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ABSTRACT

The Lp-discrepancy is a quantitative measure for the irregularity of dis-

tribution modulo one of infinite sequences. In 1986, Proinov proved for all

p > 1 a lower bound for the Lp-discrepancy of general infinite sequences

in the d-dimensional unit cube, but it remained an open question whether

this lower bound is best possible in the order of magnitude until recently.

In 2014, Dick and Pillichshammer gave a first construction of an infinite

sequence whose order of L2-discrepancy matches the lower bound of Proi-

nov. Here we give a complete solution to this problem for all finite p > 1.

We consider so-called order 2 digital (t, d)-sequences over the finite field

with two elements and show that such sequences achieve the optimal order

of Lp-discrepancy simultaneously for all p ∈ (1,∞).

1. Introduction

Let d,N ∈ N (where N = {1, 2, 3, . . .}) and let PN,d be an N -element point set

in the unit cube [0, 1)d. The discrepancy function of PN,d is defined as

DPN,d
(x) =

1

N

∑
z∈PN,d

χ[0,x)(z)− x1 · · ·xd(1)

where x = (x1, . . . , xd) ∈ [0, 1]d and [0,x) = [0, x1) × · · · × [0, xd). By χA we

mean the characteristic function of a set A ∈ R
d, i.e., χA(x) = 1 if x ∈ A

and 0 if x �∈ A. The term
∑

z χ[0,x)(z) in (1) is equal to the number of points

of PN,d in [0,x). Hence, DPN,d
is a normalized measure for the deviation

of the proportion of the number of points of PN,d in [0,x) from the ‘fair’ or

‘expected’ proportion of the number of points λd([0,x)) = x1 · · ·xd in this

interval under the assumption of a perfect uniform distribution. Here λd denotes

the d-dimensional Lebesgue measure.
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The Lp-discrepancy of PN,d is defined as the Lp-norm of the discrepancy

function, i.e.,

Lp,N(PN,d) = ‖DPN,d
|Lp([0, 1]

d)‖ for p ∈ [1,∞].

For an infinite sequence Sd in [0, 1)d and N ∈ N the discrepancy function is

defined as DN
Sd
(x) = DPN,d

(x), where the point set PN,d consists of the first N

terms of Sd, and the Lp-discrepancy of Sd is defined as

Lp,N(Sd) = ‖DN
Sd
|Lp([0, 1]

d)‖ for p ∈ [1,∞].

The Lp-discrepancy is a quantitative measure for the irregularity of distri-

bution of finite point sets and of infinite sequences. We refer to [21, 30] for

extensive introductions to this topic. It is well known that a sequence Sd is uni-

formly distributed modulo one in the sense of Weyl [54] if and only if Lp,N (Sd)

tends to zero for N → ∞. The Lp-discrepancy is also closely related to the

worst-case integration error in certain function spaces using quasi-Monte Carlo

algorithms via variants of the Koksma–Hlawka inequality. This follows immedi-

ately from Hlawka’s identity (which is also sometimes attributed to Zaremba);

see [27, 55] or also [17, 32, 41].

The conceptual difference between the discrepancy of finite point sets and in-

finite sequences can be explained in the following way (cf. [37]): while for finite

point sets we are interested in the behavior of the whole set {x0,x1, . . . ,xN−1}
with a fixed number of elements N , for infinite sequences we are interested

in the discrepancy of all initial segments {x0}, {x0,x1}, {x0,x1,x2}, . . . ,

{x0,x1,x2, . . . ,xN−1}, where N = 2, 3, 4, . . .. In this sense the discrepancy

of finite point sets can be viewed as a static setting and the discrepancy of

infinite sequences as a dynamic setting. Very often the dynamic setting in di-

mension d is related to the static setting in dimension d+ 1 (see, for example,

[30, Chapter 2.2, Theorem 2.2, Example 2.2]). This will also be confirmed by

our results.

It is well known that for every p ∈ (1,∞] and every d ∈ N there exists a

positive constant cp,d with the following property: for every finite N -element

point set PN,d in [0, 1)d with N ≥ 2 we have

(2) Lp,N(PN,d) ≥ cp,d
(logN)

d−1
2

N
.

This has been first shown in a celebrated paper by Roth [43] for p ≥ 2 and by

Schmidt [46] for p ∈ (1, 2). As shown by Halász [24] the estimate is also true
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for p = 1 and d = 2, i.e., there exists a positive constant c1,2 with the following

property: for every finite N -element point set PN,2 in [0, 1)2 with N ≥ 2 we

have

(3) L1,N(PN,2) ≥ c1,2
(logN)

1
2

N
.

Later Proinov [42] (see also [19] for a proof) extended these results to infinite

sequences: for every p ∈ (1,∞] and every d ∈ N, d ≥ 2, there exists a positive

constant cp,d with the following property: for every infinite sequence Sd in [0, 1)d

we have

(4) Lp,N (Sd) ≥ cp,d
(logN)

d
2

N
for infinitely many N ∈ N.

