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ABSTRACT

While every matrix admits a singular value decomposition, in which the

terms are pairwise orthogonal in a strong sense, higher-order tensors ty-

pically do not admit such an orthogonal decomposition. Those that do

have attracted attention from theoretical computer science and scienti-

fic computing. We complement this existing body of literature with an

algebro-geometric analysis of the set of orthogonally decomposable ten-

sors.

More specifically, we prove that they form a real-algebraic variety de-

fined by polynomials of degree at most four. The exact degrees, and the

corresponding polynomials, are different in each of three times two sce-

narios: ordinary, symmetric, or alternating tensors; and real-orthogonal

versus complex-unitary. A key feature of our approach is a surprising

connection between orthogonally decomposable tensors and semisimple

algebras—associative in the ordinary and symmetric settings and of com-

pact Lie type in the alternating setting.
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1. Introduction and results

By the singular value decomposition, any complex (m × n)-matrix A can be

written as

A =

k∑
i=1

uiv
T
i ,

where u1, . . . , uk ∈ Cm and v1, . . . , vk ∈ Cn are sets of nonzero, pairwise ort-

hogonal vectors with respect to the standard Hermitian forms on these spaces.

The singular values ||ui|| · ||vi||, including their multiplicities, are uniquely de-

termined by A, and if these singular values are all distinct, then the terms uiv
T
i

are also uniquely determined.

If m = n and A is symmetric, then the ui and vi can be chosen equal.

And if, on the other hand, A is skew-symmetric, then k is necessarily even,

say k = 2�, and one can choose vi = u�+i for i = 1, . . . , � and vi = −ui−�

for i = � + 1, . . . , n, so that the terms can be grouped into pairs of the form

uiv
T
i − viu

T
i for i = 1, . . . , �. Note that the two-dimensional spaces 〈ui, vi〉C for

i = 1, . . . , � are pairwise perpendicular.

In this paper we consider higher-order tensors in a tensor product V1⊗· · ·⊗Vd
of finite-dimensional vector spaces Vi overK ∈ {R,C}, where the tensor product
is also overK.We assume that each Vi is equipped with a positive-definite inner

product (·|·), Hermitian if K = C.

Definition 1: A tensor in V1 ⊗ · · · ⊗ Vd is called orthogonally decomposable

(odeco, if K = R) or unitarily decomposable (udeco, if K = C) if it can

be written as

k∑
i=1

vi1 ⊗ · · · ⊗ vid,

where for each j the vectors v1j , . . . , vkj are nonzero and pairwise orthogonal

in Vj .

We use the adverb unitarily forK = C to stress that we have fixed Hermitian

inner products rather than symmetric bilinear forms. Note that orthogonality

implies that the number k of terms is at most the minimum of the dimensions

of the Vi, so odeco tensors form a rather low-dimensional subset of the space of

all tensors; see Proposition 8.
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Next we consider tensor powers of a single, finite-dimensional K-space V. We

write Symd(V ) for the subspace of V ⊗d consisting of all symmetric tensors,

i.e., those fixed by all permutations of the tensor factors.

Definition 2: A tensor in Symd(V ) is called symmetrically odeco (if K = R)

or symmetrically udeco (if K = C) if it can be written as

k∑
i=1

±v⊗d
i

where the vectors v1, . . . , vk are nonzero, pairwise orthogonal vectors in V.

The signs are only required when K = R and d is even, as they can otherwise

be absorbed into the vi by taking a d-th root of −1. Clearly, a symmetrically

odeco or udeco tensor is symmetric and odeco or udeco in the earlier sense. The

converse also holds; see Proposition 32.

Our third scenario concerns the space Altd(V ) ⊆ V ⊗d consisting of all alter-

nating tensors, i.e., those T for which πT = sgn(π)T for each permutation π

of [d] := {1, . . . , d}. The simplest alternating tensors are the alternating product

tensors

v1 ∧ · · · ∧ vd :=
∑
π∈Sd

sgn(π)vπ(1) ⊗ · · · ⊗ vπ(d).

Such a tensor is nonzero if and only if the vectors v1, . . . , vd are linearly inde-

pendent, and it changes only by a scalar factor upon replacing these vectors by

another basis of the space 〈v1, . . . , vd〉. We say that this subspace is represen-

ted by the alternating product tensor.

Definition 3: A tensor in Altd(V ) is called alternatingly odeco or alterna-

tingly udeco if it can be written as

k∑
i=1

vi1 ∧ · · · ∧ vid,

where the k · d vectors v11, . . . , vkd are nonzero and pairwise orthogonal.

Equivalently, this means that the tensor is a sum of k alternating product

tensors that represent pairwise orthogonal d-dimensional subspaces of V ; by

choosing orthogonal bases in each of these spaces one obtains a decomposition

as above. In particular, k is at most �n/d	. For d ≥ 3, alternatingly odeco

tensors are not odeco in the ordinary sense unless they are zero; see Remark 34.



Vol. 222, 2017 TENSOR DECOMPOSITION 227

By quantifier elimination, it follows that the set of odeco or udeco tensors

is a semi-algebraic set in V1 ⊗ · · · ⊗ Vd, i.e., a finite union of subsets described

by polynomial equations and (weak or strict) polynomial inequalities; here this

space is considered as a real vector space even if K = C. A simple compactness

argument (see Proposition 6) also shows that they form a closed subset in the

Euclidean topology, so that only weak inequalities are needed. However, our

main result says that, in fact, only equations are needed, and that the same

holds in the symmetrically or alternatingly odeco or udeco regimes.

Theorem 4 (Main Theorem): For each integer d ≥ 3, for K ∈ {R,C}, and
for all finite-dimensional inner product spaces V1, . . . , Vd and V over K, the

odeco/udeco tensors in V1 ⊗ · · · ⊗ Vd, the symmetrically odeco/udeco tensors

in Symd(V ), and the alternatingly odeco/udeco tensors in Altd(V ), form real

algebraic varieties defined by polynomials of degrees given in the following table.

Degrees of equations odeco (over R) udeco (over C)

symmetric 2 (associativity) 3 (semi-associativity)

ordinary 2 (partial associativity) 3 (partial semi-associativity)

alternating 2 (Jacobi) and 4 (cross) 3 (Casimir) and 4 (cross)

Remark 5: Several remarks are in order:

(1) Unlike for d = 2, for d ≥ 3 the decomposition in Definitions 1, 2, and 3

is always unique in the sense that the terms are uniquely determined,

regardless of whether some of their norms coincide; see Proposition 7.

(2) A direct consequence of the fact that we work with Hermitian forms

is that even when K = C the varieties above are real algebraic only,

except in the following three degenerate cases: dim V or some dimVi

equals zero; dimVi = 1 for some i, so that the set of odeco/udeco

tensors equals the affine cone over the Segre product of PV1, . . . ,PVd;

or d > dimV/2 in the alternating case, so that the set of alternatingly

odeco/udeco tensors equals the affine cone over the Grassmannian of k-

subspaces of V . So apart from these cases, we need to allow polynomial

equations involving coordinates with respect to a C-basis together with

their complex conjugates.
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(3) We will describe the polynomials defining these varieties in detail later

on, but here is a high-level perspective. In the odeco case, the equati-

ons of degree two guarantee that some algebra associated to a tensor

is associative (in the ordinary and symmetric cases) or Lie (in the al-

ternating case), and the equations of degree four come from a certain

polynomial identity satisfied by the cross product on R
3. These degree-

four equations are not always required: e.g., for Alt3(V ) they can be

discarded (leaving only our degree-two equations) if and only if the real

vector space V has dimension ≤ 7 (see Remark 19).

(4) The udeco case is more involved: the equations of degree three ex-

press that some algebra with a bi-semilinear product is (partially) semi-

associative in a sense to be defined below, or, in the case of alternatingly

udeco tensors, that a variant of the Casimir operator commutes with

the multiplication.

(5) The listed degrees are minimal in the sense that there are no linear

equations in the odeco case and no quadratic equations in the udeco

case—again, except in degenerate cases. Moreover, the equations of

degree four for the alternating case cannot be simply discarded. But we

do not know whether, instead of the degree-four equations, lower-degree

equations might also suffice.

(6) More generally, we do not know whether the equations that we give

generate the prime ideal of all polynomial equations vanishing on our

real algebraic varieties.

The remainder of this paper is organised as follows. In Section 2 we dis-

cuss some background and earlier literature; in particular we show that our

degree-two equations follow from those obtained by the fourth-named author

in [Rob14], so that our Main Theorem implies [Rob14, Conjecture 3.2] at a

set-theoretic level and over the real numbers.

In Section 3 we prove the Main Theorem for tensors of order three. We first

treat odeco tensors, and then the more involved case of udeco tensors. The

proofs for symmetrically odeco and udeco three-tensors are the simplest, and

those for ordinary odeco and udeco three-tensors build upon them. The alterna-

tingly odeco and udeco three-tensors require a completely separate treatment.

Then, in Section 4 we derive the theorem for higher-order tensors for ordinary,

symmetric, and alternating tensors consecutively. We conclude in Section 5

with some open questions.
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2. Background

In this section we collect background results on orthogonally decomposable

tensors, and connect our paper to earlier work on them.

Proposition 6: The set of (ordinary, symmetrically, or alternatingly) odeco

or udeco tensors is closed in the Euclidean topology.

Proof. We give the argument for symmetrically udeco tensors; the same works

in the other cases. Thus consider the space V = Cn with the standard inner

product, let Un be the unitary group of that inner product, and consider the

map

ϕ : Un × PV → P Symd(V ), ((u1| . . . |un), [λ1 : . . . : λn]) 
→
[ n∑

i=1

λiu
⊗d
i

]
.

