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ABSTRACT

A detailed combinatorial analysis of planar convex lattice polygonal lines

is presented. This makes it possible to answer an open question of Vershik

regarding the existence of a limit shape when the number of vertices is

constrained.

1. Introduction

In 1979, Arnold [2] considered the question of the number of equivalence clas-

ses of convex lattice polygons having a given integer as area (we say that two

polygons having their vertices on Z2 are equivalent if one is the image of the

other by an automorphism of Z2). Later, Vershik changed the constraint in this

problem and raised the question of the number, and typical shape, of convex

lattice polygons included in a large box [−n, n]2. The stepping stone in this

problem lies in the understanding of the number and shape of polygonal lines

having integer vertices, starting from the origin and forming a sequence of in-

creasing slopes. In 1994, three different solutions to this problem were found

by Bárány [4], Vershik [16] and Sinăı [14]. Namely, they proved that, when n

goes to infinity:

(a) The number of convex polygonal lines with vertices in (Z∩ [0, n])2 joining

(0, 0) to (n, n) is equal to exp(3(ζ(3)/ζ(2))1/3 n2/3 + o(n2/3)).
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(b) The number of vertices constituting a typical line is equivalent to

(ζ(3)2ζ(2))−1/3 n2/3.

(c) There is a limit shape for a typical convex polygonal line, which is an arc

of a parabola.

It turns out that these problems are related to an earlier family of works we

shall discuss now. In 1926, Jarńık showed that the maximal number of integral

points that can be interpolated by a convex curve of Euclidean length n is

asymptotically equal to Cn2/3, with an explicit constant C. This article was

at the origin of many works of Diophantine analysis, and we refer the reader to

the papers of Schmidt [13] and Bombieri and Pila [8] for more recent results,

discussions and open questions on this subject. One may slightly change Jarńık’s

framework, and consider the set of integral points which are interpolated by the

graph on [0, n] of an increasing and strictly convex function satisfying f(0) = 0

and f(n) = n. In 1995, Acketa and Žunić [1] proved the following box analog of

Jarńık’s result: the largest number of vertices for an increasing convex polygonal

line on Z2
+ joining (0, 0) to (n,m) is asymptotically equivalent to 3π−2/3(nm)1/3.

They derived the asymptotic value of the maximal number of vertices for a

lattice polygon included in a square.

The nature of the results shows that these problems are related to both affine

differential geometry and geometry of numbers. Indeed, the parabola found as

limit shape coincides with the convex curve inside the square having the largest

affine perimeter. Furthermore, the appearance of the values of the Riemann

zeta function underlines the arithmetic aspects of the problem. One could show

indeed, by using Valtr’s formula [15], that if the lattice Z2 was replaced by

a Poisson Point Process having intensity one (which can be thought of as the

most isotropic “lattice” one can imagine), the constants (ζ2(3)ζ(2))−1/3 ≈ 0.749

and 3(ζ(3)/ζ(2))1/3 ≈ 2.702 would be merely raised respectively to 1 and 3

asymptotically almost surely. The link with number theory was made even

more clear by the authors who proved in [10] that Riemann’s Hypothesis is

actually equivalent to the fact that the remainder term o(n2/3) in point (a) is

o(n1/6+ε) for all ε > 0.

As we said above, various strategies have been considered for Vershik’s pro-

blem. Bárány [4] and Vershik [16] use generating functions and an affine pe-

rimeter maximization problem. Later, Vershik and Zeitouni [18] made result

(c) more precise and general by proving a large deviation principle whose rate
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function involves this affine perimeter. Sinăı’s approach was very different. His

proof is based on a statistical mechanical description of the problem. It was

recently made fully rigorous and extended by Bogachev and Zarbaliev [7].

1.1. Main results. Our aim in this paper is to improve the three results (a),

(b), (c) described above. In particular, we shall address the following natural

extension of (c) which appears as an open question in Vershik’s 1994 article:

“Theorem 3.1 shows how the number of vertices of a typical

polygonal line grows. However, one can consider some other

fixed growth, say,
√
n, and look for the limit shapes for uniform

distributions connected with this growth [...]”

One of our results is that, not only does there still exist a limit shape when

the number of vertices is constrained, but also the parabolic limit shape is

actually universal for all growth rates. The following theorem is a consequence

of Theorem 3 of section 4 and Theorem 5 of section 5 which concern respectively

limit shape results for lines with many and few vertices.

Theorem: The Hausdorff distance between a random convex polygonal line

on ( 1nZ ∩ [0, 1])2 joining (0, 0) to (1, 1) with at most k vertices, and the arc of

parabola {
(x, y) ∈ [0, 1]2 |

√
y +

√
1− x = 1

}
,

converges in probability to 0 when both n and k tend to infinity.

The proof of this theorem requires a detailed combinatorial analysis of convex

polygonal lines with a constrained number of vertices. This is the purpose of

Theorem 1 and Theorem 4 which together complete results (a) and (b) in the

following way:

Theorem: Let p(n; k) denote the number of convex polygonal lines in Z2
+ joi-

ning (0, 0) to (n, n) and having k vertices.

• There exist two functions c and e (which are explicitly computed in

Theorem 1) such that, for all � ∈ (0,+∞), if k is asymptotically equi-

valent to c(�)n2/3, then

log p(n; k) ∼ e(�)n2/3.
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• If k is asymptotically negligible compared to n2/3, then

p(n; k) =

(
n2

k3

)k+o(k)

.

• If k is asymptotically negligible compared to n1/2(logn)−1/4, then

p(n; k) ∼ 1

k!

(
n− 1

k − 1

)2

.

Let us mention that the question of the number of vertices is reminiscent

of other ones considered, for instance, by Erdős and Lehner [11], Arratia and

Tavaré [3], or Vershik and Yakubovich [17] who were studying decomposable

combinatorial objects (integer partitions, permutations, polynomials over finite

field, Young tableaux, etc.) with a specified number of components (according

to the setting: summands, cycles, irreducible divisors, etc.).

1.2. Organization of the paper. In section 3, we present the detailed com-

binatorial analysis in the case of many vertices k � log ‖n‖. Following Sinăı’s

approach, the method, borrowed from classical ideas of statistical physics, relies

on the introduction of a grand canonical ensemble which endows the conside-

red combinatorial object with a parametrized probability measure. Then, the

strategy consists in calibrating the parameters of the probability in order to fit

with the constraints one has to deal with. Namely, in our question, it turns out

that one can add one parameter in Sinăı’s probability distribution that makes it

possible to take into account, not only the location of the extreme point of the

polygonal line but also the number of vertices it contains. In this model, we are

able to establish a contour-integral representation of the logarithmic partition

function in terms of Riemann’s and Barnes’ zeta functions. The residue analysis

of this representation leads to precise estimates of this function as well as of its

derivatives, which correspond to the moments of the random variables of inte-

rest such as the position of the terminal point and the number of vertices of the

line. Using a local limit theorem, we finally obtain the asymptotic behavior of

the number of lines having c(�) (n1n2)
1/3 vertices in terms of the polylogarithm

functions Li1,Li2,Li3. We also obtain an asymptotic formula for the number of

lines having a number k of vertices satisfying log ‖n‖ 
 k 
 ‖n‖2/3.
In section 4, we derive results about the limit shape of lines having a fixed

number of vertices k � log ‖n‖, answering the question of Vershik in a wide

range.
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In section 5, we extend the results about combinatorics and limit shape

beyond log ‖n‖. The approach here is radically different and more elemen-

tary. It allows us to recover the results of sections 3 and 4, up to k 
 ‖n‖1/3.
It relies on the comparison with a continuous setting which has been studied

by Bárány [5] and Bárány, Rote, Steiger and Zhang [6].

In section 6, we go back to Jarńık’s original problem. In addition to Jarńık’s

result that we recover, we give the asymptotic number of lines, typical number of

vertices, and limit shape, which is an arc of a circle, in this different framework.

In section 7, we mix both types of conditions. The statistical physical method

still applies and we obtain, for the convex lines joining (0, 0) to (n, n) and having

a given total length, a continuous family of convex limit shapes that interpolates

the diagonal of the square and the two sides of the square, going through the

above arc of parabola and arc of circle.

2. A one-to-one correspondence

We start this paper by recalling the correspondence between finite convex po-

lygonal lines issuing from 0 whose vertices define increasing sequences in both

coordinates and finite configurations of multiplicities on the set of pairs of cop-

rime positive integers. This correspondence is a discrete analog of the Gauss–

Minkowski transformation in convex geometry.

More precisely, let Π denote the set of finite planar convex polygonal lines Γ

issuing from 0 such that the vertices of Γ are points of the lattice Z
2 and the

angle between each side of Γ and the horizontal axis is in the interval [0, π/2].

Now consider the set X of all vectors x = (x1, x2) whose coordinates are coprime

nonnegative integers including the pairs (0, 1) and (1, 0). Jarńık observed that

the space Π admits a simple alternative description in terms of configurations

of multiplicities on X.

Lemma: The space Π is in one-to-one correspondence with the space Ω of non-

negative integer-valued functions x �→ ω(x) on X with finite support (that is

ω(x) = 0 for only finitely many x ∈ X).
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The inverse map Ω → Π corresponds to the following simple construction:

for a given multiplicity configuration ω ∈ Ω and for all θ ∈ [0,∞], let us define

(1) Xθ
i (ω) :=

∑
(x1,x2)∈X

x2≤θx1

ω(x) · xi, i ∈ {1, 2}.

