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ABSTRACT

An L-matrix is a matrix whose off-diagonal entries belong to a set L, and

whose diagonal is zero. Let N(r, L) be the maximum size of a square

L-matrix of rank at most r. Many applications of linear algebra in extre-

mal combinatorics involve a bound on N(r, L). We review some of these

applications, and prove several new results on N(r, L). In particular, we

classify the sets L for which N(r, L) is linear, and show that if N(r, L) is

superlinear and L ⊂ Z, then N(r, L) is at least quadratic.

As a by-product of the work, we asymptotically determine the maxi-

mum multiplicity of an eigenvalue λ in an adjacency matrix of a digraph

of a given size.
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1. Introduction

1.1. Motivation. There are many applications of linear algebra to combina-

torics that follow the same recipe. They begin with n objects of some kind,

and a desire to bound n. One then maps each of these objects to a pair

(vi, ui) ∈ V × V ∗ where V and V ∗ are a vector space and its dual. The map is

chosen so that the rank of the n-by-n matrix M = (uivj)i,j is large whenever

n is large. Since rankM ≤ dimV , that yields a bound on n. In many of these

applications V is an inner product space, and vi = ui, but it is not always the

case.

The applications of this recipe include the proofs of the non-uniform Fisher

inequality [10, 33, 25], the Frankl–Wilson bound on L-intersecting families [19],

Haemers’ bound on the Shannon capacity of a graph [24] and bounds on s-

distance sets [28, 5]. More applications can be found in the books by Babai–

Frankl [3] and by Matoušek [35].

In all the applications named above, the matrices which arise are of a special

form—all diagonal entries are equal, and the off-diagonal entries take on boun-

dedly many distinct values. It is this property that is used to bound their rank.

The bounds on the ranks of such matrices are the subject of the present paper.

We define an (L, λ)-matrix to be a square matrix whose diagonal entries

are all equal to λ, and each of whose off-diagonal entries is an element of the

set L. We shall mostly restrict the study to (L, 0)-matrices, which we call

L-matrices for simplicity. This incurs only a minor loss of generality. Indeed,

if M is an (L, λ)-matrix and J is the all-1 matrix, then M −λJ is an L′-matrix

for L′ = L − λ, and the ranks of M and M − λJ differ by at most 1. The

results in this paper are too crude for this ±1 to matter. The advantage of the

zero diagonal is the dilation-invariance: if M is an L-matrix, then tM is an

tL-matrix, for every scalar t.

Suppose L is a subset of some field, and r is a natural number. We then

define

N(r, L) = max{n : ∃ n-by-n L-matrix of rank ≤ r}.

Usually the underlying field will be clear from the context, but when confusion

is possible we shall write LF to signify that L is to be regarded as a subset of

the field F.



Vol. 222, 2017 RANKS OF MATRICES WITH FEW DISTINCT ENTRIES 167

Throughout the rest of the paper, we shall only consider the case 0 �∈ L, since

otherwise N(r, L) = ∞. The case |L| = 1 is also easy, since then any (L, λ)-

matrix is of the form aI+ bJ , and so is of rank at least n− 1. Furthermore, the

determinant is det(aI + bJ) = an−1(a + bn) making it straightforward to tell

when the rank is n and when it is n− 1.

The first non-trivial case is |L| = 2. There is a natural correspondence be-

tween ranks of L-matrices with |L| = 2 and multiplicities of eigenvalues of

directed graphs. In our terminology, the adjacency matrices of directed graphs

are just {0, 1}-matrices. If M is an {0, 1}-matrix with eigenvalue λ of multipli-

city mλ, then M − λI is a ({0, 1},−λ)-matrix of rank n −mλ. With the loss

of ±1 discussed three paragraphs above, that matrix is in turn equivalent to a

{λ, λ + 1}-matrix. Since every two-element set is a dilation of {λ, λ + 1} for a

suitable λ, we can obtain any L-matrix with |L| = 2 this way, and the process

is clearly reversible.

In view of the importance of adjacency matrices, we devote Subsection 2.3 to

the case |L| = 2, in addition to the results for general L elsewhere in the paper.

In the same subsection, we also discuss eigenvalues of graphs, which correspond

to eigenvalues of symmetric {0, 1}-matrices.

1.2. General remarks on upper bounds. The results of this paper, which

we will present in detail in Section 2, can be informally summarized as asserting

that the order of magnitude of N(r, L) is determined by a (possibly indirect)

application of the following upper bound, whenever N(r, L) is not too large.

Proposition 1 (Proof is in Section 3): Suppose L is a k-element subset of

some field, and 0 �∈ L. Then the size of any L-matrix of rank r is at most

(1)
rk

k!
+O(rk−1).

Sometimes it is possible to combine (1) with a reduction modulo a prime.

For example, if M is a {1, 3, 8}-matrix over Q, then M mod 5 is a {1, 3}-matrix

over the finite field F5. Since reduction modulo a prime may only decrease the

rank,

N(r, {1, 3, 8}Q) ≤ N(r, {1, 3}F5) ≤ r2/2 +O(r).

As a special case of Theorem 3 we will show that in factN(r, {1, 3, 8}Q) = Θ(r2).

The proofs of our upper bounds on N(r, L) can be viewed as a slightly more

sophisticated example of the same idea, where we reduce modulo an ideal other
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than pZ. For example, one can obtain an upper bound on N(r, {1, α}) by

reducing modulo the ideal (1 − α)Z[α] in the ring Z[α]. However, we shall

follow a more direct approach, inspired by [27, Theorem 3.5(4)], that avoids the

language of ideals.

The simple combination of (1) with reductions modulo an ideal provides the

only known asymptotic upper bounds on N(r, L) for a fixed L. If we per-

mit L to vary, then it is possible to prove relative bounds. For example, if

L = {1, 1 + ε} ⊂ R for some small ε, then as ε → 0 the matrix tends to J − I,

from which it is easy to deduce that

N(r, {1, 1 + ε}) = N(r, {1}) = r

whenever ε < ε0(r). More precise bounds for ranks of small perturbations of

the identity matrix have been established by Alon [1]. In the same paper, he

also gives numerous applications of such bounds. A similar bound is also known

in the special context of equiangular lines [32, Theorem 3.6].

The known asymptotic upper bounds that improve upon the upper bound (1)

use the application-specific structure of a matrix. I am aware of two applications

where specialized arguments have been used. The first concerns L-intersecting

families. A family F ⊂ 2[r] of sets is L-intersecting if |A ∩ B| ∈ L for any

distinct sets A,B ∈ F . If F is also k-uniform, i.e., all sets are of size k, then

the consideration of characteristic vectors yields an (L, k)-matrix of rank at

most r. The specific structure exploited in the results about L-intersecting

families concerns the intersection of more than two sets. For example, Deza,

Erdős and Frankl [12] proved a bound of the form ck,Lr
|L| on the cardinality

of an L-intersecting k-uniform family with the constant ck,L that is superior to

the one in (1). Frankl [18] determined the maximal size of an L-intersecting

k-uniform family for k ≤ 7 and for all possible L with two exceptions.

The second application, where (1) has been improved, involves spherical co-

des. Delsarte, Goethals and Seidel [11] define a spherical L-code to be a set

C of unit vectors in Rn such that 〈v, u〉 ∈ L for distinct v, u ∈ C. The matrix

of inner products of vectors from C is an (L, 1)-matrix and has the additio-

nal property of being positive definite. This property was used for example in

[32, 38, 6, 26, 4] to prove bounds on the number of equiangular lines in Rn

with a prescribed angle. It was also used in [37] to give bounds on spherical

two-distance sets.
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2. Statement of results

2.1. Sets of linear growth. Our first result is a classification of L for which

N(r, L) is as small as it can possibly be:

Theorem 2 (Proof is in Section 6): For a set L = {α1, . . . , αk}, the following

three statements are equivalent:

(a) N(r − 1, L) ≥ r + 1 for some natural number r.

(b) There exists a homogeneous polynomial P with integer coefficients sa-

tisfying P (1, . . . , 1) = 1 and P (α1, . . . , αk) = 0.

(c) There exists a constant c>1, which depends on L, such thatN(r, L)≥cr

for all large r.

Furthermore, the limit limr→∞ N(r, L)/r always exists (but might be infinite,

see Theorem 3).

In the special case L = {1, α} ⊂ C, the part (b) of the preceding theorem is

equivalent to the assertion that 1/(1− α) is an algebraic integer.

In the case |L| = 2 the value of limr→∞ N(r, L)/r is determined in Theorem 4

below.

In part (a), r + 1 cannot be replaced by r. For example, the {−1, 1}-matrix⎛⎜⎝0 1 1

1 0 −1

1 1 0

⎞⎟⎠
is of rank 2, but

N(r, {−1,+1}Q) ≤ N(r, {1}F2) ≤ r + 1.

Given the relations that a set L = {α1, . . . , αk} satisfies, it is possible to verify
if the condition in part (b) holds. Namely, let I(L) be the homogeneous ideal in

Z[x1, . . . , xk] consisting of the integer polynomials vanishing at α=(α1, . . . , αk).