Here P stands for projective space and ui is the i-th column of the unitary

matrix u. The key point is that this map is well-defined and continuous, since the

expression between the last square brackets is never zero by linear independence

of the u⊗d
i . Now ϕ is a continuous map whose source is a compact topological

space, hence imϕ is a closed subset of P Symd(V ). But then the pre-image of

imϕ in Symd(V ) \ {0} is also closed, and so is the union of this pre-image with

{0}. This is the set of symmetrically udeco tensors in Symd(V ).

Proposition 7: For d ≥ 3, any (ordinary, symmetrically, or alternatingly)

odeco or udeco tensor has a unique orthogonal decomposition.

In the ordinary case this was proved in [ZG01, Theorem 3.2].

Proof. We give the argument for ordinary odeco tensors. Consider an orthogo-

nal decomposition

T =

k∑
i=1

vi1 ⊗ · · · ⊗ vid

of an odeco tensor T ∈ V1 ⊗ · · · ⊗ Vd. Contracting T with an arbitrary tensor

S ∈ V3 ⊗ · · · ⊗ Vd via the inner products on V3, . . . , Vd leads to a tensor

T ′ =
k∑

i=1

λivi1 ⊗ vi2

where λi is the inner product of S with vi3⊗· · ·⊗vid. Now the above is a singular

value decomposition for the two-tensor T ′, of which, for S sufficiently general,
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the singular values |λi| · ||vi1|| · ||vi2|| are all distinct. Thus v11, . . . , vk1 are, up

to nonzero scalars, uniquely determined as the singular vectors (corresponding

to the nonzero singular values) of the pairing of T with a sufficiently general

S. And these vectors determine the corresponding terms, since the i-th term

equals vi1 tensor the pairing of T with vi1, divided by ||vi1||2.
The arguments in the symmetric or alternating case, as well as in the udeco

case, are almost identical. We stress that, as permuting the first two factors

commutes with contracting the last d− 2 factors, the contraction of a symme-

tric or alternating tensor is a symmetric or alternating matrix. Also, in the

alternating case, rather than contracting with a general S, we contract with a

general alternating product tensor S = u1 ∧ · · · ∧ ud−2. This has the effect of

intersecting the space spanned by vi1, . . . , vid with the orthogonal complement

of the space spanned by u1, . . . , ud−2.

The proof of this proposition yields a simple probabilistic algorithm for deci-

ding whether a tensor is odeco or udeco, and for finding a decomposition when

it exists: contract with a random S, compute the (unique) singular value de-

composition of T ′, and let u1, . . . , uk be the norm-one singular vectors of T ′ in
V1. Then for T to be odeco, the contraction Ti of T with each ui must be a

rank-one tensor, and
∑

i ui ⊗ Ti is the only candidate orthogonal decomposi-

tion for T . It then still needs to be checked that for each j the factors of the

Ti in Vj are pairwise perpendicular. For much more on algorithmic issues see

[BLW15, Kol15, SRK09, ZG01].

The uniqueness of the orthogonal decomposition makes it easy to compute

the dimensions of the real-algebraic varieties in our Main Theorem.

Proposition 8: Let n := dimK V , l := �n
d 	, and assume that the dimensions

ni := dimK Vi are in increasing order n1 ≤ · · · ≤ nd. Then, the dimensions

of the real-algebraic varieties of odeco/udeco tensors are given in the following

table.

Dimension over R odeco udeco

symmetric n+
(
n
2

)
2n+ n(n− 1)

ordinary n1 +
∑d

j=1
n1(2nj−n1−1)

2 2n1 +
∑d

j=1 n1(2nj − n1 − 1)

alternating l + ld(2n−(l+1)d)
2 2l+ ld(2n− (l + 1)d)
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Proof. In the symmetric case, a symmetrically odeco/udeco tensor encodes n

pairwise perpendicular points in PV . For the first point we have n−1 degrees of

freedom over K. The second point is chosen from the projective space orthogo-

nal to the first point, so this yields n− 2 degrees of freedom, etc. Summing up,

we obtain
(
n
2

)
degrees of freedom over K for the points. In addition, we have n

scalars from K for the individual terms. If K = C we multiply by two to obtain

the real dimension. Since each odeco/udeco tensor has a unique decomposition,

the dimension of the odeco/udeco variety is the same as the dimension of the

space of n pairwise orthogonal points and n scalars.

The computation for the ordinary case is the same, except that only n1

pairwise perpendicular projective points are chosen from each Vj .

In the alternating case, an alternatingly odeco/udeco tensor encodes l pairwise

perpendicular d-dimensional K-subspaces of V. The first space is an arbitrary

point on the d(n−d)-dimensional Grassmannian of d-subspaces, the second an

arbitrary point on the d(n−2d)-dimensional Grassmannian of d-subspaces in the

orthogonal complement of the first, etc. Add l degrees of freedom for the scalars,

and if K=C, multiply by 2. By uniqueness of the decomposition, the dimension

of the odeco/udeco variety is preserved and as given in the table above.

Over the last two decades, orthogonal tensor decomposition has been studied

intensively from a scientific computing perspective (see, e.g., [Com94, Kol01,

Kol03, CS09, Kol15]), though the alternating case has not received much atten-

tion so far. The paper [CS09] gives a characterisation of orthogonally decom-

posable tensors in terms of their higher-order SVD [DDV00], which is different

from the real-algebraic characterisation in our Main Theorem. One of the inte-

resting properties of an orthogonal tensor decomposition with k terms is that

discarding the k − r terms with smallest norm yields the best rank-r approx-

imation to the tensor; see [VNVM14], where it is also proved that in general,

tensors are not optimally truncatable in this manner.

In general, tensor decomposition is NP-hard [HL13]. The decomposition of

odeco tensors, however, can be found efficiently. The vectors in the decompo-

sition of an odeco tensor are exactly the attraction points of the tensor power

method and are called robust eigenvectors. Because of their efficient decom-

position, odeco tensors have been used in machine learning, in particular for

learning latent variables in statistical models [AGH+14]. More recent work in

this direction concerns overcomplete latent variable models [AGJ14].
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In [Rob14], the fourth-named author describes all eigenvectors of symmetri-

cally odeco tensors in terms of the robust ones, and conjectures the equations

defining the variety of symmetrically odeco tensors. Formulated for the case

of ordinary tensors instead, this conjecture is as follows. Let V1, . . . , Vd be real

inner product spaces, and consider an odeco tensor T ∈ V1 ⊗ · · · ⊗ Vd with

orthogonal decomposition T =
∑k

i=1 vi1 ⊗ · · · ⊗ vid. Now take two copies of T ,

and contract them in their l-th components via the inner product Vl × Vl → R.

By orthogonality of the vil, i = 1, . . . , k, after regrouping the tensor factors,

the resulting tensor is

k∑
i=1

(
||vil||2

⊗
j �=l

(vij ⊗ vij)

)
∈
⊗
j �=l

(Vj ⊗ Vj);

we write T ∗l T for this tensor. It is clear from this expression that T ∗l T
is multi-symmetric in the sense that it lies in the subspace

⊗
j �=l Sym2(Vj).

The fourth-named author conjectured that this (or rather, its analogue in the

symmetric setting) characterises (symmetrically) odeco tensors. This is now a

theorem, which follows from the proof of our main theorem (see Remark 15).

Theorem 9: T ∈ V1 ⊗ · · · ⊗ Vd is odeco if and only if for all l = 1, . . . , d we

have

T ∗l T ∈
⊗
j �=l

Sym2(Vj).

This concludes the discussion of background to our results. We now proceed

to prove the main theorem in the case of order-three tensors.

3. Tensors of order three

In all our proofs below, we will encounter a finite-dimensional vector space A

over K = R or C equipped with a positive-definite inner product (·|·), as well

as a bi-additive product A × A → A, (x, y) 
→ x · y which is bilinear if K = R

and bi-semilinear if K = C. The product will be either commutative or anti-

commutative. Moreover, the inner product will be compatible with the product

in the sense that (x · y|z) = (z · x|y). An ideal in (A, ·) is a K-subspace I such

that I · A ⊆ I—by (anti-)commutativity we then also have A · I ⊆ I—and A

is called simple if A �= {0} and A contains no nonzero proper ideals. We have

the following well-known result.
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Lemma 10: The orthogonal complement I⊥ of any ideal I in A is an ideal,

as well. Consequently, A splits as a direct sum of pairwise orthogonal simple

ideals.

Proof. We have (A · I⊥|I) = (I ·A|I⊥) = {0}. The second statement follows by

induction on dimA.

3.1. Symmetrically odeco three-tensors. In this subsection, we fix a

finite-dimensional real inner product space V and characterise symmetrically

odeco tensors in Sym3(V ). We have Sym3(V ) ⊆ V ⊗3 ∼= (V ∗)⊗2 ⊗ V, where the

isomorphism comes from the linear isomorphism V → V ∗, v 
→ (v|·). Thus a

tensor T ∈ Sym3(V ) gives rise to a bilinear map V × V → V, (u, v) 
→ u · v,
which has the following properties:

(1) u · v = v · u for all u, v ∈ V (commutativity, which follows from the fact

that T is invariant under permuting the first two factors); and

(2) (u ·v|w) = (u ·w|v) (compatibility with the inner product, which follows

from the fact that T is invariant under permuting the last two factors).

Thus T gives V the structure of an R-algebra equipped with a compatible inner

product. The following lemma describes the quadratic equations from the Main

Theorem.

