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ABSTRACT

We consider reproducing kernel Hilbert spaces of Dirichlet series with ker-

nels of the form k(s, u) =
∑

ann−s−ū, and characterize when such a space

is a complete Pick space. We then discuss what it means for two repro-

ducing kernel Hilbert spaces to be “the same”, and introduce a notion of

weak isomorphism. Many of the spaces we consider turn out to be weakly

isomorphic as reproducing kernel Hilbert spaces to the Drury–Arveson

space H2
d in d variables, where d can be any number in {1, 2, . . . ,∞}, and

in particular their multiplier algebras are unitarily equivalent to the mul-

tiplier algebra of H2
d . Thus, a family of multiplier algebras of Dirichlet

series is exhibited with the property that every complete Pick algebra is

a quotient of each member of this family. Finally, we determine precisely

when such a space of Dirichlet series is weakly isomorphic as a reproducing

kernel Hilbert space to H2
d and when its multiplier algebra is isometrically

isomorphic to Mult(H2
d).
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1. Introduction

Let H be a reproducing kernel Hilbert space on the set X , with kernel function

k(x, y) (below we shall also use the terminology Hilbert function space on

X). For any positive natural number m, we say that H (or k) has the m-Pick

property if, whenever W1, . . . ,WN is a finite set of m-by-m matrices, and

λ1, . . . , λN are points in X , and the mN -by-mN matrix given in block form by

[k(λi, λj)[Im −WiW
∗
j ]]

is positive semi-definite, then there is a multiplier Φ in the closed unit ball of

Mult(H⊗ Cm) that satisfies

Φ(λi) =Wi, 1 ≤ i ≤ N.

If H has the m-Pick property for all positive natural numbers, we say it has the

complete Pick property.

The most well-known space with the complete Pick property is the Hardy

space H2, but there are others, e.g., [1, 19, 17, 15, 13]. Spaces with the m-

Pick property are described in [3], but the description is cleaner for spaces with

the complete Pick property. These are totally described by the McCullough–

Quiggin theorem [16, 19, 2]. We say the kernel k is irreducible if X cannot

be partitioned into two non-empty sets X1, X2 such that k(x, y) = 0 whenever

x ∈ X1 and y ∈ X2. We shall make a standing assumption throughout this

note that all kernels are irreducible.

Theorem 1 (McCullough–Quiggin): A necessary and sufficient condition for

k to have the complete Pick property is that for any finite set {λ1, . . . , λN} of

distinct points in X , the matrix [ 1

k(λi, λj)

]
has exactly one positive eigenvalue.

It was proved in [2] that there is a universal space with the complete Pick

property, in the sense of Theorem 3 below. For d ∈ {1, 2, . . . ,∞}, let Bd denote

the open unit ball in a d-dimensional Hilbert space, and define a kernel ad on

Bd by

ad(ζ, λ) =
1

1− 〈ζ, λ〉 .
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When d = ∞ we simplify notation to a∞ = a. Let H2
∞ denote the Hilbert

function space on B∞ with a as its reproducing kernel (this is the infinite-

dimensional version of the Drury–Arveson space). We denote by M∞ the mul-

tiplier algebra Mult(H2
∞) of H2

∞. The space H2
∞ not only has the complete

Pick property (as can be easily seen from the McCullough–Quiggin theorem),

but is universal.

We shall say that a kernel onX is normalized at a point λ0∈X if k(ζ, λ0)=1

for all ζ. Any complete Pick kernel k can be normalized by replacing it by the

equivalent kernel

(2)
k(ζ, λ)

k(ζ, λ0)k(λ0, λ)
;

the condition that k is irreducible and has the 1-Pick property means that

k(ζ, λ0) is never 0 [4, Lemma 7.2], so (2) will remain holomorphic in ζ if k is.

Theorem 3: Suppose k is a kernel normalized at λ0. Then k has the complete

Pick property if and only if there is a map b : X → B∞ that maps λ0 to 0 and

satisfies

k(ζ, λ) = a(b(ζ), b(λ)).

It follows immediately from the theorem that every multiplier algebra of a

complete Pick space is a quotient of M∞. The purpose of this note is to show

that there is a space H of Dirichlet series that is also universal with respect to

having the complete Pick property, in the sense that every multiplier algebra of

a complete Pick space is a quotient of Mult(H). (This is Theorem 31 below.)

On the other hand, the space H is not universal in the same sense as Theorem

3 because its joint domain of definition is a half plane and this set turns out

to be “too small”. Thus we will begin by exploring notions of isomorphism of

reproducing kernel Hilbert spaces.

Acknowledgement. We would like to thank Michael Hartz for pointing out

a gap in an earlier version of this paper.

2. When are two reproducing kernel spaces the same?

A reproducing kernel Hilbert space H is equipped with a set X on which the

functions are defined. But the functions are also defined on every subset of X ,

and perhaps there are sets containing X to which the functions in H can be
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extended naturally. In this section we discuss some issues arising from the fact

that a reproducing kernel Hilbert space may be defined on a set which is not

“maximal”. Our discussion is similar to the one carried out in [8] (see their

Definition 1.5, algebraic consistency) and [13, Section 5].

