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ABSTRACT

Let K be a convex body in R
n. Is K uniquely determined by the areas of

its sections? There are classical results that explain what happens in the

case of sections passing through the origin. However, much less is known

about sections that do not contain the origin. We discuss several problems

of this type and establish the corresponding uniqueness results.

1. Introduction

Geometric Tomography is an area of Mathematics that deals with the study of

properties of objects (such as convex bodies or star bodies) based on information

about the size of their sections, projections, etc. It is a well-known result, which

goes back to Minkowski and Funk (see [4]), that an origin-symmetric star body

in R
n is uniquely determined by the areas of its central sections. More precisely,

if K and L are origin-symmetric star bodies in R
n such that

voln−1(K ∩H) = voln−1(L ∩H)

for every hyperplane H passing through the origin, then K = L. On the other

hand, in the class of general (not necessarily symmetric) star bodies the latter

result is not true.

In view of this, it is natural to ask what information is needed to determine

non-symmetric bodies. Falconer [2] and Gardner [3] have shown that if K and
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L are convex bodies in R
n that contain two points p and q in their interiors

and such that voln−1(K ∩ H) = voln−1(L ∩ H) for every hyperplane H that

passes through either p or q, then K = L. In this context, let us also mention

the problem of Klee about the inner section function of convex bodies, which is

given by mK(u) = maxt∈R voln−1(K ∩ {u⊥ + tu}). In 1969 Klee asked whether

the knowledge of mK is sufficient to determine the body K uniquely. In [5] the

problem was solved in the negative, and a little later a nonspherical body with

a constant inner section function was constructed in [12].

Recently, a lot of attention has been attracted to the following problem, posed

by Barker and Larman in [1]. Note that a similar question on the sphere was

considered earlier by Santaló [13].

Problem 1.1: Let K and L be convex bodies in R
n (n ≥ 2) that contain a

Euclidean ball B in their interiors. If voln−1(K ∩H) = voln−1(L∩H) for every

hyperplane H that supports B, does it follow that K = L?

The problem is open even in R
2. Some particular cases are known to be true.

In particular, a body K in R
2 all of whose sections by lines supporting a disk

have the same length, must itself be a disk; see [1]. The problem also has a

positive answer in the class of convex polytopes in R
n; see [15].

Barker and Larman also suggested a more general version of Problem 1.1.

Problem 1.2: Let K and L be convex bodies in R
n (n ≥ 2) that contain a

convex body D in their interiors. If voln−1(K ∩H) = voln−1(L ∩H) for every

hyperplane H that supports D, does it follow that K = L?

Closely related is the following open problem.

Problem 1.3: LetK and L be convex bodies in R
n and let D be a convex body

in the interior ofK∩L. If voln(K∩H+) = voln(L∩H+) for every hyperplane H

supporting D, does it follow that K = L? Here, H+ is the half-space bounded

by the hyperplane H that does not intersect the interior of D.

It is interesting to see what happens if the hypotheses of Problems 1.2 and

1.3 hold for two distinct bodies D1 and D2 simultaneously (i.e. if we double

the amount of information). We show that in this case the answer in R
2 is

affirmative under some mild assumptions on D1 and D2. After this paper was

written, it was brought to our attention that Theorem 3.1 (see Section 3 below)

was known to Barker and Larman, as they mention it can be found in Barker’s
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thesis. We include it here anyway, because it is a simple consequence of Theorem

3.4.

In Section 4 we discuss some higher-dimensional analogues. In particular,

Groemer [7] has shown that convex bodies are uniquely determined by the areas

of “half-sections”. More precisely, consider half-planes of the form H(u,w) =

{x ∈ R
n : x ∈ u⊥, 〈x,w〉 ≥ 0}, where u ∈ Sn−1 and w ∈ Sn−1 ∩ u⊥. Then

the equality voln−1(K ∩H(u,w)) = voln−1(L∩H(u,w)) for all such half-planes

implies that K = L. We give a version of this result for half-planes that do not

pass through the origin. Some other types of sections are also discussed.

2. Definitions and preliminaries

In this section we collect some basic concepts and definitions that we use in the

paper. For further facts in Convex Geometry and Geometric Tomography the

reader is referred to the books by Schneider [14] and Gardner [4].

A set in R
n is called convex if it contains the closed line segment joining

any two of its points. A convex set is a convex body if it is compact and has

non-empty interior. A convex body is strictly convex if its boundary contains

no line segments.

A hyperplane H supports a set E at a point x if x ∈ E∩H and E is contained

in one of the two closed half-spaces bounded by H . We say H is a supporting

hyperplane of E if H supports E at some point.

The support function of K is defined by

hK(x) = max{〈x, y〉 : y ∈ K},
for x ∈ R

n. If hK is of class Ck on R
n\{O}, we will simply say that K has

a Ck support function. For a convex body K ⊂ R
2 it is often convenient to

write hK as a function of the polar angle θ. So, abusing notation, we will use

hK(θ) to denote hK((cos θ, sin θ)). If H is the supporting line to K ⊂ R
2 with

the outer normal vector (cos θ, sin θ), and K has a C1 support function, then

K has a unique point of contact with H , and |h′
K(θ)| is the distance from this

point to the foot of the perpendicular from the origin O to H ; see [4, p. 24].

A compact set L is called a star body if the origin O is an interior point of L,

every line through O meets L in a line segment, and its Minkowski functional

defined by

‖x‖L = min{a ≥ 0 : x ∈ aL}



766 V. YASKIN AND N. ZHANG Isr. J. Math.

is a continuous function on R
n.

The radial function of L is given by ρL(x) = ‖x‖−1
L , for x ∈ R

n\{O}. If

x ∈ Sn−1, then ρL(x) is just the radius of L in the direction of x. If p is a point

in the interior of L, and L − p is a star body, then we will use ρL,p to denote

ρL−p.

LetK be a convex body in R
n, andD be a strictly convex body in the interior

of K. Let H be a supporting plane to D with outer unit normal vector ξ, and

p = D ∩H be the corresponding point of contact. If u ∈ Sn−1 ∩ ξ⊥, we denote

by ρK,D(u, ξ) = ρK,p(u) the radial function of K ∩H with respect to p.

Let S(Rn) be the Schwartz space of infinitely differentiable rapidly decreasing

functions on R
n. Functions from this space are called test functions. For a

function ψ ∈ S(Rn), its Fourier transform is defined by

ψ̂(ξ) =

∫
Rn

ψ(x)e−i〈x,ξ〉 dx, ξ ∈ R
n.

By S ′(Rn) we denote the space of continuous linear functionals on S(Rn). Ele-

ments of this space are referred to as distributions. By 〈f, ψ〉 we denote the

action of the distribution f on the test function ψ. Note that ψ̂ is also a test

function, which allows to introduce the following definition. We say that the

distribution f̂ is the Fourier transform of the distribution f if

〈f̂ , ψ〉 = 〈f, ψ̂〉,

for every test function ψ. The reader is referred to the book [8] for applications

of Fourier transforms to the study of convex bodies.

3. Main results: 2-dimensional cases

We will start with the following definition. We say that convex bodies D1 and

D2 in R
2 are admissible if they have C2 support functions, D1 ∪ D2 is not

convex, and there are only two lines that support both D1 and D2 and do not

separate D1 and D2. The last condition is satisfied, when, for example, the

bodies D1 and D2 are disjoint, or they touch each other, or they overlap, but

their boundaries have only two common points.
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Figure 1

Figure 2

Figures 1 and 2 show two examples of admissible convex bodies. For simpli-

city, the reader could just think of two disks (not necessarily of the same radius)

such that none of them is contained in the other.

