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ABSTRACT

We apply the recently developed technology of cofinality spectrum prob-

lems to prove a range of theorems in model theory. First, we prove that

any model of Peano arithmetic is λ-saturated iff it has cofinality ≥ λ and

the underlying order has no (κ, κ)-gaps for regular κ < λ. We also an-

swer a question about balanced pairs of models of PA. Second, assuming

instances of GCH, we prove that SOP2 characterizes maximality in the in-

terpretability order �∗, settling a prior conjecture and proving that SOP2

is a real dividing line. Third, we establish the beginnings of a structure

theory for NSOP2, proving that NSOP2 can be characterized by the ex-

istence of few so-called higher formulas. In the course of the paper, we

show that ps = ts in any weak cofinality spectrum problem closed under

exponentiation (naturally defined). We also prove that the local versions

of these cardinals need not coincide, even in cofinality spectrum problems

arising from Peano arithmetic.
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Introduction

In a recent paper [9] we connected and solved two a priori unrelated open

questions: the question from model theory of whether SOP2 is maximal in

Keisler’s order, and the question from set theory/general topology of whether

p = t. This work was described in the research announcement [8] and the

commentary [13]. In order to prove these theorems, we introduced a general
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framework called cofinality spectrum problems. The big picture behind that

framework and also the present theorems will be sketched in §2 below. First,

however, we list the main theorems of the present paper.

In the present paper, we develop and apply cofinality spectrum problems to a

range of problems in model theory, primarily on Peano arithmetic and around

the strong tree property SOP2, also called the 2-strong order property. We

prove the following theorems:

Theorem (Theorem 5.7): Let N be a model of Peano arithmetic, or just

bounded PA, and λ an uncountable cardinal. If the reduct of N to the lan-

guage of order has cofinality > κ and no (κ, κ)-cuts for all κ < λ, then N is

λ-saturated.

On the earlier history, which involves [15] and [17] VI.2-3, see §5. We also

address a question about balanced pairs of models of PA. The proof of Theorem

5.7 relies on the answer to a question arising from [9], of intrinsic interest:

Theorem (Theorem 3.11): Let s be a cofinality spectrum problem which is

closed under exponentiation. Then ps = ts.

As explained in §2, Theorem 3.11 complements a main theorem of [9], which

showed that ts ≤ ps for any cofinality spectrum problem s. As a consequence,

we are able to characterize ts in terms of the first symmetric cut. However, as

we show in §6, the local versions of these cardinals, ps,a, ts,a need not coincide

unless the underlying model is saturated.

We then turn to the strong tree property SOP2. A major result of [9] was

that SOP2 suffices for being maximal in Keisler’s order �. It was not proved

to be a necessary condition, but we conjectured there that SOP2 characterizes

maximality in Keisler’s order. The difficulty in addressing this question may

be in building ultrafilters. However, in the present paper, for a related open

problem, we give a complete answer:

Theorem (Theorem 7.13, under relevant instances of GCH): T is �∗-maximal

if and only if it has SOP2.

The ordering �∗ refines Keisler’s order, but is defined not in terms of ultra-

powers but rather in terms of interpretability. Theorem 7.13 answers a very

interesting question going back to Džamonja and Shelah [1] and Shelah and

Usvyatsov [26]. We inherit the assumption of a case of GCH from [26], where
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one direction of the theorem was proved, building on work of [1]. The direction

proved here is in ZFC.

Theorem 7.13 gives decisive evidence for SOP2 being a dividing line, by giving

the equivalence of a natural inside/syntactic property and an outside property.

However, this was done without developing a structure theory. So in §9, we

develop the beginnings of a structure theory for NSOP2. We define a notion of

‘higher formulas’ using ultrafilters and prove, for example, that:

Theorem (Theorem 9.21): T is NSOP2 iff for all infinite A, the number of

pairwise 1-contradictory higher ϕ-formulas over A is ≤ |A|.

Section 9 contains several other results, notably the “symmetry lemma” states

that NSOP3 can be characterized in terms of symmetry of inconsistency for

these higher formulas. We also prove that SOP2 is sufficient for a certain

exact-saturation spectrum to be empty, connecting to work of Shelah [23] and

Kaplan and Shelah [4]. The results seem persuasive and we believe they begin a

structure theory for NSOP2 theories. The introductions to each section contain

further motivation for these results and discussions of prior work.

Sections 5 and 8 may be read essentially independently of prior sections.

Section 7 uses one earlier theorem; the reader interested in the �∗ result may

wish to begin there and refer back as needed.

We thank the referee for a very constructive reading of the paper.

1. Cofinality spectrum problems: history and context

A major interest, and contribution, of model theory has been the study of the

complexity of families of definable sets, e.g. the sets definable in models of

a given complete first-order theory. The comparative or relative complex-

ity of such families often takes the following dichotomous form: research may

eventually identify a so-called dividing line in the sense of classification theory

[17], meaning a property, often a combinatorial property, whose presence signals

complexity and whose absence gives a strong structure theory. With respect to

a given dividing line, any given theory is either “tame” or “wild.” Few dividing

lines are known, but those which are well developed such as stability/instability

in [17] have been foundational for the field.
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In the new millenium, in the context of our joint work on Keisler’s order, a

productive complementary perspective is emerging: from studying dichotom-

ies around given dividing lines one by one, one may move to a framework in

which one can directly compare the complexity of any two theories (a move

which, ideally, then allows for the identification of new dividing lines in a sys-

tematic way).

Keisler’s order was defined in 1967 as a pre-order on complete countable

theories which sets T1 � T2 if the regular ultrapowers of T1 are “more likely to

be saturated” than those of T2, see [5]. It is generally thought of as a partial

order on the equivalence classes. For a recent account and current motivation;

see, e.g., [10, §2]. The longstanding question is to determine the structure of

Keisler’s order.

Cofinality spectrum problems arose in the context of our proof that the max-

imum class in Keisler’s order is much wider than previously thought. Formally,

we proved that any theory with the model-theoretic tree property SOP2 is

maximal in Keisler’s order. At the heart of this proof was an analysis of the

comparative complexity (in the saturation of ultrapowers sense) of orders and

trees. As explained in the introduction to [9], in the course of that work it be-

came apparent that we were really studying the interaction of two invariants of

a regular ultrafilter D: pD, essentially the size of the first cut in a D-ultrapower

of a model of linear order, and tD, essentially the length of the smallest unboun-

ded path in a D-ultrapower of a tree. The names we gave to these invariants

suggest a connection to the famous cardinal invariants of the continuum, p and

t, and so to the long open question of whether it is possible that p < t. Here is

the connection: As the analysis proceeded towards our eventual proof that pD
could not be strictly smaller than tD, we noticed that our proofs could be carried

out in a context more general than ultrapowers. The proofs used only a few

key facts: expansion properties available because ultrapowers commute with

reducts, and pseudofiniteness assumptions available because ultraproducts of

unbounded finite linear orders behave in a way that is ‘pseudofinite’. The right

general context was to abstract (M,M I/D) to an elementary pair of models of

linear order admitting certain expansions (in which certain trees are definable)

and capturing the relevant pseudofiniteness. Formally, such a pair is called a

cofinality spectrum problem; before we begin the proofs of the present paper,

the definition and some of its main consequences will be recalled below.
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Now to any cofinality spectrum problem s, one can naturally associate in-

variants ps and ts, measuring certain cuts and certain paths through trees re-

spectively, which specialize to pD and tD in the case where the csp arises as

an ultrapower. The first main theorem of [9], already mentioned above, is that

for any csp s, ts ≤ ps. In [9], for a certain well chosen csp consisting of a

model of set theory and its generic ultrapower, we had naturally that ps ≤ p

and t ≤ ts, for the cardinal invariants of the continuum p and t. From this it

followed that if p < t in some model of set theory, then ps < ts there, violating

the ZFC theorem just mentioned. This proved that p = t in ZFC, settling the

question in a surprising way [8]. (A parallel reduction to regular ultrapowers

proved the other main theorem of that paper already mentioned, concerning

the maximality of SOP2 in Keisler’s order.)

In the course of writing that paper and afterwards in discussing and presenting

the proofs, we understood that cofinality spectrum problems were likely to be

useful in other contexts besides the two, i.e., regular and generic ultrapowers,

applications of [9] just sketched. As stated in the introduction, the present

paper develops their theory with an eye towards model theoretic applications,

along the way solving some relevant technical questions left outstanding from

[9]. These are explained further in the sections below.

We now proceed to define cofinality spectrum problems.

2. Definition of cofinality spectrum problems

Informally, a cofinality spectrum problem

s = (M,M1,M
+,M+

1 ,Δ)

involves:

• an elementary pair of models (M,M1) which can be expanded to the

elementary pair (M+,M+
1 ), and

• a set Δ of formulas in τ(M) defining discrete linear orders, closed under

finite Cartesian products,

such that in the expanded model M+
1 ,

• each instance of a formula in Δ defines a “pseudofinite” linear order,

meaning that each of its M+
1 -definable subsets has a first and last ele-

ment,
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• on at least one of the Cartesian products, the ordering is well behaved,

e.g., like the Gödel pairing function,1 and

• (M+,M+
1 ,Δ) has “enough set theory for trees,” meaning essentially

that for each ϕ ∈ Δ there is ψ ∈ τ(M+
1 ) so that for each linear order

defined by an instance of ϕ, there is a tree defined by an instance of ψ:

– whose nodes are functions from that order to itself, of length

bounded by a distinguished element d of the order, and

– the basic operations on this tree (the partial order on nodes given

by initial segment, the length of a node, i.e., size of its domain, the

value of a node at an element of its domain, and concatenation of

an additional value) are likewise uniformly definable.