For d = 1 this estimate is also valid for p = 1, i.e., there exists a positive

constant c1,1 with the following property: for every infinite sequence S1 in [0, 1)

we have

(5) L1,N (S1) ≥ c1,1
(logN)

1
2

N
.

This can be shown by combining Proinov’s method [42] (see also [19]) with the

result of Halász (3).

The lower bound (2) for finite point sets is known to be best possible in the

order of magnitude in N , i.e., for every d,N ∈ N, N ≥ 2, one can find an

N -element point set PN,d in [0, 1)d with Lp-discrepancy of order

(6) Lp,N(PN,d) �p,d
(logN)

d−1
2

N
.

For functions f, g : D ⊆ N → R with g ≥ 0 we write f(N) � g(N) if there

exists some C > 0 such that f(N) ≤ Cg(N) for all N ∈ D. If we want to stress

that C depends on some parameters, say a, b, then we indicate this by writing

f(N) �a,b g(N). If we have f(N) �a,b g(N) and g(N) �a,b f(N) then we

write f(N) �a,b g(N).

The result in (6) was proved by Davenport [9] for p = 2, d = 2, by Roth [44]

for p = 2 and arbitrary d and finally by Chen [6] in the general case. Other

proofs were found by Frolov [23], Chen [7], Dobrovol’skĭı [20], Skriganov [47, 48],

Hickernell and Yue [25], and Dick and Pillichshammer [16]. For more details

on the history of the subject see the monograph [1]. Apart from Davenport,

who gave an explicit construction in dimension d = 2, these results are pure

existence results and explicit constructions of point sets were not known until
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the beginning of this millennium. First explicit constructions of point sets

with optimal order of L2-discrepancy have been provided in 2002 by Chen and

Skriganov [8] for p = 2 and in 2006 by Skriganov [49] for general p. Other

explicit constructions are due to Dick and Pillichshammer [18] for p = 2, and

Dick [13] and Markhasin [36] for general p.

It is also known that the lower bound (4) for infinite sequences is best possible

for the particular case p ∈ (1, 2] (and also for p = 1 when d = 1). This was first

shown by Dick and Pillichshammer [18] who gave an explicit construction of se-

quences whose L2-discrepancy achieves the order of magnitude (logN)d/2/N for

all N ≥ 2. For dimension d = 1 there exists a simple construction of a sequence

with optimal order of Lp-discrepancy for all p ∈ [1,∞). Let V = (yn)n≥0 be

the van der Corput sequence (in base 2), i.e., yn =
∑

j≥0
nj

2j+1 whenever n ∈ N0

has binary expansion n =
∑

j≥0 nj2
j with digits nj ∈ {0, 1} (which is of course

finite). Then let Vsym = (zn)n≥0 be the so-called symmetrized van der Corput

sequence given by z2n = yn and z2n+1 = 1 − yn for n ∈ N0. Then it has been

shown in [29] that for all p ∈ [1,∞) we have

Lp,N(Vsym) �p
(logN)

1
2

N
for all N ≥ 2.

A generalization of this result to van der Corput sequences in arbitrary base b ≥
2 has been shown quite recently by Kritzinger [28]. See also the recent survey

article [22] and the references therein for more information about symmetrized

van der Corput sequences.

In this paper we provide explicit constructions of infinite sequences in arbi-

trary dimensions d whose Lp-discrepancy is of order of magnitude (logN)d/2/N

for all p ∈ [1,∞). Thereby we prove that the lower estimate (4) is best possible

for all p ∈ (1,∞).

The following is the main result of this work.

Theorem 1.1: There exists an explicit construction of an infinite sequence Sd

in [0, 1)d with the property that

Lp,N(Sd) �p,d
(logN)

d
2

N
for all N ≥ 2 and all 1 ≤ p < ∞.

A more concrete version of the main result will be stated in Section 2.3 as

Theorem 2.2 and proved in Section 4. For p = 2 this result has been shown in
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[18] (but with a more complex construction — see the discussion after Theo-

rem 2.2) and a weaker result can be found in [13].

Proinov’s lower bound (4) and Theorem 1.1 give the precise behavior of the

Lp-discrepancy for 1 < p < ∞. On the other hand, the L∞-discrepancy remains

elusive. We have constructions of infinite sequences Sd in [0, 1)d (for example,

order 1 digital (t, d)-sequences as presented in Section 2, see [17, 38, 39]) such

that

L∞,N (Sd) �d
(logN)d

N
.

As to lower bounds, we know that there exists some cd > 0 and ηd ∈ (0, 12 ) such

that for every sequence Sd in [0, 1)d we have

L∞,N(Sd) ≥ cd
(logN)

d
2+ηd

N
for infinitely many N ∈ N.

This result follows from a corresponding result for finite point sets by Bilyk,

Lacey and Vagharshakyan [4]. For growing d the exponent ηd in this estimate

tends to zero.

In dimension d = 1 we even know that for every sequence S1 ∈ [0, 1) we have

L∞,N (S1) ≥ c
logN

N
for infinitely many N ∈ N

for some positive c. This is a famous result of Schmidt [45] (see also [2, 31]).