We will now prove the following two results.

Theorem 3.1: Let K and L be convex bodies in R
2 and let D1 and D2 be

two admissible convex bodies in the interior of K ∩L. If the chords K ∩H and

L ∩H have equal length for all H supporting either D1 or D2, then K = L.

If H is a supporting line to a body D ⊂ R
2, we will denote by H+ the

half-plane bounded by H and disjoint from the interior of D.

Theorem 3.2: Let K and L be convex bodies in R
2 and let D1 and D2 be two

admissible convex bodies in the interior ofK∩L. If vol2(K∩H+) = vol2(L∩H+)

for every H supporting D1 or D2, then K = L.
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We will obtain these theorems as particular cases of a more general statement,

Theorem 3.4 below. First, we will need the following lemma.

Lemma 3.3: Let D ⊂ R
2 be a convex body with a C2 support function. Let

Q ∈ ∂D and l be the supporting line to D at Q. Suppose the origin O is located

on the line perpendicular to l and passing through Q, and O 
= Q. Consider

a polar coordinate system centered at O with the polar axis
−−→
OQ. Then, for θ

small enough, we have

(1) h′D(θ) sin θ + hD(0)− hD(θ) cos θ ≈ sin2 θ,

where f ≈ g means that C1g ≤ f ≤ C2g, for some constants C1 and C2, which

depend on f and g.

Proof. Since Q is both the point where l supports D and the foot of the per-

pendicular from O to l, it follows that h′D(0) = 0. Thus,

hD(θ) = hD(0) +
h′′D(0)

2
θ2 + o(θ2).

Therefore, for θ small enough, we have

hD(0)− hD(θ) cos θ = hD(0)−
(
hD(0) +

h′′D(0)

2
θ2 + o(θ2)

)(
1− 1

2
θ2 + o(θ2)

)

=
hD(0)− h′′D(0)

2
θ2 + o(θ2)

≈ θ2 ≈ sin2 θ.

Also, h′D(θ) = h′′D(0)θ + o(θ) ≈ θ ≈ sin θ, and thus h′D(θ) sin θ ≈ sin2 θ.

Theorem 3.4: Let K and L be convex bodies in R
2 and let D1 and D2 be two

admissible convex bodies in the interior of K ∩ L. Assume that for some i > 0

one of the following two conditions holds:

(I) ρiK,Dj
(u, ξ) + ρiK,Dj

(−u, ξ) = ρiL,Dj
(u, ξ) + ρiL,Dj

(−u, ξ), for j = 1, 2,

(II) ∂K∩∂L 
= ∅ and ρiK,Dj
(u, ξ)−ρiK,Dj

(−u, ξ) = ρiL,Dj
(u, ξ)−ρiL,Dj

(−u, ξ),
for j = 1, 2,

for all ξ, u ∈ S1 such that u ⊥ ξ.

Then K = L.

Proof. We will present the proof of the theorem only using condition (I). The

other case is similar and we will just make a brief comment on how the proof

should be adjusted.
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For the reader’s convenience let us first outline the idea of the proof. The

proof consists of four steps. In Step 1 we fix a common supporting line to D1

and D2 that has a certain property. Denoting this line by l, in Step 2 we show

that K ∩ l = L∩ l. In Step 3 we prove that the boundaries of K and L coincide

in some neighborhood of the line l. This allows to conclude in Step 4 that the

boundaries of K and L coincide everywhere.

Step 1. Since there are two common supporting lines to D1 and D2 (that do

not separate D1 and D2), we will denote them by l and λ, and let p1 = D1 ∩ l,
q1 = D1 ∩ λ, p2 = D2 ∩ l, q2 = D2 ∩ λ; see Figures 1 and 2. We claim that at

least one of the (possibly degenerate) segments [p1, p2] or [q1, q2] is not entirely

contained in D1∪D2. We will prove this claim in a slightly more general setting,

i.e. without the assumption that D1 and D2 are strictly convex. In that case,

instead of single points of contact we may have intervals, and [p1, p2] or [q1, q2]

will just stand for the convex hulls of the corresponding support sets. To prove

the claim, we will argue by contradiction. Assume that [p1, p2] and [q1, q2] are

contained in D1 ∪ D2. Then there are points p ∈ [p1, p2] and q ∈ [q1, q2] that

both belong to D1 ∩D2. We can assume that the origin is an interior point of

the interval [p, q]. Since there are only two common supporting lines to D1 and

D2, we have exactly two directions u1 and u2, such that hD1(u1) = hD2(u1) and

hD1(u2) = hD2(u2). These directions divide the circle S1 into two open arcs

U1 and U2, satisfying hD1(u) > hD2(u) for all u ∈ U1, and hD1(u) < hD2(u)

for all u ∈ U2. Thus the line l(p, q) through the points p and q cuts each of the

bodies D1 and D2 into two convex parts: D1 = D11∪D12 and D2 = D21∪D22,

such that D11 ⊃ D21 and D12 ⊂ D22. In other words, D1 ∪ D2 = D11 ∪ D22,

where D11 and D22 are separated by l(p, q). Now, if we take two points X ,

Y ∈ D1 ∪D2, then we have two cases: either they lie on one side of l(p, q), or

on different sides. In the first case, either X , Y ∈ D11, or X , Y ∈ D22, which

means that [X,Y ] ⊂ D1 ∪D2. In the second case, the segment [X,Y ] intersects

[p, q] (since p and q belong to the supporting lines l and λ correspondingly), and

thus one part of [X,Y ] lies in D11, and the other in D22, which again implies

that [X,Y ] ⊂ D1 ∪D2, meaning that D1 ∪D2 is convex. Contradiction. Thus,

we have proved that at least one of the segments [p1, p2] or [q1, q2] is not entirely

contained in D1 ∪D2. We will assume it is the segment [p1, p2] and will fix the

corresponding supporting line l.
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Figure 3

Step 2. Here we will show that ∂K ∩ l = ∂L ∩ l. To this end, we define

two mappings ϕ1 and ϕ2 (see Figure 3). We will start with ϕ1; the other is

similar. Let Q be a point outside of D1. There are two unique supporting lines

to D1 passing through Q. Choose the one that lies on the left of the body D1,

when viewing from the point Q. Let T be the point of contact of the chosen

supporting line and the body D1. On this line we take a point ϕ1(Q), such that

T is inside the segment [Q,ϕ1(Q)] and

|QT |i + |ϕ1(Q)T |i = ρiK,D1
(u, ξ) + ρiK,D1

(−u, ξ),

where u is a unit vector parallel to
−→
TQ and ξ is the outward unit normal vector

to D1 at T (which is perpendicular to u). The definition for ϕ2 is similar; one

only needs to replace D1 by D2. Note that the domains of ϕ1 and ϕ2 include

the symmetric difference K�L. An important observation is that if Q is on the

boundary of K (resp. L), then ϕ1(Q), ϕ−1
1 (Q), ϕ2(Q), and ϕ−1

2 (Q) are also on

the boundary of K (resp. L).