Natural and motivating examples of cofinality spectrum problems may be con-

structed beginning with pairs of models of Peano arithmetic or pairs of models

of set theory for (M+,M+
1 ) with M being a reduct to a language containing

linear order; or beginning with a pair (M,M1) where M1 is an ultrapower of

M , using the theorem that ultrapowers commute with reducts. See [9] §2.3 for

more details on these examples. The fruitful idea was simply that, in some suf-

ficiently rich model, one may study the amount of saturation in an underlying

linear order in relation to the fullness of the derived trees.

Here are the formal definitions, originally given in [9].

Definition 2.1 (Enough set theory for trees, [9] Definition 2.3): Let M1 be a

model and Δ a nonempty set of formulas in the language of M1. We say that

(M1,Δ) has enough set theory for trees when the following conditions are

true:

(1) Δ consists of first-order formulas ϕ(x̄, ȳ; z̄), with �(x̄) = �(ȳ).

(2) For each ϕ ∈ Δ and each parameter c ∈ �(z)M1, ϕ(x̄, ȳ, c̄) defines a

discrete linear order on {ā : M1 |= ϕ(ā, ā, c̄)} with a first and last

element.

1 Gödel’s pairing function orders pairs of ordinals first by maximum, then by first coordin-

ate, then by second coordinate. If, e.g., there is a total linear order on the model, it

makes sense to compare (“maximum”) elements in any two such ordered sets; if not, this

requirement may be satisfied by some a × a, that is the Cartesian product of a given

ordered set with itself.
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(3) The family of all linear orders defined in this way will be denoted

Or(Δ,M1). Specifically, each a∈Or(Δ,M1) is a tuple (Xa,≤a,ϕa,ca,da),

where:

(a) Xa denotes the underlying set {ā : M1 |= ϕa(ā, ā, c̄a)},
(b) x̄ ≤a ȳ abbreviates the formula ϕa(x̄, ȳ, c̄a),

(c) da ∈ Xa is a bound for the length of elements in the associated

tree; it is often, but not always, maxXa. If da is finite, we call a

trivial.

(4) For each a∈Or(a), (Xa,≤a) is pseudofinite, meaning that any bounded,

nonempty, M1-definable subset has a ≤a-greatest and ≤a-least element.

(5) For each pair a and b in Or(Δ,M1), there is c ∈ Or(Δ,M1) such that:

(a) there exists an M1-definable bijection Pr : Xa × Xb → Xc such

that the coordinate projections are M1-definable,

(b) if da is not finite in Xa and db is not finite in Xb, then also dc is

not finite in Xc.

(6) For some nontrivial a ∈ Or(Δ,M1), there is c ∈ Or(Δ,M1) such that

Xc = Pr(Xa ×Xa) and the ordering ≤c satisfies:

M1 |=(∀x∈Xa)(∃y∈Xc)(∀x1, x2∈Xa)(max{x1, x2} ≤a x⇐⇒ Pr(x1, x2) ≤c y).

(7) To the family of distinguished orders, we associate a family of trees, as

follows. For each formula ϕ(x̄, ȳ; z̄) in Δ there are formulas ψ0, ψ1, ψ2

of the language of M1 such that for any a ∈ Or(s) with ϕa = ϕ:

(a) ψ0(x̄, ca) defines a set, denoted Ta, of functions from Xa to Xa.

(b) ψ1(x̄, ȳ, c) defines a function lga : Ta → Xa satisfying:

(i) for all b ∈ Ta, lga(b) ≤a da,

(ii) for all b ∈ Ta, lga(b) = max(dom(b)).

(c) ψ2(x̄, ȳ, c) defines a function from {(b, a) :b∈Ta, a∈Xa, a<a lga(b)}
into Xa whose value is called vala(b, c), and abbreviated b(a).

(i) If c ∈ Ta and lga(c) < da and a ∈ Xa, then c�〈a〉 exists, i.e.,

there is c′ ∈ Ta such that lga(c′) = lga(c) + 1, c′(lga(c)) = a,

and

(∀a <a lga(c))(c(a) = c′(a)).

(ii) ψ0(x̄, c) implies that if b1 �= b2 ∈ Ta, lga(b1) = lga(b2), then

for some n <a lga(b1),

b1(n) �= b2(n).
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(d) ψ3(x̄, ȳ, c) defines the partial order �a on Ta given by the initial

segment, that is, such that b1 �a b2 implies:

(i) for all b, c ∈ Ta, b � c implies lga(b) ≤a lga(c),

(ii) lga(b1) ≤a lga(b2),

(iii) (∀a <a lga(b1))(b2(a) = b1(a)).

The family of all Ta defined this way will be denoted Tr(Δ,M1). We refer to

elements of this family as trees.

Notice the pairing requirement in condition (6). While we need Cartesian

products to exist, it is largely unimportant what exactly the order on these

products is (as long as it satisfies the other requirements). It’s sufficient for

the results of [9] that one such order behave well, like the usual Gödel pairing

function. In the course of the present paper, we will consider weakenings of this

requirement.

Definition 2.2 (Cofinality spectrum problems, [9] Definition 2.5): We call the

six-tuple

s = (M,M1,M
+,M+

1 , T,Δ)

a cofinality spectrum problem when:

(1) M �M1.

(2) T ⊇ Th(M) is a theory in a possibly larger vocabulary.

(3) Δ is a set of formulas in the language of M , i.e., we are interested in

studying the orders of M,M1 in the presence of the additional structure

of the expansion.

(4) M+, M+
1 expand M,M1 respectively so that

M+ �M+
1 |= T

and (M+
1 ,Δ) has enough set theory for trees.

(5) We may refer to the components of s as M s, Δs, etc. for definiteness.

When T = Th(M), M = M+, M1 = M+
1 , or Δ is the set of all formulas

ϕ(x, y, z) in the language of T which satisfy 2.1(2)–(4), these may be

omitted.

Remark 2.3: The identities of M+ and M1 are not essential to many arguments.

Definition 2.4 (The cardinals ps, ts and the cut spectrum, [9] Definition 2.9):

For a cofinality spectrum problem s we define the following:
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(1) Or(s) = Or(Δs,M s
1).

(2) Cct(s) = {(κ1, κ2) : for some a ∈ Or(s), (Xa,≤a) has a (κ1, κ2)-cut}.
Note that the κ� are infinite.

(3) Tr(s) = {Ta : a ∈ Or(s)} = Tr(Δs,M s
1).

(4) Cttp(s) = {κ :κ ≥ ℵ0, a ∈ Or(s),

and there is in the tree Ta a strictly increasing sequence

of cofinality κ with no upper bound}

.

(5) Let ts be min Cttp(s) and let ps be

min{κ : (κ1, κ2) ∈ Cct(s) and κ = κ1 + κ2}.

A key role will be played by C(s, ts), where this means:

(6) For λ an infinite cardinal, write

C(s, λ) = {(κ1, κ2) : κ1 + κ2 < λ, (κ1, κ2) ∈ Cct(s)}.

By definition, both ts and ps are regular. The main engine of the paper

[9] was the following theorem, proved by model-theoretic means. Note that it

entails ts ≤ ps.

Theorem A ([9] Theorem 9.1): For any cofinality spectrum problem s,

C(s, ts) = ∅.

Discussion 2.5: We now resume the discussion following Definition 2.1. In [9],

Cartesian products were used in two ways. First, we needed the simple existence

of Cartesian products of pairs of elements of Or(s), with no restrictions on the

ordering of the pairs other than: (i) pseudofiniteness and (ii) the property that

if da, db are nonstandard then so is da×b (call such a product nontrivial).

This was needed for the basic arguments connecting behavior across all orders:

notably, establishing existence of the lower cofinality function. To rule out

symmetric cuts, we needed only to be able to take the Cartesian product of an

order with itself. For the main lemma ruling out asymmetric cuts, we needed

(a) the existence of a and a′ such that a is coverable as a pair by a′ (see below),

and then (b) the existence of the nontrivial product a×a×a×a′×a′×a′. One

may take as a definition of “coverable as a pair” its key property, Corollary 5.7

of [9] [quoted here with the assumptions of nontriviality made there explicitly

added in]:
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(**) there is a ∈ Xa, with a < da and a not a finite successor of 0a, such

that the Gödel codes for functions from [0, a]a to [0, a]a × [0, a]a may

be definably identified with a definable subset of Xa′ whose greatest

element is < da′ .

For property (**), it suffices to have a ∈ Or(s) such that the order on a× a is

given by the Gödel pairing function and da×a is nonstandard, by the arguments

of [9]. We will give some alternate sufficient conditions in Section 8.

The following summarizes our conventions.

Convention 2.6 (Key conventions on CSPs):

(a) Recall that definable means in the sense of M+
1 = M+

1 [s], unless other-

wise stated.2

(b) Recall that for Ta ∈ Tr(s), η ∈ Ta implies that lg(η) ≤ da, and we

have closure under concatenation, i.e., if lg(η) < da and a ∈ Xa then

η�〈a〉 ∈ Ta.

(c) When T is a definable subtree of Ta, we will write

(T , �a) or just (T , �) to mean (T , �a �T ).

(d) When η is a sequence of n-tuples, t < lg(η), and k < n, write η(t, k) for

the kth element of η(t).

(e) Generalizing [9], we use “internal map” in the present paper for any

map definable in M+
1 , not necessarily an element of some T ∈ Tr(s).

(f) We call a definable, discrete order pseudofinite when every nonempty,

bounded, definable subset has a first and last element.

(g) We call a ∈ Or(s) nontrivial when da is not a finite successor of 0a,

and we call s nontrivial when at least one a ∈ Or(s) is nontrivial.