Since the L∞-discrepancy of the van der Corput sequence is of order (logN)/N

the exact order of the L∞-discrepancy of infinite sequences in dimension d = 1

is known. However, the quest for the exact order of the L∞-discrepancy in the

multivariate case is a very demanding open question.

It is a natural question to ask what happens in intermediate spaces “close” to

L∞. Standard examples of such spaces are BMO-spaces and exponential Orlicz

spaces. For point sets, the norm of the discrepancy function in these spaces

was studied in [3, 5]. The methods of this paper can also be used to give sharp

bounds for sequences. This will be the subject of a follow-up paper [15].

Moreover, it is well-known that norms of the discrepancy function are inti-

mately connected to integration errors of the corresponding quasi-Monte Carlo

rules. That is the reason for recent work on the discrepancy function in function

spaces like Sobolev spaces, Besov spaces and Triebel–Lizorkin spaces of domi-

nating mixed smoothness; see [26, 33, 34, 35, 36, 52, 53]. Again the methods

of our paper can be used to give sharp bounds for sequences. This will also be

treated in [15].
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The explicit construction in Theorem 1.1 is based on linear algebra over the

finite field F2. In the subsequent section we provide a detailed introduction to

the infinite sequences which lead to the optimal discrepancy bounds.

2. Digital nets and sequences

2.1. The digital construction scheme according to Niederreiter.

The concepts of digital nets and sequences were introduced by Niederreiter [38]

in 1987. These constructions are based on linear algebra over Fb, the finite field

of prime-power order b. A detailed overview of this topic is given in the books

[17, 39] (see also [32, Chapter 5]). Here we restrict ourselves to the case b = 2.

Let F2 be the finite field of order 2. We identify F2 with {0, 1} equipped with

arithmetic operations modulo 2.

First we recall the definition of digital nets according to Niederreiter, which

we present here in a slightly more general form. For n, q, d ∈ N with q ≥ n

let C1, . . . , Cd ∈ F
q×n
2 be q × n matrices over F2

∼= {0, 1} (originally one used

n × n matrices). For k ∈ {0, . . . , 2n − 1} with dyadic expansion k = k0 +

k12 + · · ·+ kn−12
n−1, where kj ∈ {0, 1}, we define the dyadic digit vector �k as

�k = (k0, k1, . . . , kn−1)
� ∈ F

n
2 (the symbol  means the transpose of a vector or

a matrix; hence �k is a column-vector). Then compute

(7) Cj
�k =: (xj,k,1, xj,k,2, . . . , xj,k,q)

� for j = 1, . . . , d,

where the matrix vector product is evaluated over F2, and put

xj,k = xj,k,12
−1 + xj,k,22

−2 + · · ·+ xj,k,q2
−q ∈ [0, 1).

The k-th point xk of the net P2n,d is given by xk = (x1,k, . . . , xd,k). A net P2n,d

constructed this way is called a digital net (over F2) with generating matrices

C1, . . . , Cd. Note that a digital net consists of 2n elements in [0, 1)d.

A variant of digital nets are so-called digitally shifted digital nets. Here one

chooses (�σ1, . . . , �σd) ∈ (FN
2 )

d with �σj = (σj,1, σj,2, . . .)
� ∈ F

N
2 with all but finitely

many components different from zero and replaces (7) by

Cj
�k + �σj =: (xj,k,1, xj,k,2, xj,k,3, . . . , )

� ∈ F
N

2 for j = 1, . . . , d,

and puts

xj,k = xj,k,12
−1 + xj,k,22

−2 + xj,k,32
−3 + · · · ∈ [0, 1).
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We also recall the definition of digital sequences according to Niederreiter,

which are infinite versions of digital nets. Let C1, . . . , Cd ∈ F
N×N

2 be N × N

matrices over F2. For Cj = (cj,k,�)k,�∈N we assume that for each � ∈ N there

exists a K(�) ∈ N such that cj,k,� = 0 for all k > K(�). For k ∈ N0 with dyadic

expansion k = k0 + k12 + · · ·+ km−12
m−1 ∈ N0, define the infinite dyadic digit

vector of k by �k = (k0, k1, . . . , km−1, 0, 0, . . .)
� ∈ F

N
2 . Then compute

(8) Cj
�k =: (xj,k,1, xj,k,2, . . .)

� for j = 1, . . . , d,

where the matrix vector product is evaluated over F2, and put

xj,k = xj,k,12
−1 + xj,k,22

−2 + · · · ∈ [0, 1).

The k-th point xk of the sequence Sd is given by xk = (x1,k, . . . , xd,k). A

sequence Sd constructed this way is called a digital sequence (over F2) with

generating matrices C1, . . . , Cd. Note that since cj,k,� = 0 for all k large enough,

the numbers xj,k are always dyadic rationals, i.e., have a finite dyadic expansion.

The variant of digitally shifted digital sequences is defined in the same way as

was done for digitally shifted digital nets.

2.2. Higher order nets and sequences. Our approach is based on higher

order digital nets and sequences constructed explicitly in [10, 11]. We state here

simplified versions of these definitions which are sufficient for our purpose.