If I(L) is generated by f1, . . . , fl, then checking if the condition in part (b) holds

amounts to checking if gcd(f1(1, . . . , 1), . . . , fl(1, . . . , 1)) = 1. If instead of I(L),

we know only IQ(L), which is the homogeneous ideal in Q[x1, . . . , xk] of all the

rational polynomials vanishing at α, then we can first compute

I(L) = IQ(L) ∩ Z[x1, . . . , xk]

using the algorithm sketched in [42].
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2.2. Sets of superlinear growth. If the preceding theorem deals with

those L for which N(r, L) = r +O(1), the next one is about those for which

N(r, L) = O(r).

To state it, let L = {α1, . . . , αk} and call k-tuple (A1, . . . , Ak) ∈ Zk a primitive

linear relation if

A1α1 + · · ·+Akαk = 0,

A1 + · · ·+Ak = 1.

Note that a primitive linear relation is a special case of polynomials appearing

in part (b) of Theorem 2. Namely, it is such a polynomial of degree 1.

Theorem 3 (Proof is in Section 6): For a set L = {α1, . . . , αk}, the following

three statements are equivalent:

(a) N(r − 1, L) > kr for some natural number r.

(b) There exists a primitive linear relation on L.

(c) N(r, L) = Ω(r3/2).

Furthermore, if |L| ≤ 3, the exponent 3/2 in (c) can be replaced by 5/3. If

L ⊂ Z or |L| = 2, the exponent 3/2 can be replaced by 2.

This result demonstrates several ways in which the function N(r, L) is better

behaved than the corresponding extremal function for the problem of

L-intersecting families. First, Frankl [20] showed that, for every rational num-

ber s/d ≥ 1, there exists a set L such that the maximum cardinality of an L-

intersecting family on [r] is Θ(rs/d). Then, Füredi in [22, Paragraph 9.3], exten-

ding an earlier work of Babai–Frankl [2], classified sets L for which

L-intersecting families have linear size, but the relevant condition on L is compu-

tationally harder to verify than (b) above. Finally, as shown by Füredi [21] and

Khot [27, Theorem 3.2], for some L, the asymptotic size of largest L-intersecting

families depends on the existence of designs of a prescribed size and parameters.

The problem of deciding whether a design with certain parameters exists ap-

pears to be difficult, and many computational problems related to designs are

known to be NP-hard [9, p. 719]. It is likely that there is no similar obstruction

to understanding L-matrices.

I conjecture that the exponent 3/2 in Theorem 3 can be replaced by 2 for all

sets L satisfying a primitive linear relation.
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2.3. Eigenvalues of (di)graphs and the case |L| = 2. In this subsection

we present a nearly complete determination of N(r, L) for two-element sets L.

We also discuss the related problem of the maximum multiplicity of a graph

eigenvalue, which corresponds to the case of symmetric matrices.

Here and throughout the paper, ‘multiplicity of an eigenvalue’ refers to the

geometric multiplicity. That is, a matrix M has eigenvalue λ of multiplicity m

if the eigenspace associated to λ is of dimension m.

Let F be a field, and L ⊂ F be a two-element set. We denote by F0 the prime

subfield of F , i.e., we define F0 = Q if charF = 0, and F0 = Fp if charF = p.

As the value of N(r, L) remains unchanged if we multiply elements of L

by a non-zero element of F , we may assume without loss of generality that

L = {1, α}.
Let

E(n, λ)
def
=max{m :∃ n-by-n {0, 1}-matrix with eigenvalue λ of multiplicity m}.

If M is a {1, α}-matrix of rank n−m, then {0, 1}-matrix (M + I − J)/(α− 1)

has eigenvalue 1/(α − 1) of multiplicity m− 1, m, or m + 1. Conversely, if M

is a {0, 1}-matrix with eigenvalue λ of multiplicity m, then M + λ(J − I) is a

{λ, λ+ 1}-matrix of rank n−m− 1, n−m, or n−m+ 1. Hence,

(2)
E(n, λ) = m =⇒ N(n−m+ 1, {λ, λ+ 1}) ≥ n,

N(r, {1, α}) = n =⇒ E(n, 1/(α− 1)) ≥ n− r − 1.

If M is a {0, 1}-matrix, and α is an eigenvalue of multiplicity m, and pα is the

minimal polynomial of α over F0, then pmα divides the characteristic polynomial

of M . Hence, m ≤ n/ degα, where degα = deg pα is the degree of α over F0.

In view of the relation between E and N , we conclude that

(3)

E(n, λ) ≤ n/ degλ,

N(r, {1, α}) ≤
(
1− 1

degα

)−1

(r + 1).

The following result shows that the above bound is nearly tight. In particular,

for |L| = 2, it determines the limit as r → ∞ of N(r, L)/r in Theorem 2. If F is

a field, we say that λ is an algebraic integer in F if λ is a root of some monic

polynomial xd + ad−1x
d−1 + · · · + a0 with integer coefficients. The degree of

λ is the least degree of such a polynomial. Note that if λ is an eigenvalue of a

{0, 1}-matrix, then λ is an algebraic integer.
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Theorem 4 (Proof is in Subsection 5.5): Let F be a field. Suppose α ∈ F is

an element such that λ = 1/(1− α) is an algebraic integer in F . Then:

(a) If deg λ = 1, then

E(n, λ) = n−Θ(
√
n) and N(r, {1, α}) = Θ(r2).

(b) If λ has degree d > 1, then

d
d−1r −O(

√
r) ≤ N(r, {1, α}) ≤ d

d−1(r + 1),

n
d −O(

√
n) ≤ E(n, λ) ≤ n

d .

Symmetric matrices and graph eigenvalues. We next discuss graph ei-

genvalues. We shall restrict our discussion to C as an ambient field. The

corresponding extremal functions are

Ns(r, L)
def
= max{n : ∃ symmetric n-by-n L-matrix of rank ≤ r},

Es(n, λ)
def
= max{m : ∃ an n-vertex graph with eigenvalue λ of multiplicity m}.

The relations between E and N easily extend to Es and Ns, and we have

Es(n, λ) = m =⇒ Ns(n−m+ 1, {λ, λ+ 1}) ≥ n,

Ns(r, {1, α}) = n =⇒ Es(n, 1/(α− 1)) ≥ n− r − 1.

For a complex number λ to be an eigenvalue of a symmetric integer matrix, λ

must be real. Furthermore, as λ is an algebraic integer and the Galois conjugates

of λ are eigenvalues of the same matrix, λ must be in fact a totally real algebraic

integer.

I conjecture that the extension of Theorem 4 to symmetric matrices holds for

totally real algebraic integers.

Conjecture 5: Suppose λ ∈ C is a totally real algebraic integer of degree

d > 1. Then

Es(n, λ) ≥ n/d− o(n).

We prove the conjecture for the degrees d ≤ 4, and also for all ‘representa-

ble’ λ. We call a totally real algebraic integer λ representable if there exists

an integral symmetric matrix M such that the map λ �→ M is the isomorphism

of algebras Z[λ] and Z[M ]. In other words, the only eigenvalues of M are λ and

its conjugates.
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Theorem 6 (Proof is in Subsections 5.5 and 5.6): If a totally real algebraic

integer λ is representable, then Conjecture 5 holds for λ.

Theorem 7 (Corollary C in [17]): Every totally real algebraic integer of degree

d ≤ 4 is representable.

Estes and Guralnick [17] conjectured that every real algebraic integer is re-

presentable. I made the same conjecture in a previous version of this paper.

However, Dobrowolski [13] disproved the conjecture. Later, McKee [36] con-

structed counterexamples of degree 6.

It is known that every totally real algebraic integer is an eigenvalue of some

symmetric matrix [16, 41].

2.4. Sets of arbitrary growth. Whereas we do not have a complete clas-

sification of sets L according to the growth rate of N(r, L), we have two results

that restrict the possible growth rates.

Recall that a primitive linear relation on L = {α1, . . . , αk} is an integer linear

relation of the form
∑

i Aiαi = 0 with
∑

iAi = 1. Our first result is that the

growth rate of N(r, L) is determined solely by the primitive linear relations that

L satisfies.

Theorem 8 (Proof is in Section 6): Let F be a field. Suppose L,L′ ⊂ F are

sets of the same size k. If L and L′ satisfy the same set of primitive linear

relations, then N(r, L) ≤ N(2kr, L′), and similarly N(r, L′) ≤ N(2kr, L).

The second result is a generalization of the implication (a) =⇒ (b) from

Theorem 2. Recall that a multivariate polynomial P is said to vanish to order

m at a point α if all the monomials of degree at most m − 1 in polynomial

P (x+ α) have zero coefficients.

Theorem 9 (Proof is in Section 3): Suppose r, l, v are positive integers. If

N(r−1, L) ≥ (
r+l−1

l

)
+v, then there exists a k-variable homogeneous polynomial

P with integer coefficients that satisfies the following:

• P (1, . . . , 1) = 1.

• For every univariate polynomial f of degree at most l with f(0)=0,

polynomial P vanishes at the point (f(α1), . . . , f(αk)) to order at least v.