2.1. New definitions: weak and hereditary CSPs. We now give some

new definitions weakening and extending CSPs looking towards applications.

First, as regards applying CSPs it will be useful to keep track of whether or

not the assumption on closure under Cartesian products is needed. For example,

in dealing with a CSP arising from a model M = M+ = M+
1 whose domain is

linearly ordered, it may be that we care primarily about cuts occurring in the

linear order dom(M). Thus, we introduce ‘weak’ CSPs in Definition 2.7 and in

the present paper, use them where possible.

2 The main exception being that the elements of Or(s) are a priori required to be Δ-

definable; this is relaxed if s is hereditarily closed, defined below.
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Definition 2.7 (Weak CSP):

(1) Call s a weak CSP if it satisfies 2.2 omitting the requirement that

Or(s) be closed under Cartesian product, 2.1(5)+(6).

(2) For s a weak CSP, a ∈ Or(s), let Ya = Ya,s = {a ∈ Xa : a <a da}.

Second, in [9] Convention 5.1 we had observed that CSPs have available an

internal notion of cardinality.3 In the present paper, we use the more general

definition:

Definition 2.8: Let s be a cofinality spectrum problem. Whenever A,B are

definable subsets of M1 (with parameters), we write

“|A| ≤ |B|”

to mean “there exists anM+
1 -definable partial 1-to-1 function h with A⊆dom(h)

and range(h) ⊆ B”. Likewise, we write

“|A| < |B|”

to mean “(|A| ≤ |B|) ∧ ¬(|B| ≤ |A|),” i.e., |A| ≤ |B| and there does not exist

an M+
1 -definable injection from B into A.

The referee has raised the interesting question of whether some kind of

Schröder–Bernstein property holds for this weak notion of cardinality. In this

vein, in §8 below we will show that from suitable internal injections or partial

1-to-1 functions between sets (in the sense of Definition 2.8) it is possible to

recover an order-isomorphism at least on an initial segment: see, for example,

Claim 8.3. The order is essential in our current setup, so this is a useful recovery

and, as explained there, allows for some technical simplifications. Otherwise,

the results so far have used very few ‘cardinality’-type properties of this defini-

tion: in particular, in our earlier paper, the related notion of internal cardinality

([9] 5.1) was used primarily to preserve distance inequalities for the proof by

contradiction in [9, Theorem 8.1].

3 Which a priori need not satisfy all properties of cardinality. There it was required that

the function be an element of the tree Ta×b. Depending on the amount of set theory

available in M+
1 , the present weakening is an a priori loss in definability: when functions

are required to belong to a definable tree, we are always able to quantify over them,

whereas in the definition below the quantification over all such functions may be strictly

informal (not first order).
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Let (W,<W ) be a definable, pseudofinite linear order in the model. If there

is an internal injection f of sets from W into some initial segment of N , then

for some b ∈ Or(s) with Xb ⊆ N there exists an internal order-isomorphism g

from (W,<W ) onto an initial segment of Yb.

Third, while the definition of CSP carefully lays out the ‘canonical’ orders and

trees, it is natural to add some internal closure conditions, stating essentially

that objects which are internally isomorphic to canonical ones also count.

Definition 2.9: Let s be a CSP or weak CSP.

(1) We call b a pseudo-order of s and write b ∈ PsOr(s) when it satisfies

all of the requirements on elements of Or(s) from Definition 2.1 in the

case where Δ is the set of all formulas in the language.4 (The point is

that possibly the formulas defining it are not from Δs.)

(2) Given b2 ∈ PsOr(s), we say b1 is a suborder of b2 and write

b1 ∈ Sub(b2) when: b1 ∈ PsOr(s), Xb1 ⊆ Xb2 as linear orders, and

there is d ≤b2 db2 and η ∈ Tb2 with max dom(η) = d = db1 which lists

〈c ∈ Xb1 : c <b1 db1〉 in increasing order.5

Definition 2.10 (Hereditary closure): Let s be a CSP or weak CSP.

(1) Let b1,b2 ∈ PsOr(s). We say (f, g, h) is an accurate isomorphism from

b1 onto b2 when it respects both the order structure below dbi and the

tree structure, that is:

(a) f is a one-to-one mapping, definable in M+
1 , from Xb1 to Xb2 ,

(b) g is a one-to-one mapping, definable in M+
1 , from {a : a <b1 db1}

onto {a : a <b2 db2}, such that

a <b1 c <b1 db1 ⇐⇒ g(a) <b2 g(c) <b2 db2 ,

(c) h is a one-to-one function definable in M+
1 from Tb1 onto Tb2 such

that

η �Tb1
ν ⇐⇒ h(η) <Tb2

h(ν)

and η = ν�〈a〉 in b1 iff h(η) = h(ν)�〈f(a)〉 in b2.

(2) Call s hereditary if Or(s) is closed under Sub and accurate isomorph-

ism.

4 In particular, it must have an associated, definable tree, with definable length functions

and concatenation, and so forth.
5 So, e.g., b1 /∈ Sub(b2) when Xb1

is an initial segment of Xb2
and db2

< max(Xb1
),

since there is not enough room for the list.
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(3) Say “s2 is the hereditary closure of s1” when s1, s2 are the same except

that Or(s2) is the closure of Or(s1) under members of Sub and under

accurate isomorphism.

Observation 2.11: If s is a weak CSP then so is its hereditary closure.

Observation 2.12: As a consequence of Definition 2.9(3), if s is a weak CSP

which is hereditarily closed, then for any a ∈ Or(s), any X ⊆ Ya and any

d ∈ X ∩ [0a, da], there is b ∈ Or(s) with Xb = X , <b=<a� X , and d = db.

3. CSPs with exponentiation

A feature of CSPs is that one can always develop a certain amount of Peano

arithmetic internally, as in [9] §5. That observation motivates the main defin-

ition of this section, ‘closure under exponentiation.’ In this section we work

out that CSPs of this kind have the very nice property that ps = ts. For con-

text, recall that the main theorem of [9] that C(s, ts) = ∅ only implies that

ts ≤ ps. For the other direction, it’s natural to try to show that a κ-indexed

path through some T with no upper bound translates to a (κ, κ)-cut in some

a ∈ Or(s). The problem is that the natural translation produces a definable,

discrete linear order which contains a (κ, κ)-cut but is not necessarily a member

of Or(s). After explaining the problem, we will propose the solution.

Hypothesis 3.1: In this section, unless otherwise stated, s is a weak CSP. For

transparency, we assume s is hereditary, i.e., closed under Sub and full internal

isomorphism. We retain the notation Ya from 2.7.

Definition 3.2 (Flattening the tree, cf. [9] Lemma 6.2): Let a ∈ Or(s) be given.

We define the following linear order. Fix in advance two distinct elements of

Xa; without loss of generality6 we use 0a, 1a, called 0, 1, so 0 <a 1. Let Sa be

the set Ta × {0, 1}. Let <Sa be the linear order on Sa defined as follows:

• If c = d, then (c, i) <Sa (d, j) iff i <a j.

• If c �a d and c �= d, then (c, 0) <Sa (d, 0) <Sa (d, 1) <Sa (c, 1).

• If c, d are �-incomparable, then let e ∈ Ta, nc, nd ∈ Sa be such that

e = cis(c, d) is the common initial segment and e�nc �a c and e�nd �a d.

Necessarily nc �= nd by definition of e, so for s, t ∈ {0, 1} we define

6 Recall that Xa is a discrete linear order with first element, so 0a, 1a have the natural

meanings.
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(c, s) <Sa (d, t) ⇐⇒ nc <a nd.

For each given a, we refer to this ordered set (Sa, <Sa) just constructed as “the

order given by flattening the tree Ta”.

Convention 3.3: For the remainder of this article, given s and a ∈ Or(s), let

(Sa, <Sa) denote the order constructed in 3.2.

Definition 3.4: Say that a tree Ta ∈ Tr(s) witnesses treetops if there is in Ta
a strictly increasing sequence of cofinality ts with no upper bound in Ta. (In

other words, this tree exemplifies why ts takes the value it does.)

Fact 3.5: Let s be a weak CSP. If a ∈ Or(s), Ta witnesses treetops and (Sa, <Sa)

is the order given by flattening the tree Ta, then (Sa, <Sa) has a (ts, ts)-cut.

Proof. The proof when s is a CSP is [9] Lemma 6.2. No assumptions are made

about closure under Cartesian products in that proof, so the identical result

holds for weak CSPs as well.

We cannot a priori conclude from Fact 3.5 that (ts, ts) ∈ C(s, ts), because we

have not shown that Sa belongs to Or(s). However, note that (Sa, <Sa) is a

definable discrete linear order with a first and last element, since:

Observation 3.6: For any weak cofinality spectrum problem s and a ∈ Or(s),

there is an internal order-isomorphism between an initial segment of (Sa, <Sa)

and Ya.

Proof. Let 〈cα : α < da〉 be the sequence of elements of Ta corresponding to

functions which are constantly 0a, listed in increasing order: this sequence is lin-

early ordered by �a. By the definition of Sa, we have that ({(cα, 0):α < da}, <a)

is an initial segment of (Sa, <Sa). Moreover, it is isomorphic to (Ya, <a) via the

internal map lga from Definition 2.1(7).

Definition 3.7 (Closed under exponentiation): Let s be a weak CSP. We say

s is closed under (simple) exponentiation when for every nontrivial a ∈ Or(s)

there is a nontrivial b ∈ Or(s) such that (Xb, <b) and (Sa, <Sa) are internally

isomorphic.