When θ ranges over [0,∞], the function θ �→ Xθ(ω) = (Xθ
1 (ω), X

θ
2 (ω)) takes

a finite number of values which are points of the lattice quadrant Z2
+. These

points are in convex position since we are adding vectors in increasing slope

order. The convex polygonal curve Γ ∈ Π associated to ω is simply the linear

interpolation of these points starting from (0, 0).

3. A detailed combinatorial analysis

For every n = (n1, n2) ∈ Z2
+ and k ∈ Z+, define Π(n; k) to be the subset of

Π consisting of polygonal lines Γ ∈ Π with endpoint n and having k vertices,

and denote by p(n; k) := |Π(n; k)| its cardinality. Before we can state our first

theorem, let us recall that the polylogarithm Lis(z) is defined for all complex

number s with �(s) > 0 and |z| < 1 by

Lis(z) =

∞∑
k=1

zk

ks
=

1

Γ(s)

∫ ∞

0

zts−1

et − z
dt.

The integral in the last term is a holomorphic function of z in C \ [1,+∞). We

will work with this analytic continuation of Lis in the sequel. We now define

c(�) and e(�) for all � ∈ (0,+∞) by

c(�) =
�

1− �
× Li2(1− �)

ζ(2)1/3(ζ(3)− Li3(1− �))2/3
,

e(�) = 3

(
ζ(3)− Li3(1 − �)

ζ(2)

)1/3

− log(�)c(�).

The following statement indicates the asymptotic exponential behavior of p(n; k)

in the case of many vertices, that is to say, when k is not too small with respect

to ‖n‖ =
√
n2
1 + n2

2.

Theorem 1: Suppose that ‖n‖ and k tend to +∞ such that n1 � n2
1 and

log ‖n‖ is asymptotically negligible compared to k.

1 Here and in the sequel, we mean by x � y that x = O(y) and y = O(x).



Figure 1. Distribution of the number of vertices of a random

convex polygonal line. The point of maximal e-coordinate cor-

responds to typical lines. The point of maximal c-coordinate

corresponds to lines with a maximal number of vertices. Note

that the curve is not symmetric.

Remark: The function � �→ e(�) is maximal for � = 1 and the corresponding

coefficients are

c(1) =
1

(ζ(2)ζ(3)2)1/3
, e(1) = 3

(
ζ(3)

ζ(2)

)1/3

,

which already recovers results (a) and (b).

Remark: As a byproduct of Theorem 1, one can deduce the asymptotic beha-

vior of the maximal number M(n) of integral points that an increasing convex

function satisfying f(0) = 0 and f(n) = n can interpolate. This question and its
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counterpart, concerning the maximal convex lattice polygons inscribed in a con-

vex set, was solved by Acketa and Žunić [1] who proved that Mn ∼ 3π−2/3 n2/3.

Starting from Theorem 1, the proof goes as follows. We first notice that e(λ)

tends to 0 when λ goes to infinity. At the same time,

c(λ) ∼ −ζ(2)−1/3Li2(1 − λ)(−Li3(1 − λ))−2/3

which tends to 3π−2/3. Since e(λ) remain strictly positive, we get

lim inf n−2/3M(n) ≥ 3π−2/3.

Now, let ε > 0 and suppose lim supn−2/3M(n) ≥ 3π−2/3(1 + 2ε). Then,

for arbitrary large n, there is a polygonal line Γ ∈ Π(n, n) having at least

3π−2/3 n2/3(1 + ε) vertices. By choosing k = 3π−2/3 n2/3 vertices among the

vertices of this line, we get already a subset of Π(n; k) whose cardinality is larger

than ecn
2/3

with c > 0. This contradicts the fact that limλ→∞ e(λ) = 0.

3.1. Modification of Sinăı’s model and proof of Theorem 1. Recall

from section 2 the set X = {(x1, x2) ∈ Z2
+ | gcd(x1, x2) = 1} of primitive vectors

and the set Ω of functions ω : X → Z+ with finite support. The restriction of

Jarńık’s correspondence to the subspace Π(n; k) induces a bijection with the

subset Ω(n; k) of Ω consisting of multiplicity configurations ω ∈ Ω such that

the “observables”

X1(ω) :=
∑
x∈X

ω(x) · x1, X2(ω) :=
∑
x∈X

ω(x) · x2, K(ω) :=
∑
x∈X

1{ω(x)>0}

are respectively equal to n1, n2 and k. Notice that X1 = X∞
1 and X2 = X∞

2

with the previous notations. The random variablesX1 andX2 correspond to the

coordinates of the endpoint of the polygonal chain while K counts its number

of vertices.

For all λ > 0 and for every pair of parameters β = (β1, β2) ∈ (0,+∞)2, we

endow Ω with the probability measure defined for ω ∈ Ω by

Pβ,λ(ω) :=
1

Z(β, λ)
exp

[
−
∑
x∈X

ω(x)β · x
]
λK(ω)

=
1

Z(β, λ)
e−β1X1(ω)e−β2X2(ω)λK(ω),
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where the partition function Z(β, λ) is chosen as the normalization constant

(2) Z(β, λ) =
∑
n∈Z

2
+

∑
k≥1

p(n; k) e−β·nλk.

Note that Z(β, λ) is finite for all values of the parameters (β, λ) ∈ (0,+∞)3.

Indeed, if we denote by p(n) =
∑

k≥1 p(n; k) the total number of convex poly-

gonal lines of Π with endpoint n = (n1, n2) and Mn the maximal number of

edges of such a line, the following bound holds:

Z(β, λ) ≤
∑
n∈Z

2
+

p(n) max(1, λ)Mn e−β·n.

We use now the results of [4, 16, 14] according to which log p(n) = O(‖n‖2/3)
and of [1] where Acketa and Žunić have proven that Mn = O(‖n‖2/3). We will

use in the sequel the additional remark that Z(β, λ) is an analytic function of

λ for all β > 0.

The partition function Z is of crucial interest since its partial logarithmic

derivatives are equal to expectations of macroscopic characteristics of the po-

lygonal line. Namely, the expected coordinates of the endpoint of the line are

given by

Eβ,λ[Xi] =
∑
n∈Z

2
+

∑
k≥1

ni
p(n; k) e−β·nλk

Z(β, λ)
= − ∂

∂βi
logZ(β, λ), i ∈ {1, 2}.

Similarly, for i, j ∈ {1, 2},

Eβ,λ[K] = λ
∂

∂λ
logZ(β, λ), Covβ,λ(Xi, Xj) =

∂2

∂βi∂βj
logZ(β, λ).

Taking λ = 1, the probability Pβ,λ is nothing but the two-parameter probabi-

lity distribution introduced by Sinăı [14]. Under the measure Pβ,λ, the variables

(ω(x))x∈X are still independent, as in Sinăı’s framework, but follow a geometric

distribution only for λ = 1. In the general case, the measure Pβ,λ is absolutely

continuous with respect to Sinăı’s measure with density proportional to λK(·)

and the distribution of ω(x) is a biased geometric distribution. Loosely spea-

king, Pβ,λ corresponds to the introduction of a penalty of the probability by a

factor λ each time a vertex appears. Strictly speaking, it is only a penalty when

λ < 1 and a reward when λ > 1.

Let Pn,k denote the uniform distribution on Ω(n; k). Since Pβ,λ(ω) depends

only on the values of X1(ω), X2(ω), and K(ω), we deduce that the conditional
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distribution it induces on Ω(n; k) coincides with Pn,k. For instance, we have the

following formula for all (β, λ) ∈ (0,+∞)2×(0,+∞) which will be instrumental

in the proof:

(3) p(n1, n2; k) = Z(β, λ) eβ1n1eβ2n2λ−k
Pβ,λ[X1 = n1, X2 = n2,K = k].

In order to get a logarithmic equivalent of p(n1, n2; k), our strategy is to

choose the three parameters so that

Eβ,λ [X1] = n1, Eβ,λ [X2] = n2, Eβ,λ [K] = k.

This will indeed lead to an asymptotic equivalent of

Pβ,λ[X1 = n1, X2 = n2,K = k]

due to a local limit result. This equivalent having polynomial decay, it will not

interfere with the estimation of log p(n1, n2; k). The analysis of the partition

function in the next subsection leads to a calibration of the parameters β1, β2, λ

satisfying the above conditions. Lemma 4 shows that, for this calibration,

k ∼ c(λ)(n1n2)
1/3

and

logZ(β, λ) ∼ β1n1 ∼ β2n2 ∼
(
ζ(3)− Li3(1− λ)

ζ(2)

)1/3

(n1n2)
1/3.

Furthermore, Theorem 2 implies that logPβ,λ[X1 = n1, X2 = n2,K = k] =

O(log ‖n‖). So finally, Theorem 1 follows readily by plugging these estimates

into (3). Note that the case k = o(‖n‖2/3) corresponds to λ going to 0, and the

above asymptotics become, as stated in Theorem 1,

λ ∼ k3

n1n2
, and logZ ∼ β1n1 ∼ β2n2 ∼ k.