• degP ≤ (
r+l−1

l

)
+ v.
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3. Upper bounds

The following lemma and its corollary, Proposition 1, have been rediscovered

several times [23], [19], [1, Lemma 2.3], and their origin is unclear. The earliest

references appear to be [28] and [19].

Lemma 10: Suppose M is a matrix over a field, f is a univariate degree-k

polynomial, and f [M ] is the matrix obtained from M by applying f to each

entry. Then

rank f [M ] ≤
(
rankM + k

k

)
.

More generally, if f contains only terms of degrees d1, . . . , dt, then the bound is

rank f [M ] ≤
∑
i

(
rankM + di − 1

di

)
.

Proof. In this proof, we write vu for the vector that is the coordinate-wise

product of vectors v and u, and vk for the coordinate-wise power of v. Let

v1, . . . , vn be the columns of M . Put r = rankM , and assume without loss that

v1, . . . , vr span the column space ofM . Let Vd be the span of all the vectors that

are of the form ve11 · · · verr for some nonnegative exponents e1, . . . , er satisfying

e1 + · · ·+ er = d. Let V be the span of Vd1 , . . . , Vdt . Since vi =
∑r

j=1 αijvj for

some scalars αij , it follows that

vdi =
∑

j1,...,jd

d∏
l=1

αijlvjl .

In particular, vdi ∈ Vd ⊂ V . Hence each column of f(M) lies in V . Since

dim V ≤ ∑
i dimVdi =

∑(
r+di−1

di

)
, the result follows.

The preceding implies an upper bound N(r, L) ≤ rk/k! + O(rk−1) for every

k-element set L, i.e., Proposition 1.

Proof of Proposition 1. We select a polynomial f of degree k that vanishes on

L. Since 0 �∈ L, the matrix f(M) is a non-zero multiple of I. The bound then

follows from Lemma 10.

We next prove Theorem 9, which gives a necessary condition for N(r, L) to

be large via the vanishing of a certain homogeneous polynomial. For that we

need a well-known lemma about the vanishing of the determinant function.
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Lemma 11: Let F be a field, and let det: Mn(F ) → F be the determinant.

Regard det as a polynomial in the n2 matrix entries. Suppose M is a matrix of

rank at most n− v. Then det vanishes at M to order at least v.

Proof. The proof is by induction on v. The condition implies that every

(n − v + 1)-by-(n − v + 1) minor of M vanishes. The partial derivative of

det with respect to a matrix entry is the cofactor of that entry. However, if

charF �= 0, that is not enough to complete the proof, as the vanishing of all

the partial derivatives of orders up to v is not equivalent to the vanishing of the

polynomial to order v.

The rescue comes from the notion of a Hasse derivative. For a good exposition

of Hasse derivatives the reader might consult [15, Section 2]. Here, we recall

only what we need. First, given a polynomial P (x1, . . . , xk) and a multiindex

i ∈ Zk
+, the Hasse derivative P (i) of P is defined as the coefficient of zi in

P (x+ z), i.e.,

P (x+ z) =
∑

P (i)(x)zi.

The induction proof then goes through in view of the following facts:

(H1) The first Hasse derivatives are equal to the usual first derivatives.

(H2) All Hasse derivatives of order at most v−1 vanish at a point if and only

if the polynomial vanishes to order v at that point.

(H3) The Hasse derivatives satisfy the composition rule

(P (i))(j)(x) = ci,jP
(i+j)(x),

where ci,j is a constant that we will not define here [15, Proposition 4].

We use these facts to complete the proof. The base case v = 0 is vacuous.

Suppose v ≥ 1. The induction hypothesis and (H1) tell us that all the first

Hasse derivatives of det vanish to order at least v− 1. From (H2) and (H3), we

then infer that det vanishes to order at least v.

Proof of Theorem 9. We first prove the case l = 1. To that end, suppose that

N(r − 1, L) ≥ r + v, and Mr+v is an L-matrix of size r + v and rank r − 1.

We can regard detMr+v as a homogeneous polynomial in α1, . . . , αk of degree

r+v, say detMr+v = Pr+v(α1, . . . , αk). By the preceding lemma Pr+v vanishes

to order v + 1 at (α1, . . . , αk). Note that

Pr+v(1, . . . , 1) = det(J − I) = (−1)r+v−1(r + v − 1).
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Let Mr+v−1 be any principal (r + v − 1)-by-(r + v − 1) submatrix of Mr+v.

Similarly to the definition of Pr+v we define homogeneous polynomial Pr+v−1

via detMr−v+1 = Pr−v+1(α1, . . . , αk). The polynomial vanishes to order v at

(α1, . . . , αk) and satisfies Pr(1, . . . , 1) = (−1)r+v−2(r + v − 2). Then the ho-

mogeneous polynomial P (α1, . . . , αk)
def
= (−1)r+v−1(Pr+v + α1Pr+v−1) satisfies

P (1, . . . , 1) = 1 and vanishes to order v at (α1, . . . , αk).

Next we deduce the case of a general l from the case l = 1. Indeed, suppose

M is an n-by-n L-matrix over a field F of rank r, and n ≥ (
r+l−1

l

)
+v. Consider

the field F (X1, . . . , Xl), where X1, . . . , Xl are independent indeterminants. As

a rank of a matrix does not change when passing to a larger field, we may treat

M as a matrix over F (X1, . . . , Xl). Define a polynomial g by g(y) =
∑l

i=1 Xiy
i.

By Lemma 10, the rank of g[M ] does not exceed
(
r+l−1

l

)− 1.

Apply the case l = 1 to the g(L)-matrix g[M ] to obtain an integral polynomial

P . Its degree is at most
(
r+l−1

l

)
+ v. Let f(x) =

∑l
i=1 bix

i be an arbitrary po-

lynomial of degree at most l with vanishing constant term. Let b
def
= (b1, . . . , bl).

Since P vanishes at (g(α1), . . . , g(αk)) to order at least v, it also vanishes at

(g(α1), . . . , g(αk))|X=b = (f(α1), . . . , f(αk)) to order at least v.

4. Multivariate polynomials vanishing to high order at a point

A single-variable polynomial of degree d with integer coefficients can vanish at a

point α to order exceeding d/2 only if α ∈ Q. Furthermore, if the polynomial is

monic, then α ∈ Z. In this section we prove a generalization of these assertions

to homogeneous polynomials in several variables. The following is the main

result of this section.

Lemma 12: Let F be a field, and let F be its algebraic closure. Suppose

α = (α1, . . . , αk) ∈ F
k
is an arbitrary point, and P (x1, . . . , xk) is a homogeneous

polynomial with integer coefficients such that

(a) P vanishes at α to an order exceeding k−1
k degP , and

(b) P (1, . . . , 1) = 1.

Then there exists a linear homogeneous polynomial Q(x1, . . . , xk) with integer

coefficients such that

(a) Q vanishes at α, and

(b) Q(1, . . . , 1) = 1.
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As a first step, we reformulate the lemma as a result about affine polynomials.

So, what we will really prove is the following.

Lemma 13: Let F be a field, and let F be its algebraic closure. Suppose

α = (α1, . . . , αk) ∈ F
k
is an arbitrary point, and P (x1, . . . , xk) is a polynomial

with integer coefficients such that

(a) P vanishes at α to an order exceeding k
k+1 degP , and

(b) P (1, . . . , 1) = 1.

Then there exists a degree-one polynomialQ(x1, . . . , xk)with integer coefficients

such that

(a) Q vanishes at α, and

(b) Q(1, . . . , 1) = 1.

Proof that Lemma 13 implies Lemma 12. Let P be a homogeneous polynomial

of degree d satisfying Lemma 12. As the case α = 0 is trivial, we may assume

that α �= 0. Without loss, αk �= 0. Define

P ′(x1, . . . , xk−1)
def
= P (x1, . . . , xk−1, 1),

and

α′ = (α1/αk, . . . , αk−1/αk).

The conclusion of Lemma12 then follows from Lemma13 applied toP ′ and α′.

In the case k = 1, Lemma 13 is a simple consequence of Gauss’s lemma.

Indeed, we may assume that P is primitive, i.e., the coefficients of P are coprime.

Let P = P1 · · ·Pl be a factorization of P over Z. By Gauss’s lemma, the factors

P1, . . . , Pl are in fact irreducible overQ. Without loss each of P1, . . . , Pl vanishes

at α. Since l > degP/2, and degP =
∑

degPi, at least one of the factors is

linear, and the result follows.

For k ≥ 2, I do not know any equally direct proof. The reason is that Q need

not be a factor of P . Indeed, consider the polynomial xn + yn − xyn−1 and the

point α = (0, 0). The polynomial is irreducible because its Minkowski polygon

is not a sum of two smaller lattice polygons [40, Theorem VI].

So we proceed indirectly. We first reduce the lemma to the case α ∈ F k,

and then characterize those α ∈ F k which do not admit polynomial Q as in

the lemma. We then show that all these α’s do not admit a polynomial P . For

convenience, we shall treat the cases charF = 0 and charF > 0 separately, the

latter case being easier.
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Lemma 14: Suppose P (x1, . . . , xk) is a degree-d polynomial which vanishes at

points p1 and p2 to orders d−m1 and d−m2 respectively. Then P vanishes at

each point of the line p1p2 to order at least d−m1 −m2.