Note that there exists at least one point Q ∈ ∂K ∩∂L. Otherwise, one of ∂K

or ∂L would be strictly contained inside the other, thus violating condition (1)

of the proposition. The line l divides the plane into two closed half-planes l+

and l−, where l+ is the one that contains D1 and D2. If Q ∈ l+, then applying

ϕ1 finitely many times, we will get a point in l− (since ϕ1 cannot miss the whole

half-plane), which is also a common point of the boundaries of K and L. Thus

from now on we will assume that Q ∈ l−. If Q ∈ l, then the proof of Step 2 is

finished. If Q is strictly below l, we will apply the following procedure.
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Without loss of generality, we can assume that, if the line λ intersects l,

then the point of intersection lies to the left of the point p1, as in Figure 2.

Let us also denote by X0 and Y0 the points of intersection of the boundary

of K with the line l, as in Figure 3. Let Q0 = ϕ−1
2 (Q). The line l(Q,Q0)

through Q and Q0 is tangent to D2 and therefore cannot have common points

with D1 (otherwise rolling this line along the boundary of D2 we would find

a third common supporting line to both D1 and D2). Now consider ϕ1(Q0)

and the line l(ϕ1(Q0), Q0) through ϕ1(Q0) and Q0. Note that ϕ1(Q0) is below

l. Since l(Q,Q0) and l(ϕ1(Q0), Q0) are different, the points Q and ϕ1(Q0)

are also different. Moreover, we have ∠(
−−−−−−−→
ϕ1(Q0)Q0,

−−−→
p1X0) < ∠(−−→QQ0,

−−−→
p1X0).

Repeating this procedure, we construct Q1 = ϕ−1
2 (ϕ1(Q0)) and observe that

∠(
−−−−−−−→
ϕ1(Q0)Q1,

−−−→
p1X0) < ∠(

−−−−−−−→
ϕ1(Q0)Q0,

−−−→
p1X0); see Figure 4.

Figure 4

Continuing in this manner, we obtain a sequence of points {Qj}∞j=0 and a

corresponding sequence of angles {θj}∞j=0, defined by Qj+1 = ϕ−1
2 (ϕ1(Qj)) and

θj = ∠(
−−−−−−→
ϕ1(Qj)Qj ,

−−−→
p1X0). We note that Qj ∈ l+ ∩ ∂K ∩ ∂L, and θj > θj+1, for

all j. Thus, the sequence {θj} is strictly decreasing and positive, and therefore

convergent. To reach a contradiction, let us assume that the limit is not zero.

Then there is a point Q̃ = limj→∞Qj that lies above the line l and satisfies

ϕ1(Q̃) = ϕ2(Q̃). Thus, we have a third line that supports both D1 and D2.

Contradiction. Hence, limj→∞ θj = 0, and we conclude that ∂K ∩ l = ∂L∩ l =
{X0, Y0}.
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Step 3. We will prove that ∂K and ∂L coincide in some one-sided neighbor-

hood of the point X0. Since

|Y0p1||X0p2|
|X0p1||Y0p2| < 1,

we can choose positive numbers a, b, c, d such that

0 < a < |X0p1|, |Y0p1| < b, 0 < c < |Y0p2|, |X0p2| < d, and
bd

ac
< 1.

By the continuity of the boundaries of K, L, D1, and D2, there exist neig-

hborhoods, N (X0), N (Y0), of X0 and Y0 respectively, such that

(2)

⎧⎨
⎩|XT1| > a and |XT2| < d, if X ∈ N (X0),

|Y T3| > c and |Y T4| < b, if Y ∈ N (Y0),

where T1 is the point of intersection of l and the line through X supporting D1

(if X is itself on the line l, then we let T1 = p1). Similarly, T2 is the point of

intersection of l and the line through X supporting D2 (again, if X is on the

line l, then we let T2 = p2). Here and below, by the supporting lines we mean

those that are closest to l. There is no ambiguity, since X is sufficiently close

to l. (The points T3 and T4 are defined similarly, if we replace X by Y .)

Next we claim that there are points of ∂K∩∂L in the set N (X0)∩l+. Indeed,
if in Step 2 there was a point Q ∈ ∂K ∩ ∂L strictly below the line l, then the

points from the corresponding sequence {Qi} all lie in ∂K ∩ ∂L ∩ N (X0) ∩ l+
for i large enough. If in Step 2 the point Q was on the line l, then we can take

ϕ1(ϕ
−1
2 (X0)), which will be strictly below l, and repeat the same procedure.

Our goal is to show that ∂K and ∂L coincide in N (X0)∩l+. Taking a smaller

neighborhood N (X0) if needed, we can assume that ϕ1(N (X0) ∩ l+) ⊂ N (Y0).

Discarding finitely many terms of the sequence {Qj}, we can also assume that

Qj ∈ N (X0)∩ l+ for all j ≥ 0. Now consider the segments of the boundaries of

∂K and ∂L between the points Q0 and Q1. If they coincide, then we are done,

since the boundaries of ∂K and ∂L would have to coincide between Qj and

Qj+1 for all j. So, we will next assume that ∂K and ∂L are not identically the

same between Q0 and Q1. Let E0 be the component of K�L with endpoints

Q0 and Q1, i.e. E0 is the subset of (K�L) ∩ l+ located between the lines

l(Q0, ϕ1(Q0)) and l(Q1, ϕ1(Q0)). We will define a sequence of sets {Ej}∞j=0,
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where Ej+1 = ϕ−1
2 (ϕ1(Ej)). Each Ej is a component of K�L with endpoints

Qj and Qj+1.

Now consider a Cartesian coordinate system with l being the x-axis, and the

y-axis perpendicular to l. We will be using ideas similar to those in [4, Section

5.2]. For a measurable set E define

(3) νi(E) =

∫∫
E

|y|i−2 dx dy.

Note that νi(E) is invariant under shifts parallel to the x-axis. This allows us

to associate with each D1 and D2 their own Cartesian systems. In both systems

l is the x-axis, but in the coordinate system associated with D1 the origin is at

p1, while in the system associated with D2 the origin is at p2.

Our goal is to estimate νi(Ej). Fix the Cartesian system associated with D1,

with p1 being the origin. For a point (x, y) ∈ N (X0)∪N (Y0) we will introduce

new coordinates (r, θ) as follows. Let θ = ∠(lθ,1, l), where lθ,1 is the line passing
through (x, y) and supporting D1. Define r to be the signed distance between

(x, y) and the foot of the perpendicular from the point (0, 1) to the line lθ,1.

(The word “signed” means that r > 0 in the neighborhood of X0 and r < 0 in

the neighborhood of Y0.) Let hD1(θ) be the support function of D1 measured

from the point (0, 1) in the direction of (sin θ,− cos θ). Using that

(x, y) = hD1(0) · (0, 1) + r(cos θ, sin θ) + hD1(θ) · (sin θ,− cos θ),

we will write the integral (3) in the (r, θ)-coordinates associated with D1. Since

the Jacobian is |r−h′D1
(θ)|, and r = h′D1

(θ) corresponds to the point of contact

of lθ,1 and D1, we get

νi(Ej) =

∫∫
Ej

|y|i−2 dx dy

=

θj∫
θj+1

∣∣∣∣∣∣∣
ρL,D1 (u,ξ)−h′

D1
(θ)∫

ρK,D1 (u,ξ)−h′
D1

(θ)

|r sin θ + hD1(0)− hD1(θ) cos θ|i−2|r − h′D1
(θ)| dr

∣∣∣∣∣∣∣ dθ

=

θj∫
θj+1

∣∣∣∣∣∣∣
ρL,D1 (u,ξ)∫

ρK,D1 (u,ξ)

|r sin θ + h′D1
(θ) sin θ + hD1(0)− hD1(θ) cos θ|i−2r dr

∣∣∣∣∣∣∣ dθ,
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where u = (cos θ, sin θ), and ξ = (sin θ,− cos θ). Here the absolute value of the

integral with respect to r is needed, since we do not know which of ρK or ρL is

greater.