Definition 4: We say that the reproducing kernel Hilbert spaces (H1, k1) on X1

and (H2, k2) on X2 are isomorphic as reproducing kernel Hilbert spaces

if there is a bijection φ : X1 → X2 such that

k2(φ(x), φ(y)) = k1(x, y) ∀x, y ∈ X1.

Equivalently, (H1, k1) on X1 and (H2, k2) on X2 are isomorphic as reprodu-

cing kernel Hilbert spaces if there is a bijection φ : X1 → X2 such that there is

unitary isomorphism between the spaces that is induced by composition with

the function φ. The above definition seems like the most natural condition

for saying that two reproducing kernel Hilbert spaces are the same. But the

space (H1, k1) need not come presented with a maximal set X1 on which it is a

function space. For example, suppose X1 and X2 are disjoint subsets of the unit

disk, both of which are sets of uniqueness, and let H1 be the Hardy space H2

restricted to X1, and H2 be H2 restricted to X2. Both spaces are “the same”,

but the kernels seem to live on disjoint sets.

The points of X1 are bounded point evaluations for H1. How does one find

others? If x is a bounded point evaluation, then the kernel function kx is a joint

eigenvector for the adjoint of every multiplication operator; but this may not

be the right generalization. Consider, for example, the Fock space, all entire

functions on C that are square integrable with respect to the standard Gaussian

measure. The only multipliers are the constant functions, so every vector in the

space is a joint eigenvector.

Instead, we shall use the following definition.

Definition 5: A vector v in the Hilbert function space H is a generalized

kernel function if v is non-zero and

(6) 〈fg, v〉 = 〈f, v〉 〈g, v〉 whenever f, g and fg are in H.
Clearly, every kernel function is also a generalized kernel function. Loosely, we

think of the generalized kernel functions as being the evaluation functionals for

the largest set to which functions in H can be extended so that H continues to

be a Hilbert function space. The correct interpretation of the previous sentence



Vol. 220, 2017 SPACES OF DIRICHLET SERIES 513

requires caution: every Hilbert space can be considered as a Hilbert function

space on itself—a Hilbert spaceH is just the set of all bounded linear functionals

on H . However, on this function space pointwise multiplication is not allowed

(the product of two linear functionals is no longer linear), and one may say that

it is not very interesting as a function space.

It should be kept in mind that when given a Hilbert function space H on a

set X , the realization of elements of H as functions on X determines a multipli-

cation between elements of H, and makes sense of the question whether fg ∈ H
when f, g ∈ H. Thus the generalized kernel functions of H (given as a Hilbert

function space on X) are the evaluation functionals for the largest set on which

H is a Hilbert function space with the same algebraic structure determined by

its realization as a function space on X . Note also that if H is a Hilbert function

space on X and f in H vanishes on X , then f = 0 in H.

In the most familiar examples of a Hilbert function space H on a set X , the

only generalized kernel functions are the point evaluations (see Definition 1.5

and the surrounding discussion as well as Theorem 2.1.15 in [8] and [13, Section

5]). We will encounter situations where X is only a small part of the space of

generalized kernel functions.

Proposition 7: Let H be a Hilbert function space on a set X with kernel k.

Define a set X̂ ⊆ H by

(8) X̂ = {g : g is a generalized kernel function}.
Then there is a map b : X → X̂ (injective if H separates the points of X) and

a Hilbert function space Ĥ on X̂, such that the map f̂ �→ f̂ ◦ b is an isometric

isomorphism of Ĥ onto H. Moreover, Ĥ separates the points of X̂ , and the set

of generalized kernel functions for Ĥ is {k̂ : k̂ ◦ b ∈ X̂}.
Proof. Let X̂ be as in (8). Define b : X → X̂ by

b(x) = kx.

By definition, b is injective if X separates points. For every f ∈ H, define

f̂ : X̂ → C by

f̂(g) = 〈f, g〉.
We have that f̂(b(x)) = f(x). Let Ĥ be the space {f̂ : f ∈ H}. We see that

f �→ f̂ is a linear bijection that respects multiplication when defined, and its

inverse is given by composition with b. Defining the norm in Ĥ by ‖f̂‖ := ‖f‖
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makes these linear isomorphisms isometric. Finally, it is clear that H and Ĥ
share the same set of generalized kernel functions, and those of H are identified

with X̂ .

Note that H and Ĥ might not be isomorphic as reproducing kernel Hilbert

spaces (i.e., in the sense of Definition 4), because b may fail to be surjective.

On the other hand, b preserves some additional structure that X has. For

example, if X is a topological space and k : X ×X → C is continuous, then b

is continuous. Indeed, this follows from considering

‖kx − ky‖2 = k(x, x) − k(x, y)− k(y, x) + k(y, y).

Likewise, if X ⊆ C is a domain and k : X×X → C is continuous, holomorphic in

the first variable and anti-holomorphic in the second variable, and if evaluation

of the derivative at every point of X is also bounded, then b : X → H is

anti-holomorphic.

In natural cases we can identify X̂ with a concrete subset of Cd.