Definition 3.8: For s a weak CSP, it will also be useful to define:
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(a) s is strongly closed under exponentiation, or has strong exponenti-

ation, when: for every a ∈ Or(s) there is b ∈ Or(s) such that (Sa, <Sa)

is accurately isomorphic to (Xb � db, <b), following Definition 2.9.7

(b) s is weakly closed under exponentiation, or has weak exponenti-

ation, when: for every a ∈ Or(s) there is b ∈ Or(s) such that (Xb, <b)

and (Sa, <Sa) are internally isomorphic and (Yb, <b), (Ya, <a) are in-

ternally isomorphic.

Discussion 3.9: The phrase “s has exponentiation” clearly covers 3.7, 3.8(a) and

3.8(b). One of the issues raised by 3.8 is whether (Sa, <Sa) may map onto Xb

in such a way that db is not above the range of the map. To distinguish 3.7

from 3.8, we will say “simple exponentiation.”

Corollary 3.10: Let s be a weak cofinality spectrum problem which has

exponentiation, a ∈ Or(s). Then:

(1) (Sa, <Sa) is a discrete linear order in which every nonempty definable

subset has a first and last element.

(2) There is b ∈ Or(s) so that (Xb,≤b) has a (ts, ts)-cut.

Proof. (1) This is inherited from the order-isomorphism to an element of Or(s).

(2) Let Ta witness treetops. By Fact 3.5, the order (Sa, <Sa) has a (ts, ts)-

cut. Given b ∈ Or(s) such that (Sa, <Sa) is order-isomorphic to Xb, clearly

(Xb,≤b) has a (ts, ts)-cut.

We arrive at a fact which will be useful throughout the paper: if s has expo-

nentiation, then ps = ts and ‘the first cut is symmetric’.

Theorem 3.11:

(1) Let s be a weak CSP with exponentiation. Then ps ≤ ts.

(2) Let s be a CSP with exponentiation. Then ps = ts.

(3) Let s be a CSP with exponentiation. Then

ts = min{κ : (κ, κ) ∈ Cct(s)}

and the first cut in Cct(s) is necessarily symmetric, that is, if

μ = min{κ+ λ : (κ, λ) ∈ Cct(s)}
7 In Definition 2.9, accurate isomorphism of two linear orders b0,b1 involves an isomorph-

ism of sets plus an order-isomorphism below the bounds dbi
. For these purposes, consider

the d for Sa to be maxSa.
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then (μ, μ) ∈ Cct(s).

Proof. First we prove (1). Corollary 3.10(2) shows that if ts = κ, then

(κ, κ) ∈ Cct(s),

so ps ≤ κ+ κ = κ. Thus ps ≤ ts.

When in addition s is a cofinality spectrum problem the analysis of [9] applies.

By Theorem A, §2 above we have that C(s, ts) = ∅, thus ts ≤ ps, proving (2).

For (3), the proof of 3.11 shows that ps = min{κ : (κ, κ) ∈ Cct(s)}. Since

ps = ts, this is sufficient.

However, as we will see in Theorem 6.3, the situation for the local versions of

these cardinals, Definition 6.1, is more subtle. It would be interesting to explore

this further.

4. On bounded arithmetic

In this section, working towards our first main application in §5, we set up CSPs

and weak CSPs arising from models of PA or BPA and check when they are

closed under exponentiation in the sense just described.

Definition 4.1: A formula is called bounded if all of its quantifiers are bounded.

By BPA we mean bounded Peano arithmetic, that is, the restriction of the

Peano axioms containing induction only for bounded formulas.

When working with models of PA or BPA, we will use the notation xy in

accordance with:

Fact 4.2 (Gaifman and Dimitracopoulos [3], see [28] §1.1): Let IΔ0 denote basic

arithmetic with bounded induction. There exists a Δ0 formula ϕ(x, y, z), which

we denote by xy = z, that can be shown in IΔ0 to have all the usual properties

of the graph of exponentiation except for the sentence

∀x∀y∃z(xy = z).

Regarding Definition 4.3, we will focus on s3[N ] for N a model of PA or BPA.

Definition 4.3 (Some canonical weak CSPs from models): Let N |= BPA or

N |= PA, and � = 2, 3. We define s = s�[N,D]. Omitting D means D = N .

(0) D is an initial segment of N closed under addition. D is nontrivial if

it has a nonstandard member. We require that:
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(a) If � = 2, then d ∈ D implies that N |= (∀x)(xd exists ).

(b) The case � = 3 is covered in (2)(c).

(1) Δ = Δs is either:

(a) in the case of BPA, the set of all bounded formulas, or

(b) in the case of PA, the set of all formulas ϕ(x,y,z)with �(x)=�(y)=1,

which satisfy 2.1(1), (2), (4), (7).

(2) a ∈ Or(s) when the data of (Xa, <a) is internally isomorphic8 to some

(Xa,≤a, da, Ta) which satisfies:

(a) the set of elements of Xa is a Δ-definable bounded subset of N .

(b) <a is a Δ-definable linear order on Xa.

(c) da ∈ Xa, and ({d : d < da}, <a) is an initial segment of N with

the usual order.

• If � = 2, we require that da ∈ D.

• If � = 3, we require that da ∈ D and |Xa|da exists.

(d) Ta is defined and satisfies the conditions from 2.1, and its defining

formulas depend uniformly on the formula defining Xa.

(3) Write s+[N,D] to indicate that we close the set of orders of s[N,D]

under taking Cartesian products, where da×b is understood to be non-

trivial if da, db are, and that the order on at least one of the pairs is

given by the Gödel pairing function.

For use in later papers, we record here:

Definition 4.4: In the context of 4.3, suppose f is a nondecreasing function

with dom(f) = N and range(f) ⊆ {I : I an initial segment of N}, such that:

d ∈ f(a) implies that ad exists in N and whenever a is nonstandard, f(a)

contains some nonstandard d. Define s[N, f ] by requiring that for each a,

(a) da ≤ f(max(Xa) + 1), and

(b) f(max(Xa) + 1) = I implies da ∈ I.

Let us also give a name to a recurrent assumption.

Definition 4.5 (Reasonable models): We say N |= BPA is reasonable when

a ∈ N implies that {an : n a standard integer } is a bounded subset of N .

Claim 4.6: Let N |= BPA.

8 Recall that as the set is listed with its order, this means: internally order-isomorphic.
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(1) If N is ℵ1-saturated or just recursively saturated, then N is reasonable.

(2) N is reasonable iff N is a candidate in the sense of 5.2 below.

(3) If D1 is a reasonable initial segment of N , then

D2 = cl(D1, N) := {a ∈ N : for some d ∈ D1 and standard n, N |= “a < dn”}

is also reasonable.

(4) If D is an initial segment of N , then cl(D,N) is closed under products.

Proof. (1), (2), (4) are immediate.

(3) Let a2 ∈ D2 and n ∈ N be standard. Let d1 ∈ D2 and m standard be

such that N |= d2 < (d1)m. We define x� by induction on � ≤ n ·m as follows:

x0 = x, x� = (x�)
d1 . Note that (x�)

d� exists by the assumption on D1. So xnm

is well defined. Since

xd2 ≤ xd1
m

= (xd1)d1 · · · (xd1)d1 ≤ xnm

where the dots · · · indicate the multiplication has m terms, xd2 exists.

Observation 4.7: If N |= BPA and s = s�[N,D] for � ∈ {2, 3}, then s is a

hereditary weak CSP.

Claim 4.8: Let N |= BPA and suppose that for n, d ∈ N we have that nd

exists. Then the tree of functions from d to n is definable in N , by bounded

formulas. Specifically, the operations from 2.1(7) for the tree of sequences of

length d into ([0, n], <N) are all definable by bounded formulas.

Proof. For compatibility with 2.1, we denote [0, n] by Xa and d by da. Let T
denote the sequences of elements of Xa of length ≤ da. First we show that for

each η ∈ T there is c ∈ N which is a code for η (and that this is uniformly

and boundedly definable). This applies the long known fact that Gödel coding

may be carried out in BPA; we sketch a proof for completeness, following the

method of Wilkie–Paris [28].

We use B-adic coding (for B = 2), representing each element of N as a word

in the finite alphabet {0, 1}. (This ignores the empty word, which could be

accommodated by using a different finite alphabet or B = 3.) Since for each Ta
or Sa we will be coding sequences of elements of uniformly bounded length, we

don’t need a separate symbol to indicate a transition between codes for distinct

elements. Let lgd(x) denote max{� : 2� ≤ x}, the dyadic length.

By 4.3(2), we may assume every element of Or(s) is isomorphic to a canonical

one, i.e., to a ∈ Or(s) where:
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• Xa = [0,max(Xa)],

• ≤a agrees with the order of N restricted to Xa

• da is such that (maxXa)da exists, which is equivalent to:

(∃n)(|Xa| ≤ 2n ≤ 2|Xa|) ∧ “2n·da exists”,

• (∃n,m)(da ≤ 2m ≤ 2da ∧ |Xa| ≤ 2n ≤ 2|Xa| and 2n·2
m

exists),

• so w.l.o.g. da = 2m, |Xa| = 2n.

For an element a of Xa, let repB(a) denote the B-adic representation of a

of length exactly n+ 1, padded with zeros if necessary (this is possible by the

choice of n). In the expression below let “2m + repB(a)” mean in base 2, so this

will effectively move repB(a) (which is a sequence of length ≤ n) over m spaces.

Let ϕcode(x, i, b) mean:

• x < 2n·2
m+1

,

• i < da,

• b < maxXa,

• (∃x1x2)(x1
�x2�x∧lgd(x1)=(n+1)i∧lgd(x2)=n+1∧x2=2n+1+repB(b)).

Informally, ϕcode asserts that x is the code for a sequence, thought of as

consisting of no more than da consecutive blocks of length n + 1 (leaving one

extra space for the coding of Sa in the proof of Claim 4.9), the (i+1)st of which

is repB(b).

