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ABSTRACT

We prove that the Thue–Morse sequence t along subsequences indexed by

�nc� is normal, where 1 < c < 3/2. That is, for c in this range and for

each ω ∈ {0, 1}L, where L ≥ 1, the set of occurrences of ω as a factor

(contiguous finite subsequence) of the sequence n �→ t�nc� has asymptotic

density 2−L. This is an improvement over a recent result by the second

author, which handles the case 1 < c < 4/3.

In particular, this result shows that for 1 < c < 3/2 the sequence

n �→ t�nc� attains both of its values with asymptotic density 1/2, which

improves on the bound c < 1.4 obtained by Mauduit and Rivat (who ob-

tained this bound in the more general setting of q-multiplicative functions,

however) and on the bound c ≤ 1.42 obtained by the second author.

In the course of proving the main theorem, we show that 2/3 is an

admissible level of distribution for the Thue–Morse sequence, that is, it

satisfies a Bombieri–Vinogradov type theorem for each exponent η < 2/3.

This improves on a result by Fouvry and Mauduit, who obtained the

exponent 0.5924. Moreover, the underlying theorem implies that every

finite word ω ∈ {0, 1}L is contained as an arithmetic subsequence of t.
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1. Introduction

The Thue–Morse sequence t is a well-known infinite sequence on the two sym-

bols 0 and 1, which can be defined as follows. Starting with the 1-element se-

quence t(0) = (0) and constructing t(n+1) by concatenating t(n) and its Boolean

complement ¬t(n), the infinite sequence

t = 0110100110010110 . . .

is the pointwise limit of these finite sequences. In other words, it is the fixed

point, starting with 0, of the substitution 0 �→ 01, 1 �→ 10. The sequence t can

therefore be seen as a 2-automatic sequence (see the book [2] by Allouche and

Shallit), indeed it is one of the simplest such sequences. Another equivalent

definition uses the binary sum-of-digits function s, which counts the number of

1s in the binary expansion of a nonnegative integer: we have tn = 0 if and only

if 2 | s(n). Since t is an automatic sequence, its factor complexity is bounded

above by a linear function, that is, the number P (k) of different factors of length

k of t is bounded by Ck for some constant C. (For the Thue–Morse sequence,

we have lim supP (k)/k = 10/3 [4].) More about the Thue–Morse sequence can

be found in the article [1] by Allouche and Shallit, which gathers occurrences of

the Thue–Morse sequence in different fields of mathematics and offers a good

bibliography, and in the article [13] by Mauduit.

Although the sequence t itself has low complexity, the situation changes com-

pletely if we consider the subsequence indexed by the squares 0, 1, 4, 9, 16, . . ..

Moshe [19] proved that this subsequence has full factor complexity, that is,
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every block {ε0, . . . , εL−1} ∈ {0, 1}L, for L ≥ 1, occurs as a factor of the se-

quence n �→ tn2 . Drmota, Mauduit and Rivat [7] proved the stronger statement

that each of these blocks in fact occurs with density 2−L, in other words, this

subsequence is a normal sequence. This latter result was the motivation for our

research.

The second author [23] recently proved (using an estimate for discrete Fourier

coefficients from [7]) an analogous result for subsequences indexed by so-called

Piatetski-Shapiro sequences, which are sequences of the form �nc�.
Theorem 0 (Spiegelhofer 2015): Assume that 1 < c < 4/3. Then the sequence(
t�nc�

)
n≥0

is normal.

The study of Piatetski-Shapiro sequences, “Polynomials of degree c”, can

be motivated by problems for polynomials of degree 2. For example, while it

is unknown whether there are infinitely many primes of the form n2 + 1, the

Piatetski-Shapiro Prime Number Theorem [20] states that for 1 < c < 12/11 the

number of primes of the form �nc� behaves asymptotically as one would expect

by heuristic arguments. The exponent c has been improved several times, the

currently best known bound c < 2817/2426 being due to Rivat and Sargos [21].

In a similar way the problem of studying the sum of digits of �nc� can be

motivated. It was asked by Gelfond [11] to investigate the distribution in residue

classes of the sum of digits of values of polynomials f such that f(N) ⊆ N.

This problem could not be solved even for polynomials of degree two, and

so Mauduit and Rivat [14, 15] first proved a nontrivial result on sequences

n �→ ϕ
(�nc�), where 1 ≤ c < 1.4 and ϕ is a q-multiplicative function with

values on the unit circle S1. We do not give a definition of this term, we

only note that the Thue–Morse sequence in the form n �→ (−1)s(n) is a 2-

multiplicative function. (The cited result [15] was also transferred to automatic

sequences by Deshouillers, Drmota and Morgenbesser [6]. They also proved

in that article that for 1 < c < 10/9 blocks of length 2 in Piatetski-Shapiro

subsequences of t occur with frequency 1/4.) Dartyge and Tenenbaum [5] made

some progress on the original question of Gelfond, and finally Mauduit and

Rivat [16] could tackle the sum of digits of squares. (This result was later

generalized to compact groups by Drmota and Morgenbesser [8].) However,

there remained a gap to be closed—nothing was known on Piatetski-Shapiro

subsequences of q-multiplicative functions for c in the range [1.4, 2). In 2014,

the second author [22] extended the bound for c in the case of the Thue–Morse
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sequence, obtaining the result that for c ≤ 1.42 the sequence n �→ t�nc� attains

both of its values with asymptotic density 1/2 (that is, this sequence is simply

normal).

In the present paper, we improve on the known results on normality and

simple normality of Piatetski-Shapiro subsequences of t. Our main theorem is

the following.

Theorem 1: Let 1 < c < 3/2. Then the sequence u =
(
t�nc�

)
n≥0

is normal.

More precisely, for any L ≥ 1 there exists an exponent η > 0 and a constant C

such that∣∣∣∣∣{n < N :
(
u(n),u(n+ 1), . . . ,u(n+ L− 1)

)
= ω

}∣∣−N/2L
∣∣∣ ≤ CN1−η

for all ω =
(
ω0, . . . , ωL−1

) ∈ {0, 1}L.
The essential innovation provided by this theorem lies in the new bound

3/2 = 1.5, which replaces the bound 4/3 = 1.3̇ for (proper) normality as in

Theorem 0. For comparison, we note that 4/3 is the bound that Mauduit and

Rivat obtained in the first paper [14] on Piatetski-Shapiro subsequences of q-

multiplicative functions, while 1.42 [22] is the most recent improvement on the

exponent c, concerning simple normality of Piatetski-Shapiro subsequences of

t. The new bound 3/2 established in our theorem therefore is a significant

improvement—not only does it surpass the bound 1.42 for simple normality

(which is the case that L = 1), it also pushes the bound for proper normal-

ity beyond this value. Another improvement on Theorem 0 is the error term

CN1−η, where both the exponent η and the constant can be made completely

explicit.

In the proof of Theorem 1, we reduce the problem of handling Piatetski-

Shapiro sequences to the study of Beatty sequences �nα+ β�, where α, β ∈
R and n is contained in a small interval in N of length N , a process that

is basically Taylor approximation of degree 1 [22]. This yields sums of the

form
∑

n∈I t(�nα+ β�). In order to deal with these sums, we use methods by

Mauduit and Rivat [16, 17], introducing the two-fold restricted sum-of-digits

function. Afterwards, we eliminate the Beatty sequences �nα+ β� from our

expressions by exploiting the usually very small discrepancy (modulo 1) of nα-

sequences. The resulting expression can be estimated nontrivially with the help

of a new estimate (similar to [7, Proposition 1]) for discrete Fourier coefficients

related to the sum-of-digits function, which finishes the proof of Theorem 1.
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Let us give a few more details on the methods used in the proof. By Taylor

approximation, we may approximate �nc� on short intervals I by Beatty se-

quences in such a way that �nc� = �nα+ β� for most n ∈ I. This method

is summarized in Proposition 2.8 and leads to a statement reminiscent of the

Bombieri–Vinogradov theorem in prime number theory: in order to prove our

theorem, we have to study the distribution of the Thue–Morse sequence on

Beatty sequences �nα+ β�, where we take an average in α over dyadic intervals

[D, 2D] (see Theorem 2.4). Of course, greater values of D correspond to greater

exponents c in the original problem. Therefore we want to obtain a nontrivial

distribution result for given length N of the Beatty sequence, and D as large

as possible. This Beatty sequence approach has been followed by the second

author [22]. In that article, trigonometric approximation of indicator functions

was used in order to dispose of the Beatty sequences, which led to the integ-

ral (2.6) in Section 2. An estimate for this integral, taken from [10], yielded

the new bound 1.42, which surprisingly beat the formerly best bound 1.4 [15]

(concerning simple normality of subsequences of t). However, we also have a

lower bound on this integral, which sets a limit for this method. In particular,

3/2 can not be reached in this way.

In the second part of the proof of Theorem 1 we therefore use a method differ-

ent from trigonometric approximation in order to handle Beatty subsequences

of t. This method is based on the fact that Beatty sequences �nα+ β�, for
most α, are uniformly distributed in residue classes, their discrepancy being

very small. To put it simply, we will have to deal with sums∑
n∈I

f(�nα+ β�),(1.1)

where f is 2γ-periodic and I ⊆ Z is an interval slightly longer than 2γ , for

instance |I| = 2γ(1+ε). By a result on the mean discrepancy of nα-sequences

(Lemma 3.4), we may replace this sum, on average, by

|I|
2γ

∑
n<2γ

f(n) +O
(
2γ(log|I|)2).

In order to apply this argument, we have to obtain sums of the form (1.1). To

this end, we adapt methods by Mauduit and Rivat [16, 17], thereby introdu-

cing the two-fold restricted sum-of-digits function sμ,λ (which we define below).

The transition from the sum-of-digits function s to the truncated version sλ is

straightforward and can also be carried out for �nc� (see [23]). It is not so clear,
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however, how to get rid of the lowest μ digits of �nc�, that is, how to proceed

from sλ(�nc�) to sμ,λ(�nc�). At this point, Beatty sequences �nα+ β� come

into play: using rational approximations to α and a generalization of van der

Corput’s inequality (Lemma 3.2), it is possible to eliminate the lowest μ digits

of �nα+ β�, so that we are left with only γ := λ− μ binary digits of �nα+ β�.
This further reduction of the number of digits to be taken into account ulti-

mately allows us to achieve the improvement 3/2 over the bound 4/3 obtained

in [23]. As the last step of the proof, we use Proposition 2.7 from below. This

proposition is a new estimate for discrete Fourier coefficients, related to a result

by Drmota, Mauduit and Rivat [7, Proposition 1], and allows us not only to

deal with general block lengths L ≥ 1, but also to derive an explicit error term

of the form stated in Theorem 1.

The classical Bombieri–Vinogradov Theorem is a statement on the average

distribution of prime numbers in arithmetic progressions nd + j, where the

average is taken in the modulus d. Let

ψ(x; d, j) =
∑

1≤n≤x
n≡j mod d

Λ(n),

where Λ is the von Mangoldt function defined by Λ(n) = log p if n = pk for

some prime p and some k ≥ 1 and Λ(n) = 0 otherwise. Then the Bombieri–

Vinogradov Theorem [3, Theorem 4] states that for all positive real numbers

A > 0 there exist B > 0 and a constant C such that

∑
1≤d≤D

max
1≤y≤x

max
j∈Z

(j,d)=1

∣∣∣∣ψ(y; d, j)− y

φ(d)

∣∣∣∣ ≤ Cx(log x)−A,

whereD = x1/2(log x)−B . While no improvement on the exponent 1/2 is known,

the Elliott–Halberstam conjecture [9] asks whether we can choose D = x1−ε for

any ε > 0. In other words, it is conjectured that 1 is an admissible level

of distribution for the primes, whereas the largest known admissible level (as

of 2015) equals 1/2. In the article [10], Fouvry and Mauduit prove a Bombieri–

Vinogradov type theorem for the sum-of-digits function s in base 2. In partic-

ular, for the case of the Thue–Morse sequence they set

A±(x; d, j) =
∣∣∣{n < x : (−1)s(n) = ±1, n ≡ j mod d

}∣∣∣
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and obtain

(1.2)
∑

1≤d≤D

max
1≤y≤x

max
j∈Z

∣∣∣A±(y; d, j)− y

2d

∣∣∣ ≤ Cx(log 2x)−A

for all real A and D = x0.5924. The exponent 0.5924 can therefore be called

the admissible level of distribution for the Thue–Morse sequence. (We note that

Fouvry and Mauduit obtain in fact an error term x1−η for some η > 0, which

follows from [10, Théorème 2]. We will use this improved estimate in the proof

of Corollary 2.2.) Using sieve theory, they apply this result to the study of the

sum of digits of almost prime numbers, that is, integers that are the product of

at most two prime factors. Later and by different means, Mauduit and Rivat [17]

studied the sum of digits of prime numbers, which was not accessible by the

Fouvry–Mauduit method.

