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ABSTRACT

We determine minimal Cayley–Hamilton and Capelli identities for ma-

trices over a Grassmann algebra of finite rank. For minimal standard

identities, we give lower and upper bounds on the degree. These results

improve on upper bounds given by L. Márki, J. Meyer, J. Szigeti and L.

van Wyk in a recent paper.

1. Notations

Let R be a commutative ring with 1. For m ≥ 0, consider the Grassmann

algebra

Em = R〈v1, . . . , vm〉/(v2k, vivj + vjvi | 1 ≤ k ≤ m, 1 ≤ i < j ≤ m)

of rank m. It is a graded R-algebra (each vi has degree 1). We write Em
i for

the degree i component, so

Em =

m⊕
i=0

Em
i , Em

0 = R, Em
m = Rv1 · · · vm.
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We write

Em
≥r =

m⊕
i=r

Em
i .

Let MnX be the set of n-square matrices with entries in the set X .

2. Cayley–Hamilton identity

L. Márki, J. Meyer, J. Szigeti and L. van Wyk have shown [4, Theorem 3.4] that

if the base ring R is a field of characteristic zero and m ≥ 2, then any element

of MnE
m satisfies a monic polynomial of degree n · 2m−1 over R. This was

achieved by constructing a CT-embedding of Em into a 2m−1-square matrix

algebra over a suitable commutative R-algebra — an interesting result in its

own right. In the present paper, we allow R to be any commutative ring with 1

and reduce the degree of the monic polynomial from n ·2m−1 to n · (�m/2�+ 1),

which turns out to be least possible in general. Moreover, a suitable polynomial

of this degree is given explicitly. For the proof, we do not use CT-embeddings.

Instead, we directly exploit the nilpotency and supercommutativity properties

of the Grassmann algebra.

We now set up notation that will be used throughout this section. Let

A ∈ MnE
m. We decompose A into its homogeneous components:

A =

m∑
i=0

Ai, Ai ∈ MnE
m
i .

Let

f(x) = det(xI −A0) ∈ R[x]

be the (monic) characteristic polynomial of A0 ∈ MnR. The main result of this

paper is

Theorem 1: For any A ∈ MnE
m, we have

f(A)�m/2�+1 = 0.

For m = 0, this recovers the Cayley–Hamilton Theorem.

As a first step towards the proof, we decompose B = f(A) ∈ MnE
m into its

homogeneous components:

B =
m∑
i=0

Bi, Bi ∈ MnE
m
i .
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Before attacking Theorem 1 in its full generality, we treat a special case.

Lemma 2: If the degree zero component A0 of A ∈ MnE
m is a diagonal matrix

A0 = diag(λi)
n
i=1 with distinct diagonal elements λi ∈ R, and A1 = (vij) with

vij ∈ Em
1 , then

(0) B0 = 0,

(1) B1 = diag(f ′(λi)vii)
n
i=1,

(2) B2
1 = 0,

(3) (B2)rs =
1

λr−λs
(f ′(λr)vrr + f ′(λs)vss) vrs for r 	= s.

(4) If B+
2 and B−

2 denote the diagonal and off-diagonal part of B2 respecti-

vely, then B1 commutes with B+
2 but anticommutes with B−

2 .

Proof. We have

f(x) =

n∏
i=1

(x− λi),

whence

(2.1) B = f(A) =

n∏
i=1

(A− λiI).

(0) We have B0 = f(A0), which is zero by the Cayley–Hamilton Theorem,

or, if you prefer, by the trivial computation

f(A0) =

n∏
i=1

(A0 − λiI) = diag

(
n∏

i=1

(λj − λi)

)n

j=1

= 0.

(1) The factors in (2.1) commute, so, for any indices r 	= s, we have

(2.2) B = (A− λrI)C(A − λsI)

for some C ∈ MnE
m. In the first factor, the r-th row has no degree zero

component. In the last factor, the s-th column has no degree zero component.

Thus, the (r, s) entry in B has no degree 1 component.

The degree 1 component of the (r, r) entry in B arises by taking a degree 1

component from the r-th row of A − λrI and degree zero components from all

other A− λiI. But the degree zero components of these matrices are diagonal,

so the only possibility is to use the (r, r) entry from each factor. The result is

vrr
∏
i�=r

(λr − λi),
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as claimed.

(2) This is clear because B1 is diagonal and homogeneous of degree 1.

(3) Using formulas (2.1) and (2.2), we obtain

(B2)rs =

n∑
j=1

vrjvjs
∏
i�=r,s

(λj − λi) = vrrvrs
f ′(λr)

λr − λs
+ vrsvss

f ′(λs)

λs − λr
,

which yields the result.