For small θ, Lemma 3.3 yields that

h′D1
(θ) sin θ + hD1(0)− hD1(θ) cos θ ≈ sin2 θ.

Since Ej is inside N (X0), there exists a constant C > 0 such that

(1− C sin θ)r sin θ ≤ r sin θ + h′D1
(θ) sin θ + hD1(0)− hD1(θ) cos θ

≤ (1 + C sin θ)r sin θ,

where we assume that θ is small enough so that 1− C sin θ > 0.

If i ≥ 2, for small θ > 0 we have(
1− C sin θ

1 + C sin θ

)
i−2(r sin θ)i−2 ≤ (1− C sin θ)

i−2
(r sin θ)i−2

≤ |r sin θ + h′D1
(θ) sin θ + hD1(0)− hD1(θ) cos θ|i−2

≤ (1 + C sin θ)i−2 (r sin θ)i−2 ≤
(
1 + C sin θ

1− C sin θ

)i−2

(r sin θ)i−2.

On the other hand, for i < 2,(
1 + C sin θ

1− C sin θ

)
i−2(r sin θ)i−2 ≤ (1 + C sin θ)

i−2
(r sin θ)i−2

≤ |r sin θ + h′D1
(θ) sin θ + hD1(0)− hD1(θ) cos θ|i−2

≤ (1− C sin θ)
i−2

(r sin θ)i−2 ≤
(
1− C sin θ

1 + C sin θ

)i−2

(r sin θ)i−2.

Thus, for both i ≥ 2 and i < 2, we have

1

i

∫ θj

θj+1

(
1− C sin θ

1 + C sin θ

)|i−2|
(sin θ)i−2

∣∣ρiK,D1
(u, ξ)− ρiL,D1

(u, ξ)
∣∣ dθ ≤ νi(Ej)

≤ 1

i

∫ θj

θj+1

(
1 + C sin θ

1− C sin θ

)|i−2|
(sin θ)i−2

∣∣ρiK,D1
(u, ξ)− ρiL,D1

(u, ξ)
∣∣ dθ.(4)

Now apply the same estimates to νi(ϕ1(Ej)). Since ϕ1(Ej) ⊂ N (Y0), and

assuming that the constant C chosen above works for both N (X0) and N (Y0),

we get
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νi(ϕ1(Ej)) ≥ 1

i

∫ θj

θj+1

(
1− C sin θ

1 + C sin θ

)|i−2|

× (sin θ)i−2
∣∣ρiK,D1

(−u, ξ)− ρiL,D1
(−u, ξ)∣∣ dθ

=
1

i

∫ θj

θj+1

(
1− C sin θ

1 + C sin θ

)|i−2|

× (sin θ)i−2
∣∣ρiK,D1

(u, ξ)− ρiL,D1
(u, ξ)

∣∣ dθ

=
1

i

∫ θj

θj+1

(
1− C sin θ

1 + C sin θ

)2|i−2|(
1 + C sin θ

1− C sin θ

)|i−2|

× (sin θ)i−2
∣∣ρiK,D1

(u, ξ)− ρiL,D1
(u, ξ)

∣∣ dθ

≥
(
1− C sin θj
1 + C sin θj

)2|i−2|
νi(Ej),

since
1− C sin θ

1 + C sin θ
is decreasing.

Define another sequence of angles ηj = ∠(
−−−−−−−−→
ϕ1(Qj)Qj+1,

−−−→
p1X0). Then calcula-

tions similar to those above give

νi(Ej+1) ≥
(
1− C sin ηj
1 + C sin ηj

)2|i−2|
νi(ϕ1(Ej)).

Thus,

(5) νi(Ej+1) ≥
(
1− C sin ηj
1 + C sin ηj

)2|i−2|(
1− C sin θj
1 + C sin θj

)2|i−2|
νi(Ej).

Observe that (2) implies, for all j,

sin θj+1

sin θj
=

sin θj+1

sin ηj

sin ηj
sin θj

≤ db

ac
< 1,

and, similarly,

sin ηj+1

sin ηj
≤ db

ac
.
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Set σ =
db

ac
, where σ ∈ (0, 1). Then sin θj ≤ σj sin θ0 ≤ σj and

sin ηj ≤ σj sin η0 ≤ σj .

For sufficiently small x > 0, we have the following inequalities: 1 + x ≤ ex

and 1 − x ≥ e−2x. Let N > 0 be large enough so that x = Cσj satisfies the

latter two inequalities for all j ≥ N . Then for all j ≥ N , we have

νi(Ej+1) ≥
(
1− Cσj

1 + Cσj

)4|i−2|
νi(Ej)

≥
(
e−2Cσj

eCσj

)4|i−2|
νi(Ej) = e−12C|i−2|σj

νi(Ej).

Using the latter estimate inductively, we get

νi(Ej+1) ≥
j∏

m=N

e−12C|i−2|σm

νi(EN ) = exp

{
−12C|i− 2|

j∑
m=N

σm

}
νi(EN )

≥ γνi(EN ),

where

γ = exp

{
−12C|i− 2|

∞∑
m=N

σm

}
> 0.

Since all Ej are disjoint, and since νi(EN ) ≥ C̃νi(E0) > 0, for some constant C̃

(by virtue of (5)), we conclude that

νi

⎛
⎝ ∞⋃

j=N+1

Ej

⎞
⎠ =

∞∑
j=N+1

νi(Ej) ≥ γ

∞∑
j=N+1

νi(EN ) = ∞.

Since l ∩ (K�L) = {X0, Y0}, there exists a triangle T with one vertex at X0

satisfying T ∩ l = X0 and
⋃∞

j=N+1 Ej ⊂ T , implying

νi(T ) ≥ νi

⎛
⎝ ∞⋃

j=N+1

Ej

⎞
⎠ = ∞.

However, by [4, Lemma 5.2.4], any triangle of the form

T = {(x, y) : a|x− x0| ≤ y ≤ b},
for a, b > 0, has finite νi-measure. We get a contradiction. Thus, ∂K = ∂L in

N (X0) ∩ l+.
Step 4. To finish the proof, we take any point A ∈ ∂K. Applying ϕ1 to A

finitely many times, we can get a point A′ in l− ∩ ∂K. As in Step 2, produce
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a sequence of points Aj+1 = ϕ−1
2 (ϕ1(Aj)) with A0 = ϕ−1

2 (A′). As we have

seen above, there is a number M large enough such that AM ∈ N (X0) ∩ l+.

Applying the conclusion of Step 3, we get AM ∈ ∂K∩∂L. Tracing the sequence

{Ai} backwards, we conclude that A ∈ ∂K ∩ ∂L. Therefore, K = L.

We now briefly comment on how to proceed if we use condition (II) of the

theorem. Note that here we require that there is a point Q ∈ ∂K ∩ ∂L. We

define ϕ1 and ϕ2 in a similar way as above, with the only difference that

|QT |i − |ϕj(Q)T |i = ρiK,Dj
(u, ξ)− ρiK,Dj

(−u, ξ),

for j = 1, 2. The rest of the proof goes without any changes.