As we indicated earlier, the backbone of our main result is a Bombieri–

Vinogradov type theorem for t. We establish 2/3 as an admissible level of

distribution for the Thue–Morse sequence, improving on the bound established

by Fouvry and Mauduit. A Beatty sequence version of this result, combined

with linear approximation of �nc�, allows us to obtain the improvement 1.5 over

the bound 1.42.

Notation: We use the common abbreviations e(x) = exp(2πix), {x} = x− �x�,
and ‖x‖ = minn∈Z |x− n|, where x is a real number. For a prime number p

let νp(n) be the exponent of p in the prime factorization of n. We define the

truncated binary sum-of-digits function

sλ(n) = s(ñ),

where 0 ≤ ñ < 2λ and ñ ≡ n mod 2λ, which only takes into account the digits

of n at positions smaller than λ, and for μ ≤ λ the two-fold restricted binary

sum-of-digits function

sμ,λ(n) = sλ(n)− sμ(n),

which only depends on the digits at the positions μ, . . . , λ − 1. The functions

sλ and sμ,λ are periodic with period 2λ. In estimates we use the convenient

abbreviation

log+x = max {1, logx} .
Summation variables are always assumed to be nonnegative. In particular, we

often omit conditions such as 0 ≤ n under summation signs. In this article, the

symbol N denotes the set of nonnegative integers. Moreover, constants implied
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by the symbols � and O depend at most on L, that is, on the length of a factor

ω = (ω0, . . . , ωL−1) of the sequences considered.

2. Results and overall structure of the proofs

In the introduction we have already stated our main theorem (Theorem 1),

concerning the normality of Piatetski-Shapiro subsequences of t for exponents

c < 3/2. In the current section we state auxiliary results used for proving

this theorem: approximation of �nc� by Beatty sequences (Proposition 2.8), a

Beatty–Bombieri–Vinogradov theorem for t (Theorem 2.4 and its precursor,

Proposition 2.6), and an estimate for discrete Fourier coefficients (Proposi-

tion 2.7). Moreover, we state results analogous to Theorem 2.4 and Proposi-

tion 2.6, concerning arithmetic progressions (Theorem 2.1 and Proposition 2.5),

which follow from the same method of proof.

Let α, β, y and z be nonnegative real numbers such that α ≥ 1, and ω =

(ω0, . . . , ωL−1) ∈ {0, 1}L, where L ≥ 1 is an integer. We define

Aω(y, z;α, β) =
∣∣{y ≤ m < z : ∃n ∈ Z such that m = �nα+ β� and

s(�(n+ �)α+ β�) ≡ ω� mod 2 for 0 ≤ � < L
}∣∣.

Note that for L = 1, α, β ∈ Z and y = 0 this yields the sets A±(x; d, j) that

occur in [10]. (In that article, however, general moduli q ≥ 2 are handled. In

the present article, we are only concerned with the case q = 2, that is, the

Thue–Morse sequence.) The first auxiliary result, a Bombieri–Vinogradov type

theorem, is an average result on the sets Aω(y, z; d, j) and might also be of

independent interest.

Theorem 2.1: Let L ≥ 1 be an integer and ω = (ω0, . . . , ωL−1) ∈ {0, 1}L.
Assume that

0 < δ1 ≤ δ2 < 2/3.

There exist η > 0 and a constant C such that

∑
D<d≤2D

max
y,z

0≤y≤z
z−y≤x

max
j∈Z

∣∣∣∣Aω(y, z; d, j)− z − y

2Ld

∣∣∣∣ ≤ Cx1−η

for all x and D such that x ≥ 1 and xδ1 ≤ D ≤ xδ2 .



Vol. 220, 2017 NORMALITY OF THE THUE–MORSE SEQUENCE 699

(Note that the maximum is well-defined by a finiteness argument. The same

holds true for the subsequent results.) This theorem differs in several aspects

from [10, Corollary 3]. The most important novelty is the exponent 2/3, which

improves on the exponent 0.5924. Moreover, the left endpoint of the interval

[y, z) may be an arbitrary nonnegative real number (which works well in the

sum-of-digits setting, but fails for prime numbers). Finally, this theorem handles

consecutive elements of arithmetic subsequences of the Thue–Morse sequence

t. This latter feature necessitates a nontrivial lower bound for D, since factors

of length 2 of t do not appear with frequency 1/4, therefore the contribution of

d = 1 would already be too large.

Setting L = 1 and using the above-cited result (with the improved error term

x1−η) in order to handle small step lengths d, we obtain the following corollary.

Corollary 2.2: For real y ≥ 0 and integers d ≥ 1 and j ≥ 0 set

A(y; d, j) = |{m < y : s(m) ≡ 0 mod 2,m ≡ j mod d}| .
For all δ ∈ (0, 2/3) there exist η > 0 and C such that∑

1≤d≤D

max
y≤x

max
j∈Z

∣∣∣A(y; d, j)− y

2d

∣∣∣ ≤ Cx1−η

for x ≥ 1 and D = xδ.

A simple but interesting consequence of Theorem 2.1 is the following result.

Corollary 2.3: Every finite sequence on the symbols 0 and 1 appears as an

arithmetic subsequence of the Thue–Morse sequence.

An adaptation of the proof of Theorem 2.1 yields the following Beatty se-

quence analogue.

Theorem 2.4: Let L ≥ 1 be an integer, ω = (ω0, . . . , ωL−1) ∈ {0, 1}L and

0 < δ1 ≤ δ2 < 2/3. There exist η > 0 and C such that∫ 2D

D

max
y,z

0≤y≤z
z−y≤x

max
β≥0

∣∣∣∣Aω(y, z;α, β)− z − y

2Lα

∣∣∣∣ dα ≤ Cx1−η

for all x and D such that x ≥ 1 and xδ1 ≤ D ≤ xδ2 .

As we announced in the introduction, this theorem can be used to obtain

Theorem 1.
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The proofs of Theorems 2.1 and 2.4 are based on exponential sum estim-

ates. In order to establish Theorem 2.1, it is sufficient to prove the following

proposition.

Proposition 2.5: Let L ≥ 1 be an integer, a = (a0, . . . , aL−1) ∈ {0, 1}L and

a �= (0, . . . , 0). For real numbers N,D ≥ 1 and ξ set

S1 = S1(N,D, ξ) =
∑

D≤d<2D

max
j≥0

∣∣∣∣∣
∑
n<N

e

(
1

2

∑
�<L

a�s
(
(n+ �)d+ j

))
e(nξ)

∣∣∣∣∣.
Let 0 < ρ1 ≤ ρ2 < 2. There exists an η > 0 and a constant C such that

(2.1)
S1

ND
≤ CN−η

holds for all ξ ∈ R and all real numbers N,D ≥ 1 satisfying Nρ1 ≤ D ≤ Nρ2 .

For L = 1 this result intuitively states that for most step lengths d slightly

smaller than the square of the length of the sum, we have a nontrivial estimate

for sums over the Thue–Morse sequence on arithmetic progressions.

Analogously, Theorem 2.4 is based on the following result.

Proposition 2.6: Let L ≥ 1 be an integer, a = (a0, . . . , aL−1) ∈ {0, 1}L and

a �= (0, . . . , 0). For real numbers D,N ≥ 1 and ξ set

S̃1 = S̃1(N,D, ξ) =

∫ 2D

D

max
β≥0

∣∣∣∣∣
∑
n<N

e

(
1

2

∑
�<L

a�s
(�(n+ �)α+ β�)

)
e(nξ)

∣∣∣∣∣ dα.
Let 0 < ρ1 ≤ ρ2 < 2. There exist η > 0 and a constant C such that

(2.2)
S̃1

ND
≤ CN−η

holds for all real numbers D,N ≥ 1 satisfying Nρ1 ≤ D ≤ Nρ2 and for all

ξ ∈ R.

The proofs of Propositions 2.5 and 2.6 in turn rely on an estimate for discrete

Fourier coefficients related to the sum-of-digits function. These Fourier coef-

ficients have been used as an essential tool in the article [7] on the normality

of the Thue–Morse sequence along the sequence of squares. For nonnegative

integers d and λ, for sequences i : N → N and a : N → Z, where a has finite
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support, and for h ∈ Z we define

(2.3) Gi,a
λ (h, d) =

1

2λ

∑
u<2λ

e

(
1

2

∑
�∈N

a�sλ
(
u+ �d+ i�

)− hu

2λ

)
.

The function h �→ Gi,a
λ (h, d) is the discrete Fourier transform of the 2λ-periodic

sequence

n �→ e

(
1

2

∑
�≥0

a�sλ
(
n+ �d+ i�

))
.

We have the following important technical estimate for these Fourier terms.

Proposition 2.7: Let L ≥ 1 be an integer and choose m ≥ 5 such that

2m−5 ≤ L < 2m−4. Assume that (a�)�∈Z is a sequence such that a0 = 1,

a1, . . . , aL−1 ∈ {0, 1} and a� = 0 for � �∈ [0, L). For r ≥ 1 and � ≥ 0 let

br� = a�−r − a�. There exist η > 0 and C such that for all λ ≥ 0 and r ≥ 1

satisfying 2m ≤ ν2(r) ≤ λ/4, and for all sequences (i�)�∈Z satisfying i0 = 0 and

0 ≤ i�+1 − i� ≤ 1 for 0 ≤ � < L+ r − 1 we have

1

2λ

∑
d<2λ

max
h<2λ

∣∣∣Gi,br

λ (h, d)
∣∣∣2 ≤ C2−ηλ.

This result differs from [7, Proposition 1] in two aspects. First, the maximum

over h is inside the sum over d; second, the sequence br consists of two identical

blocks (modulo 2) spaced by r. The constant as well as the exponent do not

depend on the shift r, which will allow us to prove the quantitative normality

result as stated in Theorem 1.

Remark: Combining Proposition 2.7 with the method of proof from [23], we

could obtain a quantitative version of Theorem 0 that differs from our main

theorem only in the (worse) bound c < 4/3.

Finally, we state the following result, which allows replacing �nc� by �nα+ β�.
Proposition 2.8: Assume that ϕ : N → Ω is a function into a finite set Ω and

assume that ω = (ω0, . . . , ωL−1) ∈ ΩL, where L ≥ 1 is an integer. We write

f(x) = xc, where 1 < c < 2 is a real number. Let δ ∈ [0, 1] and define, for real

N,K > 0,

(2.4) J(N,K) =
1

f ′(2N)− f ′(N)

∫ f ′(2N)

f ′(N)

max
f(N)<β≤f(2N)

∣∣∣∣ 1K
∣∣{n < K :
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ϕ
(�(n+ �)α+ β�) = ω� for 0 ≤ � < L

}∣∣− δ

∣∣∣∣ dα.
There exists a constant C such that for all N ≥ 2 and K > 0 we have

(2.5)

∣∣∣∣ 1N
∣∣{n ∈ (N, 2N ] : ϕ

(�f(n+ �)�) = ω� for 0 ≤ � < L
}∣∣− δ

∣∣∣∣
≤ C

(
f ′′(N)K2 +

(logN)2

K
+ J(N,K)

)
.

Results on the distribution of values of an arithmetic function ϕ : N → Ω on

Beatty sequences can therefore be used for proving statements concerning ϕ on

Piatetski-Shapiro sequences n �→ �nc�, at least in cases where the shift β does

not cause problems. (This is the case for our problem concerning t, however,

this proposition cannot be used for the original Piatetski-Shapiro problem, since

our knowledge on primes in short intervals is not sufficient.) Proposition 2.8

is a modification of [22, Proposition 1], which, together with the statement by

Fouvry and Mauduit [10, Théorème 3 and inequality (1.5)] asserting that∫ 1

0

∏
j<k

∣∣sin(2jπθ)∣∣dθ ∼ κλk(2.6)

for some κ ∈ R and some λ ∈ (0.6543, 0.6632), enabled the second author to

obtain simple normality of n �→ t(�nc�) for c ≤ 1.42.

The plan of the paper is as follows. In Section 3 we state a number of lemmas.

In Section 4 we show how to prove Theorems 2.1, 2.4 and 1 from Propositions 2.5

and 2.6. Section 5 is concerned with the proof of Proposition 2.5, while Sec-

tion 6, which is shorter, proves Proposition 2.6 in a way that is to a large extent

analogous. (This section is shorter because some parts that have been treated

in detail in the first proof have been left out. We also note that it would be

possible to unify to a large extent the proofs of Propositions 2.5 and 2.6 by

rewriting some sums as integrals with respect to some measure. However, we

refrained from doing so since we wanted to keep the presentation clear.)