The distribution quality of digital nets and sequences depends on the choice of

the respective generating matrices. In the following definitions we put some re-

strictions on C1, . . . , Cd with the aim to quantify the quality of equidistribution

of the digital net or sequence.

Definition 2.1: Let n, q, α ∈ N with q ≥ αn and let t be an integer such that

0 ≤ t ≤ αn. Let C1, . . . , Cd ∈ F
q×n
2 . Denote the i-th row vector of the matrix

Cj by �cj,i ∈ F
n
2 . If for all 1 ≤ ij,νj < · · · < ij,1 ≤ q with

d∑
j=1

min(νj ,α)∑
l=1

ij,l ≤ αn− t

the vectors

�c1,i1,ν1 , . . . ,�c1,i1,1 , . . . ,�cd,id,νd , . . . ,�cd,id,1

are linearly independent over F2, then the digital net with generating matrices

C1, . . . , Cd is called an order α digital (t, n, d)-net over F2.
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The case α = 1 corresponds to the classical case of (t, n, d)-nets according to

Niederreiter’s definition in [38].

Next we consider digital sequences for which the initial segments are order α

digital (t, n, d)-nets over F2.

Definition 2.2: Let α ∈ N and let t ≥ 0 be an integer. Let C1, . . . , Cd ∈ F
N×N

2

and let Cj,αn×n denote the left upper αn×n submatrix of Cj . If for all n > t/α

the matrices C1,αn×n, . . . , Cd,αn×n generate an order α digital (t, n, d)-net over

F2, then the digital sequence with generating matrices C1, . . . , Cd is called an

order α digital (t, d)-sequence over F2.

Again, the case α = 1 corresponds to the classical case of (t, d)-sequences

according to Niederreiter’s definition in [38].

From Definition 2.1 it is clear that if P2n,d is an order α digital (t, n, d)-net,

then for any t ≤ t′ ≤ αn, P2n,d is also an order α digital (t′, n, d)-net. An

analogous result also applies to higher order digital sequences.

Note that a digital net can be an order α digital (t, n, d)-net over F2 and at

the same time an order α′ digital (t′, n, d)-net over F2 for α′ �= α. This means

that the quality parameter t may depend on α (i.e., t = t(α)). The same holds

for digital sequences. In particular [11, Theorem 4.10] implies that an order α

digital (t, n, d)-net is an order α′ digital (t′, n, d)-net for all 1 ≤ α′ ≤ α with

(9) t′ = �tα′/α� ≤ t.

The same result applies to order α digital (t, d)-sequences which are also order

α′ digital (t′, d)-sequences with 1 ≤ α′ ≤ α and t′ as above. In other words,

t(α′) = �t(α)α′/α� for all 1 ≤ α′ ≤ α. More information can be found in [17,

Chapter 15].

In [18] it has been shown that every order α digital (t, d)-sequence over F2

with α ≥ 5 has optimal order of the L2-discrepancy. In this paper we show

that even order 2 digital (t, d)-sequences over F2 achieve the optimal order of

magnitude in N of the Lp-discrepancy for all p ∈ (1,∞).

Higher order digital nets and sequences have also a geometrical interpreta-

tion. Roughly speaking, the definitions imply that special intervals or unions of

intervals of prescribed volume contain the correct share of points with respect

to a perfect uniform distribution. See [39, 17] for the classical case α = 1 and

[14] or [17, 18] for general α. See also Lemma 3.2 below.
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2.3. Explicit constructions of order 2 digital sequences. Explicit

constructions of order α digital nets and sequences have been provided by

Dick [10, 11]. For our purposes it suffices to consider only α = 2.

Let C1, . . . , C2d be generating matrices of a digital net or sequence and let

�cj,k denote the k-th row of Cj . Define matrices E1, . . . , Ed, where the k-th row

of Ej is given by �ej,k, in the following way. For all j ∈ {1, 2, . . . , d}, u ∈ N0 and

v ∈ {1, 2} let

�ej,2u+v = �c2(j−1)+v,u+1.

We illustrate the construction for d = 1. Then

C1 =

⎛⎜⎜⎝
�c1,1

�c1,2
...

⎞⎟⎟⎠ , C2 =

⎛⎜⎜⎝
�c2,1

�c2,2
...

⎞⎟⎟⎠ ⇒ E1 =

⎛⎜⎜⎜⎜⎜⎜⎝

�c1,1

�c2,1

�c1,2

�c2,2
...

⎞⎟⎟⎟⎟⎟⎟⎠ .

This procedure is called interlacing (in this case the so-called interlacing factor

is 2).

Recall that above we assumed that cj,k,� = 0 for all k > K(�). Let

Ej = (ej,k,�)k,�∈N. Then the construction yields that ej,k,� = 0 for all k > 2K(�).

From [10, Theorem 4.11 and Theorem 4.12] we obtain the following result.

Proposition 2.1: If C1, . . . , C2d ∈ F
N×N

2 generate an order 1 digital (t′, 2d)-
sequence over F2, then E1, . . . , Ed ∈ F

N×N

2 generate an order 2 digital (t, d)-

sequence over F2 with

t = 2t′ + d.

