

ficients σ̂(0) = 1 and

(9) σ̂(n) =
∏
j

(
aj
2
), if n =

k∑
j=0

εj3
j , εj = −1, 0, 1,

where the product is taken over those j ∈ {0, . . . , k} for which εj �= 0.

The measure σ is equivalent to the Lebesgue measure if
∑∞

j=0 |aj|2 <∞ and

is continuous and singular if
∑∞

j=0 |aj |2 = ∞.

We also review some basic facts regarding Gaussian systems; their proofs can

be found in [7, pages 369–371] and [8, pages 90–92]. If σ is a symmetric pro-

bability measure on the circle, then there exist a Gaussian system (X,X , μ, T )
and a function f ∈ L2(μ) (f is a real Gaussian variable, so it is not bounded)

with spectral measure σ, meaning it satisfies

(10)

∫
f · T nf dμ = σ̂(n) for n = 0, 1, 2, . . . .

The Gaussian system is mixing if and only if the measure σ is Rajchman,

meaning it satisfies σ̂(n) → 0 as n → ∞. Note that in this case we have∫
f dμ = 0.

We proceed now to the construction (shown to us by B. Host). We take σ to

be the w∗-limit of the sequence of measures (σN )N∈N defined by

dσN =

N∏
j=0

(
1 +

cos(3jt)√
j + 1

)
dt, N ∈ N.

Since
∞∑
j=0

( 1√
j + 1

)2

= ∞,
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as remarked above, the measure σ is singular. Moreover, it follows from (9)

that σ̂(n) > 0 for every n ∈ N and σ̂(n) → 0 as n→ ∞.

Next, we consider a Gaussian system and a function f ∈ L2(μ) that satisfies

(10). As remarked above, this system is mixing. Moreover, the function f has

singular spectral measure by construction, and satisfies∫
f · T nf dμ = σ̂(n) > 0 for every n ∈ N.

Hence, the function f is strictly over-recurrent, as required.
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Mathematica 1, (1934), 177–179.

[12] I. Klemes and K. Reinhold, Rank one transformations with singular spectral type, Israel

Journal of Mathematics 98 (1997), 1–14.

[13] J. Peyrière, Sur les produits de Riesz, Comptes Rendus Hebdomadaires des Séances de
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