The last two sections are dedicated to the proofs of Propositions 2.7 and 2.8.

3. Lemmas

We begin with the following elementary facts about the functions �·�, ‖·‖ and

〈·〉, where 〈x〉 = �x+ 1/2� (the “nearest integer” to x). The (easy) proofs are

left to the reader.
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Lemma 3.1: Let a, b ∈ R and n ∈ N.

(i) If ‖a‖ < ε and ‖b‖ ≥ ε, then �a+ b� = 〈a〉+ �b�.
(ii) ‖na‖ ≤ n ‖a‖.
(iii) If ‖a‖ < ε and 2nε < 1, then 〈na〉 = n 〈a〉.
An essential tool in our proofs is the following generalization of van der

Corput’s inequality (see [16, Lemme 17]).

Lemma 3.2: Let I be a finite interval containing N integers and let an be a

complex number for n ∈ I. For all integers K ≥ 1 and R ≥ 1 we have∣∣∣∣∣
∑
n∈I

an

∣∣∣∣∣
2

≤ N +K(R− 1)

R

∑
|r|<R

(
1− |r|

R

) ∑
n∈I

n+Kr∈I

an+Kran.

In particular, the right-hand side is a nonnegative real number.

The following simple lemma will help us to remove the expression �nα+ β�,
which appears in our calculations via linear approximation. It introduces the

discrepancy of a sequence (modulo 1) instead.

Lemma 3.3: Let J be an interval in R containing N integers and let α and β

be real numbers. Assume that t, T, k and K are integers such that 0 ≤ t < T

and 0 ≤ k < K. Then∣∣∣∣
{
n ∈ J :

t

T
≤ {nα+ β} < t+ 1

T
, �nα+ β� ≡ k mod K

}∣∣∣∣
=

N

KT
+O

(
NDN

( α
K

))
,

where

DN (α) = sup
0≤x≤1
y∈R

∣∣∣∣∣ 1N
∑
n<N

c[0,x)+y+Z(nα)− x

∣∣∣∣∣.
Proof. We set I =

[
(Tk+ t)/(KT ), (Tk+ t+ 1)/(KT )

)
, which is a subinterval

of [0, 1) of length 1/(KT ). The two conditions t/T ≤ {nα+β} < (t+1)/T and

�nα + β� ≡ k mod K are satisfied if and only if {nα/K + β/K} ∈ I and the

lemma follows by inserting the definition of DN (α).

In order to handle the discrepancy (of nα-sequences) thus introduced, we will

use average results as in the following lemma.
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Lemma 3.4: Let J be a finite interval in R containing N integers. Then

(3.1)
∑
k<2ρ

∣∣∣∣∣
∑
j∈J

e

(
jmk

2ρ

)∣∣∣∣∣ � 2ν2(m)N + 2ρ log+N

for all integers ρ ≥ 0 and m �= 0. For integers μ ≥ 0 and N ≥ 1 we have

(3.2)
∑
d<2μ

DN

(
d

2μ

)
� N + 2μ

N

(
log+N

)2
.

Moreover, the estimate

(3.3)

∫ 1

0

DN(α) dα �
(
log+N

)2
N

holds. The implied constants in these three estimates are absolute.

Proof. We prove the first claim. The estimate is trivial for N ≤ 1. We assume

therefore that N ≥ 2. Let 0 < a ≤ b. We have

∑
a≤k<b

1

k
=

∑
�a�+1≤k<�b�

1

k
+O(1) = log(�b�)− log(�a�+ 1) +O(1)

≤ log b− log a+O(1).

Therefore we get for all integers ρ ≥ 1

∑
k<2ρ

min
{
N, ‖k/2ρ‖−1

}
= 2

∑
k<2ρ−1

min
{
N, |k/2ρ|−1

}

� N
∣∣{k < 2ρ−1 : k < 2ρ/N

}∣∣+ 2ρ
∑

2ρ/N≤k<2ρ−1

1

k

� N(1 + 2ρ/N) + 2ρ
(
1 + log 2ρ − log(2ρ/N)

)
� N + 2ρ log+N.

This estimate is also valid for ρ = 0. Let 2η | m and 2η+1 � m, that is, ν2(m) = η.

If η ≤ ρ, we have

∑
k<2ρ

min
{
N, ‖km/2ρ‖−1

}
= 2η

∑
k<2ρ−η

min
{
N,

∥∥k/2ρ−η
∥∥−1

}

� 2ηN + 2ρ log+N.
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Note that this estimate holds trivially for η > ρ. The statement (3.1) follows

therefore from the inequality

∣∣∣∣∣
∑
j∈J

e
(
jmk/2ρ

)∣∣∣∣∣ ≤ min
{
N, ‖km/2ρ‖−1

}
.

In order to prove the first result on the average discrepancy, we use the Erdős–

Turán inequality and (3.1) and obtain

N
∑
d<2μ

DN

(
d

2μ

)
� 2μ +

∑
1≤h≤N

1

h

∑
d<2μ

∣∣∣∣∣
∑
n<N

e

(
hnd

2μ

)∣∣∣∣∣
� 2μ +

∑
ρ≤ log N

log 2

∑
1≤h≤N
ν2(h)=ρ

1

h

(
2ρN + 2μ log+N

)

� 2μ + log+N
∑

ρ≤ log N
log 2

1

2ρ
(
2ρN + 2μ log+N

)

� (
N + 2μ

)(
log+N

)2
.

The proof of the last statement is analogous.

The following lemma concerning the discrete Fourier transform can easily be

proved using orthogonality relations.

Lemma 3.5: Assume that M ≥ 1 is an integer and that f : Z → C is an

M -periodic function. Then

(3.4)
1

M

∑
n<M

f(n+ t)f(n) =
∑
h<M

∣∣f̂(h)∣∣2 e (ht/M) ,

where

f̂(h) =
1

M

∑
u<M

f(u) e (−hu/M) .

We also need the following carry propagation lemma for the sum-of-digits

function. Statements of this type were used in the articles [16, 17] by Mauduit

and Rivat on the sum of digits of primes and squares.
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Lemma 3.6: Let r, L,N, λ be nonnegative integers and α > 0, β ≥ 0 real num-

bers. Assume that I is an interval containing N integers. Then

∣∣{n ∈ I : ∃� ∈ [0, L) such that s(�(n+ �+ r)α + β�)− s(�(n+ �)α+ β�)
�= sλ(�(n+ �+ r)α + β�)− sλ(�(n+ �)α+ β�)}∣∣

≤ (r + L)(Nα/2λ + 2).

Proof. Let E = (r + L)α. The statement is trivial for E ≥ 2λ. We assume

therefore that E < 2λ. Moreover, we may assume that L ≥ 1, since the estimate

is trivial for L = 0. We first note that if

(3.5) nα+ β ∈ [0, 2λ − E) + 2λZ,

then

s(�(n+ �+ r)α + β�)− s(�(n+ �)α+ β�)
= sλ(�(n+ �+ r)α + β�)− sλ(�(n+ �)α+ β�)

for all � < L. This follows easily by studying the binary representation of

the arguments: if hypothesis (3.5) is satisfied, then (n + 0)α + β, . . . ,

(n+L− 1 + r)α+ β are contained in an interval [k2λ, (k+1)2λ − 1), therefore

the digits of �(n + � + r)α + β� and �(n + �)α + β� with indices ≥ λ are the

same, for all � < L. It remains to count the number of exceptions to (3.5).

For k ∈ Z let

ak = min{n : k2λ ≤ nα+ β} and bk = min{n : (k + 1)2λ − E ≤ nα+ β}.

Then for ak ≤ n < bk we have nα + β ∈ [0, 2λ − E) + 2λZ. It is therefore

sufficient to count the number of n ∈ I such that bk ≤ n < ak+1 for some k.

Clearly we have ak+1 − bk = r + L. Assume that I = [a, b) and choose k in

such a way that k2λ ≤ aα+β < (k+1)2λ. Then ak ≤ a. Moreover (b−1)α+β <

aα + β + (b − a − 1)α < (k + 1 + (b − a − 1)α/2λ)2λ < (k + �Nα2−λ�+ 2)2λ,

therefore b − 1 < ak+�Nα2−λ�+2. It follows that the exceptional indices n are

contained in one of �Nα2−λ�+ 2 intervals of length r + L.

The following standard lemma allows us to extend the range of a summation

in exchange for a controllable factor.
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Lemma 3.7: Let x ≤ y ≤ z be real numbers and an ∈ C for x ≤ n < z. Then∣∣∣∣∣∣
∑

x≤n<y

an

∣∣∣∣∣∣ ≤
∫ 1

0

min
{
y − x+ 1, ‖ξ‖−1

} ∣∣∣∣∣∣
∑

x≤n<z

an e (nξ)

∣∣∣∣∣∣ dξ.
Proof. Since

∫ 1

0 e (kξ) dξ = δk,0 for k ∈ Z we have

∑
x≤n<y

an =
∑

x≤n<z

an
∑

x≤m<y

δn−m,0 =

∫ 1

0

∑
x≤m<y

e (−mξ)
∑

x≤n<z

an e (nξ) dξ,

from which the statement follows.

Let Fn be the Farey series of order n, by which we understand the set of

rational numbers p/q such that 1 ≤ q ≤ n. It is easy to see that each a ∈ Fn

has two neighbours aL, aR ∈ Fn, satisfying aL < a < aR and (aL, a) ∩ F =

(a, aR) ∩ F = ∅. We have the following elementary lemma concerning this set,

which follows from the theorems in chapter 3 of the book [12] by Hardy and

Wright.

Lemma 3.8: Assume that a/b, c/d are reduced fractions such that b, d > 0 and

a/b < c/d. Then a/b < (a+ c)/(b+ d) < c/d. If a/b and c/d are neighbours in

Fn, then bc− ad = 1 and b + d > n, moreover

(a+ c)/(b+ d)− a/b <
1

bn

and

c/d− (a+ c)/(b+ d) <
1

dn
.

We will also use the large sieve inequality, which we state here in the form

provided by Selberg (see, for example, Montgomery [18, Theorem 3]).

Lemma 3.9 (Selberg): Let N ≥ 1, R ≥ 1 and M be integers, α1, . . . , αR ∈ R

and aM+1, . . . , aM+N ∈ C. Assume that ‖αr − αs‖ ≥ δ for r �= s, where δ > 0.

Then
R∑

r=1

∣∣∣∣∣
M+N∑

n=M+1

an e(nαr)

∣∣∣∣∣
2

≤ (N − 1 + δ−1)

M+N∑
n=M+1

|an|2 .

4. Reduction of the problem

Before proving Propositions 2.5 and 2.6, we want to show that these results

imply Theorems 2.1 and 2.4 respectively.
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4.1. Reducing Theorems 2.1 and 2.4 to Propositions 2.5 and 2.6. We

only deduce Theorem 2.1 from Proposition 2.5. The second implication can be

shown in an analogous way.

Assume that the statement of Proposition 2.5 holds for some ρ1, ρ2 such

that 0 < ρ1 ≤ ρ2. Note that we allow ρi ≥ 2 to keep the proof more general.

We want to show that in Theorem 2.1 we may choose δ1 = ρ1/(ρ1 + 1) and

δ2 = ρ2/(ρ2 + 1). Choosing ρ2 close to 2, justified by Proposition 2.5, we see

that δ2 approaches 2/3.

For real numbers x,D ≥ 1 we define

(4.1) S0 = S0(x,D) =
∑

D<d≤2D

max
y,z

0≤y≤z
z−y≤x

max
j∈Z

∣∣∣∣Aω(y, z; d, j)− z − y

2Ld

∣∣∣∣ .

Let x ≥ 1 and D be real numbers such that xδ1 ≤ D ≤ xδ2 . We rewrite the

difference appearing in S0 to exponential sums, using orthogonality relations:

Aω(y, z; d, j)− z − y

2Ld

=
∑
m,n

y≤m<z
m=nd+j

{
1 if s((n+ �)d+ j) ≡ ω� mod 2 for � < L

0 otherwise

}
− z − y

2Ld

=
∑

n< z−y
d

{
1 if s((n+ �)d+ j + �(y − j)/d� d) ≡ ω� mod 2 for � < L

0 otherwise

}

− z − y

2Ld
+O(1)

=
1

2L

∑
a∈{0,1}L

a 	=(0,...,0)

e

(
−1

2
(a0ω0 + · · ·+ aL−1ωL−1)

)

×
∑

n<(z−y)/d

e

(
1

2

∑
�<L

a�s((n+ �)d+ j + �(y − j)/d� d)
)

+O(1).