Lemma 11: If T is symmetrically odeco, then (V, ·) is associative.
Proof. Write T =

∑k
i=1 v

⊗3
i where v1, . . . , vk are pairwise orthogonal nonzero

vectors. Then we find, for x, y, z ∈ V, that

x · (y · z) = x ·
(∑

i

(vi|y)(vi|z)vi
)

=
∑
i

(vi|x)(vi|y)(vi|z)(vi|vi)vi = (x · y) · z,

where we have used that (vi|vj) = 0 for i �= j in the second equality.

Proposition 12: Conversely, if (V, ·) is associative, then T is symmetrically

odeco.

Proof. By Lemma 10, V has an orthogonal decomposition V =
⊕

i Ui where

the subspaces Ui are (nonzero) simple ideals. Correspondingly, T decomposes

as an element of
⊕

i Sym3(Ui). Thus it suffices to prove that each Ui is one-

dimensional. This is certainly the case when the multiplication Ui×Ui → Ui is

zero, because then any one-dimensional subspace of Ui is an ideal in V, hence

equal to Ui by simplicity. If the multiplication map is nonzero, then pick an
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element x ∈ Ui such that the multiplication Mx : Ui → Ui, y 
→ x ·y is nonzero.

Then kerMx is an ideal in V, because for z ∈ V we have

x · (kerMx · z) = (x · kerMx) · z = {0},
where we use associativity. By simplicity of Ui, kerMx = {0}. Now define a

new bilinear multiplication ∗ on Ui via y ∗ z :=M−1
x (y · z). This multiplication

is commutative, has x as a unit element, and we claim that it is also associative.

Indeed,

((x · y) ∗ z) ∗ (x · v) =M−1
x (M−1

x ((x · y) · z) · (x · v))
=y · z · v = (x · y) ∗ (z ∗ (x · v)),

where we used associativity and commutativity of · in the second equality.

Since any element is a multiple of x, this proves associativity. Moreover, (Ui, ∗)
is simple; indeed, if I is an ideal, then M−1

x (Ui · I) ⊆ I and hence

Ui · (x · I) = (Ui · x) · I = Ui · I ⊆ x · I,
so that x · I is an ideal in (Ui, ·); and therefore I = {0} or I = Ui.

Now (Ui, ∗) is a simple, associative R-algebra with 1, hence isomorphic to a

matrix algebra over a division ring. As it is also commutative, it is isomorphic

to either R or C. If it were isomorphic to C, then it would contain a square root

of −1, i.e., an element y with y ∗ y = −x, so that y · y = −x · x. But then
0 < (x · y|x · y) = (y · y|x · x) = −(x · x|x · x) < 0,

a contradiction. We conclude that Ui is one-dimensional, as desired.

Lemma 11 and Proposition 12 imply the Main Theorem for symmetrically

odeco three-tensors, because the identity x · (y · z) = (x · y) · z expressing

associativity translates into quadratic equations for the tensor T.

3.2. Ordinary odeco three-tensors. In this subsection, we consider a ten-

sor T in a tensor product U ⊗ V ⊗W of real, finite-dimensional inner product

spaces. Via the inner products, T gives rise to a bilinear map U × V → W,

and similarly with the three spaces permuted. Consider the external direct sum

A := U ⊕ V ⊕ W of U, V,W , and equip A with the inner product (·|·) that

restricts to the given inner products on U, V,W and that makes these spaces

pairwise perpendicular.
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U

WV

W · V ·

U ·

Figure 1. U · (V +W ) =W + V, and similarly with U, V,W permuted.

Taking cue from the symmetric case, we construct a bilinear product

· : A×A→ A

as follows: the product in A of two elements in U, or two elements in V, or

in W, is defined as zero; · restricted to U × V is the map into W given by T ;

etc.—see Figure 1. The tensor in Sym3(A) describing the multiplication is the

symmetric embedding of T from [RV13].

As in the symmetrically odeco case, the algebra has two fundamental proper-

ties:

(1) it is commutative: x · y = y · x by definition; and

(2) the inner product is compatible: (x · y|z) = (x · z|y). For instance, if

x ∈ U, y ∈ V, z ∈ W, then both sides equal the inner product of the

tensor x⊗ y ⊗ z with T ; and if y, z ∈W, then both sides are zero both

for x ∈ U (so that x·y, x·z ∈ V, which is perpendicular toW ), for x ∈W

(so that x · y = x · z = 0), and for x ∈ V (so that x · y, x · z ∈ U ⊥W ).

We are now interested only in homogeneous ideals I ⊆ A, i.e., ideals such

that

I = (I ∩ U)⊕ (I ∩ V )⊕ (I ∩W ).

We call A simple if it is nonzero and does not contain proper, nonzero homo-

geneous ideals. We call an element of A homogeneous if it belongs to one of

U, V,W. Next, we derive a polynomial identity for odeco tensors.

Lemma 13: If T is odeco, then for all homogeneous x, y, z where x and z belong

to the same space (U, V, or W ), we have (x · y) · z = x · (y · z).
We refer to this property as partial associativity.
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Proof. If x, y, z all belong to the same space, then both products are zero.

Otherwise, by symmetry, it suffices to check the case where x, z ∈ U and y ∈ V.

Let T =
∑

i ui ⊗ vi ⊗ wi be an orthogonal decomposition of T. Then we have

(x · y) · z =

(∑
i

(ui|x)(vi|y)wi

)
· z =

∑
i

(ui|x)(vi|y)(wi|wi)(z|ui)vi = x · (y · z),

where we have used that (wi|wj) = 0 for i �= j in the second equality.

Proposition 14: Conversely, if (A, ·) is partially associative, then T is odeco.

Proof. By a version of Lemma 10 restricted to homogeneous ideals, A is the

direct sum of pairwise orthogonal, simple homogeneous ideals Ii. Accordingly,

T lies in
⊕

i(Ii ∩ U)⊗ (Ii ∩ V )⊗ (Ii ∩W ). Thus it suffices to prove that T is

odeco under the additional assumption that A itself is simple and that · is not
identically zero.

By symmetry, we may assume that V · (U + W ) �= {0}. For u ∈ U , let

Mu : V + W → W + V be multiplication with u. By commutativity and

partial associativity, the Mu, for u ∈ U , all commute. By compatibility of (·|·),
each Mu is symmetric with respect to the inner product on V +W , and hence

orthogonally diagonalisable.

Consequently, V +W splits as a direct sum of pairwise orthogonal simulta-

neous eigenspaces

(V +W )λ := {v + w ∈ V +W | u · (v + w) = λ(u)(w + v) for all u ∈ U},
where λ runs over U∗. Suppose we are given v+w∈(V+W )λ and v′+w′∈(V+W )μ

with λ �= μ. Then v + w and v′ + w′ are perpendicular and for each u ∈ V we

have

(u|(v + w) · (v′ + w′)) = (u · (v + w)|v′ + w′) = λ(u)(v + w|v′ + w′) = 0,

hence (v + w) · (v′ + w′) = 0. We conclude that for each λ the space

(V +W )λ ⊕ [(V +W )λ · (V +W )λ]

is a homogeneous ideal in A. By simplicity and the fact thatMu �= 0 for at least

some u, A is equal to this ideal for some nonzero λ ∈ U∗. Pick an x ∈ U such

that λ(x) = 1, so that x · (v + w) = w + v for all v ∈ V, w ∈ W . In particular,

for v, v′ ∈ V we have (Mxv|Mxv
′) = (M2

xv|v′) = (v|v′), so that the restrictions

Mx : V →W and Mx :W → V are mutually inverse isometries.
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By the same construction, we find an element z ∈W such that z·(u+v) = v+u

for all u ∈ U, v ∈ V . Let T ′ be the image of T under the linear map

Mz ⊗ 1V ⊗Mx : U ⊗ V ⊗W → V ⊗ V ⊗ V,

via the isomorphism V ⊗V ⊗V � V ∗⊗V ⊗V ∗. We claim that T ′ is symmetrically

odeco. Indeed, let ∗ : V ×V → V denote the bilinear map associated to T ′. We

verify the conditions from Section 3.1. First,

v ∗ v′ = (z · v) · (x · v′) = x · ((z · v) · v′) = x · ((v′ · z) · v) = (x · v) · (v′ · z) = v′ ∗ v,
where we have repeatedly used commutativity and partial associativity (e.g., in

the second equality, to the elements z · v, x belonging to the same space W ).

Second, we have

(v∗v′|v′′) = ((z·v)·(x·v′)|v′′) = ((z·v)|v′·(x·v′′)) = (v|(z·v′)·(x·v′′)) = (v|v′∗v′′).
Hence T ′ is, indeed, an element of Sym3(V ). Finally, we have

(v ∗ v′) ∗ v′′ =(z · ((z · v) · (x · v′))) · (x · v′′)
=z · ((x · v′′) · ((z · v) · (x · v′)))
=z · (((x · v′′) · (z · v)) · (x · v′))
=z · ((v ∗ v′′) · (x · v′))
=(v ∗ v′′) ∗ v′,

which, together with commutativity, implies associativity of ∗. Hence T ′ is

(symmetrically) odeco by Proposition 14, and hence so is its image T under the

tensor product Mz ⊗ 1V ⊗Mx of linear isometries.

Remark 15: The condition that (x ·y) ·z = x ·(y ·z) for, say, x, z ∈W and y ∈ V

translates into the condition that the contraction T ∗1 T ∈ (V ⊗ V )⊗ (W ⊗W )

lies in Sym2(V ) ⊗ Sym2(W ). Thus Proposition 14 implies Theorem 9 in the

case of three factors. The case of more factors follows from the case of three

factors and flattenings as in Proposition 31.