Proposition 9: Let H be a Hilbert function space on a set X , and suppose

that there are d functions {φ1, φ2, . . .} (where d ∈ {1, 2, . . . ,∞}) such that the

algebra generated by {φ1, φ2, . . .} is contained in H and dense in H. Then X̂

can be identified with the set

(10) X̂ = {(〈φ1, g〉, 〈φ2, g〉, . . .) : g is a generalized kernel function}.
Proof. This is similar to the previous proposition, with the change that we

define b : X → Cd by

(11) b(x) = (φ1(x), φ2(x), . . .) = (〈φ1, kx〉, 〈φ2, kx〉, . . .).

If one of the φi’s is equal to the constant function 1, then it can be omitted

in the above construction (provided the space is more than one-dimensional).

Thus if X is a subset of Cd and H contains the algebra of polynomials as a dense

subspace, then the set X̂ of generalized kernel functions can also be identified

with a subset of Cd.

In many cases of interest, the function b from (11) can be chosen to play

the role of the embedding b → B∞ from Theorem 3 (see Section 5 below, or

Section 7 in [9]). Adapting the arguments of [13, Section 5] (which use slightly

different definitions) we see that X̂ can be identified with a subset of the smallest

multiplier variety in the ball containing b(X); we do not know whether in general
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X̂ can be identified with the smallest multiplier variety containing b(X). See

Remark 36.

Definition 12: Let H1 and H2 be reproducing kernel Hilbert spaces. A unitary

U : H1 → H2 is said to be a multiplicative unitary if

If f, g ∈ H1, then fg ∈ H1 if and only if U(f)U(g) ∈ H2.(13)

U(fg) = U(f)U(g) whenever f, g and fg are in H1.(14)

Note that U is a multiplicative unitary if and only if U∗ is.

Definition 15: Let H1 and H2 be reproducing kernel Hilbert spaces. We shall

say thatH1 and H2 areweakly isomorphic as reproducing kernel Hilbert

spaces if there is a multiplicative unitary U from H1 onto H2.

Proposition 16: For every reproducing kernel Hilbert space H on a set X , H
is weakly isomorphic as a reproducing kernel Hilbert space to Ĥ on X̂ .

This follows from Proposition 7.

We shall prove (Theorem 31) that there are Hilbert spaces of Dirichlet series

that are weakly isomorphic as reproducing kernel Hilbert spaces to H2
∞.

Proposition 17: Let U : H1 → H2 be a unitary. Then U is multiplicative if

and only if it maps the set of generalized kernel functions in H1 onto the set of

generalized kernel functions in H2. When these conditions hold, then there is

a multiplicative unitary Û : Ĥ1 → Ĥ2 and a bijection φ : X̂1 → X̂2 such that

Û(f) = f ◦ φ−1.

Proof. Suppose that U is a multiplicative unitary. Let v be a generalized kernel

function in H1, and let V = Uv. Let F,G and FG be in H2. Let f = U∗F and

g = U∗G. Then fg ∈ H1, by (13). We have

〈FG, V 〉H2 =〈U∗(FG), U∗V 〉H1

=〈fg, v〉
=〈f, v〉〈g, v〉
=〈F, V 〉H2〈G, V 〉H2 .

Thus U maps X̂1 into X̂2; applying this to U∗ we conclude “onto”.

Conversely, assume that U maps X̂1 onto X̂2. Applying Proposition 16 we

pass to a unitary Û : Ĥ1 → Ĥ2 which maps X̂1 onto X̂2. There exists therefore
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a bijective function φ : X̂1 → X̂2 such that Ûk1x = k2φ(x) for every x ∈ X̂1.

It follows that Û∗ is implemented by composition with φ−1, therefore Û is

implemented by composition with φ. In particular, Û is multiplicative, so U is

too.

Corollary 18: Let H1 and H2 be reproducing kernel Hilbert spaces. Then

H1 and H2 are weakly isomorphic as reproducing kernel Hilbert spaces if and

only if Ĥ1 and Ĥ2 are isomorphic as reproducing kernel Hilbert spaces.

3. The complete Pick property for spaces with nice bases

Definition 19: Let Y be a set. A sequence {φn}∞n=1 of functions defined on Y

is said to be strongly linearly independent on Y if for all k ∈ N, there is

no series of the form
∑

n�=k cnφn which converges pointwise to φk on Y .

Examples of strongly independent sequences are given by φn(z) = zn or

φn(s) = n−s on non-empty open sets. In fact, any space of functions where

there is a series expansion with a uniqueness theorem would be an example.

Lemma 20: Let {φn}∞n=1 be a strongly linearly independent sequence of functi-

ons on Y , and let {an}∞n=1 be a sequence of real numbers. Consider the kernel

K(x, y) =

∞∑
n=1

anφn(x)φn(y).

Then K is positive semi-definite if and only if an ≥ 0 for all n.

Proof. We prove the nontrivial (but probably well known) direction: suppose

that K is positive semi-definite. Put I = {n : an < 0} and J = {n : an ≥ 0}.
Then

KI(x, y) :=
∑
n∈I

−anφn(x)φn(y)

and

KJ(x, y) :=
∑
n∈J

anφn(x)φn(y)

are both positive semi-definite kernels, and we have the kernel inequality

KI ≤ KJ .