It follows that

S0 ≤ 1

2L

∑
a∈{0,1}L

a 	=(0,...,0)

∑
D≤d<2D

max
u≤x

max
j≥0

∣∣∣∣∣∣
∑

n<u/d

e

(
1

2

∑
�<L

a�s((n+ �)d+ j)

)∣∣∣∣∣∣+O(D).
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In order to dispose of the maximum over u, we apply Lemma 3.7. We exchange

the appearing integral with the maximum over j and with the sum over d:

(4.2) S0(x,D) ≤ 1

2L

∑
a∈{0,1}L

a 	=(0,...,0)

∫ 1

0

min
{ x
D

+ 1, ‖ξ‖−1
}

×
∑

D≤d<2D

max
j≥0

∣∣∣∣∣∣
∑

n<x/D

e

(
1

2

∑
�<L

a�s((n+ �)d+ j)

)
e (nξ)

∣∣∣∣∣∣ dξ +O(D).

Proposition 2.5 therefore implies that there exist a constant C and an exponent

η > 0 such that for all a0, . . . , aL−1 ∈ {0, 1}, not all equal to zero, for all real

numbers x,D ≥ 1 satisfying( x
D

)ρ1 ≤ D ≤
( x
D

)ρ2

,

and for all ξ ∈ R we have

(4.3)
∑

D≤d<2D

max
j≥0

∣∣∣∣∣∣
∑

n<x/D

e

(
1

2

∑
�<L

a�s((n+ �)d+ j)

)
e (nξ)

∣∣∣∣∣∣ ≤ CD
( x
D

)1−η

.

The condition on D can be rewritten as xδ1 ≤ D ≤ xδ2 . By the estimate∫ 1

0

min
{
A, ‖ξ‖−1

}
dξ = 2

(∫ 1/A

0

Adξ +

∫ 1/2

1/A

ξ−1 dξ

)
� logA,

which holds for A ≥ 2, and by (4.2) and (4.3), there exists some η1 > 0 and

constants C and C1 such that for all x,D ≥ 1 satisfying xδ1 ≤ D ≤ xδ2 we have

S0(x,D) ≤ Cx

(
D

x

)η

log+x+O(D) ≤ C1x
1−η1 ,

which proves the theorem.

4.2. Proving Theorem 1 from Theorem 2.4 and Proposition 2.8. We

show the more general implication that if the statement of Theorem 2.4 holds

for some 0 < δ1 ≤ δ2 < 1, then we may choose c < 2/(2 − δ2) in Theorem 1.

Choosing δ2 close to 2/3 yields the desired statement. We have to find an

estimate for J(N,K) defined in (2.4). Therefore we calculate:∣∣{n < K : s(�(n+ �)α+ β�) ≡ ω� mod 2 for � < L}∣∣
=

∣∣{�β� ≤ m < �Kα+ β� : ∃n ∈ Z : m = �nα+ β�,
s(�(n+ �)α+ β�) ≡ ω� mod 2 for � < L}∣∣
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=
∣∣{β ≤ m < Kα+ β : ∃n ∈ Z : m = �nα+ β�,

s(�(n+ �)α+ β�) ≡ ω� mod 2 for � < L}∣∣+O(1)

= Aω(β,Kα+ β;α, β) +O(1).

We use the definition (2.4), where we set δ = 2−L, and define D = f ′(N).

Noting that f ′(2N) = 2c−1D ≤ 2D, we obtain

J(N,K) ≤ 1

f ′(2N)− f ′(N)

1

K

∫ f ′(2N)

f ′(N)

max
β≥0

∣∣∣∣Aω(β,Kα+ β;α, β)

−Kα+ β − β

2Lα

∣∣∣∣ dα+O(1/K)

≤ 1

(2c−1 − 1)DK

∫ 2D

D

max
y,z

0≤y≤z
z−y≤2DK

max
β≥0

∣∣∣∣Aω(y, z;α, β)

−z − y

2Lα

∣∣∣∣ dα+O(1/K).

It follows from Theorem 2.4 that for (2DK)δ1 ≤ D ≤ (2DK)δ2 , that is, for
1
2D

1/δ2−1 ≤ K ≤ 1
2D

1/δ1−1, we have

J(N,K) ≤ C

DK
(2DK)1−η +O(1/K)

for some η > 0 and C depending on c and L. Setting K = 1
2D

1/δ2−1, we obtain

J(N,K) ≤ CD−η/δ2 + 2D1−1/δ2 .

By Proposition 2.8 we get∣∣∣∣ 1N
∣∣{n ∈ (N, 2N ] : s(�(n+ �)c�) = ω� for 0 ≤ � < L

}∣∣− 1

2L

∣∣∣∣
≤ C1

(
f ′′(N)K2 +

(logN)2

K
+ J(N,K)

)

≤ C2

(
N c−2+2(c−1)(1/δ2−1) +

(logN)2

N (c−1)(1/δ2−1)
+N−η(c−1)/δ2

)
.

All of the occurring exponents of N are negative by the conditions c < 2/(2−δ2)
and 0 < δ2 < 1, which proves Theorem 1.
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5. Proof of Proposition 2.5

Assume that L ≥ 1 is an integer, a = (a0, . . . , aL−1) ∈ {0, 1}L and that a� = 1

for some �. It is easy to see, using the shift j, that we may assume a0 = 1. We

also assume that N ≥ 1 is an integer; the general statement follows from the

estimate S1(N,D, ξ) − S1(�N� , D, ξ) � D. Moreover, it is sufficient to prove

the statement
S1(N, 2

ν , ξ)

N2ν
≤ CN−η

for all integers N, ν ≥ 1 and real numbers D ≥ 1 such that Nρ1 ≤ D ≤ Nρ2 and

D < 2ν ≤ 2D. This can be seen by considering sums (in d) over the intervals

[2ν−1, 2ν) and [2ν , 2ν+1) and using the estimate S1(N, 2
ν−1, ξ) ≤ S1(N, 2

ν , ξ),

which follows from the identity s(2m) = s(m). Choose η and C according to

Proposition 2.7. Moreover, let τ = 2m, where 2m−5 ≤ L < 2m−4, and λ ≥ 0.

By the Cauchy–Schwarz inequality we have

(5.1) |S1(N, 2
ν , ξ)|2 ≤ 2ν

∑
2ν≤d<2ν+1

max
j≥0

S2(N, d, j, ξ),

where

S2 = S2(N, d, j, ξ) =

∣∣∣∣∣
∑
n<N

e

(
1

2

∑
�<L

a�s((n+ �)d+ j)

)
e(nξ)

∣∣∣∣∣
2

.

We apply Lemma 3.2 (the generalized inequality of van der Corput) with K =

2τ . Let R ≥ 1 be an integer. Then

S2 ≤ N + 2τ (R − 1)

R

∑
|r|<R

(
1− |r|

R

)
e(r2τ ξ)

×
∑

0≤n,n+r2τ<N

e

(
1

2

∑
�<L

a�
(
s((n+ �+ r2τ )d+ j)− s((n+ �)d+ j)

))
.

Using Lemma 3.6 and treating the summand r = 0 separately, moreover omit-

ting the condition 0 ≤ n+ r2τ < N , we obtain for all λ ≥ 0

S2 � O

(
N2

R
+NR2τ +N2R2

τd

2λ

)

+
N

R

∑
1≤r<R

∣∣∣∣∣
∑
n<N

e

(
1

2

∑
�<L

a�
(
sλ((n+ �+ r2τ )d+ j)− sλ((n+ �)d+ j)

))∣∣∣∣∣
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with an implied constant depending only on the block length L. Note that

we also replaced N + (R − 1)2τ by N ; this is clearly admissible if R2τ ≤ N ,

otherwise we use the trivial estimate |S2| ≤ N2 and note the presence of the

error term O(NR2τ ).

We set a� to 0 for � �∈ {0, . . . , L − 1} and define br� = a�−r2τ − a�. Applying

the Cauchy–Schwarz inequality twice and using (5.1) gives

(5.2) |S1(N, 2
ν , ξ)|2 � (2νN)2O

(
1

R
+
R2τ2ν

2λ
+
R2τ

N

)

+ 23ν/2N

⎛
⎝ 1

R

∑
1≤r<R

S3(N, r, λ, ν)

⎞
⎠

1/2

,

where

(5.3) S3(N, r, λ, ν) =
∑

2ν≤d<2ν+1

max
j≥0

∣∣∣∣∣
∑
n<N

e

(
1

2

∑
�∈Z

br�sλ((n+ �)d+ j)

)∣∣∣∣∣
2

.

Applying Lemma 3.2 for K = 2μ, we obtain for all integers M ≥ 1 and μ ≥ 0

(5.4)∣∣∣∣∣
∑
n<N

e

(
1

2

∑
�∈Z

br�sλ((n+ �)d+ j)

)∣∣∣∣∣
2

≤ N + 2μ(M − 1)

M

∑
|m|<M

(
1− |m|

M

)

×
∑

0≤n,n+m2μ<N

e

(
1

2

∑
�∈Z

br�
(
sμ,λ((n+ �+m2μ)d+ j)− sμ,λ((n+ �)d+ j)

))

� N |S4|+ 2μMN,

where

S4 = S4(N,M, d, j, r, μ, λ) =
1

M

∑
|m|<M

(
1− |m|

M

)

×
∑
n<N

e

(
1

2

∑
�∈Z

br�

(
sλ−μ

(⌊
(n+ �)d+ j

2μ

⌋
+md

)

−sλ−μ

(⌊
(n+ �)d+ j

2μ

⌋)))
.

The replacement of sλ by the two-fold restricted sum-of-digits function sμ,λ,

which we performed in (5.4), is admissible since the arguments differ by a mul-

tiple of 2μ and therefore the difference does not depend on the lower digits. We
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obtain

(5.5) S3 � N
∑

2ν≤d<2ν+1

max
j≥0

|S4|+ 2μ+νMN.

The rough idea at this point is to estimate S4 by a nonnegative real number

independent of j, which will allow us to remove the maximum over j and the

absolute value appearing in (5.5). In the following we will work out the details

of this process. We want to split the summation over N into T parts, according

to the fractional part of (nd+ j)2−μ. Let t, T be integers such that 0 ≤ t < T .

We define

S5 = S5(N, T, a, d, j, r,m, t, μ, λ)

=
∑
n<N

t
T ≤{nd+j

2μ }< t+1
T

e

(
1

2

∑
�∈Z

br�

(
sλ−μ

(⌊
(n+ �)d+ j

2μ

⌋
+md

)

−sλ−μ

(⌊
(n+ �)d+ j

2μ

⌋)))
.

We will see that, for most values of d, the values of the floor function distribute

evenly modulo 2λ−μ as n runs through the set defined by the two conditions

under the summation sign. For this to hold, we have to assure that N > 2λ−μ.

Inspecting the error terms in (5.2) and (5.5), we see that we also need 2μ < N

and ν < λ in order to get a nontrivial estimate. These observations ultimately

lead to the restriction ρ2 < 2 in Proposition 2.5.

The idea behind the decomposition into T subintervals [t/T, (t + 1)/T ) of

[0, 1) is the following. Let At be the set of n such that {(nd+ j)/2μ} lies in the

t-th interval. Then the differences⌊
(n+ 1)d+ j

2μ

⌋
−
⌊
nd+ j

2μ

⌋
, . . . ,

⌊
(n+ L− 1)d+ j

2μ

⌋
−
⌊
nd+ j

2μ

⌋

should not depend on n ∈ At. This will in fact be the case for most, but not

for all, t, so that we have to take out some t. We define a set of “good” values,

G = G(T, d, r, μ) =

{
t < T :

[
t

T
+
�d

2μ
,
t+ 1

T
+
�d

2μ

)
∩ Z = ∅

for all � ∈ [0, L) ∪ [r2τ , r2τ + L)

}
.
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We have

(5.6) |G| ≥ T − 2L,

since the intervals in the definition of G(d, T,R, μ) are disjoint and cover an

interval of length 1, therefore we have to exclude at most one integer t for each

�.

We differentiate between the cases t ∈ G and t �∈ G. For t �∈ G we estimate the

sum in S5 trivially, that is, we count the number of summands, using Lemma 3.3.

We apply this lemma for K = 2λ−μ (note that we could also take K = 1,

however, our choice spares us the separate treatment of an error term) and

multiply with 2λ−μ, which accounts for the 2λ−μ residue classes we have to

collect. We obtain

(5.7) S5 � N

T
+ 2λ−μNDN

(
d

2λ

)
.