As a consequence, the term λ−k dominates the asymptotic in (3), which con-

cludes the proof.

3.2. Estimates of the logarithmic partition function and its deri-

vatives. We need, in the following, the analog to the Barnes bivariate zeta

function defined for β = (β1, β2) ∈ (0,+∞)2 by

ζ∗2 (s;β) :=
∑
x∈X

(β1x1 + β2x2)
−s,
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this series being convergent for �(s) > 2. The following preliminary lemma

gives useful properties of this function. This will be done by expressing this

function in terms of the Barnes zeta function ζ2(s, w;β) which is defined by

analytic continuation of the series

ζ2(s, w;β) =
∑
n∈Z

2
+

(w + β1n1 + β2n2)
−s, �(s) > 2, �(w) > 0.

It is well known that ζ2(s, w;β) has a meromorphic continuation to the complex

s-plane with simple poles at s = 1 and s = 2, and that the residue at s = 2 is

simply (β1β2)
−1. In the next lemma, we derive the relation between ζ2 and ζ∗2 ,

and we also establish an explicit meromorphic continuation of ζ2 to the half-

plane �(s) > 1 in order to obtain polynomial bounds for |ζ∗2 (s)| as |�(s)| → +∞.

Before the statement, let us recall that the fractional part {x} ∈ [0, 1) of a real

number x ∈ R is defined as {x} = x− �x�.
Lemma 1: The functions ζ2(s, w;β) and ζ∗2 (s;β) have a meromorphic continu-

ation to the complex plane.

(i) The meromorphic continuation of ζ2(s, w;β) to the half-plane �(s) > 1 is

given by

ζ2(s, w;β) =
1

β1β2

w−s+2

(s− 1)(s− 2)
+

(β1 + β2)w
−s+1

2β1β2(s− 1)
+

w−s

4

− β2

β1

∫ +∞

0

{y} − 1
2

(w + β2y)s
dy − β1

β2

∫ +∞

0

{x} − 1
2

(w + β1x)s
dx

− s
β2

2

∫ +∞

0

{y} − 1
2

(w + β2y)s+1
dy − s

β1

2

∫ +∞

0

{x} − 1
2

(w + β1x)s+1
dx

+ s(s+ 1)β1β2

∫ +∞

0

∫ +∞

0

({x} − 1
2 )({y} − 1

2 )

(w + β1x+ β2y)s+2
dxdy.

(ii) The meromorphic continuation of ζ∗2 (s;β) is given for all s ∈ C by

ζ∗2 (s;β) =
1

βs
1

+
1

βs
2

+
ζ2(s, β1 + β2;β)

ζ(s)
.

Proof. We apply the Euler–Maclaurin formula to the partial summation defined

by F (x) =
∑

n2≥0(w + β1x+ β2n2)
−s, leading to∑

n1≥1

F (n1) =

∫ ∞

0

F (x) dx − F (0)

2
+

∫ ∞

0

({x} − 1

2
)F ′(x) dx.
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We use again the Euler–Maclaurin formula for each of the summations in n2 to

obtain (i).

In order to prove (ii), we express ζ∗2 (s;β) in terms of ζ2(s, β1 + β2;β) for all

s with real part �(s) > 2. The result will follow from the analytic continuation

principle. By definition of ζ∗2 (s;β),

ζ(s)

[
ζ∗2 (s;β)−

1

βs
1

− 1

βs
2

]
=

⎡⎣∑
d≥1

1

ds

⎤⎦
⎡⎢⎢⎣ ∑

x1,x2≥1
gcd(x1,x2)=1

1

(β1x1 + β2x2)s

⎤⎥⎥⎦
=

∑
x1,x2≥1

1

(β1x1 + β2x2)s
.

Now we make the connection between these zeta functions and the logarithmic

partition function of our modified Sinăı’s model.

Lemma 2: Let c > 2. For all parameters (β, λ) ∈ (0,+∞)2 × (0,+∞),

logZ(β, λ) =
1

2iπ

∫ c+i∞

c−i∞
(ζ(s+ 1)− Lis+1(1− λ))ζ∗2 (s;β)Γ(s)ds.

Proof. Given the product form of the distribution Pβ,λ, we see that the random

variables ω(x) for x ∈ X are mutually independent. Moreover, the marginal

distribution of ω(x) is a biased geometric distribution. It is absolutely continu-

ous with respect to the geometric distribution of parameter e−β·x with density

proportional to k �→ λ1k>0 . In other words, for all k ∈ Z+,

Pβ,λ[ω(x) = k] = Zx(β, λ)
−1e−kβ·xλ1k>0 ,

where the normalization constant

Zx(β, λ) = 1 + λ
e−β·x

1− e−β·x

is easily computed. We can now deduce the following product formula for the

partition function:

Z(β, λ) =
∏
x∈X

Zx(β, λ) =
∏
x∈X

(
1 + λ

e−β·x

1− e−β·x

)
.

For now, we assume that λ ∈ (0, 1). Taking the logarithm of the product above

logZ(β, λ) =
∑
x∈X

log

(
1 + λ

e−β·x

1− e−β·x

)
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=
∑
x∈X

log(1− (1 − λ)e−β·x)−
∑
x∈X

log(1 − e−β·x)

=
∑
x∈X

∑
r≥1

1− (1− λ)r

r
e−rβ·x.

Now we use the fact that the Euler gamma function Γ(s) and the exponential

function are related through Mellin’s inversion formula

e−z =
1

2iπ

∫ c+i∞

c−i∞
Γ(s)z−sds,

for all c > 0 and z ∈ C with positive real part. Choosing c > 2 so that the series

and the integral all converge and applying the Fubini theorem, this yields

logZ(β, λ) =
1

2iπ

∑
x∈X

∑
r≥1

∫ c+i∞

c−i∞

1− (1− λ)r

r
r−s(β · x)−sΓ(s)ds

=
1

2iπ

∫ c+i∞

c−i∞
(ζ(s+ 1)− Lis+1(1− λ))ζ∗2 (s;β)Γ(s) ds.

The lemma is proven for all λ ∈ (0, 1). The extension to λ > 0 will now

result from analytic continuation. We already noticed that the left-hand term

is analytic in λ for all fixed β. Proving the analyticity of the right-hand term

requires only to justify the absolute convergence of the integral on the vertical

line. From Lemma 1, we know that ζ∗2 (c+ iτ ;β) is polynomially bounded as |τ |
tends to infinity. Taking s = c− 1 + iτ , successive integrations by parts of the

formula

(ζ(s + 1)− Lis+1(1 − λ))Γ(s+ 1) = λ

∫ ∞

0

exxs

(ex − 1)(ex − 1 + λ)
dx

show, for all integers N > 0, that there exists a constant CN > 0 such that,

uniformly in τ ,

(4)
∣∣(ζ(s + 1)− Lis+1(1− λ))Γ(s+ 1)

∣∣ ≤ CNλ

(1 + |τ |)N .

The proof is complete.

Finally, the next lemma makes use of the contour integral representation of

logZ(β, λ) to derive at the same time an asymptotic formula for each of its

derivatives.
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Lemma 3: Let (p, q1, q2) ∈ Z3
+. For all ε > 0, there exists C > 0 such that∣∣∣∣[λ ∂

∂λ

]p [
∂

∂β1

]q1 [ ∂

∂β2

]q2 (
logZ(β, λ)− ζ(3)− Li3(1− λ)

ζ(2)β1β2

)∣∣∣∣ ≤ C λ

|β|κ
with κ = q1 + q2 + 1+ ε, uniformly in the region{

(β, λ)

∣∣∣∣ε < β1

β2
<

1

ε
and 0 < λ <

1

ε

}
.

Proof. Lemma 2 provides an integral representation of the logarithmic partition

function logZ(β, λ). We will use the residue theorem to shift the contour of

integration from the vertical line �(s) = 3 to the line �(s) = 1 + ε. Lemma 1

shows that the function M(s) := (ζ(s+1)−Lis+1(1−λ)))ζ∗2 (s;β)Γ(s) is mero-

morphic in the strip 1 < �(s) < 3 with a single pole at s = 2, where the residue

is given by
ζ(3)− Li3(1− λ)

ζ(2)
· 1

β1β2
.

From the inequality (4), Lemma 1 and the fact that |ζ(s)| has no zero with

�(s) > 1, we see that M(s) vanishes uniformly in 1+ ε ≤ �(s) ≤ 3 when |�(s)|
tends to +∞. By the residue theorem,

(5) logZ(β, λ) =
ζ(3)− Li3(1− λ))

ζ(2)β1β2
+

1

2iπ

∫ 1+ε+i∞

1+ε−i∞
M(s) ds.

From the Leibniz rule applied in the formula of Lemma 1 (i), we obtain directly

the meromorphic continuation of ∂q1

∂β
q1
1

∂q2

∂β
q2
2

ζ2(s, β1 + β2;β) in the half-plane

�(s) > 1. We also obtain the existence of a constant C > 0 such that∣∣∣∣[ ∂

∂β1

]q1 [ ∂

∂β2

]q2
ζ2(1 + ε+ iτ, β1 + β2;β)

∣∣∣∣ ≤ C |τ |2+q1+q2

|β|κ
with κ = q1 + q2 + 1 + ε. A reasoning similar to the one we have used in order

to derive (4) shows that for all integers p and N > 0, there exists a constant

Cp,N such that, uniformly in τ ,∣∣∣∣[λ ∂

∂λ

]p
(ζ(s+ 1)− Lis+1(1− λ))Γ(s+ 1)

∣∣∣∣ ≤ Cp,N λ

(1 + |τ |)N .