In particular, for every m ∈ I

φm(x)φm(y) ≤ cKJ(x, y)
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for some positive constant c. We deduce (by [18, Theorem 4.15]) that φm is

in the reproducing kernel Hilbert space H(KJ) determined by KJ . By [18,

Theorem 3.12] it follows that {φn}n∈J is a Parseval frame for H(KJ). From

[18, Proposition 3.10] it then follows that

φm =
∑
n∈J

〈φm, φn〉φn

in norm (hence pointwise), contradicting the assumption that the sequence

{φn}∞n=1 is strongly linearly independent. If follows that I must be empty.

Let H be a reproducing kernel Hilbert space on a set X that contains the

constants. Let {φn}∞n=1 be an orthogonal basis for H. Then the kernel of H is

given by

(21) k(x, y) =

∞∑
n=1

anφn(x)φn(y),

where an = ‖φn‖−2.

Proposition 22: Suppose that k is a kernel on X that is never zero, and is

normalized at x0. Suppose that {φn}∞n=1 is an orthogonal basis for H, and that

the sequence {φn}∞n=1 is such that one can write 1− k(x, y)−1 as

(23) 1− k(x, y)−1 =

∞∑
n=1

αnφn(x)φn(y).

Then k is a complete Pick kernel if αn ≥ 0 for all n ≥ 1. Conversely, if {φn}∞n=1

is a strongly linearly independent sequence on X , then the condition αn ≥ 0 is

also necessary for H to be a complete Pick space.

Proof. Suppose that αn ≥ 0 for all n ≥ 1. Put bn =
√
αn. Define a function

f : X → B∞ by

f(x) = (b1φ1(x), b2φ2(x), . . .).

By (23) and positivity of k, we have ‖f(x)‖2 = 1− k(x, x)−1 < 1 for all x, so f

indeed maps into B∞. Rearranging (23), we find

k(x, y) =
1

1− 〈f(x), f(y)〉 .

It follows that H is isomorphic to the space span{af(x) : x ∈ X}, thus H is a

complete Pick space, since H2
∞ is.
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Conversely, assume that H is a complete Pick space and that {φn}∞n=1 is

strongly linearly independent. We re-organize (23) as

(24) k(x, y)−1 = 1−
∞∑
n=1

αnφn(x)φn(y).

By the McCullough–Quiggin Theorem 1, the complete Pick property implies

that for every choice of points x1, . . . , xN ∈ X , the matrix
[
k−1(xi, xj)

]N
i,j=0

has exactly one positive eigenvalue. By taking the Schur complement with

respect to the (0, 0) entry, we conclude that the N -by-N matrix with entries[ 1

k(xi, xj)
− k(x0, x0)

k(xi, x0)k(x0, xj)

]N
i,j=1

=
[ 1

k(xi, xj)
− 1

]N
i,j=1

is negative semi-definite. Using (24), we get[ ∞∑
n=1

αnφn(xi)φn(xj)

]N
i,j=1

=
[
1− 1

k(xi, xj)

]N
i,j=1

≥ 0.

Thus the kernel

k̃(x, y) :=

∞∑
n=1

αnφn(x)φn(y)

is positive semi-definite on X . By the lemma, αn ≥ 0 for all n.

4. Spaces of Dirichlet series

We can apply Proposition 22 to spaces of Dirichlet series. Let us provide some

details.

Let H be a Hilbert function space of Dirichlet series, with the kernel given

by k(s, u) =
∑
ann

−s−ū, and suppose that this kernel converges for all s, u in

some half plane Hδ := {s : �(s) > δ}. For simplicity we assume that a1 = 1.

Since the coefficients of this series are positive, the abscissae of absolute and

uniform convergence are the same as the abscissa of convergence of the series.

One sees that H is the space of all functions h with Dirichlet series

h(s) =
∑

γnn
−s

satisfying
∑
a−1
n |γn|2 < ∞ (the formal Dirichlet series ku(s) =

∑
ann

−ūn−s

is readily seen to satisfy this bound provided Reu > δ). Consequently, the

Dirichlet series of every h ∈ H converges also in Hδ. It follows that for every

Hilbert space of Dirichlet series H as above there exists a δ0 ∈ [−∞,∞) such

that the Dirichlet series for every h ∈ H converges in the half plane Hδ0 , and
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that there are functions in H that do not converge on any strictly bigger half

plane.

Let cn denote the coefficients of k−1 as follows:

1∑∞
n=1 ann

−s
=

∞∑
n=1

cnn
−s.

One finds that c1 = 1 and that cn for n > 1 are given by the recursive formula

(25) cn = −
∑

d<n,d|n
an/dcd.

Now we will see how to obtain that H is a complete Pick space if and only if

cn ≤ 0 for all n > 1.

Suppose that cn ≤ 0 for all n > 1. Then the sum
∑

d<n,d|n an/dcd is non-

negative for all n > 1. Since the first term is equal to an and an ≥ 0, and as all

other terms are negative, it follows that∣∣∣∣ ∑
d<n,d|n

an/dcd

∣∣∣∣ ≤ an

for all n > 1. Hence |cn| ≤ an for all n.

We conclude the following: if cn ≤ 0 for n > 1 then |cn| ≤ an for all n; in

particular, the Dirichlet series for k−1 converges on Hδ too, and Proposition 22

applies to show that H is a complete Pick space.