Let t ∈ G and assume that t/T ≤ {(nd + j)2−μ} < (t + 1)/T . By the second

assumption we obtain⌊
nd+ j

2μ

⌋
+
t

T
+
�d

2μ
≤ (n+ �)d+ j

2μ
<

⌊
nd+ j

2μ

⌋
+
t+ 1

T
+
�d

2μ

and using the first assumption yields⌊
(n+ �)d+ j

2μ

⌋
=

⌊
nd+ j

2μ

⌋
+

⌊
t

T
+
�d

2μ

⌋

for all � ∈ [0, L) ∪ [r2τ , r2τ + L). For t ∈ G we obtain therefore

S5 =
∑

k<2λ−μ

∑
n<N

t
T ≤{nd+j

2μ }< t+1
T

�nd+j
2μ �≡k mod 2λ−μ

e

(
1

2

∑
�∈Z

br�

(
sλ−μ

(
k +

⌊
t

T
+
�d

2μ

⌋
+md

)

− sλ−μ

(
k +

⌊
t

T
+
�d

2μ

⌋)))

Since the summand does not depend on n, we count the number of times the

three conditions under the second summation sign are satisfied. To this end,

we use again Lemma 3.3 with K = 2λ−μ. We obtain for t ∈ G

(5.8) S5 =
N

2λ−μT

∑
k<2λ−μ

e

(
1

2

∑
�∈Z

br�

(
sλ−μ

(
k +

⌊
t

T
+
�d

2μ

⌋
+md

)
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− sλ−μ

(
k +

⌊
t

T
+
�d

2μ

⌋)))
+O

(
2λ−μNDN

(
d

2λ

))
.

Note that this expression is independent of the shift j. Moreover, as we noted

earlier, we see that it is necessary that we have N ≥ 2λ−μ in order to get a

useful result, since the error term would be too large otherwise. Setting

id,t� =

⌊
t

T
+ �

{
d

2μ

}⌋
,

we get the almost trivial identity⌊
t

T
+
�d

2μ

⌋
= �

⌊
d

2μ

⌋
+ id,t� .

In Lemma 3.5 we set t = md and

f(n) = e

(
1

2

∑
�∈Z

br�sλ−μ

(
n+ �

⌊
d

2μ

⌋
+ id,t�

))

and obtain for t ∈ G

(5.9)

S5 =
N

T

∑
h<2λ−μ

∣∣∣∣Gid,t,br

λ−μ

(
h,

⌊
d

2μ

⌋)∣∣∣∣
2

e

(
hmd

2λ−μ

)
+O

(
2λ−μNDN

(
d

2λ

))
,

where the Fourier coefficients G(h, d) are defined by (2.3). By the definitions of

S4 and S5 we have

(5.10) S4 =
1

M

∑
|m|<M

(
1− |m|

M

)∑
t<T

S5.

Using (5.6), (5.7), (5.9) and (5.10) we obtain

(5.11)

S4 =
N

T

∑
t<T

1

M

∑
|m|<M

(
1− |m|

M

) ∑
h<2λ−μ

∣∣∣∣Gid,t,br

λ−μ

(
h,

⌊
d

2μ

⌋)∣∣∣∣
2

e

(
hmd

2λ−μ

)

+O

(
N
L

T
+ 2λ−μTNDN

(
d

2λ

))
,

where the reinsertion of the indices t �∈ G is accounted for by the error term

NL/T , which can be seen using Parseval’s identity.

Note the important fact that the right-hand side gives an estimate for S4 that

is independent of the shift j (that is, independent of the residue class modulo
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d). Using also the nonnegativity of the main term, which follows from the

elementary identity

∑
|m|<M

(M − |m|) e(mx) =
∣∣∣∣∣
∑

m<M

e(mx)

∣∣∣∣∣
2

,

we may remove the maximum together with the absolute value in (5.5) while

keeping the important factor e
(
hmd/2λ−μ

)
in (5.11). We obtain, treating the

summand m = 0 separately,

(5.12) S3 � N2

T

∑
t<T

1

M

∑
1≤|m|<M

(
1− |m|

M

)
S6

+ 2νN2O

(
1

M
+

2μM

N
+
L

T
+ 2λ−μT

1

2ν

∑
d<2ν+1

DN

(
d

2λ

))
,

where

(5.13) S6 = S6(d, r,m, t, λ, μ, ν)

=
∑

2ν≤d<2ν+1

∑
h<2λ−μ

∣∣∣∣Gid,t,br

λ−μ

(
h,

⌊
d

2μ

⌋)∣∣∣∣
2

e

(
hmd

2λ−μ

)
.

We want to show that S6 is substantially smaller than 2ν (which is a trivial

upper bound by Parseval’s identity). In order to estimate the right-hand side

of (5.13), we note that the first factor depends only in a weak way on d. We

state this more precisely in the following.

The term �d/2μ� does not depend on the lowest μ binary digits of d. Moreover,

we want to decompose [0, 2μ) into few intervals Ir,tu in such a way that the values

id,t� , where � ∈ M and M = [0, L) ∪ [r2τ , r2τ + L), are constant for d ∈ Ir,tu .

(Note that the indices � �∈M are not of interest, since br� = 0 for these.)

Let t < T be given. We define the (lexicographical) order on NM by

(i�)�∈M < (j�)�∈M if and only if i� �= j� for some � ∈ M and i� < j� for

� = min{k ∈M : ik �= jk}. It is easy to check that the assignment

d �→ id,t |M
is 2μ-periodic and nondecreasing for d < 2μ with respect to this total ordering.

It follows that the set {0, . . . , 2μ − 1} decomposes into intervals Ir,t0 , . . . , Ir,tU−1

such that the same sequence
(
id,t�

)
�∈M

is defined for each d ∈ Ir,tu + 2μZ. By
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the property 0 ≤ ir,t�+1− ir,t� ≤ 1, the number U of intervals thus defined satisfies

(5.14) U ≤ 22L(r2τ − L) ≤ r22L+τ .

From (5.13), we obtain sums of the form

∑
d∈Ir,t

u +2μk

e
(
hmd/2λ−μ

)

for u < U and some k ∈ Z. Using also the estimate for the Fourier coefficients

Gλ−μ from Proposition 2.7, we will estimate S6 nontrivially.

Let I = IL+r2τ−1 be the set of sequences i0, . . . , iL+r2τ−1 such that i0 = 0

and 0 ≤ i�+1 − i� ≤ 1 for 0 ≤ � < L + r2τ − 1. Assume that m �= 0 and

λ ≥ ν ≥ μ. Writing d = d1 + 2μd2, and choosing iu such that iu = id1,t for all

d1 ∈ Ir,tu , we obtain

∣∣S6

∣∣ =
∣∣∣∣∣∣
∑
u<U

∑
d1∈Ir,t

u

∑
d2<2ν−μ

∑
h<2λ−μ

∣∣∣Gid1,t,br

λ−μ (h, d2)
∣∣∣2 e(hm(d1 + d22

μ)

2λ−μ

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
u<U

∑
d2<2ν−μ

∑
h<2λ−μ

∣∣∣Giu,b
r

λ−μ (h, d2)
∣∣∣2 ∑

d1∈Ir,t
u

e

(
hm(d1 + d22

μ)

2λ−μ

)∣∣∣∣∣∣
≤

∑
u<U

max
i∈I

∑
d2,h<2λ−μ

∣∣∣Gi,br

λ−μ (h, d2)
∣∣∣2
∣∣∣∣∣∣
∑

d1∈Ir,t
u

e

(
hmd1
2λ−μ

)∣∣∣∣∣∣ .
We apply the Cauchy–Schwarz inequality to the sum over h and d2 and obtain

with the help of Parseval’s identity

∣∣S6

∣∣ ≤ ∑
u<U

max
i∈I

⎛
⎝ ∑

d2,h<2λ−μ

∣∣∣Gi,br

λ−μ(h, d2)
∣∣∣4
⎞
⎠

1/2

×

⎛
⎜⎝ ∑

d2,h<2λ−μ

∣∣∣∣∣∣
∑

d1∈Ir,t
u

e

(
hmd1
2λ−μ

)∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

≤ 2(λ−μ)/2 max
i∈I

⎛
⎝ ∑

d2<2λ−μ

max
h<2λ−μ

∣∣∣Gi,br

λ−μ(h, d2)
∣∣∣2
⎞
⎠

1/2

(5.15)
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×
∑
u<U

⎛
⎜⎝ ∑

h<2λ−μ

∣∣∣∣∣∣
∑

k<2λ−μ

auk e

(
hk

2λ−μ

)∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

,

where

auk = au,r,t,mk =
∣∣{d1 ∈ Ir,tu : d1m ≡ k mod 2λ−μ}∣∣ .

In order to estimate the sum over d2 in (5.15), we use Proposition 2.7: there

exist η > 0 and C, which only depend on L, such that for all λ ≥ μ ≥ 0 and all

r ≥ 1 satisfying ν2(r) + τ ≤ (λ− μ)/4 we have

(5.16) max
i∈I

⎛
⎝ ∑

d2<2λ−μ

max
h<2λ−μ

∣∣∣Gi,br

λ−μ(h, d2)
∣∣∣2
⎞
⎠

1/2

≤ C2(1−η)(λ−μ)/2.

The sum over h in (5.15) can be estimated by Lemma 3.9 (the large sieve

inequality) and the estimate

au,r,t,mk ≤
⎧⎨
⎩2ν2(m), μ ≤ λ− μ

2ν2(m)2μ/2λ−μ, μ > λ− μ

(which is clear for oddm and follows easily by the decompositionm = m02
ν2(m)

otherwise). This gives

(5.17)⎛
⎜⎝ ∑

h<2λ−μ

∣∣∣∣∣∣
∑

k<2λ−μ

au,r,t,mk e

(
hk

2λ−μ

)∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

�
⎛
⎝2λ−μ

∑
k<2λ−μ

∣∣au,r,t,mk

∣∣2
⎞
⎠

1/2

� 2λ−μ2ν2(m) max{1, 22μ−λ}.

Combining (5.16), (5.17) and (5.14), we get

|S6| � r22L+τ2ν2(m)max{1, 22μ−λ}2(2−η/2)(λ−μ)

� r2ν2(m) max{1, 22μ−λ}2(2−η/2)(λ−μ)

with an implied constant depending only on L. We translate this estimate back

to an estimate for S1. By the estimate∑
1≤m<M

2ν2(m) �M logM
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valid for M ≥ 1, which is easy to show by splitting the summation according

to the value of ν2(m), we obtain

(5.18)
1

RM

∑
1≤r<R

∑
1≤|m|<M

(
1− |m|

M

)
S6 � R logM max{1, 22μ−λ}2(2−η/2)(λ−μ).

We collect the error terms, using (5.2), (5.12) and (5.18), and use the discrep-

ancy estimate (3.2), obtaining

(5.19)

∣∣∣∣S1(N, 2
ν , ξ)

N2ν

∣∣∣∣
4

≤ C

(
1

R2
+

(
R2ν

2λ

)2

+

(
R

N

)2

+
1

M
+

2μM

N
+

1

T

+ T
2λ−μ

N

N + 2λ

2ν
(
log+N

)2
+R2(2−η/2)(λ−μ)−ν logM max{1, 22μ−λ}

)

with a constant C depending only on L. This estimate is valid for all integers

M,N,R, T ≥ 1 and λ, μ, ν ≥ 0 such that μ ≤ ν < ν+1 ≤ λ and R2τ ≤ 2(λ−μ)/4,

and for all real numbers ξ. Moreover, this estimate also holds for real-valued

parameters M,R, T, λ, μ satisfying these restrictions (with a possibly different

constant C). In order to finish the proof of Proposition 2.5, we have to choose

the parameters M,R, T, λ and μ, depending on N and D. Let 0 < ρ1 ≤ ρ2 < 2

be given and choose θ and ε in such a way that

max

{
1, ρ2,

3ρ2
1 + ρ2

, 2− η/2

}
< θ < 2

and

0 < ε < min

{
2− θ, θ/ρ2 − 1, θ − 1, θ

1 + ρ2
ρ2

− 3, θ − (2− η/2), 1/4

}
.

Assume that D ≥ 1 is a real number and that N, ν ≥ 1 are integers such that

Nρ1 ≤ D ≤ Nρ2 and D < 2ν ≤ 2D. Set μ = ν/θ, λ = 2μ and R = M = T =

2εμ. Using these choices it is not difficult to check, proceeding term by term,

that

S1(N, 2
ν , ξ)

N2ν
≤ C2−νη1

(
log+N

)2
for some C and η1 > 0 depending only on ρ2 and L. Finally, we insert the

lower bound Nρ1 ≤ 2ν (so far we did not use ρ1), which completes the proof of

Proposition 2.5.
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6. Proof of Proposition 2.6

We follow the proof of Proposition 2.5 and start, without loss of generality,

with the same assumptions. Assume that L ≥ 1 is an integer, a0 = 1 and

a1, . . . , aL−1 ∈ {0, 1}. Choose m ≥ 5 such that 2m−5 ≤ L < 2m−4 and set

τ = 2m. Assume that D,N, ν ≥ 1, where N and ν are integers satisfying

Nρ1 ≤ N ≤ Nρ2 and D < 2ν ≤ 2D.