In order to differentiate both sides of equation (5) and permute the partial

derivatives and the integral sign, we have to mention the fact that the Riemann

zeta function is bounded from below on the line �(s) = 1 + ε and that the

derivatives of Lis(1 − λ) with respect to λ are all bounded. This also gives the

announced bound on the error term.



Vol. 222, 2017 CONVEX LATTICE POLYGONAL LINES 529

3.3. Calibration of the shape parameters. When governed by the Gibbs

measure Pβ,λ, the expected value of the random vector with components

X1(ω) =
∑
x∈X

ω(x)x1, X2(ω) =
∑
x∈X

ω(x)x2, K(ω) =
∑
x∈X

1{ω(x)>0}

is simply given by the logarithmic derivatives of the partition function Z(β, λ).

Remember that we planned to choose λ and β1, β2 as functions of n = (n1, n2)

and k in order for the probability P[X1 = n1, X2 = n2,K = k] to be maximal,

which is equivalent to E(X1) = n1, E(X2) = n2 and E(K) = k. We address this

question in the next lemma.

Lemma 4: Assume that n1, n2, k tend to infinity with n1 � n2 and |k| =

O(‖n‖2/3). There exists a unique choice of (β1, β2, λ) as functions of (n, k) such

that

Eβ,λ[X1] = n1, Eβ,λ[X2] = n2, Eβ,λ[K] = k.

Moreover, they satisfy

(6) n1 ∼ ζ(3)− Li3(1− λ)

ζ(2)(β1)2β2
, n2 ∼ ζ(3)− Li3(1− λ)

ζ(2)β1(β2)2
, k ∼ −λ∂λ Li3(1− λ)

ζ(2)β1β2
.

If k = o(‖n‖2/3), then λ goes to 0 and the above relations yield

β1 ∼ k

n1
, β2 ∼ k

n2
, λ ∼ k3

n1n2
.

Proof. With the change of variable λ = e−γ , the existence and uniqueness of

(β, λ) are equivalent to the fact that the function

f : (β1, β2, γ) �→ β1n1 + β2n2 + γk + logZ(β, e−γ)

has a unique critical point in the open domain D = (0,+∞)2×R. First observe

that f is smooth and strictly convex since its Hessian matrix is actually the

covariance matrix of the random vector (X1, X2,K). In addition, from the very

definition (2) of Z(β, λ), we can see that f converges to +∞ in the neighborhood

of any point of the boundary of D as well as when |β1|+ |β2|+ |γ| tends to +∞.

The function being continuous in D, this implies the existence of a minimum,

which by convexity is the unique critical point (β∗, γ∗) of f .

From now on, we will be concerned and check along the proof that we stay

in the regime β1, β2 → 0, β1 � β2, and γ bounded from below. From Lemma 3,
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we can approximate f by the simpler function

g : (β1, β2, γ) �→ β1n1 + β2n2 + γk +
ζ(3)− Li3(1 − e−γ)

β1β2

with |f(β, γ) − g(β, γ)| ≤ Ce−γ

|β|3/2 for some constant C > 0. The unique critical

point (β̃, γ̃) of g satisfies

n1 =
ζ(3)− Li3(1− e−γ̃)

ζ(2)(β̃1)2β̃2

,

n2 =
ζ(3)− Li3(1− e−γ̃)

ζ(2)β̃1(β̃2)2
,

k = −e−γ̃∂λ Li3(1− e−γ̃)

ζ(2)β̃1β̃2

.

The goal now is to prove that (β∗, γ∗) is close to (β̃, γ̃). To this end, we find

a convex neighborhood C of (β̃, γ̃) such that g|∂C ≥ g(β̃, γ̃) + Ce−γ̃

β̃1β̃2
. In the

neighborhood of (β̃, γ̃) the expression of the Hessian matrix of g yields

g(β̃1 + t1, β̃2 + t2, γ̃ + u) ≥ g(β̃1, β̃2, γ̃) +
C̃e−γ̃

(β̃1β̃2)2
(‖t‖2 + β̃1β̃2|u|2).

Therefore we need only take

C =
[
β̃1 − C1β̃

5/4
1 , β̃1 + C1β̃

5/4
1

]
×
[
β̃2 − C2β̃

5/4
2 , β̃2 + C2β̃

5/4
2

]
×
[
γ̃ − C3|β|1/4, γ̃ + C3|β|1/4

]
.

Therefore, f |∂C > f(β̃, γ̃). By convexity of f and C this implies (β∗, γ∗) ∈ C.

Hence

β∗
1 ∼ β̃1, β∗

2 ∼ β̃2, e−γ∗ ∼ e−γ̃ ,

concluding the proof.

3.4. A local limit theorem. In this section, we show that the random vector

(X1, X2,K) satisfies a local limit theorem when the parameters are calibrated

as above. Let Γβ,λ be the covariance matrix under the measure Pβ,λ of the

random vector (X1, X2,K).
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Theorem 2 (Local limit theorem): Let us assume that n1, n2, k tend to infinity

so that n1 � n2 � ‖n‖, log ‖n‖ = o(k), and k = O(‖n‖2/3). For the choice of

parameters made in Lemma 4,

(7) Pβ,λ[X = n,K = k] ∼ 1

(2π)3/2
1√

det Γβ,λ

.

Moreover,

(8) det Γβ,λ � ‖n‖4
k

.

If k = o(‖n‖2/3),

(9) Pβ,λ[X = n,K = k] ∼ 1

(2π)3/2

√
k

n1n2
.

This result is actually an application of a more general lemma proven by

the first author in [9, Proposition 7.1]. In order to state the lemma, we intro-

duce some notation. Let σ2
β,λ be the smallest eigenvalue of Γβ,λ. Introducing

X1,x = ω(x) ·x1, X2,x = ω(x) ·x2 and Kx = 1{ω(x)>0} as well as X1,x, X2,x,Kx

their centered counterparts, let Lβ,λ be the Lyapunov coefficient

Lβ,λ := sup
(t1,t2,u)∈R3

∑
x∈X

Eβ,λ

∣∣t1X1,x + t2X2,x + uKx

∣∣3
Γβ,λ(t1, t2, u)3/2

,

where Γβ,λ(·) stands for the quadratic form canonically associated to Γβ,λ. Let

φβ,λ(t, u) = Eβ,λ(e
i(t1X1+t2X2+uK) for all (t1, t2, u) ∈ R3. Finally, we consider

the ellipsoid Eβ,λ defined by

(10) Eβ,λ :=
{
(t1, t2, u) ∈ R

3 | Γβ,λ(t1, t2, u) ≤ (4Lβ,λ)
−2
}
.

The following lemma is a reformulation of Proposition 7.1 in [9]. It gives three

conditions on the product distributions Pβ,λ that entail a local limit theorem

with given speed of convergence.

Lemma 5: With the notation introduced above, suppose that there exists a

family of numbers (aβ,λ) such that

1

σβ,λ

√
det Γβ,λ

= O(aβ,λ),(11)

Lβ,λ√
det Γβ,λ

= O(aβ,λ),(12)

sup
(t,u)∈[−π,π]3\Eβ,λ

|φβ,λ(t, u)| = O(aβ,λ).(13)
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Then, a local limit theorem holds uniformly for Pβ,λ with rate aβ,λ:

sup
(n,k)∈Z3

∣∣∣∣∣∣Pβ,λ[X = n,K = k]−
exp

[
− 1

2Γ
−1
β,λ

(
(n, k)− Eβ,λ(X,K)

)]
(2π)3/2

√
det Γβ,λ

∣∣∣∣∣∣ = O(aβ,λ).

When governed by the Gibbs measure Pβ,λ, the covariance matrix Γβ,λ of

the random vector (X1, X2,K) is simply given by the Hessian matrix of the log

partition function logZ(β, λ). Let u(λ) := (ζ(3) − Li3(1 − λ))/ζ(2) for λ > 0.

Applications of Lemma 3 for all (p, q1, q2) ∈ Z3
+ such that p+ q1+ q2 = 2 imply

that this covariance matrix is asymptotically equivalent to

⎡
⎣
β1β2 0 0

0 β3
1β2 0

0 0 β1β
3
2

⎤
⎦

− 1
2
⎡
⎣
λ2u′′(λ) + λu′(λ) λu′(λ) λu′(λ)

λu′(λ) 2u(λ) u(λ)

λu′(λ) u(λ) 2u(λ)

⎤
⎦
⎡
⎣
β1β2 0 0

0 β3
1β2 0

0 0 β1β
3
2

⎤
⎦

− 1
2

.

A straightforward calculation shows that this matrix is positive definite for all

λ > 0.

Lemma 6: The random vector (X1, X2,K) has a covariance matrix Γβ,λ sa-

tisfying

Γβ,λ(t, u) � (n1)
5/3

(λn2)1/3
|t1|2 + (n2)

5/3

(λn1)1/3
|t2|2 + (λn1n2)

1/3|u|2, ‖n‖ → +∞.