3.3. Alternatingly odeco three-tensors. In this subsection we consider

a tensor T ∈ Alt3(V ), where V is a finite-dimensional real vector space with

inner product (·|·). Via

Alt3(V ) ⊆ V ⊗3 ∼= (V ∗)⊗2 ⊗ V
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such a tensor gives rise to a bilinear map V × V → V , (u, v) 
→ [u, v], which

gives V the structure of an algebra. Now,

(1) as the permutation (1, 2) maps T to −T, we have [u, v] = −[v, u]; and

(2) as (2, 3) does the same, we have ([u, v]|w) = −([u,w]|v) = ([w, u]|v), so
that the inner product is compatible with the product.

The following lemma gives the degree-two equations from the Main Theorem.

Lemma 16: If T is alternatingly odeco, then [·, ·] satisfies the Jacobi identity.

Proof. Let T =
∑k

i=1 ui ∧ vi ∧wi be an orthogonal decomposition of T, and set

Vi := 〈ui, vi, wi〉. Then V splits as the direct sum of k ideals Vi and one further

ideal

V0 :=

( k⊕
i=1

Vi

)⊥
.

The restriction of the bracket to V0 is zero, so it suffices to verify the Jacobi

identity on each Vi. By scaling the bracket, which preserves both the Jacobi

identity and the set of alternatingly odeco tensors, we achieve that ui, vi, wi

can be taken of norm one. Then we have

[ui, vi] = wi, [vi, wi] = ui, and [wi, ui] = vi,

which we recognise as the multiplication table of R3 with the cross product ×,
isomorphic to the Lie algebra so3(R).

The following lemma gives the degree-four equations from the Main Theorem.

Lemma 17: If T is alternatingly odeco, then

[x, [[x, y], [x, z]]] = 0

for all x, y, z ∈ V .

We refer to this identity as the first cross product identity.

Proof. By the proof of Lemma 16, if T is odeco, then V splits as an orthogonal

direct sum of ideals V1, . . . , Vk that are isomorphic, as Lie algebras with compa-

tible inner products, to scaled copies of R3 with the cross product, and possibly

an additional ideal V0 on which the multiplication is trivial. Thus it suffices

to prove that the lemma holds for R3 with the cross product. But there it is

immediate: if [[x, y], [x, z]] is nonzero, then the two arguments span the plane

orthogonal to x, hence their cross product is a scalar multiple of x.
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We now prove the Main Theorem for alternatingly odeco three-tensors.

Proposition 18: Conversely, if the bracket [·, ·] on V satisfies the Jacobi iden-

tity and the first cross product identity, then T is alternatingly odeco.

Proof. By Lemma 10 the space V splits into pairwise orthogonal, simple ideals

Vi. Correspondingly, T lies in
⊕

i Alt3Vi, where the sum is over those Vi where

the bracket is nonzero. These are simple real Lie algebras equipped with a

compatible inner product, hence compact Lie algebras. Let g be one of these,

so g satisfies the first cross product identity. Then so does the complex Lie

algebra gC := C⊗ g, which is semisimple. For g ∼= so3(R), we have gC ∼= sl2(C),

whose Dynkin diagram consists of a single node. The classification of simple

compact Lie algebras (see, e.g., [Kna02]) implies that, if g is not isomorphic

to so3(R), then the Dynkin diagram of gC contains at least a single, double, or

triple edge. In the first and last case, gC contains a copy of sl3(C); in the second

case, gC contains a copy of so5(C). But neither of these two Lie algebras satisfy

the first cross product identity. For instance, in sl3(C) we have

[E11 − E33, [[E11 − E33, E12], [E11 − E33, E23]]] = 2E13 �= 0,

where Eij is the matrix with zeroes everywhere except for a 1 on position (i, j);

and a similar counterexample can be written down for so5(C). Hence g ∼= so3(R)

is three-dimensional, and T is alternatingly odeco.

Remark 19: The classification of simple compact Lie algebras shows that, after

so3(R), the next smallest one is su3(C), of dimension 8—recall that so4(R), of

dimension 6, is a direct sum of two copies of so3, arising from left and right

multiplication of quaternions by norm-one quaternions. Thus our degree-four

equations from the cross product identity are not necessary for dimV < 8.

3.4. Symmetrically udeco three-tensors. In the complex udeco setting,

all proofs towards the Main Theorem are more complicated than in the real case.

The reason for this is that, as we will see below, the bi-additive map (u, v) 
→ u·v
associated to a tensor is no longer bi-linear. Rather, it is bi-semilinear, i.e., it

satisfies

(cu) · (dv) = cd(u · v)
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for complex coefficients c, d. To appreciate why this causes trouble, consider the

usual associativity identity:

(x · y) · z = x · (y · z).

If the product is bi-semilinear, then the left-hand side depends linearly on both

x and y and semilinearly on z, while the right-hand side depends linearly on

y and z and semilinearly on x. Hence, except in trivial cases, one should not

expect associativity to hold for bi-semilinear products. This explains the need

for more complex polynomial identities (pun intended).

In this subsection, V is a complex, finite-dimensional vector space equipped

with a positive-definite Hermitian inner product (·|·), and T is an element of

Sym3(V ). There is a canonical linear isomorphism V → V s, v 
→ (v|·), where
V s is the space of semilinear functions V → C. Through

Sym3(V ) ⊆ V ⊗3 ∼= (V s)⊗2 ⊗ V,

the tensor T gives rise to a bi-semilinear product V × V → V, (u, v) 
→ u · v.
Moreover:

(1) since T is invariant under permuting the first two factors, · is commu-

tative; and

(2) since T is invariant under permuting the last two factors, we find that

(u ·v|w) = (u ·w|v). Note that, in this identity, both sides are semilinear

in all three vectors u, v, w.

The following lemma gives the degree-three equations of the Main Theorem.

Lemma 20: If T is symmetrically udeco, then for all x, y, z, u ∈ V we have

x · (y · (z · u)) = z · (y · (x · u))
and

(x · y) · (z · u) = (x · u) · (z · y).
We call a commutative operation · satisfying the identities in the lemma

semi-associative. It is clear that any commutative and associative operation

is also semi-associative, but the converse does not hold. Note that, since the

product is bi-semilinear, both sides of the first identity depend semilinearly on

x, z, u but linearly on y, while both parts of the second identity depend linearly

on all of x, y, z, u.
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Proof. Let T =
∑

i v
⊗3
i be an orthogonal decomposition of T. Then we have

z · u =
∑
i

(vi|z)(vi|u)vi

and

y · (z · u) =
∑
i

(vi|y)(z|vi)(u|vi)(vi|vi)vi

by the orthogonality of the vi. We stress that the coefficient (vi|z)(vi|u) has

been transformed into its complex conjugate (z|vi)(u|vi). Next, we find

x · (y · (z · u)) =
∑
i

(vi|x)(y|vi)(vi|z)(vi|u)(vi|vi)(vi|vi)vi

and this expression is invariant under permuting x, z, u in any manner. This

proves the first identity.

For the second identity, we compute

(x · y) · (z · u) =
∑
i

(vi|vi)2(x|vi)(y|vi)(z|vi)(u|vi)vi,

which is clearly invariant under permuting x, y, z, u in any manner.

Proposition 21: Conversely, if · is semi-associative, then T is symmetrically

udeco.

In fact, in the proof we only use the first identity. The second identity is used

later on, for the case of ordinary udeco three-tensors.

Example 22: To see how the identities for semi-associativity, in Lemma 20,

transform into equations for symmetrically udeco tensors we consider (2×2×2)-

tensors. Let {e1, e2} be an orthonormal basis of C2 and we represent an element

of Sym3(C
2) by

T =t3,0e1 ⊗ e1 ⊗ e1

+ t2,1(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1)

+ t1,2(e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1)

+ t0,3e2 ⊗ e2 ⊗ e2.

Then the identities for semi-associativity are translated into two complex

equations. If we separate the real and imaginary parts of these two complex

equations then we get that the real algebraic variety of symmetrically udeco
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(2× 2× 2)-tensors is given by the following four real equations (note that they

are invariant under conjugation):

f1 =− t21,2t1,2 + t0,3t2,1t1,2 − t1,2t
2
1,2 − t1,2t2,1t2,1 + t0,3t3,0t2,1 + t1,2t0,3t2,1

− t2,1t1,2t2,1 − t3,0t
2
2,1 − t22,1t3,0 + t1,2t3,0t3,0 + t2,1t0,3t3,0 + t3,0t1,2t3,0;

f2 =− t21,2t1,2 + t0,3t2,1t1,2 + t1,2t
2
1,2 − t1,2t2,1t2,1 + t0,3t3,0t2,1 − t1,2t0,3t2,1

+ t2,1t1,2t2,1 + t3,0t
2
2,1 − t22,1t3,0 + t1,2t3,0t3,0 − t2,1t0,3t3,0 − t3,0t1,2t3,0;

f3 =− t21,2t0,3 + t0,3t2,1t0,3 − t1,2t2,1t1,2 + t0,3t3,0t1,2 − t0,3t
2
1,2 − t22,1t2,1

+ t1,2t3,0t2,1 + t0,3t0,3t2,1 − t1,2t1,2t2,1 − t2,1t
2
2,1 + t1,2t0,3t3,0 + t2,1t1,2t3,0;

f4 =− t21,2t0,3 + t0,3t2,1t0,3 − t1,2t2,1t1,2 + t0,3t3,0t1,2 + t0,3t
2
1,2 − t22,1t2,1

+ t1,2t3,0t2,1 − t0,3t0,3t2,1 + t1,2t1,2t2,1 + t2,1t
2
2,1 − t1,2t0,3t3,0 − t2,1t1,2t3,0.