We apply van der Corput’s inequality for K = 2τ and obtain, in analogy

to (5.2),

(6.1)
∣∣∣S̃1

∣∣∣2 � (2νN)2O

(
1

R
+
R2τ2ν

2λ
+
R2τ

N

)

+ 23ν/2N

⎛
⎝ 1

R

∑
1≤r<R

S̃3(N, r, λ, ν)

⎞
⎠

1/2

,

where

(6.2) S̃3(N, r, λ, ν) =

∫ 2ν+1

2ν
max
β≥0

∣∣∣∣∣
∑
n<N

e

(
1

2

∑
�∈Z

br�sλ (�(n+ �)α+ β�)
)∣∣∣∣∣

2

dα

and br� = a�−r2τ − a�, and a� is assumed to be zero for � �∈ [0, L). The estim-

ate (6.1) is valid for N,R ≥ 1 and λ, ν ≥ 0.

Next we want to “cut off” the μ lowest digits, that is, replace sλ by sμ,λ. This

was accomplished by a simple application of Lemma 3.2, setting K = 2μ, in the

proof of Proposition 2.5. Since we are now considering Beatty sequences (having

in general non-integer step length α), we need to modify our strategy. To do

so, we use Diophantine approximation, more precisely, Farey series. Let α ∈ R

be given. We assign a fraction p(α)/q(α) to α according to the Farey dissection

of the circle: consider reduced fractions a/b < c/d that are neighbours in the

Farey series F2μ+σ , where σ ≥ 1 is chosen later, such that a/b ≤ α/2μ < c/d. If

α/2μ < (a+ c)/(b+ d), then set p(α) = a and q(α) = b, otherwise set p(α) = c

and q(α) = d. Lemma 3.8 implies

(6.3)
∣∣q(α)α − p(α)2μ

∣∣ < 2−σ.

Applying Lemma 3.2 with K = q(α) and noting that q(α) ≤ 2μ+σ, we obtain

for all integers M ≥ 1 and μ ≥ 0
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(6.4)

∣∣∣∣∣
∑
n<N

e

(
1

2

∑
�∈Z

br�sλ (�(n+ �)α+ β�)
)∣∣∣∣∣

2

� O(2μ+σMN) +
N

M

∑
|m|<M

(
1− |m|

M

)

×
∑
n<N

e

(
1

2

∑
�∈Z

br�
(
sλ (�(n+ �+mq(α))α + β�)− sλ (�(n+ �)α+ β�))

)
.

In order to reduce this expression to a sum analogous to S4, we want to shift

the expression mq(α)α out of the floor function. To this end, we use (6.3) and

the argument that mq(α)α is close to an integer, while (n+ �)α+ β usually is

not. This can be made precise as follows. Assume that

(6.5) ‖(n+ �)α+ β‖ ≥M/2σ

and that 2M < 2σ. Using part (iii) of Lemma 3.1 with ε = 1/2σ and (6.3),

moreover noting that σ ≥ 1, we obtain

〈mq(α)α〉 = m 〈q(α)α〉 = mp(α)2μ.

Applying part (i) of Lemma 3.1, setting ε =M/2σ, we see that (6.5) implies

(6.6) �(n+ �+mq(α))α + β� = mp(α)2μ + �(n+ �)α+ β� .

The number of n where hypothesis (6.5) fails for some � can be estimated

by discrepancy estimates for {nα}-sequences: for all positive integers N and

2M < 2σ we have

(6.7)

∣∣{n < N : ‖(n+ �)α+ β‖ ≤M/2σ
}∣∣

=
∣∣{n < N : (n+ �)α+ β ∈ [−M/2σ,M/2σ] + Z

}∣∣
=

∣∣{n < N : nα ∈ [0, 2M/2σ]− β − �α−M/2σ + Z
}∣∣

≤ NDN(α) + 2MN/2σ.

Multiplying this error by 2L (which is O(1) according to our conventions stated

in the introduction), we obtain an upper bound for the number of n < N such

that ‖(n+ �)α+ β‖ ≤M/2σ for some � ∈ [0, L)∪ [r2τ , r2τ +L). Treating these

integers separately and using (6.4) through (6.7), we obtain
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(6.8)

∣∣∣∣∣
∑
n<N

e

(
1

2

∑
�∈Z

br�sλ (�(n+ �)α+ β�)
)∣∣∣∣∣

2

� N
∣∣S̃4

∣∣+O
(
2μ+σNM +N2DN (α) +N2M/2σ

)
,

where

S̃4 = S̃4(N,M,α, β, r, μ, λ) =
1

M

∑
|m|<M

(
1− |m|

M

)

×
∑
n<N

e

(
1

2

∑
�∈Z

br�

(
sλ−μ

(⌊
(n+ �)α+ β

2μ

⌋
+mp(α)

)

−sλ−μ

(⌊
(n+ �)α+ β

2μ

⌋)))
.

Note that (6.8) is, except for the error terms, completely analogous to equa-

tion (5.4) in the proof of Proposition 2.5. From (6.2) and (6.8) we get

(6.9)
S̃3(N, r, λ, ν) �N

∫ 2ν+1

2ν
max
β≥0

∣∣S̃4

∣∣ dα+N2

∫ 2ν+1

2ν
DN (α) dα

+ 2μ+σ+νMN +N22νM/2σ.

Let t, T be integers such that 0 ≤ t < T and define

S̃5 =
∑
n<N

t
T ≤{nα+β

2μ }< t+1
T

e

(
1

2

∑
�∈Z

br�

(
sλ−μ

(⌊
(n+ �)α+ β

2μ

⌋
+mp(α)

)

− sλ−μ

(⌊
(n+ �)α+ β

2μ

⌋)))

and

G = G(T, α, r, μ) =

{
t < T :

[
t

T
+
�α

2μ
,
t+ 1

T
+
�α

2μ

)
∩ Z = ∅

for all � ∈ [0, L) ∪ [r2τ , r2τ + L)

}
.

Again, we have

(6.10) G ≥ T − 2L
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and we distinguish between the cases t ∈ G and t �∈ G. For t �∈ G we estimate

S̃5 trivially, applying Lemma 3.3 with K = 2λ−μ. We obtain

(6.11) S̃5 � N

T
+ 2λ−μNDN

( α
2λ

)
.

Let t ∈ G and assume that t/T ≤ {(nα+ β)2−μ} < (t+1)/T . Then, as before,⌊
(n+ �)α+ β

2μ

⌋
=

⌊
nα+ β

2μ

⌋
+

⌊
t

T
+
�α

2μ

⌋

for � ∈ [0, L) ∪ [r2τ , r2τ + L). For t ∈ G we obtain

S̃5 =
∑

k<2λ−μ

∑
n<N

t
T ≤{nα+β

2μ }< t+1
T

�nα+β
2μ �≡k mod 2λ−μ

e

(
1

2

∑
�∈Z

br�

(
sλ−μ

(
k +

⌊
t

T
+
�α

2μ

⌋
+mp(α)

)

− sλ−μ

(
k +

⌊
t

T
+
�α

2μ

⌋)))
.

We apply Lemma 3.3, setting K = 2λ−μ, and obtain for t ∈ G

(6.12) S̃5 =
N

2λ−μT

∑
k<2λ−μ

e

(
1

2

∑
�∈Z

br�

(
sλ−μ

(
k +

⌊
t

T
+
�α

2μ

⌋
+mp(α)

)

− sλ−μ

(
k +

⌊
t

T
+
�α

2μ

⌋)))
+O

(
2λ−μNDN

( α
2λ

))
.

Setting

iα,t� =

⌊
t

T
+ �

{ α

2μ

}⌋
,

we have ⌊
t

T
+
�α

2μ

⌋
= �

⌊ α
2μ

⌋
+ iα,t� .

In Lemma 3.5 we set t = mp(α) and

f(n) = e

(
1

2

∑
�∈Z

br�sλ−μ

(
n+ �

⌊ α
2μ

⌋
+ iα,t�

))

and obtain for t ∈ G

(6.13)

S̃5 =
N

T

∑
h<2λ−μ

∣∣∣Giα,t,br

λ−μ

(
h,
⌊ α
2μ

⌋)∣∣∣2 e(hmp(α)

2λ−μ

)
+O

(
2λ−μNDN

( α
2λ

))
.
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Using the identity

S̃4 =
1

M

∑
|m|<M

(
1− |m|

M

)∑
t<T

S̃5

as well as (6.10), (6.11) and (6.13), we obtain, in analogy to (5.11),

S̃4 =
N

T

∑
t<T

1

M

∑
|m|<M

(
1− |m|

M

)

×
∑

h<2λ−μ

∣∣∣Giα,t,br

λ−μ

(
h,
⌊ α
2μ

⌋)∣∣∣2 e(hmp(α)

2λ−μ

)
(6.14)

+O

(
N

T
+ 2λ−μTNDN

( α
2λ

))
.

From (6.9) and (6.14), treating the summand for m = 0 separately, we get

(6.15) S̃3 � N2

T

∑
t<T

1

M

∑
1≤|m|<M

(
1− |m|

M

)
S̃6 + 2νN2O

(
1

M
+

2μ+σM

N

+
1

T
+

2λ−μT

2ν

∫ 2ν+1

2ν
DN

( α
2λ

)
dα+

1

2ν

∫ 2ν+1

2ν
DN (α) dα +

M

2σ

)
,

where

S̃6 = S̃6(α, r,m, t, λ, μ, ν)

=

∫ 2ν+1

2ν

∑
h<2λ−μ

∣∣∣Giα,t,br

λ−μ

(
h,
⌊ α
2μ

⌋)∣∣∣2 e(hmp(α)

2λ−μ

)
dα.

As in the proof of Proposition 2.5 we obtain intervals Ir,t0 , . . . , Ir,tU−1 ⊆ R, where

U ≤ r22L+τ , such that α �→ iα,t |M is constant on each Ir,tu . Define I as before,

that is, as the set of sequences (i�)�<L+r2τ−1 such that 0 ≤ i�+1 − i� ≤ 1 for

0 ≤ i < L + r2τ − 1. Moreover, we assume from now on that m �= 0 and

λ ≥ ν ≥ μ. We obtain, applying the Cauchy–Schwarz inequality to the sum

over (h, d2),

∣∣S̃6

∣∣ =
∣∣∣∣∣∣
∑
u<U

∫
Ir,t
u

∑
d2<2ν−μ

∑
h<2λ−μ

∣∣∣Giα,t,br

λ−μ (h, d2)
∣∣∣2 e(hmp(α+ d22

μ)

2λ−μ

)
dα

∣∣∣∣∣∣
≤

∑
u<U

max
i∈I

∑
d2<2λ−μ

∑
h<2λ−μ

∣∣∣Gi,br

λ−μ(h, d2)
∣∣∣2 ∣∣∣∣

∫
Ir,t
u

e

(
hmp(α+ d22

μ)

2λ−μ

)
dα

∣∣∣∣
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≤
∑
u<U

max
i∈I

⎛
⎝ ∑

d2,h<2λ−μ

∣∣∣Gi,br

λ−μ(h, d2)
∣∣∣4
⎞
⎠

1/2

×
⎛
⎝ ∑

d2,h<2λ−μ

∣∣∣∣
∫
Ir,t
u

e

(
hmp(α+ d2 2

μ)

2λ−μ

)
dα

∣∣∣∣
2
⎞
⎠

1/2

≤ max
i∈I

⎛
⎝ ∑

d2<2λ−μ

max
h<2λ−μ

∣∣∣Gi,br

λ−μ(h, d2)
∣∣∣2
⎞
⎠

1/2

×
∑
u<U

⎛
⎜⎝ ∑

d,h<2λ−μ

∣∣∣∣∣∣
∑

k<2λ−μ

au,dk e

(
hk

2λ−μ

)∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

,

where

au,dk = ar,m,t,u,d,μ,λ
k = λ

({α ∈ Ir,tu : mp(α+ d 2μ) ≡ k mod 2λ−μ}) ,
and λ denotes the Lebesgue measure. Assume that r2τ ≤ 2(λ−μ)/4. Then,

using Proposition 2.7, the first factor can be estimated by C2(1−η)(λ−μ)/2. The

second factor can be estimated by the large sieve inequality (Lemma 3.9) and

|U | � r, which yields

∣∣S̃6

∣∣ � r 2(1−η)(λ−μ)/2 max
u<U

⎛
⎝ ∑

d<2λ−μ

2λ−μ
∑

k<2λ−μ

∣∣∣au,dk

∣∣∣2
⎞
⎠

1/2

.