Proof. We need to show that, for every multiindex i satisfying |i| < d−m1−m2,

the Hasse derivative P (i)(x) vanishes at all points of the line p1p2. By [15,

Lemma 5] the P (i) vanishes at p1 and p2 to orders at least d − m1 − |i| and
d−m2−|i| respectively. The restriction of P (i) onto the line p1p2 is a univariate

polynomial of degree at most degP (i) ≤ d−|i|. Since the total order of vanishing
at p1 and at p2 is at least (d−m1 − |i|)+ (d−m2− |i|) > d− |i|, it follows that
P (i) is identically zero on the line p1p2.

By a flat we mean an affine subspace (=coset of a vector subspace). An l-flat

is a flat of dimension l. For a set V ⊂ F
k
, let Secl(V ) be the union of all the

flats spanned by at most l+1 points of V . When V is a variety, then the Zariski

closure of Secl(V ) is the l-th secant variety of V . By repeatedly applying the

preceding lemma we deduce the following.

Corollary 15: Suppose P (x1, . . . , xk) is a degree-d polynomial. For an in-

teger m ≥ 0 let Vm be the set of points where P vanishes to order exceeding
m

m+1d. Then Secl(Vm) ⊂ Vm−l for all l ≤ m. In particular, P vanishes on all

points of Secm(Vm).

Lemma 16: Suppose P (x1, . . . , xk) is a polynomial with integer coefficients,

and let α ∈ F
k
be a point where P vanishes to order exceeding k

k+1 degP .

Then there exists a flat V defined over F such that α ∈ V , and P vanishes

on V .

Proof. Let Vk be defined as in Corollary 15 The variety Vk is definable over F

because it is the intersection of the zero loci of various Hasse derivatives of P .

Let V = Seck(Vk). Since Vk is contained in F
k
, it is clear that V is the affine

span of Vk. By Corollary 15 P vanishes on V . As Vk is definable over F , then

so is V .

We are now ready to prove Lemma 13. We start with the positive characte-

ristic case.

Proof of Lemma 13 in the case charF = p > 0. Since polynomial P has integer

coefficients and so is defined over every subfield of F , we may assume without
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loss of generality that F = Fp. Let V be as in Lemma 16. Write V as V = V0+v,

where V0 is a vector subspace of Fk
p and v ∈ Fk

p. As P vanishes on V , but not

at (1, . . . , 1), it follows that (1, . . . , 1) �∈ V . So, there exists u ∈ V ⊥
0 such

that 〈u, (1, . . . , 1)〉 �= 〈u, v〉, and so x �→ 〈u,x−v〉
〈u,(1,...,1)−v〉 is the desired degree-one

polynomial.

Hence, in the rest of the section we may assume that charF = 0. In fact,

since polynomials P and Q have integer coefficients we may even assume that

F = Q.

We shall need the following characterization of when a system of linear equa-

tions in integers admits a solution.

Lemma 17 (due to van der Waerden, for a proof see [31]): Let M be a matrix

with rational entries, and b be a rational column vector. Then the equation

Mz = b has an integral vector solution z if and only if, for every row vector wT

with rational components such that wTM has integer components, wT b is an

integer.

Note that Lemma 17 was stated in [31] with an additional restriction that

M and b are integral. However, Lemma 17 follows from the more restrictive

version by clearing the denominators.

Lemma 18: Suppose V is a flat in Qk, and that there exists no degree-one

integer polynomial Q(x1, . . . , xk) vanishing on V and satisfying Q(1, . . . , 1) = 1.

Then there exists a point v ∈ V ∩ Qk with the property that there exists

no degree-one integer polynomial Q(x1, . . . , xk) vanishing on v and satisfying

Q(1, . . . , 1) = 1.

Proof. Write V as V ={v0+t1v1+· · ·+tlvl : t1, . . . , tl∈Q}, where v0, . . . , vl∈Qk.

Treat v0, . . . , vl as the column vectors, and let 1 = (1, . . . , 1)T denote the

all-1 column vector. Consider the system of linear equations in the unknowns

A0, A1, . . . , Ak, where we write A to denote the row vector (A1, . . . , Ak),

A0 +Av0 = 0,

Avi = 0 for i = 1, . . . , l,

A0 +A1 = 1.

The tuple (A0, A1, . . . , Al) is a solution if and only if the degree-one polynomial

A0 + A1x1 + · · · + Akxk vanishes on V and takes value 1 at (1, . . . , 1). As
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we assume that no such polynomial exists, by Lemma 17 there exist rational

numbers w0, w1, . . . , wl, w
′ such that in the equation

(4) w0A0 +

l∑
i=0

wiAvi + w′(A0 + A1) = w′

the left side is a linear combination of A0, A1, . . . , Ak with integer coefficients,

whereas the right side is not an integer. Since the coefficient of A0 is an integer,

but w′ is not an integer, it follows that w0 �= 0. Let

v = v0 +
w1

w0
v1 + · · ·+ wk

w0
vk.

We claim that there is no degree-one integer polynomial that vanishes at the

point v and takes value 1 at (1, . . . , 1). Indeed, such a polynomial exists if and

only if there is a solution to the system

A0 +Av = 0,

A0 +A1 = 1.

However, the equation

w0(A0 +Av) + w′(A0 +A1) = w′

is the same as (4), and so the system has no solutions.

The preceding lemma tells us that for the purpose of proving Lemma 13 we

may assume in effect that V in Lemma 16 is actually a point. The next lemma

deals with that case.

Lemma 19: Let v = ( r1s1 , . . . ,
rk
sk
) ∈ Qk be a rational point, where gcd(ri, si) = 1

for all i = 1, . . . , k. There exists a degree-one integer polynomial Q satisfying

Q(v) = 0 and Q(1, . . . , 1) = 1 if and only if there exists no prime p such that

ri ≡ si (mod p) for all i = 1, . . . , k.

Proof. Consider the equation

(5) A1

(
1− r1

s1

)
+ · · ·+Ak

(
1− rk

sk

)
= 1 with integer unknowns A1, . . . , Ak.

It is easy to see that the solubility of this equation is equivalent to the existence

of polynomial Q. If there is a prime p dividing si − ri, then p � si since p | si, ri
contradicts gcd(ri, si) = 1. Hence, 1 − ri/si ≡ 0 (mod p) if we interpret ri/si

as a ratio of two elements of Fp. So, if p | si − ri for all i, then the equation

admits no solution because the left side vanishes modulo p. Conversely, if
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gcd(s1 − r1, . . . , sk − rk) = 1, then there exist integers B1, . . . , Bk such that

B1(s1 − r1) + · · ·+Bk(sk − rk) = 1, and so (A1, . . . , Ak) = (s1B1, . . . , skBk) is

an integral solution to (5).

We are now ready to complete the proof of Lemma 13 in the case F = Q. Sup-

pose, for the sake of contradiction, that polynomial P satisfies the assumptions

of Lemma 13, but no degree-one polynomial Q fulfilling the conclusion of the

lemma exists. As in the proof of the case charF > 0, we deduce the existence of

a flat V ⊂ {P = 0} ∩Qk containing α. Lemma 18 tells us that there is a point

v ∈ V such that no linear rational polynomial Q satisfying Q(1, . . . , 1) vanishes

at v. Lemma 19 then yields a prime p such that v ≡ (1, . . . , 1) (mod p), i.e.,

all the numerators of all the coordinates of v− (1, . . . , 1) are divisible by p. We

conclude that 1 = P (1, . . . , 1) ≡ P (v) = 0 (mod p), which is a contradiction,

and so Lemma 13 is true after all.

The vanishing condition is optimal. The order of vanishing in the premise

of Lemma 12 (and hence in Lemma 13) cannot be reduced. To see this, we will

need a lemma (due to Jacob Tsimerman).

Lemma 20: Let G/F be a Galois field extension of degree k. Let

γ = (γ1, . . . , γk) ∈ Gk

be an arbitrary point. Let γ(1), . . . , γ(k) ∈ Gk be the Galois conjugates of γ.

Then the points γ(1), . . . , γ(k) are linearly independent over G if and only if

γ1, . . . , γk are linearly independent over F .

Proof. The ‘only if’ part is trivial, as a linear relation between γi’s also holds

between their Galois conjugates. We shall prove the ‘if’ part.

Let Bγ be the matrix whose columns are γ(1), . . . , γ(k). As G/F is Galois,

there is an irreducible polynomial f ∈ F [x] such that

G ∼= F [x]/(f).

Without loss G = F [x]/(f). Let

γ′ def
= (1, x, . . . , xk−1).