As written, several values of x may code the same sequence; we may avoid

this by restricting to x such that no y < x codes the same sequence.

Then for any given a ∈ Or(s), for our fixed values of n,m, we may naturally

represent Ta by

Ta = {x :x < 2n·2
m+1

, (∃i < n)(lgd(x) = (m+ 1) · i)

and (∀j ≤ i)(∃x0, x1 < x)(x0
�x1 � x and 2m ≤ x0 < 2m + 2n)}.

Since we have fixed the values of Xa (thus, of max(Xa)) and da, we can easily

build on ψcode to find bounded formulas defining: the partial order on elements

of T by initial segment, length, concatenation, and value of the function at a

given element of its domain.

Claim 4.9: Let N |= BPA be reasonable and suppose that s = s3[N,D]. Then

s has simple exponentiation.
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Proof. Recall that to say s has simple exponentiation means that for every

a ∈ Or(s) there is b ∈ Or(s) such that (Xb, <b) and (Sa, <Sa) are internally

isomorphic. Weak exponentiation adds that also (Yb, <b), (Ya, <a) are intern-

ally isomorphic.

Let a ∈ Or(s) be nontrivial. By construction of s3, we may identify a with

its “canonical” isomorphic image, so assume Xa is an initial segment of N with

the usual order. We will show that the hypothesis that |Xa|da exists, i.e., that

(max(Xa))da exists, already ensures weak exponentiation.

As s = s3(N), there is b ∈ Or(s) so that (Xb,≤b) is internally isomorphic

to ([0, n∗], <N ) and this isomorphism takes db to d∗ and Tb to T∗. Then T∗ is

boundedly definable by Claim 4.8. Continuing in the notation of that proof, to

code the tree consisting of Sa = Ta × {0, 1}, define f as follows:

if x = (
∑

i<lg(x)(bi + 2m) · 2(m+1)i, i), i ∈ {0, 1},
then f(x) =

∑
i<lg(x)(bi + 2m) · 2(m+1)i + i,

recalling that we have left one unit of space by arranging our coding into blocks

of size n + 1. Let ψ+
code = range(f), which is definable by a bounded formula.

If x1, x2 ∈ Sa then x1 <Sa x2 iff f(x1) < f(x2). This proves that (Sa, <Sa) is

order-isomorphic to an initial segment of N .

Let n∗ = max range(f). Since N is reasonable, there is some nonstandard

d∗ ∈ N such that (n∗)d∗ exists. Applying Claim 4.8 once more, we have a tree

T∗ of functions from d∗ to [0, n∗] which is definable by bounded formulas. By

the definition of s3(N), there is b ∈ Or(s) with Xb internally order-isomorphic

to [0, n∗] under the usual order so that the image of db is d∗.

This proves s has simple exponentiation.

If in addition (n∗)da exists, let db = da. Then the same internal order-

isomorphism takes Yb to Ya, and s has weak exponentiation. This completes

the proof.

Claim 4.10: Suppose N |= BPA, N is reasonable and s = s3[N,D]. Then s is

a CSP.

Proof. As s is a hereditary weak c.s.p. there are two potentially missing condi-

tions, 2.1(5)–(6).

Let nontrivial a,b be given. By definition of s3, we may assume that Xa,

Xb are internally order-isomorphic to initial segments [0, na], [0, nb] of N re-

spectively (so in what follows we identify Xa, Xb with these images). Without
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loss of generality, na ≤ nb. Let Pr : N × N → N denote the pairing function

(x, y) �→ (x+ y + 1)2 + x. Consider the set

Xa×b = {Pr(x, y) : x ∈ Xa, y ∈ Xb} ⊆ [0, (na + nb + 1)2].

Then Pr is an isomorphism from Xa ×Xb onto an initial segment of N which

we call Xc. Let ≤c=≤N be the usual order. Let the order ≤a×b be such that

Pr is an order-isomorphism from (Xa×b,≤a×b) onto (Xc,≤c). Note that this

pairing function satisfies 2.1(6).

Let n∗ = max(Xc). As we assumed N is reasonable, there is some nonstand-

ard d∗ such that (n∗)d∗ exists. Let dc = d∗. Now existence of the tree Tc is by

Claim 4.8. Recalling the closure under isomorphism from 4.3(2), the product

a × b is indeed a nontrivial element of s. Thus 2.1(5) holds, which completes

the proof.

Conclusion 4.11: Assume N |= BPA, N is reasonable and s = s3(N,D).

Then s is a cofinality spectrum problem with exponentiation, and so Theorem

3.11 applies: ps = ts.

5. Saturated models of Peano arithmetic

We now apply the above analysis to cuts in models of Peano arithmetic. The

naturalness of this application comes from two sources. First, it was proved

in [9, §5] that csps always allow for the recovery of a certain amount of Peano

arithmetic.

Second, Peano arithmetic is a context in which there is a history of interesting

work on sufficient conditions for saturation, also related to the history of work

on Keisler’s order. The result that models of Peano arithmetic are saturated

if and only if the underlying order is saturated is generally known as Pabion’s

1982 theorem [15], quoted below. Later, Kaufman and Schmerl have given an

alternate proof. To explain the present results, it is useful to notice that this

theorem is already a consequence of the proof of Shelah’s 1978 theorem that any

theory of linear order is in the maximal Keisler class [17, Theorem 2.6] (though

Pabion’s work was done independently).

Theorem B (Pabion, 1982 [15]): Let λ > ℵ0 and M be a model of PA. Then

M is λ-saturated iff (M,<) is λ-saturated.

Theorem C (Shelah, 1978 [17] Cor. 2.7 pp. 337–341):
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(1) If D is a regular ultrafilter on λ such that Mλ/D is λ+-saturated for M

some model of linear order, then Nλ/D is 1-atomically-λ+-saturated for

any N in a countable language, i.e., λ+-saturated for types consisting

of atomic formulas, e.g., x < a, b < x.

(2) Hence if T has the strict order property it is maximal in Keisler’s order.

In Theorem 5.7 we will weaken the condition to requiring only that the un-

derlying order has no symmetric cuts. A reasonable question, as raised by the

referee, is that it could be suspected that these older results could be pushed

further to get the result on symmetric cuts (i.e., the analogue of p = t). It seems

the answer is no, that the new result is not just an incremental improvement,

as discussed below.

We now give a sketch of the proof of Theorem C. It too relies on a connection

between orders and trees, though of a somewhat simpler kind. We have a type in

some regular ultrapower we would like to realize, and we assume that ultrapower

is sufficiently saturated for linear order. Let 〈ϕi : i < α0〉 list the type; without

loss of generality it is closed under conjunctions. We expand the original model

to have a tree of finite sequences of formulas, and in it a downward closed sub-

tree of the sequences which are realized. In the ultrapower we choose ti in the

sub-tree, increasing with i in the sub-tree sense, by induction on i ≤ αo ; this

ti is a possibly nonstandard member of this sub-tree which is consistent with

every truly finite subset of our type and includes ϕj for j < i. The cases of i a

successor or zero are straightforward. For a limit there are two steps, both of

which use the saturation of linear orders. First we find an upper bound di in

the whole (nonstandard) tree in [17, VI, 2.7]; we translate the tree to a linear

order and use “no symmetric cut”. This is done by replacing the tree by a linear

order, replacing a member (node) of the tree by an interval. Second, below each

node sα the tree is a linear order. We choose by induction on j < α0 a member

di,j above the ci1 , i1 < i and below the di,j1 , jj < j. For j = 0 we use di, for j

successor we use an appropriate function, and for j limit we use that there is

no (cf(i), cf(j))-cut in the ultrapower of the relevant linear order. So for each

formula of the type separately there is tα as required, and the initial segment

defined by 〈tβ : α < α〉 has the other cofinality big enough to find tα good for

all formulas of the type. Here also we use that there are no asymmetric cuts.

To see the relation to Peano arithmetic, notice that this proof just says that

in some language expanding linear order, the types of the given theory may be
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coded in such a way that omission of a type corresponds to a cut in a linear

order; this coding argument does not rely on ultrapowers except insofar as

ultrapowers commute with reducts, and so may be carried out in any model of

Peano arithmetic (as well as in any ultrapower).

So from the maximality of linear order in � we could obtain a sufficient

condition for saturation of models of PA. It is therefore natural to hope that the

innovations of [9], which allowed for a substantial weakening of the sufficient

condition for maximality in Keisler’s order identified in [17, 2.6], will allow

for a parallel weakening of the sufficient condition for saturation of models of

(bounded) Peano arithmetic in Theorem 5.7 quoted above. By means of csps,

Theorem 5.8 carries this out.

One measure of how surprising it is to weaken “no cuts” to “no symmetric

cuts” is via negative results. For example, the reduction to symmetric cuts may

fail badly in algebraic contexts without sufficient arithmetic structure, such as

real closed fields, as in the theorem quoted at the end of this section. As another

example, in §4 of [25] it is shown that when generalizing to reduced powers (and

atomic saturation), on the one hand it is true that no cuts imply saturation, but

on the other hand it is false that no symmetric cuts imply saturation, i.e., there

is a counter-example. A different measure of this distance between ‘no cuts’ and

‘no symmetric cuts’ can be seen in problems around the characterization of good

regular ultrafilters as those whose “first cut in the cut spectrum is symmetric,”

such as in the forthcoming open problems paper [12].

Observation 5.1: For M a model of linear order (<) and uncountable λ, M is

1-atomically λ-saturated iff θ1 + θ2 ≥ λ whenever M has a cut of cofinality

(θ1, θ2) and θ1 + θ2 ≥ ℵ0 (equivalently, > 2, since we may have a (1, 1)-cut).