Remark 3.5: The C2-smoothness assumption for the support functions of the

bodies D1 and D2 can be relaxed. As we saw above, we only need the C2 condi-

tion in some neighborhoods of the points p1 and p2 correspondingly. Moreover,

D1 or D2 can also be polygons. In the latter case, ρK,Dj is not well defined for

finitely many supporting lines, but this is not an issue. Step 1 of the proof does

not need any changes, since it was proved for bodies that are not necessarily

strictly convex. In Step 2, we consider small one-sided neighborhoods of X0

and Y0, where ρK,Dj is well-defined. As for Step 3, the proof will be similar

to [4, Section 5.2], since all supporting lines to a polygon Dj passing through

points X ∈ N (X0)∩ l+ will contain the same vertex of Dj . Thus, as in [4], the

measure νi would be invariant under ϕj . So, whenever we speak about admis-

sible bodies, one can consider a larger class of admissible bodies by including

the bodies described in this remark.

Theorem 3.1 (with admissible bodies as in the above remark) is now a conse-

quence of Theorem 3.4 (use part (I) with i = 1). The following is an immediate

corollary of Theorem 3.1.

Corollary 3.6: Let K and L be origin-symmetric convex bodies in R
2 and

let D be a convex body in the interior of K ∩ L, such that D and −D are

admissible bodies. If the chords K ∩H and L ∩H have equal length for all H

supporting D, then K = L. In particular, D can be a disk not centered at the

origin.

Using the same ideas, one can prove the following.
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Corollary 3.7: Let K and L be origin-symmetric convex bodies in R
2 and

let D be a convex body outside of K ∪L (either a polygon or a body with a C2

support function). If the chords K ∩H and L ∩H have equal length for all H

supporting D, then K = L.

We will now prove Theorem 3.2 using the class of admissible bodies described

in Remark 3.5.

Proof. First we will prove the following claim. Let K and L be convex bodies

in R
2, D be a convex body in the interior of K ∩ L, where D is either a body

with C2 support function or a polygon. If vol2(K ∩ H+) = vol2(L ∩ H+) for

every H supporting D, then

ρ2K,D(u, ξ)− ρ2K,D(−u, ξ) = ρ2L,D(u, ξ)− ρ2L,D(−u, ξ),

for every ξ ∈ S1 and u ∈ S1∩ ξ⊥, whenever well-defined. (Note that in the case

when D is a polygon, the radial functions above are not well-defined for finitely

many directions ξ that are orthogonal to the edges of D.)

We will treat simultaneously both the case of smooth bodies and polygons.

To prove the claim, let ξ be any unit vector (and ξ is not orthogonal to an edge

of D, if D is a polygon). Let Hξ be the supporting line orthogonal to ξ. Let

ζ ∈ S1 ∩ ξ⊥. For a small angle φ > 0 let η = cosφ ξ+sinφ ζ, and denote by Hη

the supporting line orthogonal to η. Define the following sets: E1 = H+
ξ \H+

η ,

E2 = H+
ξ ∩H+

η , E3 = H+
η \H+

ξ , and E4 is the curvilinear triangle enclosed by

Hξ, Hη, and the boundary of D; see Figure 5.

Figure 5
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Note that when η and ξ are close enough, we have E4 ⊂ K ∩ L, and E4 is

empty if D is a polygon. By the assumption of the theorem,

vol2((E1 ∪ E2) ∩K)− vol2((E3 ∪ E2) ∩K)

= vol2((E1 ∪E2) ∩ L)− vol2((E3 ∪E2) ∩ L),
implying

(6) vol2((E1 ∪ E4) ∩K)− vol2((E3 ∪ E4) ∩K)

= vol2((E1 ∪E4) ∩ L)− vol2((E3 ∪E4) ∩ L).
Now we will consider the following coordinate system (r, θ) associated with

D. For a point (x, y) outside of D, we let (x, y) = hD(θ) (cos θ ξ + sin θ ζ) +

r(sin θ ξ − cos θ ζ), where hD(θ) is the support function of D in the direction

of v = cos θ ξ + sin θ ζ. Setting w = sin θ ξ − cos θ ζ, and observing that the

Jacobian is |r + h′D(θ)|, we get

φ∫
0

ρK,D(w,v)+h′
D(θ)∫

h′
D(θ)

|r + h′D(θ)| dr dθ −
φ∫

0

ρK,D(−w,v)+h′
D(θ)∫

h′
D(θ)

|r + h′D(θ)| dr dθ

=

φ∫
0

ρL,D(w,v)+h′
D(θ)∫

h′
D(θ)

|r + h′D(θ)| dr dθ −
φ∫

0

ρL,D(−w,v)+h′
D(θ)∫

h′
D(θ)

|r + h′D(θ)| dr dθ,

which after a variable change becomes∫ φ

0

∫ ρK,D(w,v)

0

r dr dθ −
∫ φ

0

∫ ρK,D(−w,v)

0

r dr dθ

=

∫ φ

0

∫ ρL,D(w,v)

0

r dr dθ −
∫ φ

0

∫ ρL,D(−w,v)

0

r dr dθ.

Differentiating both sides with respect to φ, and setting φ = 0, we get

ρ2K,D(u, ξ)− ρ2K,D(−u, ξ) = ρ2L,D(u, ξ)− ρ2L,D(−u, ξ),
as claimed.

To finish the proof of the theorem, note that ∂K ∩ ∂L ∩ l− 
= ∅, where l is
the common supporting line to D1 and D2 as in Theorem 3.4; otherwise we

would have vol2(K ∩ l−) < vol2(L ∩ l−) or vol2(K ∩ l−) > vol2(L ∩ l−), which
contradicts the hypotheses.

Now the conclusion follows from Theorem 3.4.
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Corollary 3.8: Let K be a convex body in R
2 and let D be a disk in the

interior of K. If vol2(K ∩ H+) = const for every H supporting D, then K is

also a disk.

After this paper was written, it was kindly pointed out to us by A. Kurusa

that the latter result has also been obtained in his paper with T. Ódor; see [10].

Thus we omit the proof and refer the reader to their paper.

4. Main results: Higher-dimensional cases

Theorem 4.1: Let K and L be convex bodies in R
n (where n is even) and let

D be a cube in the interior of K ∩ L. If voln−1(K ∩ H) = voln−1(L ∩ H) for

any hyperplane passing through a vertex of D and an interior point of D, then

K = L.

For ε > 0 and ξ ∈ Sn−1, denote by

Uε(ξ) = {η ∈ Sn−1 : 〈η, ξ〉 >
√
1− ε2}

the spherical cap centered at ξ, and by

Eε(ξ) = {η ∈ Sn−1 : |〈η, ξ〉| < ε}

the neighborhood of the equator Sn−1 ∩ ξ⊥.
Lemma 4.2: Let K and L be convex bodies in R

n (where n is even) containing

the origin in their interiors. Let ξ ∈ Sn−1 and ε > 0. If voln−1(K ∩ u⊥) =

voln−1(L ∩ u⊥) for every u ∈ Eε(ξ), then

ρn−1
K (η) + ρn−1

K (−η) = ρn−1
L (η) + ρn−1

L (−η)
for every η ∈ Uε(ξ).