Explicit constructions of suitable generating matrices C1, . . . , Cs over F2 were

obtained by Sobol’ [50], Niederreiter [38, 39], Niederreiter–Xing [40] and others

(see [17, Chapter 8] for an overview). Any of these constructions is sufficient

for our purpose; however, for completeness, we briefly describe a special case of

Tezuka’s construction [51], which is a generalization of Sobol’s construction [50]

and Niederreiter’s construction [38] of the generating matrices.

We explain how to construct the entries cj,k,� ∈ F2 of the generating matrices

Cj = (cj,k,�)k,�≥1 for j = 1, 2, . . . , s (for our purpose s = 2d). To this end

choose the polynomials p1 = x and pj ∈ F2[x] for j = 2, . . . , s to be the

(j − 1)-th irreducible polynomial in a list of irreducible polynomials over F2

that is sorted in increasing order according to their degree ej = deg(pj), that
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is, e2 ≤ e3 ≤ · · · ≤ es−1 (the ordering of polynomials with the same degree is

irrelevant). We also put e1 = deg(x) = 1.

Let j ∈ {1, . . . , s} and k ∈ N. Take i − 1 and z to be respectively the main

term and remainder when we divide k − 1 by ej , so that k − 1 = (i − 1)ej + z,

with 0 ≤ z < ej. Now consider the Laurent series expansion

xej−z−1

pj(x)i
=

∞∑
�=1

a�(i, j, z)x
−� ∈ F2((x

−1)).

For � ∈ N we set

(10) cj,k,� = a�(i, j, z).

Every digital sequence with generating matrices Cj = (cj,k,�)k,�≥1 for j =

1, 2, . . . , s found in this way is a special instance of a Sobol’ sequence which

in turn is a special instance of so-called generalized Niederreiter sequences (see

[51, (3)]). Note that in the construction above we always have cj,k,� = 0 for all

k > �. The t-value for these sequences is known to be t =
∑s

j=1(ej − 1); see

[39, Chapter 4.5] for the case of Niederreiter sequences.

Remark: Let C1, . . . , C2d be N×Nmatrices which are constructed according to

Tezuka’s method as described above. Let E1, . . . , Ed be the generator matrices

of the corresponding order 2 digital sequence. Then we always have ej,k,� = 0

for all k > 2�, where ej,k,� is the entry in row k and column � of the matrix Ej .

Now we can state a more concrete version of our main result.

Theorem 2.2: For every order 2 digital (t, d)-sequence Sd over F2, with gene-

rating matrices Ei = (ei,k,�)k,�≥1 for which ei,k,� = 0 for all k > 2� and for all

i ∈ {1, 2, . . . , d}, we have

Lp,N(Sd) �p,d 2t
(logN)

d
2

N
for all N ≥ 2 and all 1 ≤ p < ∞.

We remark that this result is not only a generalization of the main result

in [18] from L2- to Lp-discrepancy for general finite p, but also a considerable

improvement in the following sense. In [18] the explicit construction is based

on higher order sequences of order α = 5. Here, on the other hand, we show

that even α = 2 suffices in order to achieve the optimal discrepancy bound with

respect to the lower bound (4). This means that for the explicit construction
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of a sequence in dimension d one can begin with a classical digital sequence in

dimension s = 2d rather than s = 5d.

Note that the explicit construction of the order 2 digital (t, d)-sequences Sd

shown above, with generating matrices Ei = (ei,k,�)k,�≥1 for which ei,k,� = 0

for all k > 2� and for all i ∈ {1, 2, . . . , d}, does not depend on the parameter p

in Theorem 2.2. Our explicit construction (based on Tezuka’s construction and

the interlacing of the generating matrices) is also extensible in the dimension,

i.e., if we have constructed the sequence Sd, we can add one more coordinate

to obtain the sequence Sd+1. In other words, we can define a sequence S∞ of

points in [0, 1)N and obtain the sequence Sd, d ∈ N, by projecting S∞ to the

first d coordinates.

3. Haar bases

The proof of Theorem 2.2 is based on Haar functions. This is in contrast to the

proof of the result in [18] (the L2-discrepancy of order 5 digital sequences is of

optimal order) which is based on Walsh functions.

We define N0 = N ∪ {0} and N−1 = N0 ∪ {−1}. Let Dj = {0, 1, . . . , 2j − 1}
for j ∈ N0 and D−1 = {0}. For j = (j1, . . . , jd) ∈ N

d−1 let Dj = Dj1 × · · · ×Djd .

For j ∈ N
d
−1 we write |j| = max(j1, 0) + · · ·+max(jd, 0).