Usually, we can omit the “1-atomically,” as, e.g., in the order reduct of a model

of PA or in Th(Q, <).

In Observation 5.1, note that if we use x ≤ y, then min{θ1, θ2} ≥ ℵ0 but then

an (θ1, 1)-cut does not give incompactness.

The present results are an improvement in two respects. First, we can restrict

to the case θ1 = θ2, i.e., symmetric cuts. Second, our results are for bounded

Peano arithmetic, not just PA.

Definition 5.2: Call N a candidate model when N is a model of bounded

Peano arithmetic (with no last element) which is reasonable, i.e., such that for
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any a ∈ N there is a nonstandard d such that ad exists. We call s a candidate

c.s.p. when s = s3[N ] for a reasonable N .

To connect to saturation, we bring in a definition from [9].

Definition 5.3 ([9] Definition 4.1): Let s be a cofinality spectrum problem and

λ a regular cardinal. Let p = p(x0, . . . , xn−1) be a consistent partial type with

parameters in M+
1 . We say that p is a Or-type over M+

1 if: p is a consistent

partial type in M+
1 and for some a0, . . . , an−1 ∈ Or(s), we have that

p �
∧
i<n

“xi ∈ Xai”

and p is finitely satisfiable in Xa0 × · · · × Xan−1 . We say simply that M+
1 is

λ-Or-saturated if every Or-type over M+
1 over a set of size < λ is realized in

M+
1 . Finally, we say that s is λ-Or-saturated if M+

1 is.

Claim 5.4 ([9] Theorem 4.1): Let s be a cofinality spectrum problem. If

κ < min{ps, ts} then s is κ+-Or-saturated.

Remark 5.5: Since by our definition any a ∈ Or(s) has a maximum element,

Or-saturation does not a priori guarantee that the cofinality of the model is

large.

Observation 5.6: For a model N of PA, the following are equivalent:

(1) N is λ-saturated.

(2) cf(N) ≥ λ and N is boundedly λ-saturated, that is, N �≤ a is λ-

saturated for every a ∈ N .

Proof. It suffices to prove (2) implies (1). Given a type p(x) of cardinality < λ,

write p(x) = {ϕi(x, āi) : i < λ}. Since cf(N) ≥ λ there is some a∗ ∈ N such

that p(x) ∪ {x < a∗} is finitely satisfiable. Let b∗ = 2a∗ . Now for each i there

are ci < b∗ and ϕ′
i(x, y, b∗) which is b∗-bounded [meaning that all quantifiers

are of the form (∃z < b∗) or (∀z < b∗)] and N |= (∀x)(ϕi(x, āi) ≡ ϕ′
i(x, ci, b∗)).

Let p′′(x) = {ϕ′
i(x, ci, b∗) ∧ x < a∗ : i < λ}. This is a finitely satisfiable

type in N �≤b∗ . Its realization implies realization of p, and it is realized by

hypothesis (2).
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Theorem 5.7: Let N be a model of Peano arithmetic and λ an uncountable

cardinal. If the reduct of N to the language of order has cofinality ≥ λ and no

(κ, κ)-cuts for κ < λ, then N is λ-saturated.

Proof. We may assume N is a nonstandard model. Hence it follows that N is

reasonable in the sense of 4.3, i.e., a ∈ N implies that {an : n a standard integer}
is a bounded subset of N . (If not, cf(N) < λ.)

Assume cf(N) ≥ λ. Let s = s3(N) be from 4.3. By Conclusion 4.11, s

is a c.s.p. with exponentiation. Thus Theorem 3.11 applies and ps = ts. By

Claim 5.4 and Observation 5.6, s is min{ps, ts, cf(N,<)}-saturated. If ts ≥ λ,

we finish, so assume that ts < λ. By Theorem 3.11, there is a ∈ Or(s) whose Xa

contains a (ts, ts)-cut. Recall from Definition 4.3 that since s = s3(N), for each

a ∈ Or(s), (Xa,≤a) is internally order-isomorphic to an initial segment of N

with the usual order. Then N has a (ts, ts)-cut, which completes the proof.

Theorem 5.8: Let N be a model of BPA which is reasonable, i.e., for every

a ∈ N the set {an : n ∈ N finite} is bounded. Then the following are equivalent:

(1) For every n∗∈N , the model N<n∗ =N �{a :N |=a<n∗} is λ-saturated.

(2) For every n∗ ∈ N , the model N≤n∗ considered as a linear order has no

(κ, κ)-cuts for κ = cf(κ) < λ.

Proof. (1) implies (2) is obvious, so assume (2) holds. Let s = s3(N) be from

4.3. Then by 4.11, s is a cofinality spectrum problem with exponentiation, and

ps = ts.

Let κ = ps = ts, so κ is regular. By 3.10, some a ∈ Or(s) has a (κ, κ)-cut.

By the definition of s3(N), any Xa is internally order-isomorphic to a bounded

initial segment of N with the usual order. Thus, some bounded initial segment

of N has a (κ, κ)-cut. As we’ve assumed (2), it must be that λ ≤ κ = ps = ts.

Let n∗ ∈ N be given. As we assumed N is reasonable, there is a nonstandard

d∗ such that N |= “n∗
d∗ exists”. Recalling 4.3(2), there is a nontrivial a ∈ Or(s)

such that (Xa,≤a) is isomorphic to an initial segment of N , containing [0, n∗],

with the usual order. Thus, to prove (1), it will suffice to show that every

a ∈ Or(s) is γ+-Or-saturated for every γ < λ. By 5.4, if γ < min{ps, ts} then s

is γ+-Or-saturated. Since λ ≤ ps = ts, this completes the proof.

Note that Theorems 5.7 and 5.8 show that the situation in models of Peano

arithmetic is very different from that in real closed fields, as shown by the next
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quoted theorem. By “asymmetric cut” we mean a cut in which the infinite

cofinalities of each side are not equal.

Theorem D (Theorem 1.1 of Shelah [22]): Let K be an arbitrary ordered field.

Then there is a symmetrically complete9 real closed field K+ containing K such

that any asymmetric cut of K is not filled. So if K is not embeddable into R,

then K+ and K necessarily have an asymmetric cut.

6. On the local cardinals ps,a and ts,a

Returning to CSPs generally, in this section we prove Theorem 6.3, a comple-

mentary result to Theorem 3.11. The theorem shows that the local cardinals

ps,a and ts,a from Definition 6.1 need not normally agree, even in CSPs arising

from models of Peano arithmetic, if the underlying M+
1 is not uniformly satur-

ated.

Definition 6.1: Let s be a CSP or weak CSP, and a ∈ Or(s).

(1) Let ps,a be

min{κ :there are regular κ1, κ2 such that κ1 + κ2 = κ

and Xa has a (κ1, κ2)-cut}.

(2) Let ts,a be

min{κ :κ ≥ ℵ0 and there is in the tree Ta
a strictly increasing sequence of cofinality κ with no upper bound}.

We need a preliminary lemma.

Lemma 6.2: Let s be a cofinality spectrum problem, a ∈ Or(s). Suppose

(Ss, <Ss) has a (κ, κ)-cut, for κ ≤ ts. Then either Xa has an (κ, κ)-cut or else

Ta has a branch of cofinality κ with no upper bound.

Proof. Let

(a, b) = (〈(ai, ti) : i < κ〉, 〈(bi, si) : i < κ〉)
witness the cut in Sa, with ai, bi ∈ Ta and ti, si ∈ {0a, 1a} for each i < κ. By

definition of cut, we may assume κ is regular.

Step 1: Simplifying the presentation of intervals.

9 This means that any decreasing sequence of closed bounded intervals, of any ordinal

length, has nonempty intersection.
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By the pigeonhole principle, we may assume the sequences 〈ti : i < κ〉 and

〈si : i < κ〉 are constant. For each i < κ, write Ai for the closed interval in

the linear order Sa whose endpoints are given by (ai, ti) and (ai, |ti − 1|), and

likewise for Bi. By the construction of Sa, any two intervals of this form are

either concentric or disjoint.

Let A = 〈Ai : i < κ〉 and B = 〈Bi : i < κ〉.
The task of this step will be to prove that without loss of generality, Ā consists

of either pairwise concentric or pairwise disjoint intervals, and likewise for B̄.

Here “concentric” means either concentric decreasing: j < i < κ =⇒ Cj � Ci

[for C = A or B] or concentric increasing: j < i < κ =⇒ Ci � Cj .

If κ = ℵ0, then by Ramsey’s theorem,10 we may assume that A consists either

of concentric intervals or disjoint intervals moving right, meaning j < i < κ

implies Aj ∩ Ai = ∅ and (∀x ∈ Aj)(∀y ∈ Ai)(x < y). Likewise, we may assume

that B consists either of concentric intervals or of disjoint intervals moving left,

meaning j < i < κ implies Bj ∩Bi = ∅ and (∀x ∈ Bj)(∀y ∈ Bi)(y < x).

If κ > ℵ0, let a ∧ b denote the maximal common initial segment of a, b ∈ Ta.

For this argument, we use c to denote either a or b. For each i, the sequence

〈lga(ci ∧ cj) : j ∈ [i, κ)〉 is a sequence of elements of Ya ⊆ Xa [recall Definition

2.7] bounded by lga(ci). Thus, for some club Ei of κ with minEi > i, we

have that �̄i := 〈lga(ci ∧ cj) : j ∈ Ei〉 is either constant or <a-decreasing. Let

S ⊆ κ be a stationary set of i on which we get the same outcome (either always

constant or always decreasing).

Let E =
⋂
{ε < κ : ε a limit ordinal and ε ∈

⋂
i<εEi}, so E is a club of κ.