The lemma holds for γ′ because Bγ′ is a Vandermonde matrix. Since the coor-

dinates of γ and γ′ are F -bases for G, there is a rational invertible matrix M

such that γ = Mγ′. Since Bγ′ is invertible, then so is Bγ = MBγ′ .
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Let G/Q be a Galois extension of degree k. Let {1, γ2 . . . , γk} ⊂ G be an

integral basis for G. Set γ1
def
= 1 − ∑k

i=2 γi. Let γ
def
= {γ1, . . . , γk}. Let

γ = γ(1), . . . , γ(k) be the Galois conjugates of γ. By the previous lemma,

γ(1), . . . , γ(k) are linearly independent over G. Define a linear homogeneous

polynomial Pi ∈ G[x1, . . . , xk] by Pi(x) = 〈x, γ(i)〉, and set P
def
=

∏
i Pi. By the

choice of γ, we have P (1, . . . , 1) = 1. Also note that since P is invariant under

Gal(G/Q), the coefficients of P are in Q. Furthermore, since the coefficients of

Pi are algebraic integers, in fact P ∈ Z[x1, . . . , xk].

By the linear independence of γ(i)’s, the common zero set of

P1, . . . , Pi−1, Pi+1, . . . , Pk

is a line through the origin. Let α(i) be any non-zero point on the line. Note

that we may choose α(i)’s to be Galois conjugates of one another. The α(i)’s

are linearly independent since γ(i)’s are. The polynomial P is of degree k and

vanishes at each α(i) to order k − 1. However, the conclusion of Lemma 12

fails for α(1). Indeed, if there were an integral linear homogeneous polynomial

vanishing at α(1), then it would vanish on all of the α(i)’s contrary to the linear

independence.

The same construction carries over to finite fields. It is in fact easier as we

need not worry that the coefficients of γ are algebraic integers.

5. Constructions

In this section we describe the constructions of superlinear-sized matrices for

sets L admitting a primitive linear relation. We then use these to construct

matrices of size cr, with c > 1, for L satisfying a polynomial condition of

Theorem 2(b), and for sets with |L| = 2.

5.1. Construction toolkit. All our constructions rely on the same basic

setup which we describe here.

Let F be a field over which we wish to construct an L-matrix. Let Fq be a

finite field. Let Pd−1(Fq) denote the projective space of dimension d − 1 over

Fq. The points of Pd−1(Fq) are the one-dimensional subspaces of Fd
q , and, in

general, its l-flats are (l+ 1)-dimensional subspaces of Fd
q . For a set S ⊂ Fd

q we

denote by spanS the vector space spanned by S. When discussing Pd−1(Fq),

we shall use concatenation to denote the span. So, for example, if p, p′ are two

points in Pd−1(Fq), then pp′ is their span, which is a line unless p = p′.
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Let the Grassmanian Gr(s, d) be the set of all s-dimensional vector subspaces

of Fd
q , or equivalently the set of all (s− 1)-flats in Pd−1(Fq). Note that Gr(0, d)

is non-empty, consisting of the unique zero-dimensional subspace of Fd
q ; as an

element of Pd−1(Fq) we denote it ∅. Let
Gr(≤s, d)

def
= Gr(0, d) ∪ · · · ∪Gr(s, d).

The following lemma is behind all of our constructions.

Lemma 21: Let Gr(≤s, d) denote the ≤s-dimensional Grassmanian in Fd
q as

defined above. Let F be a field, s and d be integers satisfying 1 ≤ s < d, and

suppose φ : Gr(≤ s, d) → F is any function. Then there exists a symmetric

(L, λ)-matrix of size qd and rank at most | suppφ|qs with λ =
∑

W φ(W ) and

L =

{ ∑
W⊆H

W∈Gr(≤s,d)

φ(W ) : hyperplane H in Pd−1(Fq)

}
,

where the sum is over all flatsW of projective dimension less than s (=subspaces

W of dimension at most s).

Proof. While in the application of this lemma it will be easier to use the lan-

guage of projective geometry, in the proof of the lemma the language of sub-

spaces will be more convenient.

For a subspace W of Fd
q , let W⊥ denote the orthogonal complement of W .

We will construct an (L, λ)-matrix whose rows and columns will be indexed by

elements of Fd
q , i.e., a matrix with the underlying vector space F F

d
q . For each

subspace W ∈ suppφ and each y ∈ Fd
q define a vector v

(W )
y ∈ F Fd

q by

v(W )
y,x =

⎧⎨⎩φ(W ) if x− y ∈ W⊥,

0 otherwise.

Note that, for a fixed W , there are at most qdimW distinct vectors of the form

v
(W )
y as the vector v

(W )
y depends only on the coset y +W⊥.

We then define the matrix M by specifying its rows as

My =
∑

W∈suppφ

v(W )
y .

As its row space is spanned by the vectors of the form v
(W )
y , the resulting matrix

is of rank at most
∑

W qdimW ≤ | suppφ|qs. The diagonal entries are clearly all
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equal to
∑

W φ(W ). More generally, the entry in the column indexed by x and

the row indexed by y is

(6)
∑

W⊆(x−y)⊥
dimW≤s

φ(W ).

So, the off-diagonal entries belong to the set L defined in the statement of the

lemma. From (6) it is also clear that the matrix is symmetric.

5.2. Matrices of size Ω(r2) and the case L ⊂ Z. The next construction is

a generalization of the construction of L-intersecting families from [2]. Besides

being cast in a different setting, the version for L-intersecting families in [2] has

an additional requirement that the uniformity of the set family is sufficiently

large. That is because a matrix M is of rank r if it factors as MT
1 M2 where

M1,M2 are two r-by-n matrices, but M corresponds to a set family only if the

entries of M1 and M2 are nonnegative integers. The nonnegativity constraint

is responsible for the extra complexity in [2].

Theorem 22: Suppose L = {α1, . . . , αk} is a set admitting a primitive linear

relation A1α1 + · · · + Akαk = 0 in which k − 1 of the Ai’s are nonnegative.

Then, for every r there exists a symmetric matrix of rank r and size Ω(r2). In

particular, N(r, L) = Ω(r2).

Proof. Without loss A2, . . . , Ak are nonnegative. Let S =
∑

i≥2 Ai. Let s = 1,

d = 2 and let q be any prime power larger than S. For each i = 2, . . . , k and

each j = 1, . . . , Ai choose points pi,j in P1(Fq) so that all these S points are

distinct; the choice of q assures that we can find that many distinct points.

Define the function φ by φ(pi,j) = αk − α1, and φ(∅) = α1. Lemma 21 yields a

q2-by-q2 matrix M of rank O(q) that is an (L′, λ)-matrix for

L′ = α1 + {0, α2 − α1, . . . , αk − α1} = L,

λ = α1 +

k∑
i=2

Ai(αk − α1) =

k∑
i=1

Aiαi = 0.

We thus obtain a construction of L-matrices of size n and rank O(
√
n) whe-

never n is a square of a prime power. If n is not a square of a prime power,

then we can take an n-by-n submatrix of an L-matrix of size n′, where n′ is the
least square of a prime power satisfying n′ ≥ n. In view of Bertrand’s postulate,



Vol. 222, 2017 RANKS OF MATRICES WITH FEW DISTINCT ENTRIES 185

and the fact that matrix rank does not increase by passing to a submatrix, we

obtain a construction for every matrix size.

Corollary 23: If |L| = 2 and L satisfies a primitive linear relation, then

N(r, L) = Ω(r2).

Proof. In a primitive linear relation (A1, A2) of size 2, one of the A1, A2 is

positive.

Because integer vectors satisfy not one, but many linear relations, the pre-

ceding theorem implies a quadratic lower bound for integer sets satisfying a

primitive linear relation.

Corollary 24: Suppose L ⊂ Z is a set satisfying a primitive linear relation.

Then N(r, L) = Ω(r2).

Proof. Suppose L = {α1, . . . , αk} and (A1, . . . , Ak) is a primitive linear rela-

tion, i.e.,
∑

Ai = 1 and
∑

Aiαi = 0. We may also assume that the relation

(A1, . . . , Ak) minimizes the number of negative coefficients among A1, . . . , Ak.

If only one of the coefficients is negative, then the previous theorem applies,

and we are done. So, assume, for contradiction’s sake, that some two coeffi-

cients, say A1 and A2 are negative. Consider the system of linear equations,

with unknowns B1, B2, B3

0 = B1 +B2 +B3,

0 = α1B1 + α2B2 + α3B3.

It is an underdetermined system of homogeneous equations, and so admits a

non-zero solution. Let (B1, B2, B3) be any solution, which after a suitable sca-

ling we may assume to be integral. Note that none of B1, B2, B3 is zero, for

otherwise α1, α2, α3 would not be distinct. Hence, flipping the signs if neces-

sary, we may also assume that two of the Bi’s are positive. Then the tuple

(A1 + sB1, A2 + sB2, A3 + sB3, A4, . . . , Ak) is a primitive linear relation on L,

and, for a sufficiently large s, two of the first three coefficients are positive.

This contradicts the minimality of (A1, . . . , Ak), implying that only one of the

coefficients is negative after all.

5.3. Matrices of size Ω(r3/2) and the case of an arbitrary L. In the

case when L is not a set of integers, we do not have the luxury of choosing a

convenient linear relation, and must make do with a given relation.
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Theorem 25: Let F be a field. Suppose a finite set L = {α1, . . . , αk} ⊂ F

satisfies a primitive linear relation. Then, for every r there exists a symmetric

matrix of rank at most r and size Ω(r3/2). In particular, N(r, L) = Ω(r3/2).