For j ∈ N0 and m ∈ Dj we call the interval Ij,m =
[
2−jm, 2−j(m + 1)

)
the m-th dyadic interval in [0, 1) on level j. We put I−1,0 = [0, 1) and call it

the 0-th dyadic interval in [0, 1) on level −1. Let I+j,m = Ij+1,2m and I−j,m =

Ij+1,2m+1 be the left and right half of Ij,m, respectively. For j ∈ N
d
−1 and

m = (m1, . . . ,md) ∈ Dj we call Ij,m = Ij1,m1 × · · · × Ijd,md
the m-th dyadic

interval in [0, 1)d on level j. We call the number |j| the order of the dyadic

interval Ij,m. Its volume is 2−|j|.
Let j ∈ N0 and m ∈ Dj . Let hj,m be the function on [0, 1) with support in

Ij,m and the constant values 1 on I+j,m and −1 on I−j,m. We put h−1,0 = χI−1,0

on [0, 1). The function hj,m is called the m-th dyadic Haar function on level j.

Let j ∈ N
d
−1 and m ∈ Dj . The function hj,m, given as the tensor product

hj,m(x) = hj1,m1(x1) · · ·hjd,md
(xd)

for x = (x1, . . . , xd) ∈ [0, 1)d, is called a dyadic Haar function on [0, 1)d. The

system of dyadic Haar functions hj,m for j ∈ N
d
−1, m ∈ Dj is called the dyadic

Haar basis on [0, 1)d.
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It is well known that the system{
2

|j|
2 hj,m : j ∈ N

d
−1, m ∈ Dj

}
is an orthonormal basis of L2([0, 1)

d), an unconditional basis of Lp([0, 1)
d)

for 1 < p < ∞ and a conditional basis of L1([0, 1)
d). For any function

f ∈ L2([0, 1)
d) we have Parseval’s identity

‖f |L2([0, 1)
d)‖2 =

∑
j∈Nd

−1

2|j|
∑

m∈Dj

|〈f, hj,m〉|2,

where 〈·, ·〉 denotes the usual L2-inner product, i.e., 〈f, g〉 =
∫
[0,1]d

f(x)g(x) dx.

The terms 〈f, hj,m〉 are called the Haar coefficients of the function f .

The following Littlewood–Paley type estimate for the Lp-norm for p ∈ (1,∞)

is a special case of [34, Theorem 2.11, Corollary 1.13].

Proposition 3.1: Let p ∈ (1,∞) and f ∈ Lp([0, 1)
d). Then

‖f |Lp([0, 1)
d)‖2 �p,d

∑
j∈Nd

−1

22|j|(1−1/p̄)

⎛⎝ ∑
m∈Dj

|〈f, hj,m〉|p̄
⎞⎠2/p̄

where p̄ = max(p, 2).

We present a connection between higher order digital nets over F2 and dyadic

intervals.

Lemma 3.2: Let P2n,d be an order α digital (t, n, d)-net over F2. Then every

dyadic interval of order n− �t/α� contains at most 2�t/α	 points of P2n,d.

Proof. As mentioned in Section 2.2, every order α digital (t, n, d)-net over F2 is

an order 1 digital (�t/α�, n, d)-net over F2. Then every dyadic interval of order

n− �t/α� contains exactly 2�t/α	 points of P2n,d (see [17, 39]).

The following lemma is a slight generalization of [36, Lemma 5.9]. The result

was originally proved for order 2 digital (t, n, d)-nets. The extension to digi-

tally shifted order 2 digital (t, n, d)-nets follows with almost exactly the same

arguments as the proof of [36, Lemma 5.9] (not repeated here). We restrict

ourselves to the finite field F2.
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Lemma 3.3: Let P2n,d be a digitally shifted order 2 digital (t, n, d)-net over F2.

Let j ∈ N
d−1 with |j|+ t/2 ≤ n and m ∈ Dj . Then

|〈DP2n,d
, hj,m〉| � 2−2n+t(2n− t− 2|j|)d−1.

4. The proof of Theorem 2.2

For the proof of the main result we need some auxiliary lemmas. The first two

lemmas are elementary:

Lemma 4.1: Let r ∈ N0 and s ∈ N. Then

#{(a1, . . . , as) ∈ N
s
0 : a1 + · · ·+ as = r} ≤ (r + 1)s−1.

For a proof of this result we refer to [17, Proof of Lemma 16.26].

Lemma 4.2: Let K ∈ N, A > 1 and q, s ≥ 0. Then we have

K−1∑
r=0

Ar(K − r)qrs � AK Ks,

where the implicit constant is independent of K.

For a proof we refer to [36, Lemma 5.2].

The subsequent two lemmas are required in order to estimate the Haar coef-

ficients of the discrepancy function. The first one is a special case of [34,

Lemma 5.1].

Lemma 4.3: Let f(x) = x1 · · ·xd for x = (x1, . . . , xd) ∈ [0, 1)d. Let j ∈ N
d
−1

and m ∈ Dj . Then |〈f, hj,m〉| � 2−2|j|.

The next lemma is a special case of [34, Lemma 5.2].

Lemma 4.4: Let z = (z1, . . . , zd) ∈ [0, 1)d and g(x) = χ[0,x)(z) for x =

(x1, . . . , xd) ∈ [0, 1)d. Let j ∈ N
d
−1 and m ∈ Dj . Then 〈g, hj,m〉 = 0 if z

is not contained in the interior of the dyadic interval Ij,m. If z is contained in

the interior of Ij,m then |〈g, hj,m〉| � 2−|j|.