Conversely, if H is a complete Pick space with kernel

k(s, u) = f(s+ ū)

where

f(s) = 1 +
∑
n≥2

ann
−s

converges on some half planeHσ1 , then k
−1 is also given by a Dirichlet series that

converges uniformly on some half plane, say Hσ2 . Now put σ = max{σ1, σ2}.
It is well known that the Dirichlet series of a function is unique, hence the

condition of strong linear independence is satisfied. Now Proposition 22 applies

to H|Hσ (which is still a complete Pick space), and we conclude that cn ≤ 0 for

n > 1 (and the remarks above now show that σ = σ1). Thus, we have proved

Theorem 26.
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Theorem 26: Suppose H is a holomorphic Hilbert space with kernel function

k(s, u) =

∞∑
n=1

ann
−(s+ū)

and assume a1 �= 0. Let the Dirichlet coefficients of 1
k at infinity be given by

(27)
1∑∞

n=1 ann
−s

=

∞∑
n=1

cnn
−s.

Then H has the complete Pick property if and only if

cn ≤ 0 ∀n ≥ 2.

Examples of kernels with the complete Pick property are easy to come by

using Theorem 26 and known formulas for the zeta function [21]. For example,

let k(s, u) = φ(s+ ū). Then this will give a complete Pick kernel if

φ(s) =
1

2− ζ(s)
=

∞∑
n=1

f(n)

ns
,

φ(s) =
ζ(s)

ζ(s) + ζ′(s)
,

φ(s) =
ζ(2s)

2ζ(2s)− ζ(s)
.

In the first formula, f(n) is the number of distinct ways in which n can be

factored (where the order matters).

We finish this section by showing that Hilbert spaces of Dirichlet series with

the complete Pick property cannot be supported on the entire plane.

Theorem 28: Let H be a Hilbert space of Dirichlet series with kernel

k(s, u) = 1 +
∑
n≥2

ann
−s−ū,

and suppose that H has the complete Pick property, and that dimH > 1. If Hδ

is the largest half plane of convergence for H, then δ > −∞.

Proof. If δ = −∞, then for every t > 0 the series
∑
ann

t converges. Thus, for

all t > 0, there exists a constant Mt such that an ≤ Mtn
−t for all n ≥ 1. On

the other hand, inverting (25) and using Theorem 26, we find that

an =
∑

d<n,d|n
ad|cn/d|,
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and therefore

ank ≥ |cn|k.
Finding some n > 1 so that cn �= 0, we find

|cn|k ≤ ank ≤Mtn
−kt

for all k and all t. Fixing n and taking t sufficiently large we obtain a contra-

diction.

It follows from the above theorem and a change of variables that all reprodu-

cing kernel Hilbert spaces of Dirichlet series with the complete Pick property are

isomorphic as reproducing kernel Hilbert spaces to a space with joint domain

of convergence equal to the right half plane H0.

5. The universal representation

Let {bk}∞k=1 be a sequence of positive numbers such that
∑∞

k=1 b
2
k = 1. Mo-

tivated by the first part of the proof of Proposition 22, we consider the map

f : H0 → B∞ given by

(29) f(s) = (b1p
−s
1 , b2p

−s
2 , b3p

−s
3 , . . .),

where pk denotes the kth prime. We define a kernel in H0 by

k(s, u) = a(f(s), f(u)) =
∑
n

ann
−s−ū,

and we denote by H the Hilbert function space determined by k. We have that

H is a complete Pick space on H0.

Let us recall some familiar facts about H (see [20]). The space H is isometric

to the restriction ofH2∞ to the smallest multiplier-variety V in B∞ that contains

f(H0), which means

(30) V = {z ∈ B∞ : g(z) = 0 for all g ∈ M∞ such that g|f(H0) ≡ 0}.
The mapping U : kλ �→ af(λ) extends to a unitary map from H onto Kf(H0),

where

Kf(H0) := ∨{af(s) : s ∈ H0} ⊆ H2
∞.

Denoting

KV := ∨{av : v ∈ V } ⊆ H2
∞,
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we have that, as subspaces of H2
∞, KV = Kf(H0) (see Proposition 2.2 in [10]),

but it is important to remember that we consider Kf(H0) as a Hilbert function

space on f(H0) and KV as a Hilbert function space on V .

The adjoint of U is given by U∗h = h◦f . It is clear that U is a multiplicative

unitary from H onto Kf(H0); we will show below (Theorem 31) that U is a

multiplicative unitary from H onto KV . Note the difference: we must show

that if g1, g2 and h are in H2∞, and g1g2 = h on f(H0), then g1g2 = h on V .

Let Mult(H) be the multiplier algebra of H. Then Mult(H) is isomorphic to

MV := Mult(KV ); the isomorphism Φ : MV → Mult(H) is given by

Φ(Mg) = U∗MgU, g ∈ MV .

For g ∈ MV and h ∈ KV , we compute

U∗(gh) = (g ◦ f) · (h ◦ f) = (g ◦ f)U∗h.

Thus Φ(Mg) = U∗MgU =Mg◦f , or simply Φ(g) = g ◦ f .
It is interesting to see where Φ−1 sends the functions n−s. To this end, we

compute

Φ(zk)(s) = zk ◦ f(s) = bkp
−s
k .