Proof. All the coefficients of the previous matrix u(λ), λu′(λ), λ2u′′(λ) are of

order λ in the neighborhood of 0, and the determinant is equivalent to λ3.

Therefore, the eigenvalues are also of order λ. The result follows from the fact

that the values of β1 and β2 are given by (6) and that ζ(3) − Li3(1 − λ) �
ζ(2)λ.

Lemma 7: The Lyapunov coefficient satisfies Lβ,λ = O(λ−1/6|n|−1/3).

Proof. Using Lemma 6, there exists a constant C > 0 such that

Lβ,λ ≤ C
∑
x∈X

[
Eβ,λ|X1,x|3

λ−1/2

n
1/2
2

n
5/2
1

+
Eβ,λ|X2,x|3

λ−1/2

n
1/2
1

n
5/2
2

+
Eβ,λ|Kx|3

λ1/2(n1n2)1/2

]
.

Therefore, we need only prove that∑
x∈X

Eβ,λ

∣∣Kx

∣∣3 = O(‖n‖2/3),
∑
x∈X

Eβ,λ

∣∣Xi,x

∣∣3 = O(‖n‖5/3).
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Notice that for a Bernoulli random variable B(p) of parameter p, one has

E[|B(p) − p|3] ≤ 4(E[B(p)3] + p3) ≤ 8p. This implies∑
x∈X

Eβ,λ

∣∣Kx

∣∣3 ≤
∑
x∈X

8λe−β·x

1− (1− λ)e−β·x ≤
∑
x∈X

8λe−β·x

1− e−β·x = O

(
λ

β1β2

)
.

Similarly, we obtain∑
x∈X

Eβ,λ

∣∣X1,x

∣∣3 = O(
λ

β4
1β2

),
∑
x∈X

Eβ,λ

∣∣X2,x

∣∣3 = O

(
λ

β1β4
2

)
.

Lemma 8: Condition (13) of Lemma 5 is satisfied. More precisely,

lim sup
‖n‖→+∞

sup
(t,u)∈[−π,π]3\Eβ,λ

1

λ1/3‖n‖2/3 log |φn(t, u)| < 0,

where Eβ,λ is defined by (10).

Proof. From Lemmas 6 and 7, there exists a constant c > 0 depending on λ

such that for all n = (n1, n2) with ‖n‖ large enough,

[−π, π]3 \ Eβ,λ ⊂ {(t, u) ∈ R
2 × R | c < |u| ≤ π or cλ1/3‖n‖−1/3 < ‖t‖}.

The strategy of the proof is to deal separately with the cases |u| > c and

‖t‖ > cλ1/3‖n‖−1/3, which requires to find first adequate bounds for |φn(t, u)|
in both cases. For all (t1, t2, u) ∈ R

3 and x ∈ X, let us write t = (t1, t2) and

ρx = e−β·x. The “partial” characteristic function φx
n(t, u) = Eβ,λ[e

i(t·Xx+uKx)]

is given by

φx
n(t, u) =

(
1 + λeiu

eit·xρx

1− eit·xρx

)(
1 + λ

ρx

1− ρx

)−1

,

hence a straightforward calculation yields

|φx
n(t, u)|2

= 1−
4λρx

(1−(1−λ)ρx)2

[
ρx(2+(λ−2)ρx)

(1−ρx)2 | sin( t·x2 )|2 + | sin( t·x+u
2 )|2 − ρx| sin(u2 )|2

]
1 + 4ρx

(1−ρx)2 | sin( t·x2 )|2

≤ exp

{
−

4λρx

(1−(1−λ)ρx)2

(
2ρx| sin( t·x2 )|2 + | sin( t·x+u

2 )|2 − ρx| sin(u2 )|2
)

1 + 4ρx

(1−ρx)2 | sin( t·x2 )|2

}
.

Using the law of sines in a triangle with angles t·x
2 , u

2 and 2π−t·x+u
2 , we see that

the numerator inside the bracket is proportional (with positive constant) to

2ρx‖a‖2 + ‖b‖2 − ρx‖a+ b‖2,
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where a and b are two-dimensional vectors. Since the real quadratic form

(ai, bi) �→ 2ρ a2i + b2i − 2ρ
1+2ρ (ai + bi)

2 is positive for all ρ ∈ (0, 1) and for

i ∈ {1, 2}, we deduce that

(14) |φx
n(t, u)| ≤ exp

{
−

2λρx

(1−(1−λ)ρx)2

1 + 4ρx

(1−ρx)2

(
2ρx

1 + 2ρx
− ρx

) ∣∣sin(u2 )∣∣2
}

for all x such that ρx ≤ 1
2 . In the same way, the positivity of the quadratic

form (ai, bi) �→ ρ
1−ρ a

2
i + b2i − ρ (ai + bi)

2 yields

(15) |φx
n(t, u)| ≤ exp

{
−

2λρx

(1−(1−λ)ρx)2

1 + 4ρx

(1−ρx)2

(
2ρx − ρx

1− ρx

) ∣∣sin( t·x2 )
∣∣2}

for all x such that ρx ≤ 1
2 .

Let us begin with the region {(t, u) ∈ R
3 | c < |u| ≤ π}. In this case | sin(u2 )|

is uniformly bounded from below by | sin( c2 )|. Hence using (14) for the x ∈ X

such that 1
4 < ρx ≤ 1

3 and the bound |φx
n(t, u)| ≤ 1 for all other x, we obtain

log |φn(t, u)| ≤ − 1

160

λ| sin( c2 )|2
(1 + 1

3 |λ− 1|)2
∣∣∣∣{x ∈ X | 1

4
< ρx ≤ 1

3

}∣∣∣∣ .
To conclude, let us recall that the number of integral points with coprime coordi-

nates such that 1
4 < e−β·x ≤ 1

3 is asymptotically equal to the density 1
ζ(2) times

the area of the trapezoid
{
x ∈ R2 | 1

4 < ρx ≤ 1
3

}
which is equal to log(4/3)

2β1β2
. This

number is therefore of order λ−2/3‖n‖2/3.
We now turn to the region {(t, u) ∈ [−π, π]3 | cλ1/3‖n‖−1/3 < ‖t‖}. Without

loss of generality, we can assume |t1| > c′λ1/3‖n‖−1/3 for some universal con-

stant c′ ∈ (0, c). Using the inequality (15) for the elements x ∈ X such that
1
4 < ρx ≤ 1

3 and the bound |φx
n(t, u)| ≤ 1 for all other x, we obtain for all

ε ∈ (0, 1)

log |φn(t, u)| ≤ − ε2

64

λ

(1 + 1
3 |λ− 1|)2

∣∣∣∣{x ∈ X | 1
4
< ρx ≤ 1

3
and | sin( t·x2 )| ≥ ε

}∣∣∣∣ .
Since the number of x ∈ X such that 1

4 < e−β·x ≤ 1
3 is asymptotically equal

to log(4/3)
2ζ(2)β1β2

, it is enough to prove that we can find ε such that the set of

vectors x ∈ Z2
+ with | sin( t·x2 )| < ε has density strictly smaller than 1

ζ(2) in

{x ∈ Z2
+ | 1

4 < ρx ≤ 1
3}.

Introducing the sets

S(x2) := {x1 ∈ R | | sin( t·x2 )| < ε} and I(x2) := {x1 ∈ R | 1
4
< ρx ≤ 1

3
},
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we have to deal with ∑
x2∈Z+

|I(x2) ∩ S(x2) ∩ Z+| .

Only O( 1
‖β‖) = O(( λ

‖n‖)
1
3 ) terms of this sum are nonzero. Moreover, for all

x2, the set S(x2) is a periodic union of segments of period τ1 = 2π
t1

and length

bounded by 4ετ1. Hence

|I(x2) ∩ S(x2) ∩ Z+| ≤
(
length(I(x2))

τ1
+ 2

)
(4ετ1 + 1).

Summing up in x2 the contributions of the nonempty sets, and using the facts

that 2 ≤ τ1 ≤ C
β and

∑
x2∈Z+

length(I(x2)) = log(4/3)
2β1β2

+ O( 1
‖β‖ ), we obtain

the existence of some positive constant C > 0 independent of ε such that for

all ε ∈ (0, 1), the number of x ∈ Z2
+ satisfying both 1

4 < e−β·x ≤ 1
3 and

| sin( t·x2 )| < ε is bounded by

(
1
2 + Cε

) log(4/3)
2β1β2

+O

(
1

‖β‖
)
.

To achieve our goal, we can therefore choose ε = 1
2C ( 1

ζ(2) − 1
2 ) > 0.

Proof of Theorem 2. We simply check that the hypotheses of Lemma 5 are sa-

tisfied. From Lemma 6, we have σ2
β,λ � k and det(Γβ,λ) � k−1‖n‖4, hence
1

σβ,λ

√
det Γβ,λ

� 1

‖n‖2 .

Using in addition Lemma 7, we have also

Lβ,λ√
det Γβ,λ

= O

(
1

‖n‖2
)
.