(4) The first statement is clear because B1 and B+
2 are diagonal and B+

2 is

homogeneous of degree 2 — note that in the Grassmann algebra, homogeneous

elements of even degree are central.

For the second statement, observe that B1 is diagonal and B−
2 is off-diagonal,

so their product, in either order, is off-diagonal. Moreover, for r 	= s, the (r, s)

entry in the product is

(B1B
−
2 )rs = (B1)rr(B2)rs = f ′(λr)vrr

1

λr − λs
f ′(λs)vssvrs

for one order and is

(B−
2 B1)rs = (B2)rs(B1)ss =

1

λr − λs
f ′(λr)vrrvrsf

′(λs)vss

for the other order. These add up to zero as claimed.

Proof of Theorem 1. The coefficients of the polynomial f(x) are polynomials

with integer coefficients in the entries of A0. Hence, the coordinates in the

natural R-basis

(2.3) {vi1 · · · vik |i1 < · · · < ik}
of the entries of the matrix f(A)�m/2�+1 are polynomials with integer coefficients

in the coordinates of the entries ofA. The theorem is equivalent to the statement

that these n22m polynomials are all identically zero. Thus, we may assume that

R = C. We may assume that A0 has n distinct eigenvalues, since such matrices

are dense in Mn(C). Then A0 is diagonalizable by an invertible complex matrix

P . Since the conjugation by P is an automorphism of MnE
m as a graded

algebra over C, we may assume that P = I, i.e., A0 is diagonal with distinct

diagonal entries. Then, by Lemma 2, we have

B =
m∑
i=1

Bi,
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where Bi ∈ MnE
m
i , B2

1 = 0, B2 = B+
2 +B−

2 , and B1B
±
2 = ±B±

2 B1. If B
k 	= 0

for an exponent k, then there is a nonzero product

B•
i1 · · ·B•

ik ,

where i1, . . . , ik ∈ {1, . . . ,m}, and B•
i means B±

2 if i = 2 and means Bi other-

wise. But then, in the sequence i1, . . . , ik, any two 1’s are separated by at least

one i ≥ 3, whence

m ≥ i1 + · · ·+ ik ≥ 2k − 1,

so k ≤ 
(m+ 1)/2� = �m/2�.
We now show that the degree of the polynomial in Theorem 1 cannot be

reduced.

Proposition 3: LetR be a field of characteristic either 0 or a prime p > �m/2�.
Let λ1, . . . , λn ∈ R be distinct elements and

v = v1v2 + v3v4 + · · ·+ v2�m/2	−1v2�m/2	{+vm} ∈ Em

(the last term appears only if m is odd).

Let

A = diag(λi + v)ni=1 ∈ MnE
m,

so that A0 = diag(λi)
n
i=1. Then the characteristic polynomial of A0 is

f(x) =
n∏

i=1

(x − λi)

and the minimal polynomial of A over R is

f(x)�m/2�+1.

Proof. Observe that

v�m/2� = �m/2�!v1 · · · vm 	= 0.

Thus, the polynomial

gi(x) =
f(x)�m/2�+1

x− λi
= (x− λi)

�m/2�∏
j �=i

(x− λj)
�m/2�+1

does not vanish at A. Indeed, the (i, i)-entry of gi(A) is

v�m/2�∏
j �=i

(λi − λj + v)�m/2�+1 = v�m/2�f ′(λi)
�m/2�+1 	= 0.
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3. Capelli identity

Recall [3, Definition 1.5.3] that the Capelli polynomial dk is defined by the

formula

dk(x1, . . . , xk; y0, . . . , yk) =
∑
π∈Sk

(−1)πy0xπ(1)y1xπ(2) · · · yk−1xπ(k)yk.

We say that the Capelli identity of x-degree k holds in a ring A if the above

expression is 0 for all x1, . . . , xk, y0, . . . , yk ∈ A. It is trivial that the Capelli

identity of x-degree k implies the Capelli identity of x-degree k + 1.

It is well known that the ring of n-square matrices over a commutative ring

satisfies the Capelli identity of x-degree n2+1 (because the Capelli polynomial

is alternating in the variables xi), but does not satisfy the Capelli identity of

x-degree n2 if the base ring has 1 	= 0 (because we may choose the xi to be

the usual matrix units in some order, and choose the yi to be suitable matrix

units such that exactly one term in dn2 is nonzero). We now wish to generalize

this to matrices over the Grassmann algebra Em. We shall need the following

lemma.