The polynomials f1, f2, f3 and f4 generate a real codimension 2 variety, as

expected by Proposition 8. We do not know whether the ideal generated by

these polynomials is prime or not.

Proof of Proposition 21. By Lemma 10, V is the direct sum of pairwise orthogo-

nal, simple ideals Vi. Correspondingly, T lies in
⊕

i Sym3(Vi). We want to show

that those ideals on which the multiplication is nonzero are one-dimensional.

Thus we may assume that V itself is simple with nonzero product.

Then the elements x ∈ V for which the semilinear mapMx : V → V , y 
→ x·y
is identically zero form a proper ideal in V, which is zero by simplicity. Hence

for any nonzero x ∈ V the map Mx is nonzero.

Now consider, for nonzero x ∈ V, the space W := kerMx. We claim that W

is a proper ideal. First, W also equals kerM2
x , because if M2

xv = 0, then

(M2
xv|v) = (x(xv)|v) = (xv|xv) = 0,

so xv = 0. We have

M2
x(V ·W ) = x · (x · (V ·W )) = V · (x · (x ·W )) = {0}.

Here we used semi-associativity in the second equality. So V ·W ⊆ kerM2
x =W,

as claimed. Hence W is zero.

Fixing any nonzero x ∈ V, we define a new operation on V by

y ∗ z :=M−1
x (y · z).



Vol. 222, 2017 TENSOR DECOMPOSITION 243

SinceM−1
x is semilinear, ∗ is bilinear, commutative, and has x as a unit element.

We claim that it is also associative. For this we need to prove that

v ·M−1
x (z · y) = z ·M−1

x (v · y)
holds for all y, z, v ∈ V. Write y = M2

xy
′, so that x · (x · (z · y′)) = z · y and

x · (x · (v · y′)) = v · y by semi-associativity. Then the equation to be proved

reads

v · (x · (z · y′)) = z · (x · (v · y′)),
which is another instance of semi-associativity.

Furthermore, any nonzero element y ∈ V is invertible in (V, ∗) with inverse

M−1
y (x · x). We conclude that (V, ∗,+) is a finite-dimensional field extension of

C, hence equal to C.

3.5. Ordinary udeco three-tensors. In this subsection, U, V,W are three

finite-dimensional complex vector spaces equipped with Hermitian inner pro-

ducts (·|·), and T is a tensor in U ⊗ V ⊗W. Then T gives rise to bi-semilinear

maps U × V → W, V × U → W, etc. Like for ordinary three-tensors in the

real case, we equip A := U ⊕ V ⊕W with the bi-semilinear product · arising
from these maps and with the inner product which restricts to the given inner

products on U, V, and W, and is zero on all other pairs. By construction:

(1) (A, ·) is commutative, and

(2) the inner product is compatible.

The following lemma gives the degree-three equations from the Main Theo-

rem.

Lemma 23: If T is udeco, then

(1) for all u, u′, u′′ ∈ U and v ∈ V we have

u · (u′ · (u′′ · v)) = u′′ · (u′ · (u · v));
(2) for all u ∈ U, v, v′ ∈ V, and w ∈W we have

u · (v · (w · v′)) = w · (v · (u · v′)) and (u · v) · (w · v′) = (u · v′) · (w · v);
and the same relations hold with U, V,W permuted in any manner.

We call the product · partially semi-associative if it satisfies these condi-

tions.
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Proof. Let T =
∑

i ui ⊗ vi ⊗wi be an orthogonal decomposition of T. Then we

have

u′′ · v =
∑
i

(ui|u′′)(vi|v)wi,

u′ · (u′′ · v) =
∑
i

(ui|u′)(u′′|ui)(v|vi)(wi|wi)vi, and

u · (u′ · (u′′ · v)) =
∑
i

(ui|u)(u′|ui)(ui|u′′)(vi|v)(wi|wi)(vi|vi)wi,

which is invariant under swapping u and u′′. The second identity is similar. For

the last identity, we have

(u · v) · (w · v′) =
∑
i

(u|ui)(v|vi)(wi|wi)(w|wi)(v
′|vi)(ui|ui)vi,

which is invariant under swapping v and v′.

The following proposition implies the Main Theorem for three-tensors over C.

Proposition 24: Conversely, if · is partially semi-associative, then T is udeco.

Proof. By a version of Lemma 10 for homogeneous ideals I ⊆ A, i.e., those for

which

I = (I ∩ U)⊕ (I ∩ V )⊕ (I ∩W ),

A splits as a direct sum of nonzero, pairwise orthogonal, homogeneous ideals

Ii that each do not contain proper, nonzero homogeneous ideals, and T lies in⊕
i(Ii ∩ U) ⊗ (Ii ∩ V ) ⊗ (Ii ∩W ), where the sum is over those i on which the

multiplication · is nontrivial. Thus we may assume that A itself is nonzero,

contains no proper nonzero ideals, and has nontrivial multiplication. We then

need to prove that each of U, V,W is one-dimensional.

Without loss of generality, U · V is a nonzero subset of W. The u ∈ U for

which the multiplication Mu : V +W →W + V , (v +w) 
→ u · v+ u ·w is zero

form a homogeneous, proper ideal in A, which is zero by simplicity.

Pick an x ∈ U, and let

Q := kerMx ⊆ V +W,

so that Q · Q ⊆ U. We want to prove that Q ⊕ (Q · Q) is a proper homogene-

ous ideal in A. First, kerMx equals kerM2
x because 0 = (x(xv)|v) = (xv|xv)
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implies xv = 0. Now U ·Q ⊆ Q because

M2
x(U ·Q) = x · (x · (U ·Q)) = U · (x · (x ·Q)) = {0}

by partial semi-associativity.

Next, let R be the orthogonal complement of Q in V +W . We have

(Q ·R|U) = (Q · U |R) = {0},
so that Q · R = {0}, and therefore

(V +W ) ·Q = (Q+R) ·Q = Q ·Q.
It remains to check whether V · (Q ·Q) ⊆ Q, and similarly for W . This is true

since, for v ∈ Q ∩ V and w ∈ Q ∩W, we have

x · (V · (w · v)) = w · (V · (x · v)) = {0}
by partial semi-associativity. We have now proved that Q⊕ (Q ·Q) is a proper

homogeneous ideal in A. Hence Q = 0 by simplicity.

We conclude thatMx is a bijection V +W →W +V for each nonzero x ∈ U.

Similarly, Mz is a bijection U + V → V + U for each nonzero z ∈ W. Fixing

nonzero x ∈ U and nonzero z ∈W, define a new multiplication ∗ on V by

v ∗ v′ := (x · v) · (z · v′) ∈W · U ⊆ V.

This operation is commutative by the third identity in partial associativity, and

it is C-linear. Moreover, for each nonzero v′ ∈ V and each v′′ ∈ V there is an

element v ∈ V such that v ∗v′ = v′′, namely, M−1
x M−1

z·v′v′′, which is well-defined

since also the element z · v′ ∈ U is nonzero. Thus (V, ∗) is a commutative

division algebra over C, and by Hopf’s theorem [Hop41], dimC V = 1.

3.6. Alternatingly udeco three-tensors. In this section, V is a finite-

dimensional complex inner product space. An alternating tensor

T ∈ Alt3(V ) ⊆ V ⊗ V ⊗ V ∼= V s ⊗ V s ⊗ V

gives rise to a bi-semilinear multiplication V×V → V, (a, b) 
→ [a, b] that satisfies

[a, b] = −[b, a] and ([a, b]|c) = −([a, c]|b).
Just like the multiplication did not become associative in the symmetrically

udeco case, the bracket does not satisfy the Jacobi identity in the alternatingly

udeco case. However, it does satisfy the following cross product identities.
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Figure 2. Quartic equations for alternatingly udeco tensors; see Lemma 25.

Lemma 25: If T is alternatingly udeco, then for all a, b, c, d, e ∈ V we have

[a, [[a, b], [a, c]]] = 0

and

[[[a, b], c], [d, e]] = [a, [[b, [c, d]], e]] + [a, [[b, [e, c]], d]] + [b, [[a, [d, e]], c]].

For a pictorial representation of the second identity see Figure 2.

Proof. In the alternatingly udeco case, the simple, nontrivial ideals of the al-

gebra (V, [., .]) are isomorphic, via an inner product preserving isomorphism,

to (C3, γ×), where × is the semilinear extension to C3 of the cross product

on R3 and where γ is a scalar. Thus it suffices to prove the two identities for

this three-dimensional algebra. Moreover, both identities are homogeneous in

the sense that their validity for some (a, b, c, d, e) implies their validity when

any one of the variables is scaled by a complex number. Indeed, for the first

identity this is clear, and for the second identity this follows since all four terms

are semilinear in a, b and linear in c, d, e. Hence both identities follow from their

validity for the crossproduct and arbitrary a, b, c, d, e ∈ R3.

The cross product identities yield real degree-four equations that vanish on

the set of alternatingly odeco three-tensors. There are also degree-three equati-

ons, which arise as follows. Let μ : V ⊗V → V , (a⊗b) → [a, b] be the semilinear

multiplication, and let, conversely, ψ : V → V ⊗ V be the semilinear map de-

termined by (c|[a, b]) = (a ⊗ b|ψ(c))—note that both sides are linear in a, b, c.

Then let H := μ ◦ ψ : V → V. Being the composition of two semilinear maps,

this is a linear map, and it satisfies (Ha|b) = (ψ(a)|ψ(b)) = (a|Hb). Hence H is

a positive semidefinite Hermitian map.

Lemma 26: If T is alternatingly udeco, then [Hx, y] = [x,Hy] for all x, y ∈ V.