Thus Φ−1(p−s
k ) = b−1

k zk, and Φ−1(n−s) is given by the appropriate product,

determined by the prime factoring of n. To set notation we spell this out: if

n = pμ1

1 · · · pμk

k , we write μ(n) = μ = (μ1, . . . , μk, 0, 0, . . .), we write n(μ) = n,

and we have

Φ−1(n−s) = (bμ(n))−1zμ(n).

Theorem 31: Let the notation be as above. Then V = B∞, and the map

U : kλ �→ af(λ) extends to a multiplicative unitary from H onto KV = H2
∞.

Thus, H is weakly isomorphic as a reproducing kernel Hilbert space to H2∞,

and in particular Mult(H) is unitarily equivalent to M∞ := Mult(H2
∞).

We will need two lemmata. For r ∈ (0, 1), and g : B∞ → C, we denote by gr

the function gr(z) = g(rz) for all z ∈ B∞.

Lemma 32: Let g : B∞ → C be a function such that gr ∈ M∞ for all r ∈ (0, 1).

For every ρ ∈ (0, 1), there exists a constant Cρ such that for all z, w ∈ B∞,

(33) ‖z‖, ‖w‖ < ρ⇒ ‖g(w)− g(z)‖ ≤ Cρ‖z − w‖.
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Proof. We begin by proving the result for g ∈ M∞. Without loss of generality,

we may assume that ‖g‖Mult(H2
d)

≤ 1. By the positivity of the 2 point Pick

matrix of g, we have

(1− |g(z)|2)(1 − |g(w)|2)
(1 − ‖z‖2)(1 − ‖w‖2) ≥|1− g(z)g(w)|2

|1− 〈z, w〉|2

∴
∣∣∣ g(z)− g(w)

1− g(z)g(w)

∣∣∣2 ≤1− (1− ‖z‖2)(1− ‖w‖2)
|1− 〈z, w〉|2

≤
∥∥∥ z − w

1− 〈z, w〉
∥∥∥2.

Since ‖1 − 〈z, w〉‖ ≥ 1 − ρ2 and |1 − g(z)g(w)| ≤ 2, we obtain the result for

multipliers.

Now let g be as in the statement of the lemma. Fix r ∈ (ρ, 1), and consider

gr. Then gr is a multiplier, and by the previous paragraph there is a constant

C′ such that for all z, w ∈ B∞,

‖z‖, ‖w‖ < ρ/r ⇒ ‖g(rw) − g(rz)‖ ≤ C′‖z − w‖.
Setting Cρ = C′/r, we obtain (33).

Note that the hypotheses of Lemma 32 hold for all g ∈ H2
∞—and therefore

for all g ∈ M∞—because gr then has a Taylor series that converges absolutely

in a neighborhood of the ball for all r.

Lemma 34: Let g : B∞ → C be a function such that gr ∈ M∞ for all r ∈ (0, 1).

If g vanishes on f(H0), then g = 0 on all B∞.

Proof. Fix ε > 0 and define Lε to be the line Lε = {ε + it : t ∈ R}. For every

N we let PN denote the orthogonal projection onto

{z ∈ �2 : zN+1 = zN+2 = · · · = 0}.
We define gN to be the restriction of g to the subspace

PNB∞ = {z ∈ B∞ : zN+1 = zN+2 = · · · = 0}.
It will be convenient to let W denote f(Lε), and let WN = PNf(Lε). Thus

WN = {(b1p−ε
1 e−i log p1t, . . . , bNp

−ε
N e−i log pN t) : t ∈ R}.

Suppose we can show that gN vanishes on WN for all N . By Kronecker’s

theorem, WN is dense in the polytorus b1p
−ε
1 T× · · · × bNp

−ε
N T ⊂ BN . So if gN

vanished on WN , by the maximum principle it would vanish on a polydisk, and
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hence it would be zero on the whole ball BN . But g has a power series of the

form

g(z) =
∑

cμz
μ,

where μ runs over all finite multi-indices. From gN ≡ 0 for all N , it would

follow that cμ = 0 for all μ, hence g ≡ 0.

Thus we must show that gN vanishes on WN for all N . Fix N0, and let

N > N0. Now apply Lemma 32 to g with w ∈W and z = PNw, noting that for

any 2−ε < ρ < 1, we have W ⊂ ρB∞. Since g(w) = 0 and g(z) = gN (z), we get

|gN (z)| ≤ Cρ‖w − z‖ = Cρ

√√√√ ∞∑
k=N+1

|bk|2p−2ε
k .

This gives that |gN | restricted to WN has values less than CρrN , where

rN :=

√∑
k>N

b2kp
−2ε
k .

Since WN is dense in the polytorus

b1p
−ε
1 T× · · · × bNp

−ε
N T,

the maximum principle gives that ‖gN‖∞ ≤ CρrN on the polydisk

b1p
−ε
1 D× · · · × bNp

−ε
N D.

Since N0 < N , it follows that

(35) |gN0 | ≤ CρrN

on WN0 . Letting N → ∞ in (35), we get gN0 ≡ 0 on WN0 , as required.

Proof of Theorem 31. To show that the multiplier closure V of f(H0) (given by

(30) ) is equal to B∞, we must show that the only multiplier g that vanishes on

f(H0) is g = 0. This follows from Lemma 34.