Lemma 4: Let a1, . . . , ak be elements of a ring. Suppose that [k] = {1, . . . , k} =

M ∪ N is a disjoint union. Suppose that ai and aj anticommute for distinct

i, j ∈ M , but commute otherwise.

Let P be a partition of [k] into |N | classes, each class containing exactly one

element of N . Let S ⊆ Sk be the Young subgroup corresponding to P (i.e., S

is the group of permutations leaving each class invariant).

(a) If |M | is odd, then

(3.1)
∑
π∈S

(−1)πaπ(1) · · · aπ(k) = 0.

(b) If P consists of intervals of odd cardinalities m1 + 1, . . . , m|N | + 1

respectively, and N consists of the leftmost elements of these intervals,

then

(3.2)
∑
π∈S

(−1)πaπ(1) · · · aπ(k) = m1! · · ·m|N |!a1 · · · ak.

Proof. (a) We use induction on m = |M |. For m = 1, the group S has two

elements of distinct sign, and all ai commute, so (3.1) holds.
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Let m ≥ 3 be odd. Suppose that the claim is true for m− 2. Let us prove it

for m.

Consider the special case when P is a partition into intervals. Then the left-

hand side of (3.1) can be written as a product. For each interval I ∈ P , we get

a factor of the form

(3.3)
∑
π∈SI

(−1)π
∏
i∈I

aπ(i).

Since m is odd, we can choose an interval I ∈ P that has an even number of

elements. There is a unique i ∈ I ∩N . The terms in (3.3) where π−1(i) is even

can be paired off with those where π−1(i) is odd. This can be done so that in

each pair π has different signs but
∏

i∈I aπ(i) is the same, so the sum within

each pair is zero. This proves the special case.

To finish the proof, it suffices to prove the following. If the lemma is true

for a sequence a1, . . . , ak and a partition P , and i − 1 and i are in distinct

classes S and T of P respectively, then the lemma remains true for a′i = ai−1,

a′i−1 = ai, M
′ = MΔ{i − 1, i}, N ′ = NΔ{i − 1, i}, S′ = (S − {i − 1}) ∪ {i},

T ′ = (T − {i}) ∪ {i− 1} (all other data remain unchanged).

To prove this, we examine the change made in the left-hand side of (3.1).

The terms remain the same up to order and sign. The terms that change sign

are exactly those where π(i − 1) and π(i) both come from the set M . It suffices

to prove that these terms sum to zero. This is true even if π(i − 1) and π(i) are

fixed elements of M , due to the induction hypothesis.

(b) We may assume that |N | = 1. Then the claim is trivial.

Theorem 5: The ring MnE
m satisfies the Capelli identity of x-degree

k = n2 + 2
m/2�+ 1.

Proof. Let A1, . . . , Ak, B0, . . . , Bk ∈ MnE
m. We prove that

(3.4) dk(A1, . . . , Ak;B0, . . . , Bk) = 0.

By multilinearity, we may assume that each Ai and each Bi has only one nonzero

entry, which is an element of the standard R-basis (2.3) of Em. Moreover, we

may assume that the degrees of these 2k+ 1 basis elements sum to at most m.

Then at most m of these degrees are nonzero, i.e., at least 2k + 1−m of these

2k+1 basis elements are 1. At least k−m of these 1’s come from the matrices

Ai.
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If m is even, then k−m = n2 +1, so, by the pigeonhole principle, there exist

indices i 	= i′ such that Ai = Ai′ , whence (3.4) holds.

If m is odd, then k −m = n2. We may assume that

A1, . . . , An2

is the standard R-basis of MnR, while

An2+i = viAji ,

where 1 ≤ ji ≤ n2 for i = 1, . . . ,m. We may also assume that each Bi comes

from the standard R-basis of MnR. The claim now follows from Lemma 4(a),

applied to the nonzero entries of the matrices Ai.

Proposition 6: The ring MnE
m does not satisfy the Capelli identity of x-

degree k = n2 +2
m/2� if the base ring R is a field of characteristic either zero

or a prime p > 2
⌈
m/2�/n2

⌉
.

Proof. Let us write 2
m/2� as a sum of n2 even numbers that are smaller than

p if the characteristic is p > 0. Let these even numbers be m1, . . . , mn2 . Let

A1, . . . , An2 be the standard basis of MnR. For each r, consider mr matrices

of the form viAr, chosen so that each index i = 1, . . . , 2
m/2� is used exactly

once. Let us insert the chosen mr multiples of Ar immediately after Ar into

the sequence A1, . . . , An2 . This gives us a sequence C1, . . . , Ck. Now let

B0, . . . , Bk be elements from the standard basis of MnR with the property that

B0C1B1 · · ·CkBk 	= 0. Then

(3.5) dk(C1, . . . , Ck;B0, . . . , Bk) = B0C1B1 · · ·CkBk

n2∏
r=1

mr!

by Lemma 4(b), applied to the case where ai is the unique nonzero entry of

the matrix Ci (i = 1, . . . , k). The right-hand side of (3.5) is nonzero because

mr < p if the characteristic is p > 0.