Vol. 222, 2017 TENSOR DECOMPOSITION 247

Proof. Let T =
∑

i ui ∧ vi ∧ wi be an orthogonal decomposition of T. Then we

have

[Hx, y] =

[
μ

(∑
i

(wi|x)ui ∧ vi − (vi|x)ui ∧wi + (ui|x)vi ∧ wi

)
, y

]

=
∑
i

[2(wi|x)(ui|ui)(vi|vi)wi + 2(vi|x)(ui|ui)(wi|wi)vi

+ 2(ui|x)(vi|vi)(wi|wi)ui, y]

=2
∑
i

((wi|x)(ui|ui)(vi|vi)(wi|wi)((ui|y)vi − (vi|y)ui)

+ (vi|x)(ui|ui)(wi|wi)(vi|vi)((wi|y)ui − (ui|y)wi)

+ (ui|x)(vi|vi)(wi|wi)(ui|ui)((vi|y)wi − (wi|y)vi)).
Now we observe that the latter expression is skew-symmetric in x and y, so that

it equals −[Hy, x] = [x,Hy].

Remark 27: For a real, compact Lie algebra g, the positive semidefinite matrix

H constructed above is a (negative) scalar multiple of the Casimir element

in its adjoint action [Kna02]; this is why we call the identity in the lemma

the Casimir identity. Complexifying g and its invariant inner product to

a semilinear algebra with an invariant Hermitian inner product, we obtain an

algebra satisfying the degree-three equations of the lemma. Hence, since in

dimension at least 8 there exist other compact Lie algebras than direct sums of

copies of R3 and of R1, these degree-three equations do not suffice to characterise

alternatingly udeco three-tensors in general, though perhaps they do so for

dim V ≤ 7.

Example 28: The lemma yields cubic equations satisfied by alternatingly udeco

tensors. Here is one of these, with V = C
6 and tijk the coefficient of ei⊗ej⊗ek:

t1,4,5t2,3,4t̄1,3,5 − t1,3,4t2,4,5t̄1,3,5 + t1,2,4t3,4,5t̄1,3,5 + t1,4,6t2,3,4t̄1,3,6

− t1,3,4t2,4,6t̄1,3,6 + t1,2,4t3,4,6t̄1,3,6 − t1,4,6t2,4,5t̄1,5,6

+ t1,4,5t2,4,6t̄1,5,6 − t1,2,4t4,5,6t̄1,5,6 + t2,4,6t3,4,5t̄3,5,6

− t2,4,5t3,4,6t̄3,5,6 + t2,3,4t4,5,6t̄3,5,6 = 0.

This equation was first discovered as follows: working in V = (Z/19)[i]6 instead

of C6 (where it is important that 19 is 3 modulo 4 so that −1 has no square

root in Z/19), we implemented the Cayley transform to sample general unitary
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matrices from which we constructed alternatingly udeco tensors. We sampled

as many as there are degree-three monomials in the 20 variables tijk plus the

20 variables t̄ijk (namely,
(
40+2
3

)
= 11480), and evaluated these monomials on

the tensors. The 280-dimensional kernel of this matrix over Z/19 turned out to

have a basis consisting of vectors with entries 0, 1, 2, 17, 18. The natural guess

for lifting these equations to characteristic zero, respectively, yielded equations

that vanish on general alternatingly udeco tensors in characteristic zero. A

similar, but smaller computation shows that there are no degree-two equations;

here the fact that these do not exist modulo 19 proves that they do not exist in

characteristic zero either.

In a Lie algebra, if [a, b] = 0, then the left multiplications La : V → V and

Lb : V → V commute. This is not true in our setting, since the Jacobi identity

does not hold, but the following statement does hold.

Lemma 29: Suppose that the bracket satisfies the second cross product identity

in Lemma 25, and let a, b, c∈V be such that [a, c]=[b, c]=0. Then [[a, b], c]=0.

Proof. Compute the inner product

([[a, b], c]|[[a, b], c]) = −([[a, b], [[a, b], c]]|c) = ([[[a, b], c], [a, b]]|c)

and use the identity to expand the first factor in the last inner product as

[[[a, b], c], [a, b]] = [a, [[b, [c, a]], b]] + [a, [[b, [b, c]], a]] + [b, [[a, [a, b]], c]].

Now each of the terms on the right-hand side is of the form [a, x] or [b, y], and

we have ([a, x]|c) = −([a, c], x) = 0 and similarly ([b, y]|c) = 0. Since the inner

product is positive definite, this shows that [[a, b], c] = 0, as claimed.

We now prove that the equations that we have found so far suffice.

Proposition 30: Suppose that, conversely, T ∈ Alt3(V ) has the properties in

Lemmas 25 and 26. Then T is alternatingly udeco.

Proof. If a, b ∈ V belong to distinct eigenspaces of the Hermitian linear map

H, then the property that [Ha, b] = [a,Hb] implies that [a, b] = 0. Moreover, a

fixed eigenspace of H is closed under multiplication, as for a, b in the eigenspace

with eigenvalue λ and c in the eigenspace with eigenvalue μ �= λ, we have

λ([a, b]|c) = ([Ha, b]|c) = −([Ha, c]|b) = −μ([a, c]|b) = μ([a, b]|c),
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and hence ([a, b]|c) = 0. Thus the eigenspaces of H are ideals. We may replace

V by one of these, so that H becomes a scalar. If the scalar is zero, then T is

zero and we are done, so we assume that it is nonzero, in which case we can

scale T (even by a positive real number) to achieve that H = 1.

Furthermore, by compatibility of the inner product and Lemma 10, V splits

further as a direct sum of simple ideals. So to prove the proposition, in addition

to H = 1, we may assume that V is a simple algebra and that the multiplication

is not identically zero; in this case it suffices to prove that V is three-dimensional.

Let x ∈ V be a nonzero element such that the semilinear left multiplication

Lx : V → V has minimal possible rank. If its rank is zero, then 〈x〉 is an ideal,

contrary to the assumptions. Hence V1 := LxV is a nonzero space, and we set

V0 := [V1, V1], the linear span of all products of two elements from V1. We claim

that x ∈ V0. For this, we note that V ⊥
1 = kerLx and compute

(ψ(x)|V ⊥
1 ⊗ V ) = ([V ⊥

1 , V ]|x) = ([kerLx, x]|V ) = {0}.
Similarly, we find that (ψ(x)|V ⊗ V ⊥

1 ) = {0}, so ψ(x) ∈ V1 ⊗ V1 and therefore

x = Hx = μ(ψ(x)) ∈ [V1, V1] = V0,

as claimed.

Next, by the first cross product identity in Lemma 25, we find that

[x, V0] = {0}. This implies that (V0|V1) = (V0|[x, V ]) = ([x, V0]|V ) = {0},
so

V0 ⊥ V1.

Furthermore, by substituting x + s for x in that same identity and taking the

part quadratic in x, we find the identity

[s, [[x, a], [x, b]]] + [x, [[s, a], [x, b]]] + [x, [[x, a], [s, b]]] = 0.

An arbitrary element of [V, V0] is a linear combination of terms of the left-most

shape in this identity, hence the identity shows that [V, V0] ⊆ V1. Moreover,

substituting for s an element [[x, c], [x, d]] ∈ V0 we find that the last two terms

are zero, since [s, a] ∈ V1 and [x, [V1, V1]] = {0}. Hence the first term is also

zero, which shows that [V0, V0] = {0}.
Now let V2 be the orthogonal complement (V0 ⊕ V1)

⊥, so that V decomposes

orthogonally as V0 ⊕ V1 ⊕ V2. We claim that V2 is an ideal. First, we have

([V0, V2]|V ) = (V2|[V0, V ]) ⊆ (V2|V1) = {0}, so
[V0, V2] = {0}.
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By the first paragraph of the proof, x is contained in V0, hence in particu-

lar [x, V2] = 0, so kerLx contains V0 ⊕ V2. For dimension reasons, equality

holds: kerLx = V0 ⊕ V2. Now Lemma 29 applied with c = x yields that

kerLx is closed under multiplication, so in particular [V2, V2] ⊆ V0 ⊕ V2. Since

([V2, V2]|V0) = {0}, we have [V2, V2] ⊆ V2. Furthermore, we have

([V1, V2]|V0 ⊕ V1) = (V2|V1 ⊕ V0) = {0},
so that [V1, V2] ⊆ V2. This concludes the proof of the claim that V2 is an ideal.

By simplicity of V, V2 = {0} and hence V = V0 ⊕ V1.

Now consider any y ∈ V0\{0}.Then kerLy ⊇ V0⊕V2, and hence equality holds

by maximality of dim kerLx. But we can show more: let v ∈ V1 be an eigenvector

of the map (Lx|V1)
−1(Ly|V1) (which is linear since it is the composition of two

semilinear maps), say with eigenvalue λ. Then we have [y, v] = [x, λv] = [λx, v].

This means that the element z := y − λx ∈ V0 has kerLz ⊇ V0 ⊕ V2, but

also v ∈ kerLz. Hence the kernel of Lz is strictly larger than that of Lx, and

therefore z = 0. We conclude that y = λx, and hence V0 is one-dimensional.

Finally, consider a nonzero element z ∈ V1. From [z, V1] ⊆ V0 = 〈x〉 we find

that LzV is contained in 〈x, [z, x]〉C, i.e., Lz has rank at most two. Hence, by

minimality, the same holds for Lx. This means that dimV1 ≤ 2, and hence

dimV = dim(V0 ⊕ V1) ≤ 3.

Since T is nonzero, we find dimV = 3, as desired.

4. Higher-order tensors

In this section, building on the case of order three, we prove the Main Theorem

for tensors of arbitrary order.