It remains to show that U is a multiplicative unitary. Clearly, U∗ is a multi-

plicative unitary from Kf(H0) to H, because it is implemented by composition

with a bijective function f : H0 → f(H0). Now, every h ∈ Kf(H0) (considered

as reproducing kernel Hilbert space on f(H0)) extends uniquely to a function

in KV = H2∞ (a reproducing kernel Hilbert space on B∞). We need to show

that this extension operator is a multiplicative unitary.

When viewing Kf(H0) as the subspace of H2
∞ spanned by af(s) (s ∈ H0),

this extension operator becomes the identity map, so it may seem like there is
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nothing to prove. But there is something to prove: we have to show that if

g1, g2, h ∈ H2∞, and that g1g2|f(H0) = h|f(H0), then g1g2 = h on the whole ball.

This would show that g1g2 ∈ H2∞ if and only if g1|f(H0)g2|f(H0) ∈ Kf(H0).

The function F = g1g2 − h satisfies the assumptions of Lemma 34 (since hr,

(g1)r and (g2)r are multipliers, Fr = (g1)r(g2)r − (h)r is a multiplier too), so

invoking this lemma completes the proof.

Remark 36: It follows from the proof of [13, Lemma 5.2(a)] (where the setting is

somewhat different), or from Proposition 9, that the generalized kernel functions

of H2
∞ are precisely the point evaluations in B∞, thus in the setting of Theorem

31 we have the identification f̂(H0) = V = B∞.

Corollary 37: The norm of an element h(s) =
∑
γnn

−s ∈ H is given by

(38) ‖h‖2 =
∑
n

|γn|2
(bμ(n))2

μ(n)!

|μ(n)|! .

Proof. We have

U∗(zμ)(s) =zμ ◦ f(s)
=bμn(μ)−s,

so

U(n−s) =
1

bμ(n)
zμ(n).

Using ‖zμ‖2 = μ(n)!
|μ(n)|! we get (38).

Note that comparison of (38) with ‖h‖2 = ∑ |γn|2a−1
n yields the formula

an = b2μ(n)
|μ(n)|!
μ(n)!

,

in agreement with the inversion formula for Dirichlet series.

Using the universal property of the shift on Drury–Arveson space [11], we

also obtain the following von Neumann type inequality.

Corollary 39: Let T = (T1, . . . , Td) be a commuting row contraction. Then

for every polynomial Q in d variables, one has

(39) ‖Q(T1, . . . , Td)‖ ≤ ‖Q(b1p
−s
1 , . . . , bdp

−s
d )‖Mult(H).

We get a universal kernel from any choice of positive sequence bk that satisfies∑
b2k = 1. Here is a particular choice that gives a nice form for the kernel
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function. Let

P (s) =
∑

pprime

p−s

be the prime zeta function. Let

bk =
1√

P (2)pk
.

Then by Corollary 37 we get that

k(s, u) =
P (2)

P (2)− P (2 + s+ ū)

=a(f(s), f(u)),

where f(s) = (b12
−s, b23

−s, b35
−s, . . .) is a universal complete Pick kernel, in the

sense that every complete Pick space is a quotient of H(k) and every complete

Pick algebra is the quotient of Mult(H(k)). However, it is not universal in the

sense of Theorem 3, and in particular H is not isomorphic as a reproducing

kernel Hilbert space to H2
∞.

6. Which complete Pick spaces of Dirichlet series are universal?

In Section 5 we saw that some particular spaces of Dirichlet series are weakly

isomorphic as reproducing kernel Hilbert spaces toH2∞, and that their multiplier

algebras are unitarily equivalent to M∞. In the present section we ask which

of the complete Pick spaces of Dirichlet series have this property.

Fix d ∈ {1, 2, . . . ,∞}, and let {bk}dk=1 be a sequence of positive numbers such

that
d∑

k=1

b2k = 1.

Let n1, n2, . . . be an increasing sequence of positive integers and define the map

f : H0 → Bd by

(40) f(s) = (b1n
−s
1 , b2n

−s
2 , b3n

−s
3 , . . .).

Letting ad denote the kernel of the space H2
d , we define a kernel in H0 by

k(s, u) = ad(f(s), f(u)) =
1

1− 〈f(s), f(u)〉 =
∑
n

ann
−s−ū,

and we denote byH the Hilbert function space determined by k. By Proposition

22, we have that H is a complete Pick space on H0.
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Theorem 41: The multiplier closure of f(H0) is equal to Bd if and only if

the sequence logn1, logn2, . . . is linearly independent over Q. In this case H is

weakly isomorphic as a reproducing kernel Hilbert space to H2
d , and Mult(H)

is unitarily equivalent to Md := Mult(H2
d).

Proof. If the sequence logn1, logn2, . . . is linearly independent over Q, then the

multiplier closure of f(H0) is Bd and H is weakly isomorphic as a reproducing

kernel Hilbert space to H2
d , by repeating the proof of Theorem 31, replacing pi

with ni.

Conversely, assume that the sequence logn1, logn2, . . . is linearly dependent

over Q. We show that the multiplier closure of f(H0) is not Bd (and by the

ideas of [13, Section 5] this would also show that f̂(H0) �= Bd). We will exhibit

a nonzero multiplier q on Bd such that q(f(s)) ≡ 0. Let I and J be disjoint

finite subsets of the positive integers, and let {κi}i∈I∪J be nonnegative integers,

not all zero, such that ∑
i∈I

κi logni =
∑
j∈J

κj lognj .