4. Standard identity

The standard polynomial sk is defined by the formula

sk(x1, . . . , xk) =
∑
π∈Sk

(−1)πxπ(1)xπ(2) · · ·xπ(k).
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We say that the standard identity of degree k holds in a ring A if the above

expression is 0 for all x1, . . . , xk ∈ A. It is trivial that the standard identity of

degree k implies the standard identity of degree k + 1. When A � 1 and k is

even, the converse implication holds as well because

sk(x1, ..., xk) = sk+1(1, x1, ..., xk).

Also, the Capelli identity of x-degree k implies the standard identity of degree

2
k/2� if A � 1. Indeed, we may substitute 1 for each yi in the Capelli identity

to get the standard identity of degree k, and then we can use the previous

remark.

The celebrated Amitsur–Levitzki theorem [1], see e.g. also [3], states that

the ring of n-square matrices over a commutative ring satisfies the standard

identity of degree 2n. An easy example shows that it does not satisfy the

standard identity of degree 2n− 1 if the base ring has 1 	= 0. We now wish to

generalize this to matrices over the Grassmann algebra Em.

L. Márki, J. Meyer, J. Szigeti and L. van Wyk [4, 3.7 Theorem] used an

embedding into a matrix algebra over a commutative ring and invoked the

Amitsur–Levitzki Theorem to show that for m ≥ 1, the standard identity of

degree 2mn holds in MnE
m. They also invoked a very general theorem of

M. Domokos [2, Theorem 5.5] to show that the standard identity of degree

(m+1)n2 +1 holds in MnE
m [4, 3.8 Remark]. We now show that these degree

bounds can be substantially reduced. For the latter one, this is already clear

from Theorem 5, which yields

Corollary 7: The standard identity of degree

2

(⌊
n2 + 1

2

⌋
+
⌊m
2

⌋)

holds in MnE
m.

An improvement of the degree bound 2mn is given by

Proposition 8: The standard identity of degree k = 2n(
m/2�+ 1) holds in

MnE
m.

Proof. We prove the stronger identity

s2n(A1, . . . , A2n)s2n(A2n+1, . . . , A4n) · · · s2n(Ak−2n+1, . . . , Ak) = 0
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for all A1, . . . , Ak ∈ MnE
m. It suffices to prove that each of the 
m/2� + 1

factors is contained in MnE
m
≥2. In fact, it suffices to prove this for the first

factor. Observe that the ring

Em/(v2, . . . , vm) � R[v1]/(v
2
1)

is commutative. Thus, by the Amitsur–Levitzki Theorem, n-square matrices

over this ring satisfy the standard identity of degree 2n. Thus, each entry in

the matrix s2n(A1, . . . , A2n) is contained in the ideal (v2, . . . , vm); moreover, by

the same argument, it is contained in

m⋂
i=1

(vj |j 	= i) = Em
≥2,

as claimed.

Note that for m = 0 or m = 1, the ring MnE
m is commutative and Pro-

position 8 reduces to the Amitsur–Levitzki Theorem (k = 2n) and therefore is

sharp.

Proposition 8 is sharp for n = 1, and Corollary 7 is sharp for n = 1 or n = 2.

More generally, we have

Proposition 9: The standard identity of degree k = 2(n + 
m/2�) − 1 does

not hold in MnE
m if the base ring R is a field of characteristic either zero or a

prime p > 2
m/2�.
Proof. Consider the 2n − 1 matrices e12, e23, . . . , en−1,n, enn, en,n−1,

en−1,n−2, . . . ,e21, together with the 2
m/2� further matrices vie11, where

i = 1, . . . , 2
m/2�. The standard polynomial sk evaluated at these k matri-

ces is the same as

s2�m/2	+1(e11, v1e11, . . . , v2�m/2	e11).

By Lemma 4(b), applied to the trivial partition, this is

(2
m/2�)!v1 · · · v2�m/2	e11 	= 0.

Problem 10: Does the standard identity of degree 2(n + 
m/2�) hold in

MnE
m?

For m = 0, or m = 1, or n = 1, or n = 2, the answer is clearly affirmative.
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