Now we have collected all auxiliary results in order to provide the proof of

Theorem 2.2.

Proof of Theorem 2.2. According to the monotonicity of the Lp-norm it suffices

to prove the result for p > 1. Let Sd be an order 2 digital (t, d)-sequence over F2
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with generating matrices C1, . . . , Cd, with Cj = (cj,k,�)k,�≥1 for which ci,k,� = 0

for all k > 2�. Let N ∈ N with dyadic expansion N = 2nr + · · · + 2n1 with

nr > · · · > n1 ≥ 0.

We first prove the following claim: For μ = 1, . . . , r let

Q2nμ ,d = {x2n1+···+2nμ−1 ,x2n1+···+2nμ−1+1, . . . ,x−1+2n1+···+2nμ},

where for μ = 1 we set 2n1 + · · ·+2nμ−1 = 0. Then the point set PN,d consisting

of the first N elements of the sequence Sd is a union of Q2nμ ,d for μ = 1, . . . , r

and Q2nμ ,d is a digitally shifted order 2 digital (t, nμ, d)-net over F2 with genera-

ting matrices C1,2nμ×nμ , . . . , Cd,2nμ×nμ , i.e., the left upper 2nμ×nμ submatrices

of C1, . . . , Cd.

For the proof of this claim let Cj,N×nμ denote the matrix which consists of

the first nμ columns of Cj . Only the first 2nμ rows of Cj,N×nμ can be nonzero

since cj,k,� = 0 for all k > 2� and hence Cj is of the form

Cj =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Cj,2nμ×nμ Dj,2nμ×N

0N×nμ Fj,N×N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ F

N×N

2 ,

where 0N×nμ denotes the N × nμ zero matrix. Note that the entries of each

column of the matrix Fj,N×N become eventually zero. Any

k ∈ {2n1 + · · ·+ 2nμ−1 , 2n1 + · · ·+ 2nμ−1 + 1, . . . ,−1 + 2n1 + · · ·+ 2nμ}

can be written in the form

k = 2n1 + · · ·+ 2nμ−1 + a = 2nμ−1�+ a

with a ∈ {0, 1, . . . , 2nμ − 1} and � = 1+ 2nμ−nμ−1 + · · ·+2n1−nμ−1 if μ > 1 and

� = 0 if μ = 1. Hence the dyadic digit vector of k is given by

�k = (a0, a1, . . . , anμ−1, l0, l1, l2, . . .)
� =:

(
�a
��

)
,
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where a0, . . . , anμ−1 are the dyadic digits of a and l0, l1, l2, . . . are the dyadic

digits of �. With this notation we have

Cj
�k =

⎛⎜⎜⎜⎜⎝
Cj,2nμ×nμ�a

0

0
...

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
Dj,2nμ×N

Fj,N×N

⎞⎟⎟⎟⎟⎟⎠ ��.

For the point set Q2nμ ,d under consideration, the vector

(11) �σμ,j :=

⎛⎜⎜⎜⎜⎜⎝
Dj,αnμ×N

Fj,N×N

⎞⎟⎟⎟⎟⎟⎠ ��

is constant and its components become eventually zero (i.e., only a finite number

of components is nonzero). Furthermore, Cj,2nμ×nμ�a for a = 0, 1, . . . , 2nμ − 1

and j = 1, . . . , s generate an order 2 digital (t, nμ, s)-net over F2 (which is also

an order 1 digital (t, nμ, d)-net over F2, which follows from [12, Proposition 1]).

This means that the point set Q2nμ ,d is a digitally shifted order 2 digital

(t, nμ, d)-net over F2 with generating matrices C1,2nμ×nμ , . . . , Cd,2nμ×nμ and

hence the claim is proven.

According to Proposition 3.1 with f = DN
Sd

we have

(12) (Lp,N (Sd))
2 �p,d

∑
j∈Nd

−1

22|j|(1−1/p̄)

⎛⎝ ∑
m∈Dj

|〈DN
Sd
, hj,m〉|p̄

⎞⎠2/p̄

,

where p̄ = max(p, 2).

Now we split up the sum in (12) according to the size |j| of the involved dyadic

intervals. Let us consider “small” dyadic intervals first, so let |j|+ t/2 ≥ ldN .

We calculate |〈DN
Sd
, hj,m〉|. Choose n ∈ N such that 2n−1 < N ≤ 2n. Then the

point set PN,d of the first N elements of Sd is a subset of P2n,d consisting of

the first 2n elements of Sd. From the construction of Sd it follows that P2n,d is

an order 2 digital (t, n, d)-net over F2. Therefore, according to Lemma 3.2, in

an interval Ij,m there are at most 2�t/2	 points of P2n,d and hence there are at
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most 2�t/2	 points of PN,d in Ij,m. Hence we get from Lemmas 4.3 and 4.4

|〈DN
Sd
, hj,m〉| ≤ 1

N

2�t/2	

2|j|
+

1

22|j|
� 1

N

2t/2

2|j|
.(13)