Finally, Lemma 8 shows the existence of some constant c > 0 such that for all

(n, k) large enough,

sup
(t,u)∈[−π,π]3\Eβ,λ

|φn(t, u)| ≤ e−ck,

where Eβ,λ is defined by (10). Since we have made the assumption log ‖n‖ =

o(k), the quantity e−ck is also bounded from above by ‖n‖−2. Therefore, all

hypotheses of Lemma 5 are satisfied. As a consequence, Pβ,λ satisfies a local

limit theorem with speed rate aβ,λ � ‖n‖−2.
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4. Limit shape

We start by proving the existence of a limit shape in the modified Sinăı mo-

del, which is the aim of the next two lemmas. The natural normalization for

the convex polygonal line is to divide each coordinate by the corresponding

expectations for the final point.

The first lemma shows that the arc of parabola is the limiting curve of

the expectation of the random convex polygonal line mθ
i (β, λ) = Eβ,λ[X

θ
i ] for

i ∈ {1, 2}, θ ∈ [0,∞] under the Pβ,λ distribution.

Lemma 9: Suppose that β1 and β2 tend to 0 such that β1 � β2 and λ is bounded

from above. Then

lim
|β|→0

sup
θ∈[0,∞]

∣∣∣∣∣ mθ
1(β, λ)

m∞
1 (β, λ)

− θ(θ + 2β1

β2
)

(θ + β1

β2
)2

∣∣∣∣∣ = 0,

lim
|β|→0

sup
θ∈[0,∞]

∣∣∣∣∣ mθ
2(β, λ)

m∞
2 (β, λ)

− θ2

(θ + β1

β2
)2

∣∣∣∣∣ = 0.

Proof. Since we are dealing with continuous increasing functions, the uniform

convergence will follow from the simple convergence. We mimic the proof of

Lemma 3, except that the domain of summation X is replaced by the subset of

vectors x such that x2 ≤ θx1. The expectations are given by the first derivatives

of the partial logarithmic partition function

logZθ(β, λ) =
1

2iπ

∫ c+i∞

c−i∞
(ζ(s + 1)− Lis+1(1 − λ))ζθ,∗2 (s)Γ(s) ds,

where ζθ,∗2 is the restricted zeta function defined by analytic continuation of the

series

ζθ,∗2 (s) =
∑
x∈X

x2≤θx1

(β1x1 + β2x2)
−s

=
1

βs
1

+
1{θ=∞}

βs
2

+
1

ζ(s)

∑
x1,x2≥1
x2≤θx1

(β1x1 + β2x2)
−s.

The continuation of the underlying restricted Barnes zeta function is obtained

using the Euler–Maclaurin formula several times:
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�θx1�∑
x2=1

(β1x1 + β2x2)
−s =

∫ �θx1�

1

(β1x1 + β2x2)
−s dx2

+
(β1x1 + β2)

−s

2
+

(β1x1 + β2�θx1�)−s

2

− sβ2

∫ �θx1�

1

({x2} − 1

2
)(β1x1 + β2x2)

−(s+1) dx2

=

∫ θx1

1

(β1x1 + β2x2)
−s dx2

+
(β1x1 + β2)

−s

2
+

(β1x1 + β2�θx1�)−s

2

− sβ2

∫ �θx1�

1

({x2} − 1

2
)(β1x1 + β2x2)

−(s+1) dx2

−
∫ θx1

�θx1�
(β1x1 + β2x2)

−s dx2

=
(β1x1 + β2)

−s+1

β2(s− 1)
− (β1x1 + β2θx1)

−s+1

β2(s− 1)
+R(s, x1, β1, β2, θ),

where

R(s, x1, β1, β2, θ) =
(β1x1 + β2)

−s

2
+

(β1x1 + β2�θx1�)−s

2

− sβ2

∫ �θx1�

1

({x2} − 1

2
)(β1x1 + β2x2)

−(s+1) dx2

−
∫ θx1

�θx1�
(β1x1 + β2x2)

−s dx2

is such that
∑

x1≥1 R(s, x1, β1, β2, θ) converges absolutely for all s with

�(s) > 1. Therefore the latter series defines a holomorphic function in the

half-plane �(s) > 1. Finally,

∑
x1,x2≥1
x2≤θx1

(β1x1 + β2x2)
−s =

(β1 + β2)
−s+2

β1β2(s− 1)(s− 2)
− (β1 + θβ2)

−s+2

(β1 + θβ2)β2(s− 1)(s− 2)

+ R̃(s, β1, β2, θ),
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where R̃ is holomorphic in s for �(s) > 1. Hence, the residue at s = 2 is
θ

β1(β1+θβ2)
. Taking the derivatives with respect to β1 and β2, we obtain

− ∂

∂β1

∑
x1,x2≥1
x2≤θx1

(β1x1 + β2x2)
−s =

1

β2
1β2

θ(θ + 2β1

β2
)

(θ + β1

β2
)2

1

s− 2
+R1(s, β1, β2, θ)

and similarly

− ∂

∂β2

∑
x1,x2≥1
x2≤θx1

(β1x1 + β2x2)
−s =

1

β1β2
2

θ2

(θ + β1

β2
)2

1

s− 2
+R2(s, β1, β2, θ),

where both remainder terms R1 and R2 are holomorphic in s in the half-plane

σ := �(s) > 1 and are bounded, up to positive constants, by

|s|2
σ − 1

min(β1, β2)
−σ−1.

This decrease makes it possible to apply the residue theorem in order to shift

to the left the vertical line of integration from σ = 3 to σ = 3
2 . When β1 and

β2 tend to 0 and β1

β2
tends to �, we thus find

Eβ,λ[X
θ
1 ] =

ζ(3)− Li3(1− λ)

ζ(2)

[
1

β2
1β2

θ(θ + 2β1

β2
)

(θ + β1

β2
)2

+O

(
1

|β|5/2
)]

,

Eβ,λ[X
θ
2 ] =

ζ(3)− Li3(1− λ)

ζ(2)

[
1

β2
1β2

θ2

(θ + β1

β2
)2

+O

(
1

|β|5/2
)]

.

We obtain the announced result by normalizing these quantities by their limits

when θ goes to infinity.

Lemma 10 (Uniform exponential concentration): Suppose that β1 and β2 tend

to 0 such that β1 � β2 and λ is bounded from above. For all η ∈ (0, 1), we have

Pβ,λ

[
sup

1≤i≤2
sup

θ∈[0,∞]

|Xθ
i −mθ

i (β, λ)|
m∞

i (β, λ)
> η

]
≤ exp

{
−c(λ)η2

8β1β2
(1 + o(1))

}
.

Proof. Fix i ∈ {1, 2} and let Mθ = Xθ
i − mθ

i (β, λ) for all θ ≥ 0. The sto-

chastic process (Mθ)θ≥0 is a Pβ,λ-martingale, therefore (etMθ )θ≥0 is a posi-

tive Pβ,λ-submartingale for any choice of t ≥ 0 such that Eβ,λ[e
tXi ] is finite.

This condition is satisfied when t < β1. Doob’s martingale inequality implies,



Vol. 222, 2017 CONVEX LATTICE POLYGONAL LINES 539

for all η > 0,

Pβ,λ

[
sup

θ∈[0,∞]

Mθ > ηm∞
i (β, λ)

]
= Pβ,λ

[
sup

θ∈[0,∞]

etMθ > etηm
∞
i (β,λ)

]
≤ e−tηm∞

i (β,λ)
Eβ,λ

[
etM∞

]
= e−t(η+1)m∞

i (β,λ)
Eβ,λ[e

tXi ].

For i = 1, Lemma 3 shows that the logarithm of the right-hand side satisfies

− t(1 + η)m∞
1 (β, λ) + log

Z(β1 − t, β2;λ)

Z(β1, β2;λ)

=
c(λ)

β1β2

[
− t(1 + η)

β1
− 1 +

β1

β1 − t
+ o(1)

]
asymptotically when t and β1 are of the same order. The same holds for i = 2.

This is roughly optimized for the choice t = βi

(
1− (1 + η)−1/2

)
, which gives

Pβ,λ

[
sup

θ∈[0,∞]

Mθ > ηm∞
i (β, λ)

]
≤ exp

{
−2c(λ)

β1β2

(
1 +

η

2
−
√
1 + η + o(1)

)}
.

When considering the martingale defined by Nθ = mθ
i (β, λ) −Xθ

i , one obtains

with the same method

Pβ,λ

[
sup

θ∈[0,∞]

Nθ > ηm∞
i (β, λ)

]
≤ exp

{
−2c(λ)

β1β2

(
1− η

2
−
√
1− η + o(1)

)}
.

Since the previous inequalities hold for both i ∈ {1, 2}, a simple union bound

now yields

Pβ,λ

[
sup

1≤i≤2
sup

θ∈[0,∞]

|Xθ
i −mθ

i (β, λ)|
m∞

i (β, λ)
> η

]
≤ 4 exp

{
−c(λ)η2

8β1β2
(1 + o(1))

}
.

The proof of the lemma is complete.