Proof. For every even function ψ ∈ C∞(Sn−1) with support in Uε(ξ)∪Uε(−ξ),
we have∫

Sn−1

(‖x‖−n+1
K + ‖ − x‖−n+1

K )ψ(x) dx

= (2π)−n

∫
Sn−1

(‖x‖−n+1
K + ‖ − x‖−n+1

K )∧(u)(ψ(x/|x|)|x|−1)∧(u) du,

where we used Parseval’s formula on the sphere; see [8, Section 3.4].
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Since (‖x‖−n+1
K + ‖−x‖−n+1

K )∧(u) = 2π(n− 1)voln−1(K ∩u⊥) by [8, Lemma

3.7], the assumption of the lemma yields

(‖x‖−n+1
K + ‖ − x‖−n+1

K )∧(u) = (‖x‖−n+1
L + ‖ − x‖−n+1

L )∧(u)

for every u ∈ Eε(ξ). On the other hand, by formula (3.6) from [6] or [11, Lemma

5.1], we see that (ψ(x/|x|)|x|−1)∧
∣∣∣
Sn−1

is supported in Eε(ξ).

Therefore,

∫
Sn−1

(‖x‖−n+1
K + ‖ − x‖−n+1

K )ψ(x) dx

= (2π)−n

∫
Sn−1

(‖x‖−n+1
L + ‖ − x‖−n+1

L )∧(u)(ψ(x/|x|)|x|−1)∧(u) du

=

∫
Sn−1

(‖x‖−n+1
L + ‖ − x‖−n+1

L )ψ(x) dx.

Since this true for any ψ ∈ C∞(Sn−1) with support in Uε(ξ) ∪ Uε(−ξ), the

conclusion follows.

Definition 4.3: Let D be a convex polytope and vk one of its vertices. Define

CD(vk) to be the double cone centered at vk with the property that every

point in CD(vk) lies on a line through vk that has non-empty intersection with

D \ {vk}.
Note that when D is a cube, ∪kCD(vk) = R

n.

Remark 4.4: For simplicity, we stated Theorem 4.1 only in the case when D is

a cube, but, in fact, it remains valid for a larger class of polytopes. In particular,

any centrally symmetric polytope D satisfying the following condition will work:⋃
k CD(vk) = R

n.

Let us say a few words about the condition
⋃

k CD(vk) = R
n. It is easy

to see that it is true for any polygon in R
2. However, the situation in higher

dimensions is different. There is an origin-symmetric convex polytope D ⊂ R
n

for which this condition does not hold. Consider the cube in {xn = 0} with the

vertices (±1,±1, . . . ,±1, 0). Define D to be the convex hull of this cube and

the points (2, 0, . . . , 0, 1), (−2, 0, . . . , 0,−1). Then (0, . . . , 0, a) /∈ ⋃k CD(vk) for

sufficiently large a.
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Proof of Theorem 4.1. We will prove the theorem for the class of polytopes

described in Remark 4.4. Assume that D is such a polytope and its center of

symmetry is at the origin O.

By Lemma 4.2, if vi is a vertex of D, then

ρn−1
K,vi

(ξ) + ρn−1
K,vi

(−ξ) = ρn−1
L,vi

(ξ) + ρn−1
L,vi

(−ξ),
for every ξ ∈ Sn−1∩(CD(vi)−vi). Here, ρK,vi and ρL,vi are the radial functions

of K and L with respect to the point vi.

For a point Q ∈ CD(vi) define a mapping ϕi as follows. Let ϕi(Q) be the

point on the line through Q and vi, such that vi lies between Q and ϕi(Q), and

|Qvi|n−1 + |ϕi(Q)vi|n−1 = ρn−1
K,vi

(ξ) + ρn−1
K,vi

(−ξ) = ρn−1
L,vi

(ξ) + ρn−1
L,vi

(−ξ),

where ξ is the unit vector in the direction of
−−→
viQ. Note that the domain of ϕi

is not the entire set CD(vi), but it will be enough that ϕi is defined in some

neighborhood of (K�L) ∩ CD(vi).

Note that ∂K∩∂L 
= ∅. Otherwise one of the bodies K or L would be strictly

contained inside the other body, thus violating the condition voln−1(K ∩H) =

voln−1(L ∩ H) from the statement of the theorem. Consider a point Q ∈
∂K ∩ ∂L. There exists a vertex vi of D, such that Q ∈ CD(vi). Since D

is origin-symmetric, there is a vertex vj = −vi. Our first goal is to show that

l(vi, vj) ∩ ∂K = l(vi, vj) ∩ ∂L, where l(vi, vj) is the line through vi and vj . If

Q belongs to this line, we are done. If not, we will argue as follows.

Since Q ∈ CD(vi) ∩ ∂K ∩ ∂L, then ϕi(Q) is also in CD(vi) ∩ ∂K ∩ ∂L. Let

{Fm} be the collection of the facets of D that contain the vertex vi, and let

{nm} be the collection of the corresponding outward unit normal vectors. Note

that the condition Q ∈ CD(vi) means that either 〈−−→viQ,nm〉 ≥ 0 for all m,

or 〈−−→viQ,nm〉 ≤ 0 for all m. Without loss of generality we can assume that

〈−−→viQ,nm〉 ≥ 0 for all m (otherwise, take ϕi(Q) instead of Q).

We claim that Q ∈ CD(vi)∩CD(vj). Indeed, the outward unit normal vectors

to the facets that contain vj are {−nm}. Thus,

〈−−→vjQ,nm〉 = 〈−−→viQ,nm〉+ 〈−−→vjvi, nm〉 = 〈−−→viQ,nm〉+ 2〈−−→Ovi, nm〉 ≥ 0.

Next we claim that ϕj(Q) ∈ CD(vi) ∩CD(vj). It is clear that ϕj(Q) ∈ CD(vj).

Thus, it is enough to show that 〈−−−−−→viϕj(Q), nm〉 ≤ 0 for all m. We have

−−−−−→
viϕj(Q) =

−−→
OQ +

−−−−−→
Qϕj(Q)−−−→

Ovi =
−−→
OQ+ α

−−→
Qvj −−−→

Ovi,
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where α =
|Qϕj(Q)|
|Qvj | > 1. So

−−−−−→
viϕj(Q) =

−−→
OQ + α

−−→
Ovj − α

−−→
OQ −−−→

Ovi = (1− α)
−−→
OQ − (1 + α)

−−→
Ovi

= (1− α)
−−→
viQ− 2α

−−→
Ovi.

Thus, for every m,

〈−−−−−→viϕj(Q), nm〉 = (1 − α)〈−−→viQ,nm〉 − 2α〈−−→Ovi, nm〉 ≤ 0.

In a similar fashion one can show that ϕi(ϕj(Q)) ∈ CD(vi) ∩ CD(vj). Thus

we can produce a sequence of points {Qk}∞k=0, where Q0 = Q and Qk =

ϕi(ϕj(Qk−1)), and such that Qk ∈ CD(vi) ∩ CD(vj) ∩ ∂K ∩ ∂L for all k ≥ 0.

Moreover, all these points belong to the 2-dimensional plane spanned by the

points Q, vi, and vj . As in Proposition 3.4 we have the corresponding sequence

of angles θk = ∠(−−→viQk,
−−→vivj), with θk < θk−1. One can see that limk→∞ θk = 0.