The estimate (13) will be applied to dyadic intervals on level j which contain

points from PN,d. The cardinality of such intervals is at most N . At least

2|j|−N contain no points of PN,d, hence in such cases we get from Lemmas 4.3

and 4.4

|〈DN
Sd
, hj,m〉| � 1

22|j|
.(14)

Now we estimate the terms of (12) for which |j| + t/2 ≥ ldN . Applying

Minkowski’s inequality and inserting (13) and (14) we obtain

(15)

∑
|j|+t/2≥ldN

22|j|(1−1/p̄)

⎛⎝ ∑
m∈Dj

|〈DN
Sd
, hj,m〉|p̄

⎞⎠2/p̄

�
∑

|j|+t/2≥ldN

22|j|(1−1/p̄)

(
N

1

N p̄

2p̄t/2

2p̄|j|

)2/p̄

+
∑

|j|+t/2≥ldN

22|j|(1−1/p̄)

(
(2|j| −N)

22p̄|j|

)2/p̄

≤ N2/p̄−22t
∑

|j|+t/2≥ldN

1

22|j|/p̄
+

∑
|j|+t/2≥ldN

1

22|j|

� N2/p̄−22tN−2/p̄2t/p̄(ldN)d−1 +
(logN)d−1

N2
2t

≤ 22t
(logN)d−1

N2
.

We now turn to the more demanding case of “large” intervals where

|j|+ t/2 < ldN . More precisely, assume that we have

nμ ≤ |j|+ t/2 < nμ+1

for some μ ∈ {0, 1, . . . , r}, where we set n0 = 0 and nr+1 = ldN . For κ ∈
{μ+ 1, . . . , r} we use the estimation from Lemma 3.3 to get

|〈DQ2nκ ,d
, hj,m〉| � (2nκ − t− 2|j|)d−1

22nκ−t
,
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while for M = 2nμ + · · · + 2n1 , with μ > 0, we have according to (13) with

Q̃M,d =
⋃μ

i=1 Q2ni ,d that

|〈D
˜QM,d

, hj,m〉| � 1

M

1

2|j|−t/2
,

since |j|+ t/2 ≥ ldM . If μ = 0, this case does not occur.

Using the linearity of the discrepancy function and the triangle inequality

leads to

(16)

|〈DN
Sd
, hj,m〉| ≤ M

N
|〈D

˜QM,d
, hj,m〉|+ 1

N

r∑
κ=μ+1

2nκ |〈DQ2nκ ,d
, hj,m〉|

� 1

N

(
2t/2

2|j|
+

r∑
κ=μ+1

(2nκ − t− 2|j|)d−1

2nκ−t

)

� 2t

N

(
1

2|j|
+

∞∑
k=0

(2nμ+1 + 2k − t− 2|j|)d−1

2nμ+1+k

)

� 2t

N

(
1

2|j|
+

(2nμ+1 − t− 2|j|)d−1

2nμ+1

)
,

where we used [17, Lemma 13.24] in the last step.

Now we use this bound to estimate the terms of (12) for which |j|+t/2 < ldN .

We obtain from Minkowski’s inequality, Lemma 4.1 and Lemma 4.2

∑
|j|+t/2<ldN

22|j|(1−1/p̄)

⎛⎝ ∑
m∈Dj

|〈DN
Sd
, hj,m〉|p̄

⎞⎠2/p̄

=

r∑
μ=0

∑
nμ≤|j|+t/2<nμ+1

22|j|(1−1/p̄)

⎛⎝ ∑
m∈Dj

|〈DN
Sd
, hj,m〉|p̄

⎞⎠2/p̄

�
r∑

μ=0

∑
nμ≤|j|+t/2<nμ+1

22|j|(1−1/p̄)22|j|/p̄
22t

N2

(
1

2|j|
+

(2nμ+1 − t− 2|j|)d−1

2nμ+1

)2

=
22t

N2

r∑
μ=0

∑
nμ≤|j|+t/2<nμ+1

22|j|
(

1

22|j|
+ 2

(2nμ+1 − t− 2|j|)d−1

2|j|+nμ+1

+
(2nμ+1 − t− 2|j|)2d−2

22nμ+1

)
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=
22t

N2

r∑
μ=0

⎛⎝ ∑
nμ≤|j|+t/2<nμ+1

1 +
2

2nμ+1

∑
nμ<|j|+t/2≤nμ+1

2|j|(2nμ+1 − t− 2|j|)d−1

+
1

22nμ+1

∑
nμ≤|j|+t/2<nμ+1

22|j|(2nμ+1 − t− 2|j|)2d−2

⎞⎠
� 22t

N2

r∑
μ=0

(
(logN)d−1(nμ+1 − nμ) +

2nμ+1−t/2

2nμ+1
(logN)d−1

+
22nμ+1−t

22nμ+1
(logN)d−1

)
≤ 22t

N2

(
(logN)d + 2(logN)d−1(r + 1)

)

� 22t
(logN)d

N2
.

(17)

Combining (15) and (17) we obtain

(Lp,N(Sd))
2 �p,d 22t

(logN)d

N2
.

Now the result follows by taking square roots.
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