4.1. Ordinary tensors. Let V1, . . . , Vd be finite-dimensional inner product

spaces over K ∈ {R,C}. The key observation is the following. Let

J1 ∪ · · · ∪ Je = {1, . . . , d}
be a partition of {1, . . . , d}. Then the natural flattening map

V1 ⊗ · · · ⊗ Vd →
( ⊗

j∈J1

Vj

)
⊗ · · · ⊗

( ⊗
j∈Je

Vj

)

sends the set of order-d odeco/udeco tensors into the set of order-e odeco/udeco

tensors, where the inner product on each factor
⊗

j∈J�
Vj is the one induced
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from the inner products on the factors. The following proposition gives a strong

converse to this observation.

Proposition 31: Let T ∈ V1⊗· · ·⊗Vd be a tensor, where d ≥ 4. Suppose that

the flattenings of T with respect to the three partitions

(i) {1}, . . . , {d− 3}, {d− 2}, {d− 1, d},
(ii) {1}, . . . , {d− 3}, {d− 2, d− 1}, {d}, and
(iii) {1}, . . . , {d− 3}, {d− 2, d}, {d− 1}

are all odeco/udeco. Then so is T.

The lower bound of 4 in this proposition is essential, because any flattening

of a three-tensor is a matrix and hence odeco, but as we have seen in Section 3

not every three-tensor is odeco.

Proof. As the first two flattenings are odeco, we have orthogonal decompositions

T =
k∑

i=1

Ti ⊗ ui ⊗Ai =
r∑

�=1

T ′
� ⊗B� ⊗ w�

where A1, . . . , Ak ∈ Vd−1 ⊗ Vd are pairwise orthogonal and nonzero, and so are

u1, . . . , uk ∈ Vd−2, and the Ti are of the form zi1 ⊗ · · · ⊗ zi(d−3) where for each

j the zij , i = 1, . . . , k are pairwise orthogonal and nonzero. Similarly for the

factors in the second expression. Contracting T with Ti in the first d−3 factors

yields a single term on the left (here we use that d > 3):

(Ti|Ti)ui ⊗Ai =
r∑

�=1

(T ′
� |Ti)B� ⊗ w�.

For an index � such that (T ′
�|Ti) is nonzero, by contracting with w� we find that

B� is of rank one and, more specifically, of the form ui ⊗ v� with v� ∈ Vd−1.

There is at least one such index, since the left-hand side is nonzero. Moreover,

since the ui are linearly independent for distinct i, we find that the set of �

with (T ′
� |Ti) �= 0 is disjoint from the set defined similarly for another value of

i. Hence, r ≥ k. By swapping the roles of the two decompositions we also find

the opposite inequality, so that r = k, and after relabelling we find Bi = ui⊗ vi

for i = 1, . . . , k and certain nonzero vectors vi. Hence we find

T =
k∑

i=1

T ′
i ⊗ ui ⊗ vi ⊗ wi,
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where we do not know yet whether the vi are pairwise perpendicular. However,

applying the same reasoning to the second and third decompositions in the

lemma, we obtain another decomposition

T =

k∑
i=1

T ′
i ⊗ u′i ⊗ v′i ⊗ wi,

where we do know that the v′i are pairwise perpendicular (but not that the u′i
are). Contracting with T ′

i we find that, in fact, both decompositions are equal

and the vi are pairwise perpendicular, as required.

Proof of the Main Theorem for ordinary tensors. It follows from Lemma 13

and Proposition 14 that ordinary odeco tensors of order three are characte-

rised by degree-two equations. Similarly, by Lemma 23 and Proposition 24,

ordinary udeco tensors of order three are characterised by degree-three equati-

ons. By Proposition 31 and the remarks preceding it, a higher-order tensor is

odeco (udeco) if and only if certain of its flattenings are odeco (udeco). Thus the

equations characterising lower-order odeco (udeco) tensors pull back, along li-

near maps, to equations characterising higher-order odeco (udeco) tensors.

4.2. Symmetric tensors. In this section, V is a finite-dimensional vector

space over K = R or C.

Proposition 32: For d ≥ 3, a tensor T ∈ Symd(V ) is symmetrically odeco

(udeco) if and only if it is odeco (udeco) when considered as an ordinary tensor

in V ⊗d.

Proof. The “only if” direction is immediate, since a symmetric orthogonal de-

composition is a fortiori an ordinary orthogonal decomposition. For the con-

verse, consider an orthogonal decomposition

T =

k∑
i=1

vi1 ⊗ · · · ⊗ vid,

where the vij are nonzero vectors, pairwise perpendicular for fixed j. Since T is

symmetric, we have

T =
∑
i

viπ(1) ⊗ · · · ⊗ viπ(d)

for each π ∈ Sd. By uniqueness of the decomposition (Proposition 7), the terms

in this latter decomposition are the same, up to a permutation, as the terms
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in the original decomposition. In particular, the unordered cardinality-k sets of

projective points Qj := {[v1j ], . . . , [vkj ]} ⊆ PV are identical for all j = 1, . . . , d.

Consider the integer (k×d)-matrixA with entries in [k] := {1, . . . , k} determined

by aij = m if [vij ] = [vm1]. This matrix has all integers 1, . . . , k in each column,

in increasing order in the first column, and furthermore has the property that

for each (d×d)-permutation matrix π there exists a (k×k)-permutation matrix

σ such that σA = Aπ. To conclude the proof we only need to prove the following

claim, namely that, for d ≥ 3, the only such (k× d)-matrix is the matrix whose

i-th row consists entirely of copies of i.

Claim: Let k ≥ 1 and d ≥ 3 be natural numbers. Let Sk act on Sd
k diagonally

from the left by left multiplication and let Sd act on Sd
k from the right by

permuting the terms. Consider an element

A := (id, τ2, . . . , τd) ∈ Sd
k ,

where id is the identity permutation. Suppose that for each π ∈ Sd there exists

a σ ∈ Sk such that σA = Aπ. Then A = (id, . . . , id).

Proof of claim. For j ∈ {2, . . . , d} pick πj = (1, j) to be the transposition swit-

ching 1 and j. By the property imposed on A there exists a σj such that

σjA = Aπj . In particular, (Aπj)1 = τj equals (σjA)1 = σj . So τj = σj for all

j ∈ {2, . . . , d}. Since d ≥ 3, one can pick an index l which is fixed by πj , so

that τl = (σjA)l = σjτl. So then σj = id = τj . This concludes the proof of the

claim, and thus that of Proposition 32.

Proof of the Main Theorem for symmetric tensors. By the preceding proposi-

tion, the equations for odeco tensors in V ⊗ · · · ⊗ V pull back to equations

characterising symmetrically odeco tensors in Symd V via the inclusion of the

latter space into the former. Thus the Main Theorem for symmetric tensors

follows from the Main Theorem for ordinary tensors, proved in the previous

subsection.

Remark 33: The proof of the Main Theorem in Section 3 for ordinary odeco

three-tensors relies on the proof for symmetrically odeco three-tensors, so the

proof above does not render that proof superfluous. On the other hand, the

proof for ordinary udeco three-tensors does not rely on that for symmetrically

udeco three-tensors, so in view of the proof above the latter could have been

left out. We have decided to retain it for completeness.
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Remark 34: The argument in the proposition also implies that an odeco/udeco

tensor in V ⊗d \ {0} with d ≥ 3 cannot be alternating: permuting tensor factors

with a transposition must leave the decomposition intact up to a sign and a

permutation of terms, but then the claim shows that in each term all vectors

are equal, hence their alternating product is zero.

4.3. Alternating tensors. In this section we prove that an alternating ten-

sor of order at least four is alternatingly odeco/udeco if and only if all its

contractions with a vector are. Thus, let V be a vector space over K ∈ {R,C}
and consider an orthogonal decomposition

(1) T =

k∑
i=1

λivi1 ∧ · · · ∧ vid

of an alternatingly odeco tensor T ∈ AltdV, where v11, . . . , vkd form an ort-

honormal set of vectors in V and where λi ∈ K. The following lemmas are

straightforward exercises in differential geometry, and we omit their proofs.

Lemma 35: Suppose that K = R. Let d ≥ 3 and dk ≤ n := dimV. The set X

of alternatingly odeco tensors in AltdV with exactly k terms in their orthogonal

decomposition is a smooth manifold of dimension k+ 1
2dk(2n− (k+1)d) whose

tangent space at a point T is the direct sum of the following spaces:

(1)
⊕k

i=1(Altd−1Vi)∧V0 where Vi = 〈vi1, . . . , vid〉 and V0 = (V1⊕· · ·⊕Vk)⊥;
(2)

⊕k
i=1 AltdVi; and

(3) 〈λi(vi1 ∧ · · · ∧ vml ∧ · · · ∧ vid)
− λm(vm1 ∧ · · · ∧ vij ∧ · · · ∧ vmd) | 1 ≤ j, l ≤ d and i �= m〉,

where vml replaces vij in the first term and vice versa in the second

term.

The three summands are obtained as follows: X is the image of the Cartesian

product of the manifold of k · d-tuples of orthonormal vectors with (R \ {0})k
via

φ : ((vij)(i,j)∈[k]×[d], λ) 
→
∑
i

λivi1 ∧ · · · ∧ vid.