Since Qk ∈ ∂K∩∂L for all k, we have proved that l(vi, vj)∩∂K = l(vi, vj)∩∂L.
Denote the points of intersection of the latter line with the boundaries of K

and L by X0 and Y0, and consider any 2-dimensional plane H through X0 and

Y0. Using [2, Lemma 7], we see that there are neighborhoods N (X0) and N (Y0)

of X0 and Y0 correspondingly, such that

H ∩N (X0)∩ ∂K = H ∩N (X0)∩ ∂L and H ∩N (Y0)∩ ∂K = H ∩N (Y0)∩ ∂L.
If P is a point in CD(vi)∩H that does not belong to N (X0) or N (Y0), then we

apply ϕj and ϕi to produce a sequence of points Pk, which after finitely many

steps will belong to N (X0) or N (Y0). Thus, PN ∈ ∂K ∩ ∂L for some large N .

Applying inverse maps ϕ−1
i and ϕ−1

j , we conclude that P ∈ ∂K ∩∂L. Thus, we
have shown that

H ∩ CD(vi) ∩ ∂K = H ∩ CD(vi) ∩ ∂L.
Since this is true for every H , we have CD(vi) ∩ ∂K = CD(vi) ∩ ∂L.
Now consider any other vertex of D, say vm, that is connected to vi by an

edge. One can see that

CD(vi) ∩ CD(vm) ∩ ∂K ∩ ∂L 
= ∅.
Repeating the same process as above, we get

CD(vm) ∩ ∂K = CD(vm) ∩ ∂L.



784 V. YASKIN AND N. ZHANG Isr. J. Math.

Since we can do this for every vertex, it follows that CD(vk)∩∂K = CD(vk)∩∂L
for every k, and thus K = L.

Problem 4.5: Does the result of Theorem 4.1 hold in odd dimensions?

Since some of the methods in the proof above come from the paper [11], the

answer may be different for even and odd dimensions. One can also ask if there

is a different condition that guarantees a positive answer in odd dimensions? If

we replace the equality of sections by the equality of derivatives of the parallel

section functions, then, for example, in R
3 first derivatives are not enough; cf.

[9, Remark 1].

The next theorem is an analogue of Groemer’s result for half-sections. The

difference is that we look at half-sections that do not pass through the origin.

We will adopt the following notation. For a point p ∈ R
n and a vector v ∈ Sn−1,

define v⊥p = {x ∈ R
n : 〈x− p, v〉 = 0} and v+p = {x ∈ R

n : 〈x− p, v〉 ≥ 0}.
Theorem 4.6: Let K and L be convex bodies in R

n, n ≥ 3, that contain a

strictly convex body D in their interiors. Assume that

voln−1(K ∩H ∩ v+p ) = voln−1(L ∩H ∩ v+p ),

for every hyperplane H supporting D and every unit vector v ∈ H − p, where

p = D ∩H . Then K = L.

Proof. Let us fix a supporting plane H and consider the equality

voln−1(K ∩H ∩ v+p ) = voln−1(L ∩H ∩ v+p ),

for every unit vector v ∈ H − p. Then [7] implies that

ρn−1
K,p (u)− ρn−1

K,p (−u) = ρn−1
L,p (u)− ρn−1

L,p (−u),

for every vector u ∈ Sn−1 ∩ (H − p), where p = D ∩H .

Now observe that ∂K∩∂L 
= ∅; otherwise the condition voln−1(K∩H∩v+p ) =
voln−1(L ∩H ∩ v+p ) would be violated. Moreover, if Q ∈ ∂K ∩ ∂L, then by [1,

Lemma 3] there exists a neighborhood N (Q) of Q, such that N (Q) ∩ ∂K ⊂
∂K ∩∂L. Hence, ∂K∩∂L is open in ∂K. On the other hand, by the continuity

of the boundaries of K and L, ∂K ∩ ∂L is closed in ∂K. Therefore,

∂K ∩ ∂L = ∂K = ∂L.
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Corollary 4.7: Let K be a convex body in R
n, n ≥ 3, that contains a ball

D of radius t in its interior. If

voln−1(K ∩ {ξ⊥ + tξ} ∩ v+) = const,

for every ξ ∈ Sn−1 and every vector v ∈ Sn−1 ∩ ξ⊥, then K is a Euclidean ball.

In the next theorem we will consider a different type of half-sections.

Theorem 4.8: Let K and L be convex bodies in R
n, n ≥ 3, that contain a

ball D in their interiors. Assume that

voln−1(K ∩H+ ∩ v⊥) = voln−1(L ∩H+ ∩ v⊥)

for every hyperplane H supporting D and every unit vector v ∈ H − p, where

p = D ∩H . Then K = L.

Proof. Let us fix a unit vector v, and consider ξ, ζ ∈ Sn−1 ∩ v⊥ such that

ξ ⊥ ζ. For a small φ let η = cosφ ξ + sinφ ζ. Without loss of generality we will

assume that D has radius 1 and is centered at the origin. Consider the affine

hyperplanes Hξ = {x ∈ R
n : 〈x, ξ〉 = 1} and Hη = {x ∈ R

n : 〈x, η〉 = 1}. Let

the (n−3)-dimensional subspaceW be the orthogonal compliment of span{ξ, ζ}
in v⊥. Consider the orthogonal projection of the convex body K ∩ v⊥ onto the

2-dimensional subspace spanned by ξ and ζ. The picture is identical to Figure

5, with E1, E2, E3, and E4 defined similarly. If n = 3, we repeat the argument

from the proof of Theorem 3.2. If n ≥ 4, we will use the following modification

of this argument.

Let Ēi = Ei ×W , for i = 1, 2, 3, 4. Then the equality

voln−1(K ∩ v⊥ ∩H+
ξ )− voln−1(K ∩ v⊥ ∩H+

η )

= voln−1(L ∩ v⊥ ∩H+
ξ )− voln−1(L ∩ v⊥ ∩H+

η )

implies

(7) voln−1(K ∩ v⊥ ∩ (Ē1 ∪ Ē4))− voln−1(K ∩ v⊥ ∩ (Ē3 ∪ Ē4))

= voln−1(L ∩ v⊥ ∩ (Ē1 ∪ Ē4))− voln−1(L ∩ v⊥ ∩ (Ē3 ∪ Ē4)).

For x ∈ span{ξ, ζ}, consider the following parallel section function:

AK∩v⊥,W (x) = voln−3(K ∩ v⊥ ∩ {W + x}).



786 V. YASKIN AND N. ZHANG Isr. J. Math.

Then equation (7) and the Fubini theorem imply∫
E1∪E4

AK∩v⊥,W (x)dx −
∫
E3∪E4

AK∩v⊥,W (x)dx

=

∫
E1∪E4

AL∩v⊥,W (x)dx −
∫
E3∪E4

AL∩v⊥,W (x)dx.

Now we will pass to new coordinates (r, θ) as in the proof of Theorem 3.2, by

letting x(r, θ) = cos θ ξ + sin θ ζ + r(sin θ ξ − cos θ ζ). Then

∫ φ

0

∫ ∞

0

|r|AK∩v⊥,W (x(r, θ))drdθ −
∫ φ

0

∫ 0

−∞
|r|AK∩v⊥,W (x(r, θ))drdθ

=

∫ φ

0

∫ ∞

0

|r|AL∩v⊥,W (x(r, θ))drdθ −
∫ φ

0

∫ 0

−∞
|r|AL∩v⊥,W (x(r, θ))drdθ.

Differentiating with respect to φ and letting φ = 0, we get

(8)

∫ ∞

−∞
rAK∩v⊥ ,W (x(r, 0))dr =

∫ ∞

−∞
rAL∩v⊥,W (x(r, 0))dr.