Proof. Let
∑

Aiαi = 0, with Ai ∈ Z and
∑

Ai = 1, be the primitive linear

relation. We can rewrite it in the form α1 +
∑

Bi,i′(αi − αi′) = 0 where

Bi,i′ ∈ Z+. Let S =
∑

Bi,i′ .

We choose s = 2 and d = 3, and any q ≥ S − 1. Pick a line l in P2(Fq).

For each pair (i, i′) and for each j = 1, . . . , Bi,i′ we shall choose a distinct point

pi,i′,j on the line l, and a distinct point qi,i′,j not on the line. Since q + 1 ≥ S,

these choices are possible.

Let li,i′,j denote the line spanned by pi,i′,j and qi,i′,j . We define the non-zero

values of the function φ as follows:

φ(∅) = α1,

φ(l) =
∑
i,i′

Bi,i′(α1 − αi′),

φ(pi,i′,j) = αi′ − α1,

φ(li,i′,j) = αi − αi′ .

Note that the value of φ(l) is chosen so that φ(∅)+φ(l)+
∑

i,i′,j φ(pi,i′,j) = α1.

We apply Lemma 21 to the function φ. We need to verify that∑
W⊆H

φ(W ) ∈ L

for every hyperplane (=line) H in P2(Fq). There are four cases to check.

Case 1: If H contains none of the p-points, then∑
W⊆H

φ(W ) = φ(∅) = α1.

Case 2: If H is the line l, then∑
W⊆H

φ(W ) = φ(∅) + φ(l) +
∑
i,i′,j

φ(pi,i′,j) = α1.

Case 3: If H = li,i′,j , then∑
W⊆H

φ(W ) = φ(∅) + φ(pi,i′,j) + φ(li,i′,j) = αi.
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Case 4: If H contains pi,i′,j, but H �= li,i′,j, then

∑
W⊆H

φ(W ) = φ(∅) + φ(pi,i′,j) = αi′ .

Finally, we compute the value λ in Lemma 21 to be

λ = φ(∅) + φ(l) +
∑
i,i′,j

φ(pi,i′,j) + φ(li,i′,j) = α1 +
∑
i,i′

Bi,i′ (αi − αi′) = 0.

As in the proof of Theorem 22, Bertrand’s postulate and rank monotonicity

permit us to extend the construction from matrices of size q3 to an arbitrary

size.

5.4. Matrices of size Ω(r5/3) and the case |L| = 3. The following is an

intermediate result between Theorems 22 and 25. For instance, it improves

upon Theorem 25 for all sets L of size |L| ≤ 3.

Theorem 26: Let F be a field. Suppose L = {α1, . . . , αk} ⊂ F is a set

admitting a primitive linear relation A1α1 + · · · + Akαk = 0 in which at least

k − 2 of the Ai’s are nonnegative. Then N(r, L) = Ω(r5/3).

Proof. Without loss, A3, A4, . . . , Ak > 0. We may also suppose that A2 < 0.

While the case A1 > 0 is covered by Theorem 22, we make no assumption on A1

as the following proof needs none. Let B = −A2. Note that B,A3, . . . , Ak > 0.

We choose s = 3 and d = 5 in Lemma 21. We assume that q is large enough

to make the choices described below. Let V be some 2-flat in P4(Fq). For

each j = 1, . . . , B, choose a distinct line lj ⊂ V and a point pj �∈ V such that

the hyperplanes V p1, V p2, . . . are all distinct. Also choose a family of 2-flats

{fi,j} (collectively “f -flats”) as follows. For each i = 3, 4, . . . , k and for each

j = 1, . . . , Ai, pick a 2-flat fi,j in P4(Fq) subject to the three independence

conditions:

(I1) Any f -flat and any l-line together span P4(Fq).

(I2) No f -flat contains any of the p-points.

(I3) Any two f -flats span P4(Fq).
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Recall that ljpj denotes the 2-flat spanned by the line lj and the point pj .

Define the non-zero values of the function φ by

φ(∅) = α1,

φ(lj) = α2 − α1,

φ(V ) = (α2 − α1)(1 −B),

φ(ljpj) = α1 − α2,

φ(fi,j) = αi − α1.

Note that the value of φ(V ) is chosen so that φ(∅) + φ(V ) +
∑

j φ(lj) = α2.

We apply Lemma 21. We need to verify that λ = 0 and that
∑

W⊆H φ(W ) ∈ L

for every hyperplane H in P4(Fq). There are six (easy) cases to check:

Case 1: Suppose H contains some flat fi,j . In view of the conditions (I1)

and (I3), H contains no l-line and no other f -flat, respectively. Hence,∑
W⊆H

φ(W ) = φ(∅) + φ(fi,j) = αi.

Case 2: Suppose H contains no f -flat, and no l-line. Then∑
W⊆H

φ(W ) = φ(∅) = α1.

Case 3: Suppose H contains two l-lines, and contains pt for some t, but no

f -flat. In view of the condition (I2), H actually contains all of V . Since the

hyperplanes V p1, V p2, . . . are all distinct, H contains no p-points other than pt.

Hence, ∑
W⊆H

φ(W ) = φ(∅) + φ(V ) + φ(ltpt) +
∑
j

φ(lj) = α1.

Case 4: Suppose H contains two l-lines, but no p-point or f -flat. In view of

the condition (I2), H actually contains all of V . Hence,∑
W⊆H

φ(W ) = φ(∅) + φ(V ) +
∑
j

φ(lj) = α2.

Case 5: Suppose lj ∈ H , but pj �∈ H , and H contains no f -flat, and no

l-lines other than lj. Then∑
W⊆H

φ(W ) = φ(∅) + φ(lj) = α2.
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Case 6: Suppose lj , pj ∈ H , and H contains no f -flat, and no l-lines other

than lj . Then ∑
W⊆H

φ(W ) = φ(∅) + φ(lj) + φ(ljpj) = α1.

Finally, we compute λ to be∑
W

φ(W ) =φ(∅) + φ(V ) +
∑

(φ(lj) + φ(ljpj)) +
∑
i,j

φ(fi,j)

=α2 + (α1 − α2)B +
∑
i

Ai(αi − α1) = 0.

As in the proof of Theorem 22, Bertrand’s postulate and rank monotonicity

permit us to extend the construction from matrices of size q5 to an arbitrary

size.

5.5. Digraph eigenvalues. We finally have enough tools to construct {0, 1}-
matrices with a prescribed eigenvalue of large multiplicity. We shall not limit

ourselves to the set {0, 1} though, and will present the result in full generality,

for we will also use this construction for the part (c) of Theorem 2.

Lemma 27: Suppose L = {0, α1, . . . , αk} and let

L̃ = {A1α1 + · · ·+Akαk : A1, . . . , Ak ∈ Z}.
Suppose M is an L̃-matrix of size n with eigenvalue λ of multiplicity m. Then

for each l = 1, 2, . . . there exists an L-matrix Ml of size ln in which λ is an

eigenvalue of multiplicity lm − O(l2/3). The constant in the big-oh notation

depends on L and on M .

Furthermore, if M is symmetric, then so is Ml. Also if |L| = 2, then the

exponent 2/3 can be replaced by 1/2.

Proof. Let Il be the l-by-l identity matrix, and put M ′
l = M ⊗ Il. The multi-

plicity of λ in M ′
l is lm, and M ′

l is of size ln. The matrix M ′
l is a block matrix

with n2 blocks, each of which is of the form βIl for various β ∈ L̃.

Let

β = A1α1 + · · ·+Akαk

be an arbitrary element of L̃. Then (1 +
∑

Ai,−A1, . . . ,−Ak) is a primitive

linear relation on {β, β+α1, . . . , β+αk}, for (1+
∑

Ai)β−∑
iAi(β+αi) = 0.

Hence, by Theorem 25, there exists a symmetric {β, β+α1, . . . , β+αk}-matrix

Q′
β of size l and rank O(l2/3); in the case |L| = 2, Corollary 23 guarantees a
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better bound of O(l1/2). Let Qβ = Q′
β −βJl, where J is the l-by-l all-1 matrix.

As rankJl = 1, the rank of Qβ is also O(l2/3) (resp. O(l1/2)). Note that Qβ is

an (L,−β)-matrix, and βIl +Qβ is an L-matrix.

We replace each block in M ′
l of the form βIl by βIl + Qβ to obtain matrix

Ml. Each such replacement adds to M ′
l a matrix of the same rank as Qβ,

namely the matrix that is all 0 except for a single block that is Qβ. Hence, a

single replacement changes the multiplicity of eigenvalue λ by at most O(l2/3)

(resp. O(l1/2)). Since the number of blocks, n2, is constant, the requisite bound

on the rank of Ml follows.

If M is symmetric, then the block structure in M ′
l is symmetric, which in

view of the Qβ’s being symmetric implies that the final matrix Ml is symmetric,

too.