It remains to find estimates for au,dk . In order to do so, we first note that

(6.16)
q(α+ d 2μ) = q(α),

p(α+ d 2μ) = p(α) + q(α)d,

for all d ∈ N. Lemma 3.8 implies

(6.17) λ ({α ∈ [0, 2μ) : p(α) = p, q(α) = q}) ≤ 2
2μ

2μ+σq
.

Formulas (6.17) and (6.16) together with the estimate∣∣{p < 2μ+σ : mp ≡ k mod 2λ−μ}∣∣ ≤ 2ν2(m)max{1, 22μ−λ+σ}
imply

λ
({α ∈ [0, 2μ) : mp(α+ d 2μ) ≡ k mod 2λ−μ, q(α+ d 2μ) = q})
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= λ
({α ∈ [0, 2μ) : mp(α) ≡ k − d q mod 2λ−μ, q(α) = q})

≤ 2ν2(m) max{1, 22μ−λ+σ} 2

2σq
.

By a summation over q ≤ 2μ+σ we obtain

au,dk � 2ν2(m) max{1, 22μ−λ+σ}(μ+ σ)/2σ.

Therefore ∣∣S̃6

∣∣ � R2ν2(m)(μ+ σ) 2(2−η′)(λ−μ) max{2−σ, 22μ−λ},
which leads to

(6.18)

1

RM

∑
1≤r<R

∑
1≤|m|<M

(
1− |m|

M

)
S̃6

� R logM(μ+ σ) 2(2−η′)(λ−μ) max{2−σ, 22μ−λ}.
By analogous reasoning as in the proof of Proposition 2.6, leading to (5.19),

and using (6.1), (6.15) and (6.18) and the estimate for the integral mean of the

discrepancy (Lemma 3.4), we obtain∣∣∣∣∣ S̃1(N, ν, ξ)

N2ν

∣∣∣∣∣
4

� 1

R2
+

(
R2ν+τ

2λ

)2

+

(
R2τ

N

)2

+
1

M
+

2μ+σM

N
+

1

T
+
M

2σ

+ T
2λ−μ

N

(
log+N

)2
+R logM(μ+ σ)2(2−η′)(λ−μ)+2μ−λ−ν

for all integers T,R,M,N, σ ≥ 1 and λ, μ, ν ≥ 0 such that μ ≤ ν ≤ λ ≤ 2ν,

2M < 2σ, R2τ ≤ 2(λ−μ)/4 and for all ξ ∈ R. An analogous argument as in the

proof of Proposition 2.5 finishes the proof.

7. Proof of Proposition 2.7

7.1. A recurrence for Fourier coefficients. In order to get started with

the proof of Proposition 2.7, we recall the definition of the discrete Fourier

coefficients Gi,b
λ (h, d), which is equation (2.3). For nonnegative integers d and

λ, for sequences i : N → N (for notational reasons we use, in this section, the

function notation i(�) to denote the �-th element) and b : N → Z, where b has

finite support, and for h ∈ Z we have

Gi,b
λ (h, d) =

1

2λ

∑
u<2λ

e

⎛
⎝1

2

∑
�≥0

b�sλ(u+ �d+ i(�))− hu

2λ

⎞
⎠ .
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For any K ≥ 0, we denote by IK the set of sequences i : N → N with support

in [0,K) such that i(�+1)− i(�) ∈ {0, 1} for 0 ≤ � < K−1. For (δ, ε) ∈ {0, 1}2,
we define a transformation Tδ,ε : IK → IK by

Tδ,ε(i)(�) =

⌊
i(�) + �δ + ε

2

⌋

for 0 ≤ � < K. Note that this transformation is well-defined. We also define

weights by

f i,b
δ,ε = e

(
1

2

∑
�<K

b�(i(�) + �δ + ε)

)
.

These quantities appear in the following recurrence for the discrete Fourier

coefficients; compare [7, Lemma 13].

Lemma 7.1: Assume that b : N → Z and i ∈ IK . Then for all integers d, λ ≥ 0

and h, and ε ∈ {0, 1}, we have

(7.1) Gi,b
λ (h, 2d+ δ) =

1

2

1∑
ε=0

e

(
−hε
2λ

)
f i,b
δ,εG

Tδ,ε(i),b
λ−1 (h, d).

Proof. By splitting the sum in the definition of Gi,b
λ (h, d) according to the parity

of u, we obtain (writing ε0(n) for the lowest binary digit of n)

Gi,b
λ (h, 2d+ δ)

=
1

2λ

1∑
ε=0

∑
u<2λ−1

e

(
1

2

∑
�<K

b�sλ(2u+ ε+ �(2d+ δ) + i(�))− h(2u+ ε)2−λ

)

=
1

2λ

1∑
ε=0

e

(
−hε
2λ

) ∑
u<2λ−1

e

(
1

2

∑
�<K

b�

(
sλ−1

(
u+ �d+

⌊
i(�) + �δ + ε

2

⌋)

+ε0(i(�) + �δ + ε)

)
− hu2λ−1

)

=
1

2

1∑
ε=0

e

(
−hε
2λ

)
f i,b
δ,εG

Tδ,ε(i),b
λ−1 (h, d).

We want to study compositions of elementary transformations Tδ,ε. We there-

fore extend this notation as follows. Assume that d, e,m ≥ 0 are integers. For
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d, e < 2m, we define T
(m)
d,e : IK → IK by setting, for i ∈ IK and � < K,

(7.2) T
(m)
d,e (i)(�) =

⌊
i(�) + �d+ e

2m

⌋
.

For general integers d, e ≥ 0 we set

T
(m)
d,e = T

(m)
d mod 2m, e mod 2m .

Note that we have

(7.3) T
(m)
d,0 (i)(�) ≤ T

(m)
d,e (i)(�) ≤ T

(m)
d,0 (i)(�) + 1

for all e ≥ 0. By a straightforward induction it follows that

(7.4) T
(m)
d,e = Tδm−1,εm−1 ◦ · · · ◦ Tδ0,ε0 ,

for m ≥ 1, where
∑

i≥0 δi2
i and

∑
i≥0 εi2

i are the binary expansions of d and e

respectively. Moreover, T
(0)
d,e is the identity on IK . We also define, generalizing

the notation f i,b
δ,ε,

(7.5) f
(m),i,b
d,e = f

T
(m−1)
d,e (i),b

δm−1,εm−1
· · · fT

(1)
d,e (i),b

δ1,ε1
· f i,b

δ0,ε0
.

In order to obtain a recurrence relation for |Gi,b
λ (h, d)|2, we define

Φi1,i2,b
λ (h, d) = Gi1,b

λ (h, d)Gi2,b
λ (h, d).

Using (7.1), this immediately yields

(7.6) Φi1,i2,b
λ (h, 2d+ δ)

=
1

4

∑
ε1<2

∑
ε2<2

e

(
− (ε1 − ε2)h

2λ

)
f i1,b
δ,ε1

f i2,b
δ,ε2

Φ
Tδ,ε1

(i1),Tδ,ε2
(i2),b

λ−1 (h, d)

for δ ∈ {0, 1}, and applying this identity iteratively one gets, for m ∈ N and

d′ < 2m,

(7.7)

Φi1,i2,b
λ (h, 2md+ d′) =

1

4m

∑
e1<2m

∑
e2<2m

e

(
− (e1 − e2)h

2λ

)

× f
(m),i1,b
d′,e1 f

(m),i2,b
d′,e2 Φ

T
(m)

d′,e1
(i1),T

(m)

d′,e2
(i2),b

λ−m (h, d).
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Obviously this implies for all d′ < 2m

(7.8)

∣∣∣Gi,b
λ (h, 2md+ d′)

∣∣∣2 =
∣∣∣Φi,i,b

λ (h, 2md+ d′)
∣∣∣

≤ max
e1,e2<2m

∣∣∣∣ΦT
(m)

d′,e1
(i),T

(m)

d′,e2
(i),b

λ−m (h, d)

∣∣∣∣
= max

e<2m

∣∣∣∣GT
(m)

d′,e (i),b
λ−m (h, d)

∣∣∣∣
2

,

an estimate that is also valid for m = 0.

7.2. An estimate for Fourier coefficients. In this section, we are con-

cerned with such sequences b originating from a sequence a = (a0, . . . , aL−1) ∈
{0, 1}L, where 1 ≤ L ≤ r, via the assignment

(7.9) b� =

⎧⎪⎪⎨
⎪⎪⎩
a�, 0 ≤ � < L,

−a�−r, r ≤ � < L+ r − 1,

0, otherwise.

That is, the sequence b consists of two blocks, identical modulo 2. From now

on, we assume that b is such a sequence and that K = L + r (such that b�,

for � < K, captures all nonzero values). For brevity, and since b is constant in

what follows, we omit b as an upper index of G,Φ and f . Moreover, we assume

throughout this section that λ ≥ 0, r ≥ 1 and m ≥ 5 are integers such that

2m−5 ≤ L < 2m−4,(7.10)

2m ≤ ν2(r) ≤ λ/4.(7.11)

For brevity, we write x = ν2(r).

Lemma 7.2: Assume that the sequence i ∈ IK satisfies

(7.12) i(r) mod 2m ∈ {1, 2}.
Let z ≥ 0 and h be integers and 0 ≤ d < 2z. Then

∣∣Gi
z+m(h, d 2m + 1)

∣∣2 ≤ (1− η) max
e<2m

∣∣∣∣GT
(m)
1,e (i)

z (h, d)

∣∣∣∣
2

for η = 2
4m .

Proof. We rewrite the left-hand side via the identity (7.7), setting i1 = i2 = i,

and want to find pairs of indices (e′1, e
′
2), (e

′′
1 , e

′′
2) such that the corresponding two



730 C. MÜLLNER AND L. SPIEGELHOFER Isr. J. Math.

summands on the right-hand side of (7.7) cancel. This will give the announced

saving. That is, we want

T
(m)
1,e′1

(i) = T
(m)
1,e′′1

(i),(7.13)

T
(m)
1,e′2

(i) = T
(m)
1,e′′2

(i),(7.14)

f
(m),i
1,e′1

f
(m),i
1,e′2

= −f (m),i
1,e′′1

f
(m),i
1,e′′2

and(7.15)

e′1 − e′2 = e′′1 − e′′2 .(7.16)

We show that these conditions are satisfied for the choice

e′1 = (0101m−3)2, e′2 = (1001m−3)2,

e′′1 = (0111m−3)2, e′′2 = (1011m−3)2,

where (εν · · · ε0)2 =
∑

i≤ν εi2
i and 1k means k-fold repetition of the digit 1.

Condition (7.16) is clearly true. In order to verify (7.13) and (7.14), we note

that the binary representations of e′1, e
′
2, e

′′
1 , e

′′
2 all start with m − 3 ones. We

therefore define

j = T
(m−3)
1,(1m−3)2

(i).

By (7.10), which implies i(�) + � < 2m−3 for 0 ≤ � < L, we have

(7.17) j(�) =

⌊
i(�) + � + 2m−3 − 1

2m−3

⌋
=

⎧⎨
⎩0, � = 0,

1, 1 ≤ � < L.

Moreover, by (7.12) we obtain i(r+ �)+ �− 1 mod 2m ∈ {0, . . . , 2L− 1}. Using
also (7.10) and (7.11), we get

(7.18) j(r + �) =

⌊
i(r + �) + r + �+ 2m−3 − 1

2m−3

⌋
≡ 1 mod 8

for 0 ≤ � < L. Since j ∈ IK , this equation implies that the value j(�) is

constant for � ∈ [r, r + L). By (7.4) we obtain (7.13) and (7.14) as soon as we

show that T
(3)
0,2 (j) = T

(3)
0,3 (j) = T

(3)
0,4 (j) = T

(3)
0,5 (j). Using (7.17) and (7.18) we

have for 0 ≤ e ≤ 6 and 0 ≤ � < L

T
(3)
0,e (j)(�) =

⌊
j(�) + e

8

⌋
≤
⌊
7

8

⌋
= 0,

T
(3)
0,e (j)(r + �) =

⌊
j(r + �) + e

8

⌋
=

⌊
j(r) − 1

8
+
e+ 1

8

⌋
=
j(r) − 1

8
.
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It remains to verify (7.15), which is clearly equivalent to

f
(m),i
1,e′1

f
(m),i
1,e′′1

= −f (m),i
1,e′2

f
(m),i
1,e′′2

,

since the weights have absolute value 1. By (7.4), (7.5) and the definition of

e′1, e
′
2, e

′′
1 , e

′′
2 this equation is equivalent to

(7.19) f
(3),j
0,2 f

(3),j
0,3 = −f (3),j

0,4 f
(3),j
0,5 .