There are several cases:

(1) First case: for all i ∈ S, �̄i is constant.

(a) If i ∈ S, j ∈ Ei implies ci ∧ cj = ci, then 〈ci : i ∈ S ∩ E〉 is

a �Ta-increasing sequence so we are in the concentric decreasing

case.

(b) If i ∈ S, j ∈ Ei implies lga(ci∧cj) < lg(ci), then by Fodor’s lemma

there is γ ∈ κ and a stationary subset X of κ such that i ∈ X and

j ∈ Ei implies lga(ci ∧ cj) = γ, so we are in the pairwise disjoint

case.

10 This also holds if κ is weakly compact.
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(2) Second case: for all i ∈ S, �̄i is <a-decreasing. (Remember that the

branches of Ta are internally pseudofinite, but not necessarily well-

ordered from an external point of view.) Let X = S ∩ E. Then

〈ci : i ∈ X〉 is a �Ta-decreasing sequence, so we are in the concent-

ric increasing case.

Step 2: The concentric cases.

Suppose both Ā and B̄ are concentric. Then 〈ai : i < κ〉 and 〈bi : i < κ〉 are

both �a-linearly ordered sequences in Ta. There are four cases depending on

whether each of these sequences is �a-increasing or decreasing.

(a) Suppose both 〈ai : i < κ〉 and 〈bi : i < κ〉 are �a-increasing. If they lie

along eventually different branches, the original sequence (a, b) could describe

only a pre-cut and not a cut according to the definition of Sa, so we get a

contradiction. If they lie along the same branch, then it must be that Ta has a

branch of cofinality κ, as desired.

(b) If 〈ai : i < κ〉 is �a-increasing while 〈bi : i < κ〉 is �a-decreasing, these

form a cut (∗) in the linearly ordered set

({c ∈ Ta : c � b0}, �).

Then the projections (〈lg(ai) : i < κ〉, 〈lg(bj) : j < κ〉 form a pre-cut (∗∗) in

Xa. If this pre-cut (∗∗) were realized, say by t, then b0 � t realizes the cut (∗),
contradiction. This shows that Xa has a (κ, κ)-cut.

(c) If 〈ai : i < κ〉 and 〈bi : i < κ〉 are both �Ta-decreasing, the original

sequence (a, b) will not describe a cut, so we ignore this case.

(d) If 〈bi : i < κ〉 is �Ta-increasing while 〈ai : i < κ〉 is �Ta-decreasing, the

argument is parallel to case (b).

Step 3: Not both concentric.

Again, there are several possibilities.

Suppose first that neither A nor B is concentric, so A is a sequence of disjoint

intervals moving right and B is a sequence of disjoint intervals moving left.

Consider the sequence 〈ci : i < κ〉 where ci := lub{ai, bi} in the tree Ta. By

definition of a and b, this sequence will be either eventually constant or a path

through the tree Ta.

If the sequence is a path through the tree, then 〈(ci, 0) : i < κ〉 is cofinal in

a and 〈(ci, 1) : i < κ〉 is cofinal in b. So the path 〈ci : i < κ〉 cannot have an

upper bound, as given any such upper bound d∗, by definition of (Sa, <Sa), we

would have that (d∗, 0) and (d∗, 1) both realize the original cut, contradiction.
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So in this case, there is a path through Ta of length κ with no upper bound.

If the sequence is eventually constant, then there is i∗ < κ such that all

{ai, bi : i∗ < i < κ} are immediate successors of the same node, say a∗, in Ta.

So lg(a∗) < da. By definition of the order (Sa, <Sa) and the case we are in, this

means

(〈ai(lg(ai)− 1) : i∗ < i < κ〉, 〈bi(lg(bi)− 1) : i∗ < i < κ〉)

is a pre-cut in Xa. Suppose for a contradiction it were realized by x; then

c∗ := a∗
�〈x〉 would exist since lg(a∗) < da. Then in (Sa, <Sa), (c∗, 0) and

(c∗, 1) would both realize the original cut (a, b), contradiction.

So in this case, Xa has a (κ, κ)-cut.

Otherwise, precisely one of A, B is not concentric. The cases are parallel, so

assume the non-concentric side is B. Define di for i < κ by di := lub{bi, b0} in

the tree Ta. Writing Ci for the interval ((ci, 0), (ci, 1)) and Di for the interval

((di, 0), (di, 1)) in Sa, we have that both 〈Ci : i < κ〉 and 〈Di : i < κ〉 are

concentric sequences of intervals with Di ⊆ Cj for all i >> j.

This reduces the problem to Step 2.

Step 4: Finish.

We have shown that in each case either Xa has a (κ, κ)-cut or else Ta has a

strictly increasing path of length κ with no upper bound, so this completes the

proof.

Theorem 6.3: Let κ be a regular uncountable cardinal.

(1) Suppose we are given M a model of PA which is κ-saturated, and

a∗ ∈M nonstandard. Then we can find a countable set X ⊆ M such

that letting N be the Skolem hull of {a ∈ M : M |= a ≤ a∗} ∪ X , we

have that the reduct (N,<) to the language of order has an (ℵ0,ℵ0)-cut.

(2) There is a cofinality spectrum problem s with M s
1 = N and a ∈ Or(s)

such that

ts,a < ps,a;

in fact, ts,a = ℵ0 while ps,a ≥ κ.

(3) If, in the conditions above, we have just that M |= BPA and for some

r∗ < a∗ nonstandard M |= “a∗
r∗ exists”, this is enough.

Proof. First we prove (1). Let A = M � a∗.
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Let 〈Fn : n < ω〉 list the Skolem functions of M , each appearing infinitely

often (for transparency). Let kn be the arity of Fn, and without loss of generality

kn ≤ n.

Let p be the type in the variables z, xi (i < ω), yi (i < ω) and parameter a∗
expressing:

(a) z < a∗ is nonstandard,

(b) x0 = a∗,

(c) y0 = (a∗)z ,

(d) m < n < ω implies a∗ = x0 ≤ xm < xn < yn < ym ≤ y0,

(e) letting Bn = {Fn(e0, . . . , ekn−1) : e� ∈ A ∪ {x�, y� : � < n}}, we have

that Bn ∩ (xn, yn) = ∅.
Let us check that p is consistent. By the κ-saturation of M , this will suffice

to show it is realized.

Fix n < ω and consider a finite fragment of p � z, x0, . . . , xn, y0, . . . , yn. Let

� be the maximal exponent appearing in conditions of the form (e). We are

looking for r, a0, . . . , an, b0, . . . , bn such that

• r is nonstandard, or simply above some given natural number,

• a∗ = a0 < · · · < an < bn < · · · < b0 = (a∗)r,

• m ≤ n implies Bm ∩ (am, bm) = ∅.
For each n, the set Bn is definable in M (since it only involves one function

Fn, of arity kn) and of power cn, where

cn ≈ (|A|+ 2n)kn < a∗
kn+1.

Let Bn(w, v0, . . . , vn, v
′
0, . . . , v

′
n) denote the set

{Fn(e0, . . . , ekn−1) : e� ≤ w ∨ e� ∈ {v0, . . . , vn, v′0, . . . , v′n}}

which will likewise have size ≤ wkn · (2n+ 2)kn < wkn+1. Let

ϕn(w, v0, . . . , vn, v
′
0, . . . , v

′
n)

assert that

(∀t)(∃s ≤ xkn+1 · t)(∃a∃b)(a < b ≤ s ∧ b− a > t ∧ (a, b) ∩Bn(x) = ∅).

Then clearly for all m ≤ n, M |= ∀w∀v̄∀v̄′ϕm(w, v̄, v̄′), recalling that kn is fixed

so the exponential notation abbreviates multiplication.

Choosing r such that

(k0 + 2)(k1 + 2) · · · (kn + 2) ≤ r < a∗
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and

b∗ = b0 = (a∗)r

we may then choose a1, b1, . . . , an, bn by induction on � ≤ n such that:

• k < � =⇒ ak < a� < b� < bk,

• (a0, b0) = (a∗, (a∗)r),

• b� − a� > (a∗)n·(n+1−�).

For �+ 1, we have

b� − a� > (a∗)(n+2)(n+1−�)

and B(a∗, a0, . . . , a�, b0, . . . , b�) is internally a set with ≤ (a∗)k�+1 ≤ (a∗)n+1 <

(a∗)n+2 elements, so there is room.

This completes the verification that p is consistent, therefore (by saturation)

realized. For the remainder of the proof, fix realizations r, ai(i < ω), bi(i < ω)

of the type p.

[With a little more care, using (a∗)d∗·(d∗+1−�) for � < ω, we could alternately

have chosen the entire countable sequence by induction, avoiding the appeal to

the type and ℵ1-saturation.]

Let N be the Skolem hull of M � a∗ ∪ {an, bn : n < ω}, so N |= PA. Let

s = s+1 [N ] be the canonical CSP from Definition 4.3. Then:

(a) N �M .

(b) M≤a∗ = N≤a∗ so (N,<N ) is saturated below a∗ by definition of M .

(c) (〈an : n < ω〉, 〈bn : n < ω〉) is an (ℵ0,ℵ0)-cut, because by construction

the Skolem functions do not fill it.

(d) Thus, if a is such thatXa = M≤a∗ = N≤a∗ , and, say, da = maxXa, then

ps,a ≥ κ, whereas if b is such that Xb = N≤b∗ , and, say, db = maxXb,

then ps,b = ℵ0.

This completes the proof of (1). We continue the argument to prove (2). (3)

will follow from the proof.

Let a be such that Xa = N≤a∗ . Recalling the small nonstandard exponent r,

let d∗ = r+1 and consider the definable subtree T ⊆ Ta consisting of sequences

of length < d∗ of numbers < a∗; T has cardinality ar∗ [the tree Ta will be at

least as large].