Theorem 4 about the maximum multiplicity of an eigenvalue in a {0, 1}-
matrix is just a simple corollary of the preceding construction.

Proof of Theorem 4. Let F0 be the prime subfield of F .

Part (a): If α is in F0, and 1/(1−α) is an algebraic integer, then 1/(1−α) = A

for some A ∈ Z. Hence, (A−1)·1−A·α = 0 is a primitive relation. So, for every

r, an {1, α}-matrix of size Θ(r2) and rank r exists by Theorem 22. A quadratic

upper bound follows from Proposition 1. Hence, N(r, {1, α}) = Θ(r2), of which

E(n, λ) = n−Θ(
√
n) is a trivial reformulation, as shown by relations (2).

Part (b): Suppose λ is an algebraic integer with minimal polynomial

f(x) = xd +
∑d−1

i=0 aix
i = 0 with ai ∈ Z and d ≥ 2. Let M be the companion

matrix of f , which is a d-by-d integer matrix whose characteristic polynomial

is f . In particular, λ is an eigenvalue of M . So, by Lemma 27, we have

E(ld, λ) ≥ l−O(l1/2).

Since E(n, λ) is nondecreasing in n, we conclude that E(n, λ) ≥ n/d−O(
√
n).

In view of (3), and relations (2), the proof is complete.

5.6. Graph eigenvalues. Recall that we call an algebraic integer λ repre-

sentable if there exists an integral symmetric matrix M whose only eigenva-

lues are λ and its conjugates. Equivalently, the multiplicity of the eigenvalue

λ in M is equal to exactly n/d, where d is the degree of λ. When the pro-

genitor matrix M is symmetric, Lemma 27 yields symmetric matrices, and so

Es(n, λ) ≥ n/d−O(
√
n) for a representable λ. Thus Theorem 6 is just a special

case of Lemma 27.
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For all totally real λ of degree d, Mario Kummer [29] constructed symmetric

integral matrices of size at most 9d with eigenvalue λ. In view of Lemma 27

this implies that Es(n, λ) ≥ n/9d−O(
√
n) for such λ.

5.7. Linear-sized matrices from polynomial relations. In this subsection

we give a construction used in Theorem 2. Namely, we shall show that a single

polynomial relation on L implies that N(r, L) ≥ cr for some c > 1.

Theorem 28: Suppose L = {α1, . . . , αk} and P is a homogeneous polynomial

with integer coefficients satisfying P (1, . . . , 1) = 1 and P (α1, . . . , αk) = 0. Let

d = degP ≥ 2 be the degree of the polynomial. Then

N(r, L)/r ≥ 1 +
1

[
(
d+k−2
k−1

)− 1]
+O(r−1/3) as r → ∞.

Proof. Let α′
i = αi − α1, and L′ = {0, α′

2, . . . , α
′
k}. It suffices to construct, for

all large l, an L′-matrix M of size l
(
d+k−2
k−1

)
and eigenvalue α1 of multiplicity

l −O(l2/3), for then M + α1(J − I) is an L-matrix of rank at most

l

[(
d+ k − 2

k − 1

)
− 1

]
+O(l2/3).

Let

Q(x1, . . . , xk)
def
= P (x1, x2 + x1, . . . , xk + x1).

Let L̃ = {A2α
′
2+ · · ·+Akα

′
k : A2, . . . , Ak ∈ Z}. In view of Lemma 27, it suffices

to construct an L̃-matrix of size
(
d+k−2
k−1

)
having an eigenvalue α1.

Let Md−1,Md be the families of all homogeneous monomials in x1, . . . , xk

of degrees d − 1 and d respectively. We call monomial m′ a predecessor of a

monomial m if m = xim
′ for some i ≥ 2. Each monomial m not of the form xi

1

has a predecessor (possibly several). For such anm, choose any predecessor, and

denote it by pred(m). Define the index im by m = xim pred(m). In particular,

(7) m(α1, α
′
2, . . . , α

′
k) = α′

im pred(m)(α1, α
′
2, . . . , α

′
k).

Let

Q(x1, . . . , xk) =
∑
m

cmm

be the expansion of Q as a linear combination of monomials in Md. We shall

construct an L̃-matrix M whose rows and columns are indexed by Md−1. The
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matrix M is a sum of two matrices M = M (1) +M (2), whose non-zero entries

are defined to be

M
(1)
pred(m′x1),m′ = α′

im′x1
for each m′ ∈ Md−1 \ {xd−1

1 },
M

(2)

m,xd−1
1

=
∑

m̄∈Md\{xd
1}

pred(m̄)=m

(−cm̄α′
im̄) for each m ∈ Md−1 \ {xd−1

1 }.

The matrix M has α1 as an eigenvalue. Indeed, letting M (3) = M (1) − α1I we

obtain from (7)

∑
m∈Md−1

m(α1, α
′
2, . . . , α

′
k)M

(3)
m,m′ =

⎧⎨⎩−αd
1 if m′ = xd−1

1 ,

0 otherwise.

Similarly from (7) we deduce that∑
m(α1, α

′
2, . . . , α

′
k)M

(2)

m,xd−1
1

= αd
1 − P (α1, α

′
2, . . . , α

′
k−1).

It then follows that

M − α1I = M (1) +M (3)

is singular, and so M has eigenvalue α1.

6. Proofs of Theorems 2, 3 and 8

In this section we reap the fruits of the work above, and derive the main results

of this paper.

For a matrix M let (M 1) denote the matrix obtained from M by appending

an all-1 column. Let

N0(r, L) = max{n : M is an n-by-n L-matrix with rank(M 1) ≤ r}.
In the proof of Theorem 2 we will need the following easy fact.

Lemma 29: Let L be an arbitrary finite subset in some field. Then

N0(r1 + r2, L) ≥ N0(r1, L) +N0(r2, L).

Proof. Let n1 = N0(r1, L) and n2 = N0(r2, L). Let M1 and M2 be square

matrices of dimensions n1 and n2 satisfying rank(Mi 1) ≤ ri for i = 1, 2.

Pick any α ∈ L, and let M be the block matrix (M1 αJ
αJ M2

). Every linear relation

satisfied by the rows of (M1 1) is satisfied by the first n1 rows of (M 1). Similarly,
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every linear relation satisfied by the rows of (M2 1) is satisfied by the last n2 rows

of (M 1). Hence, the matrix M is a witness to N0(r1 + r2, L) ≥ n1 + n2.

We are now ready to prove Theorem 2 characterizing those sets L for which

N(r, L) is r +O(1).

Proof of Theorem 2.

(a) =⇒ (b): This is the special case (l, v) = (1, 1) of Theorem 9.

(b) =⇒ (c): If the polynomial P is linear, then this follows from Theorem 25.

If the polynomial P has degree d ≥ 2, then this is the content of Theorem 28.

(c) =⇒ (a): This is trivial.

Since N(r, L) ≥ N0(r, L) and N0(r − 1, L) ≥ N(r, L), the limit of N(r, L)/r

as r → ∞ is equal to the limit of N0(r, L)/r. The latter exists as a consequence

of superadditivity of N0(r, L) (Lemma 29).

Proof of Theorem 3.

(a) =⇒ (b): If N(r − 1, L) ≥ kr + 1 for some r, then by Theorem 9 with

(l, v) = (1, (k − 1)r + 1), we see that there is a homogeneous polynomial P of

degree at most kr+1 vanishing to order at least (k−1)r+1 at (α1, . . . , αk) and

satisfying P (1, . . . , 1) = 1. By Lemma 12, L in fact satisfies a primitive linear

relation.

(b) =⇒ (c): This is the content of Theorem 25. The ‘furthermore’ part is the

content of Theorems 22 and 26.

(c) =⇒ (a): This is trivial.

We next tackle Theorem 8, asserting that the growth of N(r, L) is determined

by the primitive linear relations on L. For L = {α1, . . . , αk} we let

R(L)
def
= {(A1, . . . , Ak) : A1α1 + · · ·+Akαk = 0}

(resp. P (L)
def
= {(A1, . . . , Ak) ∈ R(L) : A1 + · · ·+ Ak = 1}) to be the collection

of all (resp. all primitive) linear relations on L.

Lemma 30: If L and L′ are two sets such that P (L) = P (L′), then either

P (L) = P (L′) = ∅, or R(L) = R(L).

Proof. Suppose that P (L) = P (L′) �= ∅. Let B = (B1, . . . , Bk) ∈ P (L) be any

primitive relation, and suppose C = (C1, . . . , Ck) ∈ R(L). Then C+ tB ∈ R(L)

for every t ∈ Z, and in particular for t = 1 − (C1 + · · · + Ck), in which case

C+tB ∈ P (L). Hence C+tB ∈ P (L′) and thus C = (C+tB)−tB ∈ R(L′).
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Lemma 31: Let Fbig/Fsmall be a finite field extension of degree D, and as-

sume that {β1, . . . , βd} ⊂ Fbig is a non-empty set that is linearly independent

over Fsmall. Then there exists a set {γ1, . . . , γs} of size s ≥ D/2d such that

the sd products {γiβj : i = 1, . . . , s j = 1, . . . , d} are linearly independent

over Fsmall.