Let μ be the multi-index supported on I with κi in the ith place, and let ν be

defined likewise in terms of J . Then we have that the polynomial

q(z) = bνzμ − bμzν

is not zero but satisfies

q(f(s)) = bν
∏
i∈I

bκi

i n
−sκi

i − bμ
∏
j∈J

b
κj

j n
−sκj

j

= bμ+ν(e−s
∑

i∈I κi logni − e−s
∑

j∈J κj lognj )

= 0.

This shows that the multiplier closure of f(H0) is not all of Bd.

Remark 42: When the sequence logn1, logn2, . . . , lognd is linearly independent

over Q, the space H is weakly isomorphic as a reproducing kernel Hilbert space

to H2
d , but these spaces are not isomorphic as reproducing kernel Hilbert spaces.

To illustrate the difference between these two notions, suppose that d <∞, let

H be as in Theorem 41, and consider ϕ(s) = r − z1 ◦ f(s) = r − b1n
−s
1 for

r ∈ (b1, 1). We have that ϕ ∈ Mult(H) and infs∈H0 |ϕ(s)| ≥ r − b1 > 0. On

the other hand, under the isomorphism of Mult(H) and Md, ϕ is mapped to
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r− z1, which has a zero in Bd, and is therefore not invertible in Md. It follows

that while infs∈H0 |ϕ(s)| ≥ r − b1 > 0, there is no function ψ ∈ Mult(H) such

that ϕψ = 1. In contrast, if ϕ : Bd → C is a multiplier of H2
d and satisfies

infz∈Bd
|ϕ(z)| > 0, then ϕ−1 is also a multiplier (this follows either from the

corona theorem in Drury–Arveson space [7], or from the “corona theorem for

one function” proved directly in [12]).

Theorem 41 does not rule out that Mult(H) is isometrically isomorphic to

Md′ for d′ < d, or for d′ = d in the case where d = ∞. We now show that this

possibility cannot happen.

Theorem 43: If logn1, logn2, . . . are linearly dependent over Q then, for any

d′ ≤ d, Mult(H) is not isometrically isomorphic to Md′ , and therefore H is not

weakly isomorphic as a reproducing kernel Hilbert space to H2
d′ .

Proof. Without loss of generality we assume that d = ∞. Continue with the

notation from the above theorem, and denote by V the multiplier closure of

f(H0) in B∞. To show that Mult(H) is not isometrically isomorphic to Md′ for

any d′ ≤ d, it suffices to show that V is not an affine subspace of B∞ (see [20],

Theorems 4.6 and 4.8). Since 0 ∈ V , it remains to show that V is not a linear

subspace.

Let q be the polynomial defined in the proof of the previous theorem; it is a

nontrivial polynomial which vanishes on V , and depends only on finitely many

variables, say the first N variables. Let CN ⊂ �2 be the finite-dimensional

subspace generated by the first N standard basis vectors, and consider q as

a function on CN . Since q vanishes on V and depends only on the first N

variables, it vanishes also on PCNV . The zero locus of q in CN has dimension

N − 1 (as a complex variety) and contains PCNV , in particular PCNV is not

equal to CN . We will show that if V is a subspace, then PCNV has dimension

N and hence is equal to CN — a contradiction.

Consider the sequence of functions gi : H0 → C given by gi(s) = bie
−s logni .

Since g1, . . . , gN are linearly independent, the family of vectors

{(g1(s), . . . , gN (s)) : s ∈ H0}

spans all of CN . If V were a linear subspace, then PCNV would also be a linear

space, therefore linear combinations of PCN f(H0) would lie in PCNV . But
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PCN f(s) = (g1(s), . . . , gN(s)), so taking linear combinations we obtain that

PCNV = CN . This contradiction completes the proof.

Our results settle the problem of when H has a multiplier algebra which is

isometrically isomorphic to Md for some d. The question of when the multiplier

algebra is algebraically isomorphic (or boundedly isomorphic, which is the same

due to semisimplicity—see [10, Lemma 5.1]) remains open.

Question 44: Let d < ∞ and let H be as above. Suppose the sequence

n1, n2, . . . , nd contains d′ numbers nk1 , . . . , nkd′ with lognk1 , . . . , lognkd′ ratio-

nally independent, such that every nk can be obtained as a product of powers

of nk1 , . . . , nkd′ . Is it true that Mult(H) is isomorphic to Md′?

By the main results of [5, 14] the answer is yes when d′ = 1 (see also [6,

Section 2.3.6]). On the other hand, [10, Section 6] or [9, Section 7] show that

the answer is not necessarily yes when d = ∞.

One may ask if the assumption in Question 44 can be replaced by the weaker

assumption that d′ is the maximal number of rationally independent numbers

among logn1, . . . , lognd. To see that the latter assumption is insufficient con-

sider the case where d = 2, d′ = 1, n1 = 4 and n2 = 8. In that case, the variety

V has the form {z : cz31 = z22}, which has a singularity at 0 and therefore

Mult(KV ) cannot be isomorphic to M1 = H∞(D) (see [10, Theorem 5.6]).
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