We introduce the following parametrization of the arc of parabola

√
y +

√
1− x = 1 :

x1(θ) =
θ(θ + 2)

(θ + 1)2
, x2(θ) =

θ2

(θ + 1)2
, θ ∈ [0,∞].
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Theorem 3 (Limit shape for numerous vertices): Assume that n1 � n2 → +∞,

and k = O(‖n‖2/3), and log ‖n‖ = o(k). There exists c > 0 such that for all

η ∈ (0, 1),

Pn,k

[
sup

1≤i≤2
sup

θ∈[0,∞]

|Xθ
i − xi(

β2

β1
θ)|

ni
> η

]
≤ exp

{−cη2k (1 + o(1))
}
.

In particular, the Hausdorff distance between a random convex polygonal line

on 1
nZ

2
+ joining (0, 0) to (1, 1) with at most k vertices and the arc of parabola√

y +
√
1− x = 1 converges in probability to 0.

Proof. Using the triangle inequality and Lemma 9, we need only prove the

analog of Lemma 10 for the uniform probability Pn,k. Recall that the measure

Pβ,λ conditional on the event {X = n,K = k} is nothing but the uniform

probability Pn,k. Hence for all events E,

Pn,k(E) ≤ Pβ,λ(E)

Pβ,λ(X = n,K = k)
.

Applying this with the deviation event above for the parameters (β, λ) defined

in section 3.3 and using the Local Limit Theorem 2 as well as the concentration

bound provided by Lemma 10, the right-hand side reads, up to constants,

‖n‖2√
k

exp
{−cη2k(1 + o(1))

}
.

Since log ‖n‖ = o(k), the result follows.

5. Convex lattice polygonal lines with few vertices

5.1. Combinatorial analysis. The previous machinery does not apply in the

case of very few vertices but it can be completed by an elementary approach that

we present now which will actually work up to a number of vertices negligible

compared to ‖n‖1/3. It is based on the following heuristics: when ‖n‖ tends to

+∞ and the number of edges k is very small compared to ‖n‖, one can expect

that choosing an element of Π(n; k) at random is somewhat similar to choosing

k− 1 vertices from [0, 1]2 in convex position at random. Bárány [5] and Bárány

et al. [6] proved by two different methods the existence of a parabolic limit

shape in this continuous setting. These works are based on Valtr’s observation

that each convex polygonal line with k edges is associated, by permutation of
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the edges, to exactly k! increasing North-East polygonal lines with pairwise

different slopes.

Our first theorem is the convex polygonal line analog to a result of Erdős and

Lehner on integer partitions [11, Theorem 4.1].

Theorem 4: The number of convex polygonal lines joining (0, 0) to n = (n, n)

with k edges satisfies

p(n; k) =
1

k!

(
n− 1

k − 1

)2

(1 + o(1)) ,

this formula being valid uniformly in k for k = o(n1/2/(logn)1/4).

Proof. Let us start by proving an upper bound. This is done by considering

the inequality

|Π(n; k)| ≤ 1

k!

(
n− 1

k − 1

)2

+
2

(k − 1)!

(
n− 1

k − 2

)(
n− 1

k − 1

)
+

1

(k − 2)!

(
n− 1

k − 2

)2

,

where the first term bounds the number of convex polygonal lines which are

associated to strictly North-East lines, the second term bounds the number of

lines having either a first horizontal vector or a last vertical one, and the third

term bounds the number of convex polygonal lines having both a horizontal and

a vertical vector.

We now turn to a lower bound. Let {U1, U2, . . . , Uk−1} and {V1, V2, . . . , Vk−1}
be two independent and uniformly distributed random subsets of {1, . . . , n− 1}
of size k − 1 whose elements are indexed in increasing order U1 < U2 < · · · <
Uk−1 and V1 < V2 < · · · < Vk−1. Let M0 = (0, 0), Mk = (n, n) and Mi =

(Ui, Vi) for 1 ≤ i ≤ k − 1. Obviously, the polygonal line (M0,M1, . . . ,Mn) has

uniform distribution among all increasing polygonal line from (0, 0) to (n, n).

We claim that the distribution of (
−−−−→
M0M1,

−−−−→
M1M2, . . . ,

−−−−−−→
Mk−1Mk) conditioned on

the event that no two of these vectors are parallel is uniform among the lines

of Π(n; k) such that no side is parallel to the x-axis or the y-axis. Moreover,

since the vectors are exchangeable, the probability that we can find i < j such

that
−−−−−→
Mi−1Mi and

−−−−−−→
Mj−1Mj are parallel is bounded from above by

(
k
2

)
times the

probability that Y =
−−−−→
M0M1 and Z =

−−−−→
M1M2 are parallel. Using the simple

estimate (
n− 1

k − 1

)
≥ nk−1

(k − 1)!
(1− o(1)),



542 J. BUREAUX AND N. ENRIQUEZ Isr. J. Math.

which is asymptotically true since k = o(
√
n), we find that for all (y, z) ∈ (N2)2,

the probability that Y = y and Z = y is

P(Y = y, Z = z) =

(
n−y1−z1

k−3

)(
n−y2−z2

k−3

)(
n−1
k−1

)2
≤ 4k2

n2

(
1− y1 + z1

n

)k−3

+

(
1− y2 + z2

n

)k−3

+

≤ 4k2

n2
exp

{
−k − 3

n
(y1 + y2 + z1 + z2)

}
.

We can therefore dominate the probability that Y and Z are parallel by the

probability that geometrically distributed random vectors are parallel, which is

exactly estimated in the following lemma applied with β = k
n . In conclusion,

the probability that at least two vectors are parallel is bounded by k4

n2 log(n) up

to a constant.

Lemma 11: Let Y1, Y2, Z1, Z2 be independent and identically distributed geo-

metric random variables of parameter 1 − eβ with β > 0. When β goes to 0,

the probability that the vectors Y = (Y1, Y2) and Z = (Z1, Z2) are parallel is

asymptotically equal to

β2

ζ(2)
log

1

β
.

Proof. The probability that Y and Z are parallel is∑
x∈X

∑
i,j≥1

P(Y = i x, Z = j x) = (1− e−β)4
∑
x∈X

∑
i,j≥1

e−β(i+j)(x1+x2).

The Mellin transform of the double summation on the right-hand side with

respect to β > 0 is well defined for all s ∈ C with �(s) > 2 and it is equal to∑
x∈X

∑
i,j≥1

Γ(s)

(x1 + x2)s(i+ j)s
=

Γ(s)

ζ(s)
(ζ(s − 1)− ζ(s))2.

Expanding this Mellin transform in Laurent series at the pole s = 2 of order 2

and using the residue theorem to express the Mellin inverse, one finds∑
x∈X

∑
i,j≥1

e−β(i+j)(x1+x2) =
1

ζ(2)

log 1
β

β2
− C

β2
+O

(
1

β

)
, as β → 0,

where C = 2ζ(2)−ζ′(2)−1−γ
ζ(2) ≈ 0.471207.
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5.2. Limit shape.

Theorem 5 (Limit shape for few vertices): The Hausdorff distance between a

random convex polygonal line in ( 1nZ ∩ [0, 1])2 joining (0, 0) to (1, 1) having at

most k vertices and the arc of parabola
√
y+

√
1− x = 1 converges in probability

to 0 when both n and k tend to +∞ with k = o(n1/3).

Proof. Bárány [5] and Bárány et al. [6] proved by two different methods the

existence of a limit shape in the following continuous setting: if one picks at

random k − 1 points uniformly from the square [0, 1]2, then conditional on the

event that these points are in convex position, the Hausdorff distance between

the convex polygonal line thus defined and the parabolic arc goes to 0 in proba-

bility as k goes to +∞. Our strategy is to show that this result can be extended

to the discrete setting ([0, 1]∩ 1
nZ)

2 if k is small enough compared to n by using

a natural embedding of the discrete model into the continuous model.

For this purpose, we first observe that the distribution of the above continuous

model can be described as follows: pick uniformly at random k − 1 points

from both the x-axis and the y-axis, rank them in increasing order and let

0 = U0 < U1 < U2 < · · · < Uk−1 < Uk = 1 and 0 = V0 < V1 < V2 < · · · <
Vk−1 < Vk = 1 denote this ranking. The points (Ui, Vi) define an increasing

North-East polygonal line joining (0, 0) to (1, 1). Reordering the segment lines

of this line by increasing slope order, exchangeability arguments show that we

obtain a convex line with k edges that follows the desired distribution. This is

analogous to the discrete construction of strictly North-East convex lines from

(0, 0) to (n, n) that occurs in the proof of Theorem 4.

Now, we define the lattice-valued random variables Ũ0 ≤ Ũ1 ≤ Ũ2 ≤ · · · ≤
Ũk−1 ≤ Ũk and Ṽ0 ≤ Ṽ1 ≤ Ṽ2 ≤ · · · ≤ Ṽk−1 ≤ Ṽk by discrete approximation:⎧⎨⎩Ũi ∈ 1

nZ, Ui ≤ Ũi < Ui +
1
n ,

Ṽi ∈ 1
nZ, Vi − 1

n < Ṽi ≤ Vi,
for 1 ≤ i ≤ k − 1.

Recall that we still have (Ũ0, Ṽ0) = (0, 0) and (Ũk, Ṽk) = (1, 1).