Note that

AK∩v⊥,W (x(r, 0)) = AK∩v⊥,W (ξ − rζ) = A(K−ξ)∩v⊥,W (−rζ)

=

∫
x∈ξ⊥∩v⊥∩{〈x,ζ〉=−r}

χ(‖x‖K−ξ)dx.

Therefore, (8) and the Fubini theorem give∫
ξ⊥∩v⊥

〈x, ζ〉χ(‖x‖K−ξ)dx =

∫
ξ⊥∩v⊥

〈x, ζ〉χ(‖x‖L−ξ)dx.

Passing to polar coordinates in ξ⊥ ∩ v⊥, we get∫
Sn−1∩ξ⊥∩v⊥

〈w, ζ〉‖w‖−n+1
K−ξ dw =

∫
Sn−1∩ξ⊥∩v⊥

〈w, ζ〉‖w‖−n+1
L−ξ dw.

Observe that this is true for any ζ ∈ ξ⊥ ∩ v⊥. Furthermore, for any vector

ϑ ∈ ξ⊥ there is a vector ζ ∈ ξ⊥ ∩ v⊥ and a number β such that ϑ = ζ + βv.

Therefore, for every ϑ ∈ ξ⊥ we have∫
Sn−1∩ξ⊥∩v⊥

〈w, ϑ〉‖w‖−n+1
K−ξ dw =

∫
Sn−1∩ξ⊥∩v⊥

〈w, ϑ〉‖w‖−n+1
L−ξ dw.

Fixing ξ and ϑ, and looking at all v ∈ Sn−1 ∩ ξ⊥, we can consider the latter

equality as the equality of the spherical Radon transforms on Sn−1 ∩ ξ⊥. Since
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the spherical Radon transform only allows to reconstruct even parts, we get

〈w, ϑ〉‖w‖−n+1
K−ξ + 〈−w, ϑ〉‖ − w‖−n+1

K−ξ = 〈w, ϑ〉‖w‖−n+1
L−ξ + 〈−w, ϑ〉‖ − w‖−n+1

L−ξ ,

for all w, ϑ ∈ Sn−1 ∩ ξ⊥. That is,
‖w‖−n+1

K−ξ − ‖ − w‖−n+1
K−ξ = ‖w‖−n+1

L−ξ − ‖ − w‖−n+1
L−ξ , for all w ∈ Sn−1 ∩ ξ⊥.

We finish the proof as in Theorem 4.6.

Below we will prove an analogue of the result of Falconer [2] and Gardner [4]

for halfspaces. We will need the following lemma.

Lemma 4.9: Suppose i > 0. Let K and L be convex bodies in R
n, p1 and p2

be distinct points in the interior of K ∩ L. If for all ξ ∈ Sn−1,

(9) ρiK,pj
(ξ)− ρiK,pj

(−ξ) = ρiL,pj
(ξ)− ρiL,pj

(−ξ), for j = 1, 2,

and ∂K ∩ ∂L 
= ∅, then K = L.

Proof. Let l be the line passing through p1 and p2. Our first goal is to prove

that ∂K ∩ l = ∂L∩ l. Let Q0 ∈ ∂K ∩∂L. If Q0 ∈ l, we are done. Otherwise, we

define two maps ϕ1, ϕ2 as follows. If Q is a point distinct from p1, then ϕ1(Q)

is defined to be the point on the line passing through Q and p1, such that p1

lies between Q and ϕ1(Q) and

|Qp1|i − |p1ϕ1(Q)|i = ρiK,p1
(ξ)− ρiK,p1

(−ξ),

where ξ =

−−→
p1Q

|p1Q| .
Note that the domain of ϕ1 contains the set K�L. The map ϕ2 is defined

similarly with p1 replaced by p2.

For the chosen point Q0 ∈ ∂K ∩ ∂L consider the 2-dimensional plane H

passing through Q0, p1, and p2. Construct a sequence of points {Qj} ⊂
∂K ∩ ∂L∩H , satisfying Qj+1 = ϕ−1

2 (ϕ1(Qj)), and a sequence of angles {θj} =

{∠(−−−−−−→Qjϕ1(Qj), l)}. One can see that limj→∞ θj = 0, and therefore the limit

X0 = lim
j→∞

Qj

is a point on l ∩ ∂K ∩ ∂L. The claim that ∂K ∩ l = ∂L ∩ l is now proved.

Let V be any 2-dimensional affine subspace of Rn that contains the line l.

Consider the bodies K ∩V and L∩V in V . The line l cuts both these bodies in

two parts, K∩V = K1∪K2 and L∩V = L1∪L2, so that K1 and L1 are on the
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same side of l. Since K ∩ l = L ∩ l, the following star bodies are well-defined:

K̃ = K1 ∪ L2 and L̃ = K2 ∪ L1. Condition (9) now implies

ρi
K̃,pj

(ξ) + ρi
K̃,pj

(−ξ) = ρi
L̃,pj

(ξ) + ρi
L̃,pj

(−ξ), for j = 1, 2.

Now we can use [4, Theorem 6.2.3] to show that K̃ = L̃, implying that K∩V =

L ∩ V . Since V was an arbitrary affine subspace containing l, it follows that

K = L.

Remark 4.10: A version of this lemma for a smaller set of values of i (but

without the assumption ∂K ∩∂L 
= ∅) was proved by Koldobsky and Shane, [9,

Lemma 6]. They also showed (see [9, Remark 1]) that one can take two balls

that satisfy condition (9) with i = 1, but whose boundaries do not intersect.

With the help of Lemma 4.9 we obtain the following result.

Theorem 4.11: Let K and L be convex bodies in R
n containing two distinct

points p1 and p2 in their interiors. If, for every v ∈ Sn−1, we have

voln(K ∩ v+pj
) = voln(L ∩ v+pj

) for j = 1, 2,

then K = L.

Proof. By [7], we have ρnK,pj
(ξ)−ρnK,pj

(−ξ) = ρnL,pj
(ξ)−ρnL,pj

(−ξ), for j = 1, 2,

and every ξ ∈ Sn−1. Also observe that ∂K ∩ ∂L 
= ∅. Otherwise one of K

or L would be strictly contained inside the other, which would contradict the

hypothesis of the theorem. Now the result follows from Lemma 4.9.

Note that Problem 1.1 is open even in the case of bodies of revolution when

the center of the ball lies on the axis of revolution. However, if we consider

a ball that does not intersect the axis of revolution, then the problem has a

positive answer.

Theorem 4.12: Let K and L be convex bodies of revolution in R
n with the

same axis of revolution. Let D be a convex body in the interior of both K and

L such that D does not intersect the axis of revolution. If for every hyperplane

H supporting D we have

voln−1(K ∩H) = voln−1(L ∩H),

then K = L.
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Proof. Consider the two supporting hyperplanes of D that are perpendicular

to the axis of revolution. Let p and q be the points where these hyperplanes

intersect the axis of revolution.

Note that every plane passing through p (or q) can be rotated around the

axis of revolution until it touches the body D. Due to the rotational symmetry

of the bodies K and L we obtain that

voln−1(K ∩ (p+ ξ⊥)) = voln−1(L ∩ (p+ ξ⊥))

and

voln−1(K ∩ (q + ξ⊥)) = voln−1(L ∩ (q + ξ⊥)),

for every ξ ∈ Sn−1.

The conclusion now follows from the corresponding result of Falconer [2] and

Gardner [4], described in the introduction.
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