Proof. Let {γ1, . . . , γs} be a maximal set satisfying the conclusion of the lemma.

By maximality for every γ ∈ Fbig, we have a relation of the form∑
j

cjβjγ =
∑
i,j

ci,jγiβj

for some cj , ci,j ∈ Fsmall and with not all cj being zero. Hence, Fbig is equal to

I
def
=

{∑
i,j ci,jγiβj∑

j cjβj
: cj , ci,j ∈ Fsmall

}
.

We claim that d(s+1)−1 ≥ D. It is easiest to see this if Fsmall and Fbig are finite

fields. In that case, the cardinality of I is at most (|F|d(s+1) − 1)/(|Fsmall| − 1),

where the term |F|d(s+1)−1 counts the number of ways to choose c’s so that not

all of them are zero, and the factor of 1/(|Fsmall|− 1) is due to the homogeneity

in c’s. The claim then follows from |I| = |Fbig| = |Fsmall|D.

If both Fsmall and Fbig are infinite, we identify Fbig⊗Fsmall
Fsmall with an affine

space of dimension [Fbig : Fsmall] over Fsmall. Under this identification the set

I becomes a set of Fsmall-points of a variety of dimension at most d(s+ 1)− 1.

If S ⊂ Fsmall is any set of size N , then the Schwartz–Zippel lemma for varieties

[7, Lemma 14] tells us that

|SD ∩ I| = O(Nd(s+1)−1).

Since SD ∩ I = SD ∩ Fbig = SD and Fsmall contains arbitrarily large sets, the

claim follows (in the infinite field case).

In either case, from d(s+1)−1 ≥ D we deduce that s ≥ �D/d� ≥ D/2d.

Lemma 32: Suppose Fbig/Fsmall is a finite field extension, and v1, . . . , vr are

vectors in Fn
big. Suppose the components of v1, . . . , vr span a vector space of

dimension d over Fsmall. Let Vsmall and Vbig be the spans of v1, . . . , vr over Fsmall

and over Fbig respectively. Then

dimFsmall
Vsmall ≤ 2d dimFbig

Vbig.
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Proof. Let {β1, . . . , βd} be a basis for the vector space spanned by the com-

ponents of v1, . . . , vr over Fsmall. Then Vsmall ⊂
⊕

i βiF
n
small. Let {γ1, . . . , γs}

be as in Lemma 31. Then the vector spaces γ1Vsmall, . . . , γsVsmall are linearly

independent over Fsmall. As they are subspaces of Fbig, we infer that

s dimVsmall ≤ dimFsmall
Vbig = [Fbig : Fsmall] dimFbig

Vbig.

As s ≥ [Fbig : Fsmall]/2d, the lemma follows.

Proof of Theorem 8. By the assumption P (L) = P (L′). If, in addition,

P (L) = P (L′) = ∅, then by Theorem 3, r ≤ N(r, L), N(r, L′) ≤ kr+k+1 ≤ 2kr.

So, assume that P (L) = P (L′) �= ∅. By Lemma 30, we then conclude that

R(L) = R(L′).
By rescaling L and L′ as necessary, we may assume that 1 ∈ L,L′. Rescaling

changes neither N(r, L), N(r, L′) nor R(L), R(L′).
Consider set L, and inside L consider a maximal subset that satisfies no

integer relation. By relabeling elements of L if necessary, we may assume that

the subset is {1, α2, . . . , αl} and αl+1, . . . , αk are the remaining elements of L.

By the maximality assumption, there exist rational linear forms fl+1, . . . , fk

such that αi = fi(1, α2, . . . , αl) for i = l + 1, . . . , k. Note that linear relations

αi − fi(1, α2, . . . , αl) = 0 consistute a basis for the Q-vector space of all linear

relations among α2, . . . , αk.

Let F be the field containing L and L′, and let F0 be the prime subfield of

F . Let F̃
def
= F0(x2, . . . , xl). For i = l + 1, . . . , k put xi

def
= fi(1, x2, . . . , xl), and

let

L̃
def
= {1, x2, . . . , xk}.

Note that R(L̃) = R(L) because relations xi−fi(1, x2, . . . , xl) consistute a basis

for the Q-vector space of all linear relations among x2, . . . , xk.

Claim 1: N(r, L̃
˜F ) ≤ N(r, L).

Claim 2: N(r, L) ≤ N(2tr, L̃
˜F ) for some t ≤ l.

To complete the proof it suffices to prove these two claims. Indeed, as the field

F̃ and the set L̃ depend only on R(L), and R(L) = R(L′), if the inequalities

in Claims 1 and 2 hold for L, they also hold for L′. The claims then imply

N(r, L) ≤ N(2tr, L̃
˜F ) ≤ N(2tr, L′), and similarly with the roles of L and L′

swapped.
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Proof of Claim 1. Given an L̃-matrix M̃ , we can define an L-matrix M by re-

placing each entry xi in M̃ by αi. Since every linear relation satisfied by the

rows of M̃ is also satisfied by the corresponding rows of M , it follows that

rankM ≤ rank M̃ .

Proof of Claim 2. Consider the maximal subset of {1, α2, . . . , αl} that is alge-

braically independent. Without loss of generality, it is {1, αt+1, . . . , αl} for

some t. The field Fbig
def
= F0(α2, . . . , αl) is a finite algebraic extension of

Fsmall
def
= F0(αt+1, . . . , αl).

Suppose M is an L-matrix, and let M̃ be the L̃-matrix obtained from M by

replacing each entry αi by xi. Let r be the rank of M over F . Note that r

is also the rank of M over Fbig. Let Vbig and Vsmall be the spans of the rows

of M over Fbig and Fsmall respectively. Since the entries of M are spanned by

{1, α2, . . . , αt} over Fsmall, from Lemma 32 we deduce that dimVsmall ≤ 2tr. As

Fsmall is naturally isomorphic to F0(xt+1, . . . , xl), any linear relation between

rows of M with coefficients in Fsmall corresponds to a linear relation between

rows of M̃ . Hence, rank M̃ ≤ 2t rankM .

7. Remarks and open problems

• I know only one example of a k-element set L that attains the bound

N(r, L) ≤ rk/k! + O(rk−1) of Proposition 1 without the loss of a mul-

tiplicative constant. That set is L = {1, 2, . . . , k} and its multiples.

Namely, let A be the r-by-
(
r
k

)
matrix whose columns are the characte-

ristic vectors of the k-element subsets of a fixed r-element set. Then

kJ − ATA is an L-matrix of dimension
(
r
k

)
with L = {1, 2, . . . , k}. Its

rank is at most r + 1.

It would be very interesting to decide if there are any other examples

that attain the bound in Proposition 1.

• For each l and r there exist a k-uniform {0, 1}-intersecting family F of

subsets of [r] with |F| ≥ (
r
2

)
/
(
l
2

)
+O(n) (see [34] for a particularly simple

construction). That implies the bound N(r, {l−1, l}) ≥ (
r
2

)
/
(
l
2

)
+O(r).

Can this be improved?

Interestingly, almost the same bound, namely

N(r, {l − 1, l}) ≥ (r/l + 1)2 +O(r),
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can be obtained very differently. Namely, one can use the relation

between graph eigenvalues of N(r, L) for two element sets L in (2).

To get the stated bound one uses the square lattice graphs, which are

strongly regular graphs with parameters

(n2, l(n− 1), (l − 1)(l− 2) + n− 2, l(l− 1));

see [8] for a definition of these graphs and a survey of strongly regular

graphs in general.

• In this paper we focused on the magnitude of the leading term in the

asymptotics for N(r, L). However, in applications even the lower-order

terms in (1) are of much interest; see, for example, [5, Theorem 4.1.1] or

[37, Theorem 1] (and its generalization in [39, Theorem 3.2]). I do not

know if lower-order improvements to bounds in this paper are possible.

In particular, is it possible to show, at least for some λ, that the

maximum multiplicity of an eigenvalue λ in an n-vertex graph satisfies

Es(n, λ) ≤ n

degλ
− c

√
n

for some c > 0 and all n ≥ n0(λ)?

• I conjecture that the exponent 3/2 in Theorem 25 can be replaced by

2. Namely, any set L admitting a primitive linear relation satisfies

N(r, L) = Ω(r2).

As evidence, here is a construction showing that

N(r, {x+ y, 3x, 3y}) = Ω(r2)

for any x, y ∈ F . Note that 3 · (x + y) − 1 · 3x − 1 · 3y = 0 and the

relation (3,−1,−1) is not covered by Theorem 22. Let p1, . . . , p4 be

any four points in P3(Fq) that span P3(Fq), and define the function

φ : Gr(≤ 2, 4) → F by

φ(∅) = x+ y,

φ(p1) = φ(p3) = 2x− y,

φ(p2) = φ(p4) = 2y − x,

φ(p1p2) = φ(p2p4) = φ(p3p4) = x− 2y,

φ(p2p3) = φ(p1p3) = φ(p1p4) = y − 2x.

Lemma 21 applied to this φ shows that N(r, {x+ y, 3x, 3y}) = Ω(r2).
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