By (7.9) we have, for any sequence i ∈ IK and all δ, ε ∈ {0, 1},

f i
δ,ε = e

(
1

2

∑
�<L

a�(i(�)− i(r + �))

)
.

Using this identity, (7.17), (7.18) and the assumption a0 = 1 the verification

of (7.19) is straightforward, which completes the proof.

Let d = (dλ−1 · · · d0)2 < 2λ. We call a position μ good (a notion that depends

on λ, d, i, r and m), if the following properties are satisfied:

(a) 0 ≤ μ ≤ λ−m.

(b) (dμ+m−1, . . . , dμ+1, dμ) = (0, . . . , 0, 1).

(c) T
(μ)
d,0 (i)(r) ≡ 1 mod 2m.

The point of this notion is that at each good position, using Lemma 7.2, we

win a factor 1 − η in the estimate of Φ(h, d). This argument is carried out in

the following lemma.

Lemma 7.3: Let i ∈ IK and k ≥ 0 and assume that d < 2λ is such that the

number of good positions μ is at least k. Then∣∣Gi
λ(h, d)

∣∣2 ≤ (1 − η)k

holds for all h ∈ Z and η = 2/4m.

Proof. Let 0 ≤ μ0 < · · · < μk−1 be good positions. We set μk = λ. The

estimate (7.8) implies that

∣∣Gi
λ(h, d)

∣∣2 ≤ max
e<2μ0

∣∣∣∣GT
(μ0)

d,e (i)

λ−μ0
(h, �d/2μ0�)

∣∣∣∣
2

.

Let 0 ≤ j < k. Since the position μj is good, we know by (c) and (7.3) that

T
(μj)
d,e (r) mod 2m ∈ {1, 2} for all e < 2μj . Thus we can apply Lemma 7.2, the
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identity (7.4) and the estimate (7.8) and obtain

max
e<2μj

∣∣∣∣GT
(μj )

d,e (i)

λ−μj
(h, �d/2μj�)

∣∣∣∣
2

≤ max
e<2μj

(1 − η) max
e′<2m

∣∣∣∣∣GT
(m)

1,e′ ◦T
(μj )

d,e (i)

λ−μj−m

(
h,
⌊
d/2μj+m

⌋)∣∣∣∣∣
2

= (1− η) max
e<2μj+m

∣∣∣∣GT
(μj+m)

d,e (i)

λ−μj−m

(
h,
⌊
d/2μj+m

⌋)∣∣∣∣
2

≤ (1− η) max
e<2μj+1

∣∣∣∣GT
(μj+1)

d,e (i)

λ−μj+1
(h, �d/2μj+1�)

∣∣∣∣
2

.

This proves the desired upper bound.

In order to show that for most d there are many good positions, we have a

closer look at condition (7.12).

Lemma 7.4: Write r = 2xr0 with r0 odd and assume that y ≥ 0 and 0 ≤ d0 <

2y. Let i ∈ IK . There exists a unique d1 ∈ {0, . . . , 2m − 1} such that for all

d2 ∈ {0, . . . , 2x−m − 1} we have

T
(x+y)
d,0 (i)(r) ≡ 1 mod 2m,

where d = 2y+md2 + 2yd1 + d0.

If d′1 < 2y is different from d1, we have T
(x+y)
d,0 (i)(r) �≡ 1 mod 2m for all

d2 ∈ {0, . . . , 2x−m − 1}.
Proof. Since r0 is odd, the statements follow from

T
(x+y)
d,0 (i)(r) =

⌊
i(r)

2x+y
+
r0d0
2y

⌋
+ r0d1 + r02

md2

≡
⌊
i(r)

2x+y
+
r0d0
2y

⌋
+ r0d1 mod 2m.

Note that the good-ness of a position μ does not depend on the digits of d

with indices μ−x+m, . . . , μ−1. Let λ ≥ 0. We decompose the set {0, . . . , λ−1}
into intervals as follows. Consider the mutually disjoint sets of indices

A1 = {2�1x+ �0m : 0 ≤ �1 < �λ/(2x)� and 0 ≤ �0 < �x/m�},
A2 = {(2�1 + 1)x+ �0m : 0 ≤ �1 < �λ/(2x)� and 0 ≤ �0 < �x/m�},

which form the starting points of intervals of length m. We call these intervals

to be of type 1 and 2 respectively. The integers in [0, λ) not contained in
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an interval of type 1 or 2 form intervals of type 3, having total length λ −
2m �λ/(2x)� �x/m�. Assume that λ ≥ 2x, which will be guaranteed by the

hypotheses of Proposition 2.7. Then, beginning at 0, the resulting partition

starts with �x/m� intervals of type 1, followed possibly (if and only if m � x) by

an interval of type 3 , which fills up the gap up to position x. This is followed

by �x/m� intervals of type 2 and possibly an interval of type 3, reaching 2x.

This pattern continues up to 2x �λ/(2x)�; the last interval of type 3 however

extends up to λ.

Lemma 7.5: Let M be a k-element subset of A2. The number of d < 2λ such

that M is the set of good positions in A2 equals 2λ−2mλ0(22m − 1)λ0−k, where

λ0 = |A1| = |A2| = �λ/(2x)� �x/m�.
Proof. We construct recursively the set of admissible d = (dλ−1 · · · d0)2 < 2λ.

In order to do so, we let μ run through the set A1 ∪ A2 ∪ A3 in ascend-

ing order and choose digits of d in such a way that all digits up to posi-

tion μ have already been chosen when we reach μ. If we encounter an index

μ ∈ A1, we set the 2m digits dμ, . . . , dμ+m−1, dμ+x, . . . , dμ+x+m−1 according

to two cases: if μ + x ∈ M , we have to guarantee good-ness of the posi-

tion μ + x, we therefore set (dμ+m−1, . . . , dμ) according to Lemma 7.4 and

(dμ+x+m−1, . . . , dμ+x) = (0, . . . , 0, 1). If μ+ x �∈ M , we may choose any of the

remaining 22m− 1 possibilities for these 2m digits, such that the position μ+ x

will not be good. If we encounter μ ∈ A2, we do nothing, since the correspond-

ing block of length m has already been filled. If we find an index μ ∈ A3, it is

the starting point of an interval I of type 3. We may set the digits of d with

indices in I freely. Therefore we can choose λ − 2m|A1| digits arbitrarily, and

|A1| − k times we may choose out of 22m − 1 possibilities. This implies the

statement of the lemma.

The proof of Proposition 2.7 is now easy.

Proof of Proposition 2.7. Let λ0 = �λ/(2x)� �x/m�. It follows from Lemma 7.5

that there are precisely
(
λ0

k

)
2λ−2mλ0

(
22m − 1

)λ0−k
integers d ∈ {0, . . . , 2λ − 1}

such that exactly k positions from A2 are good. Since each d occurs for some

k ≤ λ0, Lemma 7.3 implies

∑
d<2λ

max
h<2λ

∣∣Gi
λ(h, d)

∣∣2 ≤ 2λ−2mλ0

λ0∑
k=0

(
λ0
k

)
(22m − 1)λ0−k(1 − η)k
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= 2λ(1− 2/16m)λ0 .

By (7.11) we obtain

λ0 = �λ/(2x)� �x/m� ≥ λ− 2x

2x

x−m

m
≥ λ/2

2x

x/2

m
=

λ

8m
.

This finishes the proof.

8. Proof of Proposition 2.8

The following elementary lemma summarizes (and extends) Lemmas 9 through 11

from [22].

Lemma 8.1: Let a, b be real numbers such that a ≤ b and set K = b − a.

Assume that f : [a, b] → R is twice differentiable and |f ′′| ≤ B. Then for all

α ∈ f ′([a, b]) the following statements hold.

(i) For a ≤ x ≤ b we have

|xα+ f(a)− aα− f(x)| ≤ BK2.

(ii) If x ∈ [a, b] is such that ‖xα+ f(a)− aα‖ > BK2, then

�f(x)� = �xα + f(a)− aα� .

(iii) If a, b are integers, L ≥ 1 is an integer, f : [a, b + L − 1] → R is twice

differentiable, α ∈ f ′([a, b]) and |f ′′| ≤ B, then

|{n ∈ (a, b] : �f(n+ �)� �= �(n+ �)α+ f(a)− aα� for some � < L}|
≤ 2B(K + L− 1)3L+KLDK(α).

We prove Proposition 2.8. For convenience, let ϕ(n) = 0 for n ≤ 0 and

set f(n) = nc. We follow the proof of [22, Proposition 1]. By analogous

considerations as given there, we may assume that K is an integer and that

2 ≤ K ≤ N .

Define integral partition points ai = �N� + iK for i ≥ 0 and set

M = max{i : ai+L−1 ≤ 2N}. The integerM satisfies the estimate KM ≤ N .

We have the decomposition

(8.1) (N, 2N ] = (N, �N�] ∪
⋃

0≤i<M

(ai, ai+1] ∪ (aM , 2N ].
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Let α ∈ R. Then by the triangle inequality and the relation ai+1 − ai = K we

have for i < M

(8.2)
∣∣|{n ∈ (ai, ai+1] : ϕ (�(n+ �)c�) = ω� for 0 ≤ � < L}| −Kδ

∣∣
≤ T1(α, i) + T2(α, i),

where

T1(α, i) =
∣∣|{n ∈ (ai, ai+1] : ϕ (�(n+ �)c�) = ω� for 0 ≤ � < L}|
− |{n ∈ (ai, ai+1] : ϕ (�(n+ �)α+ f(ai)− aiα�) = ω� for 0 ≤ � < L}|∣∣,

T2(α, i) =
∣∣|{n ∈ (ai, ai+1] : ϕ (�(n+ �)α+ f(ai)− aiα�) = ω� for 0 ≤ � < L}|
−Kδ

∣∣.
We integrate both sides of (8.2) in the variable α from f ′(ai) to f ′(ai+1), divide

by the length of the integration range, and take the sum over i from 0 toM −1,

which yields

(8.3)
∣∣|{n ∈ (a0, aM ] : ϕ (�(n+ �)c�) = ω� for 0 ≤ � < L}| −MKδ

∣∣
≤

∑
0≤i<M

1

f ′(ai+1)− f ′(ai)

∫ f ′(ai+1)

f ′(ai)

(
T1(α, i) + T2(α, i)

)
dα.

We estimate the first summand. If 0 ≤ i < M and α ∈ f ′([ai, ai+1]), Lemma 8.1

gives

(8.4) T1(α, i) ≤ 2f ′′(N)(K + L− 1)3L+ LKDK(α).

By the Mean Value Theorem we have

1

f ′(ai+1)− f ′(ai)
� N

K

1

f ′(2N)− f ′(N)
(8.5)

for 0 ≤ i < M . Using this and the integral mean discrepancy estimate (3.3) we

obtain ∑
0≤i<M

1

f ′(ai+1)− f ′(ai)

∫ f ′(ai+1)

f ′(ai)

DK(α) dα

≤ N

K

1

f ′(2N)− f ′(N)

∑
0≤i<M

∫ f ′(ai+1)

f ′(ai)

DK(α) dα

≤ N

K

f ′(2N)− f ′(N) + 1

f ′(2N)− f ′(N)

∫ 1

0

DK(α) dα
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�
(
N +

1

f ′′(N)

)(log+K)2
K2

.

By the estimates KM ≤ N and N ≥ C/f ′′(N) this implies

∑
0≤i<M

1

f ′(ai+1)− f ′(ai)

∫ f ′(ai+1)

f ′(ai)

T1(α, i) dα

≤ C1NL

(
f ′′(N)K2 +

(
log+N

)2
K

)

for some constant C1 depending on c and L. We turn our attention to the

second summand in (8.3). Inserting (8.5) and the definition of T2(α, i), we

easily obtain

(8.6)
∑

0≤i<M

1

f ′(ai+1)− f ′(ai)

∫ f ′(ai+1)

f ′(ai)

T2(α, i) dα� N J(N,K).

Estimating also the contributions of the first and the last interval in (8.1) trivi-

ally and collecting the error terms, we obtain

∣∣∣∣ 1N
∣∣{n ∈ (N, 2N ] : ϕ

(⌊
(n+ �)c

⌋)
= ω� for 0 ≤ � < L

}∣∣ − δ

∣∣∣∣
≤ C2

(
f ′′(N)K2 +

(logN)2

K
+ J(N,K) +

K

N

)
,

for some C2 depending on c and L. By the estimate f ′′(N) ≥ C/N the last

term is dominated by the first, which finishes the proof of Proposition 2.8.
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