Replacing a vij by a vij + εv0 with v0 ∈ V0 yields the first summand. Replacing

λi by λi + ε yields the second summand, and infinitesimally rotating (vij , vml)

into (vij + εvml, vml − εvij) yields the last summand. The complex analogue of

Lemma 35 is the following.
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Lemma 36: Suppose that K = C. Let d ≥ 3 and 2k ≤ n := dimC V. The set X

of alternatingly udeco tensors in AltdV with exactly k terms in their orthogonal

decomposition is a smooth manifold of dimension 2k+ dk(2n− (k+1)d) whose

tangent space at T is the direct sum of the following spaces:

(1) the complex space
⊕k

i=1(Altd−1Vi) ∧ V0 where Vi = 〈vi1, . . . , vid〉 and

V0 = (V1 ⊕ · · · ⊕ Vk)
⊥;

(2) the complex space
⊕k

i=1 AltdVi;

(3) the real space

〈λi(vi1 ∧ · · · ∧ vml ∧ · · · ∧ vid)
− λm(vm1 ∧ · · · ∧ vij ∧ · · · ∧ vmd) | 1 ≤ j, l ≤ d and i �= m〉R,

where vml replaces vij in the first term and vice versa in the second

term; and

(4) the real space

〈λi(vi1 ∧ · · · ∧ (ivml) ∧ · · · ∧ vid)
+ λm(vm1 ∧ · · · ∧ (ivij) ∧ · · · ∧ vmd) | 1 ≤ j, l ≤ d and i �= m〉R,
where ivml replaces vij in the first term and vice versa in the second

term and where i ∈ C is a square root of −1.

The last summand arises from the infinitesimal unitary transformations sen-

ding (uij , uml) to (uij + iuml, uml + iuij).

Proposition 37: Let V be a vector space over K ∈ {R,C}. Let d ≥ 3 and let

S ∈ Altd+1V. Then S is alternatingly odeco (or udeco) if and only if for each

v0 ∈ V the contraction (S|v0) of S with v0 in the last factor is an alternatingly

odeco (or udeco) tensor in AltdV.

Proof. The “only if” direction is immediate: contracting the terms in an ortho-

gonal decomposition of S with v0 yields an orthogonal decomposition for (S|v0).
Note that in this process the pairwise orthogonal (d + 1)-spaces encoded by S

are replaced by their d-dimensional intersections with the hyperplane v⊥0 , and
discarded if they happen to be contained in that hyperplane.

Conversely, assume that all contractions of S with a vector are alternatingly

odeco. Among all v0 ∈ V choose one, say of norm 1, such that T := (S|v0) is
odeco with the maximal number of terms, say k, and let λi and the vij be as

in (1). Then Ψ : v 
→ (S|v) is a real-linear map from an open neighbourhood of
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v0 in V into the set X in the lemma, and hence its derivative at v0, which is Ψ

itself, maps V into the tangent space described in the lemma. Since contracting

with v0 maps Altd+1V into Altd(v
⊥
0 ), we may choose a basis v00, . . . , v0(n−kd)

of V0 from the lemma that starts with v00 := v0. Now we have

S =

( k∑
i=1

λivi1 ∧ · · · ∧ vid ∧ v00
)
+ S′′ =: S′ + S′′

where (S′′|v00) = 0.We have an orthonormal basis (vij)ij of V where (i, j) runs

through A := ([k]× [d]) ∪ ({0} × [n− kd]), where [k] := {1, . . . , k}.
For a subset I ⊆ A we write vI for the vector in Alt|I|V obtained as the

wedge product of the vectors labelled by I (in some fixed linear order on A).

The vectors vI with |I| = d + 1 form a K-basis of Altd+1V, and similarly for

those with |I| = d. Now (S′|v) lies in the tangent space to X at T for all

v (indeed, in the sum of the first two summands in the lemma). Hence also

(S′′|v) must lie in that tangent space. Expand S′′ on the chosen basis:

S′′ =
∑

I⊆A,|I|=d+1

cIvI .

We claim that cI = 0 unless I contains one of the k sets {i}×[d]. Indeed, suppose

that cI �= 0 and that I does not contain any of these k sets. Contracting vI

with any vα with α ∈ I yields ±vJ where J := I \ {α}, hence vJ appears with

a nonzero coefficient in (S′′|vα). By the lemma we find that J must contain

a (d − 1)-subset of at least one of the sets {i} × [d]. So in particular, there

exists an i such that I itself contains a (d − 1)-subset of {i} × [d]. Suppose

first that this i is unique, say equal to i0. Then contracting vI with vi0,j with

(i0, j) ∈ I yields ±vJ where J contains only at most d − 2 of the elements of

each of the sets {i} × [d], a contradiction with the lemma. So this i is not

unique. Then I contains d− 1 elements from each of at least two disjoint sets,

so 2(d−1) ≤ d+1, so d ≤ 3, and hence d = 3—here we use that d ≥ 3.Without

loss of generality, then, I = {(1, 1), (1, 2), (2, 1), (2, 2)}. Now contracting vI with

v11 yields a scalar times ±v12 ∧ v21 ∧ v22, hence this term appears in (S|v11).
But (see the last one/two summand/summands in the tangent space for the

odeco/udeco case, respectively) this term can only appear in a tangent vector

if also the term ±v11 ∧ v23 ∧ v13 appears—which is impossible after contracting

with v11. This proves the claim.



Vol. 222, 2017 TENSOR DECOMPOSITION 257

We conclude that S can be written as

S =

k∑
i=1

vi1 ∧ · · · ∧ vid ∧wi

for suitable vectors wi satisfying (wi|v0) = λi. Set Wi := Vi + 〈wi〉. We need to

show that the spacesW1, . . . ,Wk are pairwise perpendicular. For this, it suffices

to show that, for z in an open dense subset of V, the spaces W ′
i :=Wi ∩ z⊥ are

pairwise perpendicular. We choose this open subset such that

(1) the contraction (S|z) has an orthogonal decomposition with k terms;

(2) the k spaces W ′
i are d-dimensional and linearly independent;

(3) the tensor ((S|z)|v0) = ±((S|v0)|z) ∈ Altd−1V, which by assumption is

alternatingly odeco, has a unique orthogonal decomposition.

By Proposition 7, the last condition is void if d > 3. Now, each W ′′
i :=W ′

i ∩ v⊥0
is contained in Vi, so that W ′′

i ⊥ W ′′
m for all i �= m. Now, by assumption, the

tensor

(S|z) ∈
k⊕

i=1

AltdW
′
i

is alternatingly odeco with k terms. Let U1, . . . , Uk be the d-dimensional, pai-

rwise orthogonal spaces encoded by it. Then ((S|z)|v0) has an orthogonal de-

composition with terms in Altd−1(Ui ∩ v⊥0 ). But we also have

((S|z)|v0) ∈
k⊕

i=1

Altd−1W
′′
i ,

where the W ′′
i are pairwise perpendicular. So, since we assumed that this

orthogonal decomposition is unique, after a permutation of the Ui we have

Ui ∩ v⊥0 = W ′′
i . Now let ui1, . . . , uid be an orthonormal basis of Ui, where the

first (d−1) form a basis ofW ′′
i . Extend with u01, . . . , u0(n−kd) to an orthonormal

basis of V. Arguing with respect to the basis (uI)|I|=d, we find that the map

V k → AltdV that sends (y1, . . . , yk) to
∑k

i=1 ui1 ∧ · · · ∧ ui(d−1) ∧ yi is injective.
Since

(S|z) =
k∑

i=1

μiui1 ∧ · · · ∧ uid =

k∑
i=1

μ′
iui1 ∧ · · · ∧ ui(d−1) ∧ w′

i

for suitable w′
i ∈ W ′

i and nonzero scalars μi, μ
′
i, we find that W ′

i = Ui, and

hence the W ′
i are pairwise perpendicular, as desired.
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Proof of the Main Theorem for alternating tensors. In Lemmas 16, 17 and Pro-

position 18 we found that an alternating three-tensor is alternatingly odeco

if and only if it satisfies certain polynomial equations of degrees 2 and 4.

Correspondingly, Proposition 30 settles the Main Theorem for alternatingly

udeco three-tensors. Proposition 37 yields that the pullbacks of the real poly-

nomial equations characterising alternatingly odeco/udeco d-tensors along real-

linear maps yield equations characterising alternatingly odeco/udeco (d + 1)-

tensors. These pullbacks have the same degrees as the original equations.

5. Concluding remarks

We have established low-degree real-algebraic characterisations of orthogonally

decomposable tensors in six different scenarios. While this is quite a satisfactory

result, at least three questions remain.

First, do the equations that we have found generate the ideals of the real-

algebraic varieties at hand? We are somewhat optimistic in the ordinary and

symmetric odeco case, because of evidence in [Rob14] for the case of symmetri-

cally odeco (2×2×· · ·×2)-tensors. But in general we believe that representation

theory of the orthogonal and unitary groups should be used to approach this

question.

Second, and related to this, our main result can be read as a finiteness re-

sult for an infinite class of varieties in the spirit of Snowden’s Delta-modules

[Sno13]. Can the methods of [SS15], tailored to the orthogonal and unitary

groups that preserve orthogonally decomposable tensors, lead to more refined

finiteness results on equations and higher-order syzygies?

Third, a potentially interesting line of research, which we have not yet pursued

further, concerns a form of (non-associative, non-commutative) elimination. To

make this somewhat precise, suppose that we are given a number of polynomial

identities defining a class of algebras over R. Now consider the functor that

assigns to such an algebra A the space C ⊗R A equipped with the semilinear

extension of the product, and that assigns to an algebra homomorphism its

linear extension. What polynomial identities are satisfied by the image of our

class under this functor? Above we have implicitly seen that commutative,

associative R-algebras are mapped to commutative, semi-associative C-algebras.

But in the case of real Lie algebras we do not know a characterisation of the
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outcome—this is why we needed more ad hoc methods for alternatingly udeco

three-tensors.
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