Let Xi = (Ui − Ui−1, Vi − Vi−1) and let X̃i = (Ũi − Ũi−1, Ṽi − Ṽi−1) be the

discrete approximation of Xi for 1 ≤ i ≤ k. Conditional on the event that

the slopes of (X1, . . . , Xk) and (X̃1, . . . , X̃k) are pairwise distinct and ranked in

the same order, the Hausdorff distance between the associated convex polygonal

lines is bounded by k
n , which goes asymptotically to 0. Since a direct application
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of [6, Theorem 2] shows that the distance between the convex line associated

to X and the parabolic arc converges to 0 in probability as k tends to +∞,

we deduce that the Hausdorff distance between the convex line associated to X̃

and the parabolic arc also converges in probability to 0 on this event. As in the

proof of Theorem 4, the joint density of (Xi, Xj) is dominated by the density

of a pair of independent vectors whose coordinates are independent exponential

variables with parameter k. These vectors being of order of magnitude 1
k , the

order of the slopes of (Xi, Xj) and (X̃i, X̃j) may be reversed only if the angle

between Xi and Xj is smaller than ck
n for some c > 0, which happens with

probability of order k
n . Consequently, the probability that there exists i < j for

which the slopes of (Xi, Xj) and (X̃i, X̃j) are ranked in opposite is bounded, up

to a constant, by
(
k
2

)
k
n . Therefore, the Hausdorff distance between the convex

line associated to X̃ and the parabolic arc also converges to 0 in probability if

k = o(n1/3).

The final step is to compare the distribution of the increasing reordering

of (X̃1, . . . , X̃k) with the uniform distribution on Π(n; k). As a consequence

of Theorem 4, the probability that a uniformly random element of Π(n; k) is

strictly North-East tends to 1. The key point, which follows from Valtr’s obser-

vation, is that the uniform distribution on strictly North-East convex lines with

k edges coincides with the distribution of the line obtained by reordering the

vectors (X̃1, . . . , X̃k), conditional on the event that these vectors are pairwise

linearly independent and strictly North-East. Since we showed in the previous

paragraph that all the angles between two vectors of (X̃1, . . . , X̃k) are at least
ck
n with probability 1 − O(k

3

n ), the linear independence condition occurs with

probability tending to 1. On the other hand, (X̃1, . . . , X̃k) are strictly North-

East with probability 1−O(k
2

n ). Therefore, the event we conditioned on has a

probability tending to 1, which proves that the total variation distance between

the two distributions tends to 0.

6. Back to Jarńık’s problem

In [12], Jarńık gives an asymptotic formula of the maximum possible number

of vertices of a convex lattice polygonal line having a total Euclidean length

smaller than n, and whose segments make an angle with the x-axis between 0

and π
4 . What he finds is 3

2
n2/3

(2π)1/3
. If, in order to be closer to our setting, we
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ask the segments to make an angle with the x-axis between 0 and π
2 , Jarńık’s

formula is changed into 3
2
n2/3

π1/3 (which is twice the above result for n
2 ).

In this section, we want to present a detailed combinatorial analysis of this

set of lines, which leads to Jarńık’s result as well as to the asymptotic of the

typical number of vertices of such lines. It is the analog of Bárány, Sinăı and

Vershik’s result when the constraint concerns the total length.

Let us first describe Jarńık’s argument, which is a good application of the

correspondence described in section 2. It says the following: the function ω

realizing the maximum can be taken among the functions taking their values

in {0, 1}. Indeed, by changing the non-zero values of a function ω into 1,

one can obtain a polygonal line with the same number of vertices, but with

a shorter length. Now, if the number of vertices k is given, the convex line

having minimal length will be defined by the function ω which associates 1

to the k points of X which are the closest to the origin. Since the set X has

an asymptotic density 6
π2 , when k is big, this set of points is asymptotically

equivalent to the intersection of X with the disc of center O having radius

R satisfying 6
π2 · πR2

4 = k, i.e. R = (2π3 k)1/2. The total length of the line

is equivalent to L =
∫ R

0 r × 6
π2

π
2 rdr = R3

π =
( 2π

3 k)3/2

π . This yields precisely

k = 3
2
L2/3

π1/3 � 1.02L2/3.

In order to get finer results, we introduce the probability distribution on the

space Ω proportional to

exp

(
−β
∑
x∈X

ω(x)
√
|x1|2 + |x2|2

)
λ
∑

x∈X
1{ω(x)>0} ,

which depends on two parameters β, λ. In this set-up, the partition function

turns out to be

Z =
∏
x∈X

1− (1 − λ)e−β
√

|x1|2+|x2|2

1− e−β
√

|x1|2+|x2|2
.

The Mellin transform representation for logZ now involves

Γ(s)(Lis+1(1− λ)− ζ(s+ 1))

ζ(s)

∑
x1,x2≥1

(|x1|2 + |x2|2)−s/2
, �(s) > 2.

The factors ζ(s)−1 and Lis+1(1 − λ) − ζ(s + 1), which correspond respectively

to the coprimality condition on the lattice and to the penalty of vertices, are

still present. The main difference relies on the replacement of the Barnes zeta

function by the Epstein zeta function which comes from the penalty by length
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in the model. With the help of the residue analysis of this Mellin transform and

a local limit theorem, we obtain:

Theorem 6: Let pJ(n; k) denote the number of convex polygonal lines on Z2
+

issuing from (0, 0) with k vertices and length between n and n+ 1. As n tends

to +∞,

if
k

n2/3
−→ π1/3

2
c(λ), then

1

n2/3
log pJ (n; k) −→ π1/3

2
e(λ),

where e and c are the functions introduced in Theorem 1. Moreover, the Haus-

dorff distance between a random element of this set normalized by 1
n , and the

arc of circle {(x, y) ∈ [0, 1]2 | x2 + (y − 1)2 = 1} converges to 0 in probability.

From this result, we deduce that the typical number of vertices of such a line

which is achieved for λ = 1 is asymptotically equal to(
3

4πζ(3)2

)1/3

n2/3.

Similarly, the total number of convex lattice polygonal lines having length bet-

ween n and n+ 1 is asymptotically equal to

exp

(
34/3ζ(3)1/3

(4π)1/3
n2/3(1 + o(1))

)
.

In addition, we can derive Jarńık’s result in the lines of Remark 3.

7. Mixing constraints and finding new limit shapes

In this section we introduce a family of convex lattice polygonal line models

which achieves a continuous interpolation of limit shapes between the diagonal

of the square and the South-East corner sides of the square, passing through

the arc of circle and the arc of parabola. Let ‖ · ‖1 and ‖ · ‖2 denote respectively

the Taxicab norm and the Euclidean norm on R
2. Recall that for all x ∈ R

2,

(16) ‖x‖1 = |x1|+ |x2| ≥ ‖x‖2 =
√
|x1|2 + |x2|2 ≥ 1√

2
‖x‖1.

The Gibbs distribution we consider on the space Ω involves both these norms

in order to take into account both the extreme point of the line and its length.

If β > 0 and λ > − 1√
2
or if β < 0 and λ < −1, inequalities (16) show that we
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can define, for all ω ∈ Ω,

Z =
∏
x∈X

(
1− e−β(‖x‖1+λ

√
2‖x‖2)

)
,

Pβ,λ(ω) =
1

Z
exp

(
−β
∑
x∈X

ω(x)(‖x‖1 + λ
√
2‖x‖2)

)
.

In both cases, the Mellin transform representation of logZ involves

Γ(s)ζ(s + 1)

ζ(s)

∑
x1,x2≥1

(‖x‖1 + λ
√
2‖x‖2)−s, �(s) > 2.

As usual, the leading term of the expansion of logZ when β → 0 is obtained

by computing the residue of this function at s = 2. It turns out to be

ζ(3)

2ζ(2)

∫ π/4

−π/4

dθ

(λ+ cos(θ))2
.

An application of the residue theorem shows that the expected length of the

curve is asymptotically equivalent to

1

β3

ζ(3)√
2ζ(2)

∫ π/4

−π/4

dθ

(λ+ cos(θ))3

and that the coordinates of the ending point have asymptotic expected value

1

β3

ζ(3)

2ζ(2)

∫ π/4

−π/4

cos(θ)dθ

(λ+ cos(θ))3
.

As in previous sections, a local limit theorem gives a correspondence between

this Gibbs measure and the uniform distribution on a specific set of convex

lines, namely the convex polygonal line with endpoint (n, n) and total length

belonging to [L · n, L · n+ 1] for some L ∈ (
√
2, 2) which is a function of λ,

L(λ) =
√
2

∫ π
4

0
1

(λ+cosu)3 du∫ π
4

0
cosu

(λ+cosu)3 du
.

By computations analogous to section 4, one can show that the uniform dis-

tribution on lines with length between L(λ) · n and L(λ) · n + 1 concentrates

around the curve described by the parametrization

xλ(φ) =
√
2

∫ φ

0
cosu

(λ+cos(u−π
4 ))3 du∫ π/4

−π/4
cosu

(λ+cosu)3 du
, yλ(φ) =

√
2

∫ φ

0
sinu

(λ+cos(u−π
4 ))3 du∫ π/4

−π/4
cosu

(λ+cosu)3 du
(0 ≤ φ ≤ π

2
).



Figure 2. Limit shapes of different Euclidean lengths. Succes-

sively:
√
2 (diagonal); 1.48, π

2 (circle), 1+ ln(1+
√
2)√

2
(parabola),

1.72, 1.89 and 2 (square).
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