Recalling that N |= PA, s is closed under strong exponentiation, so there is

an injection from Sa into some Xa. Composing with the Gödel pairing function

if needed, we may assume there is a definable injection of Sa (as a set) into some

Xb ⊆ N . Applying Conclusion 8.4, we obtain a definable order-isomorphism
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between (Sa, <Sa) onto an initial segment of M+
1 = N . Since T is the set of

all sequences from Xa to itself of length ≤ da = a∗ >> r, the cardinality of T
is ≥ a∗

r = b∗, so its image must contain the (ℵ0,ℵ0)-cut. Because Xb has an

(ℵ0,ℵ0)-cut, necessarily (S, <S) has such a cut.

By Lemma 6.2, either Xa has an (ℵ0,ℵ0)-cut or else Ta has a branch of

cofinality ℵ0 with no upper bound. Since Xa is κ-saturated by assumption, we

must be in the second case. This shows that ts,a = ℵ0. On the other hand,

ps,a ≥ κ, by the hypothesis of saturation.

Thus, the local cardinals ps,a and ts,a need not be equal, even in well behaved

cofinality spectrum problems, if the model M+
1 is not uniformly saturated.

7. Characterizing the �∗-maximal class

In this section we give the first real evidence that SOP2 is a dividing line by

proving that, under instances of GCH, SOP2 characterizes maximality in the

interpretability order �∗ which will be defined below. The proof uses cofinality

spectrum problems. This answers an open question and also gives evidence for

a recent conjecture, as we now explain. The use of GCH comes only from Fact

7.2 below. Recall:

Definition 7.1 (SOP2, cf. [26] 1.5): T has SOP2 if there is a formula ϕ(x, y)

which does, meaning that in CT there are parameters 〈aη : η∈ω>2〉, �(aη)=�(y),

such that:

(1) For each η ∈ ω2, the set {ϕ(x, aη��) : � < ω} is consistent.

(2) For any two incomparable η, ν ∈ ω>2, the set {ϕ(x, aη), ϕ(x, aν)} is

inconsistent.

Shelah in [19] had defined an order on theories, a natural weakening of

Keisler’s order: T1 �∗ T2, which holds, roughly speaking, if there is a third

theory T∗ which interprets both T1 and T2 and whose models M∗ have the

property that if the reduct to τ(T2) is saturated, so is the reduct to τ(T1).

[See Definition 7.7 below.] This was studied and developed more extensively

by Džamonja–Shelah [1] and Shelah–Usvyatsov [26]. In the Shelah–Usvyatsov

paper, building on work of Džamonja and Shelah, it was shown that:
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Fact 7.2 (Shelah and Usvyatsov [26] 3.15(2), under GCH11): If T is NSOP2

then T is necessarily non-maximal in �∗.

In Shelah and Usvyatsov [26] and Džamonja and Shelah [1] it was asked:

Question 7.3 (Question 1.8 of [26]): Does �∗-maximality characterize either

SOP3 or SOP2, maybe both?

Question 7.4 ([1] Question 3.1): Does SOP2 imply �∗-maximality?

Here we settle the question under GCH, giving a positive answer: it char-

acterizes SOP2. (Note that the use of GCH is only in the quoted result 7.2,

constituting the known half of the characterization, and not in the present half

of the argument. Thus, eliminating GCH from the characterization would in-

volve re-proving 7.2 without the set theoretic hypotheses.) Now let us explain

the connection to Keisler’s order which motivates this work and our solution.

SOP2 is a property which is not yet well understood and was not known, prior

to the present paper, to be a dividing line. Recently, however, we proved the

following theorem:

Theorem E (Malliaris and Shelah [9] Theorem 11.11): Any theory with SOP2

is maximal in Keisler’s order.

We conjecture there that SOP2 characterizes the maximum Keisler class. In

the current section, we give strong evidence for this conjecture by proving the

result for the order �∗, which refines Keisler’s order.

We now state the main result of this section: we prove that T is �∗-maximal if

and only if it has SOP2 (Theorem 7.13 below). In light of Fact 7.2, it suffices to

prove that any theory with SOP2 is �∗-maximal. Since �∗ refines Keisler’s order,

even though it is not known whether it is a strict refinement, it is not sufficient to

quote Theorem E; rather, we use the technology of cofinality spectrum problems

developed for the proof of Theorem E.

Given this result, it is natural to try to say more about the dividing line at

SOP2, which we do in §9.

Convention 7.5: Throughout this section T denotes a complete countable first-

order theory.

11 This hypothesis is missing from the statement in [26], but that proof quotes [1] 3.2, which

assumes relevant instances of GCH.
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We now review the “interpretability order” �∗, introduced in Shelah [19]

Definition 2.10 as a natural weakening of Keisler’s order. We first need a defin-

ition of “interpretation.”

Definition 7.6 (Interpretations, cf. [1] 1.1): Let T0 and T∗ be complete first-order

theories. Suppose that

ϕ = 〈ϕR(xR) : R a predicate or function symbol of τ(T0), or =〉

is such that each ϕR(xr) ∈ τ(T∗).

(1) For any model M∗ |= T∗, we define the model N = M∗
[ϕ] as follows:

• N is a τ(T0)-structure

• dom(N) = {a : M∗ |= ϕ=(a, a)} ⊆M∗,

• for each predicate symbol R of τ(T0), RN = {a : M∗ |= ϕR[a]},
• for each function symbol f of τ(T0) and each b ∈ N , N |=“f(a)=b”

iff M∗ |= ϕf (a, b), and M∗ |= “ϕf (a, b) ∧ ϕf (a, c) =⇒ b = c”.

Note that by the last clause, we may restrict to vocabularies with only

predicate symbols.

(2) Say that ϕ is an interpretation of T0 in T∗ if:

• each ϕR(xr) ∈ τ(T∗),

• for any model M∗ |= T∗, we have that M∗
[ϕ] |= T0.

(3) If there exists ϕ which is an interpretation of T0 in T∗, say simply that

“T∗ interprets T0.”

Definition 7.7 (The interpretability order �∗, cf. [1] 1.2):

(1) Let T0, T1 be complete first-order theories and λ an infinite regular

cardinal. We say that T0 �
∗
λ T1 if there exists a theory T∗ such that:

(a) T∗ interprets T0, witnessed by ϕ0, and T1, witnessed by ϕ1, where

“interprets” is in the sense of 7.6.

(b) For every model M∗ |= T∗, if M∗
[ϕ1] is λ-saturated, then M∗

[ϕ0] is

λ-saturated.

(2) We say that T0 �
∗ T1 if T0 �

∗
λ T1 for all large enough regular λ.

Discussion 7.8: Definition 7.7 is stated for regular cardinals, but it also makes

sense for singular cardinals.
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As ultrapowers commute with reducts and the choice of index models is ir-

relevant12 clearly �∗-equivalence refines �-equivalence [equivalence in Keisler’s

order]. A priori, one would expect that �∗ is much weaker but this is not known

to be the case. In fact, the known Keisler classes (i.e., of stable theories) coincide

with those for �∗ by [19] 2.11.

We will use a result parallel to that familiar from Keisler’s order:

Fact 7.9 (Shelah [19] Observation 2.11 p. 249): Any theory with the strict order

property is �∗-maximal [i.e., -maximum].

Claim 7.10: Let s be a c.s.p. so ps = ts. Suppose a ∈ Or(s) has a (ts, ts)-cut.

Then Ta witnesses treetops.

Proof. (Included for completeness, this argument simply adapts the proof of [9]

Lemma 6.1, which proved that in this case Ta×a witnesses treetops, to show

that Ta witnesses treetops.) Choose a sequence (〈aα : α < ts〉, 〈bα : α < ts〉)
witnessing the cut. By induction on α < ts = ps let us choose a path through

Ta satisfying the following:

• for each α, cα belongs13 to the definable subtree of Ta consisting of

elements x such that: for each n < max dom(x), x(n) codes a pair

[i.e., is of the form (a + b)2 + a for elements a <a b ∈ Xa], and if

m < n < max dom(x) and x(m) = 〈a1, b1〉 and x(n) = 〈a2, b2〉 then

a1 <a a2 <a< b2 <a< b1.

• β < α =⇒ cβ � cα.

• For each α, nα := max dom(cα).

• For each α, cα(nα) = 〈aα, bα〉.
The construction of this tree follows the template of [9]. At successor steps, we

concatenate. At limit steps α < ts, we first choose an upper bound c∗ for the

sequence built so far, by definition of ts. Let n∗ = max dom(c∗). Then since

Xa is pseudofinite, the nonempty, bounded set

{n < n∗ : c∗(n) = 〈a, b〉 and a <a aα and bα <a b}

12 Keisler [5] proved that if D is a regular ultrafilter on λ and M ≡ N in a countable

language then Mλ/D is λ+-saturated iff Nλ/D is λ+-saturated.
13 Alternately, rather than asking that cα code a pair, ask that if t1 < t2 < t3 are successive

elements of lg(cα), then either cα(t1) < cα(t3) < cα(t2) or else cα(t2) < cα(t3) < cα(t1).

Then at limit steps, the condition is that the interval defined by (cα(n), cα(n + 1))

includes aα.
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has a maximal element n∗∗. Then let

cα = c∗ �n∗∗
�〈aα, bα〉.

Having completed the construction of the sequence, notice that it is unboun-

ded in Ta, because if it were to have an upper bound c�, then either of the

elements in the pair coded by c�(max dom(c∗)) would realize our original cut,

contradiction. This completes the proof.

We will use one further fact about trees in CSPs, which explains that Tr(s)

is quite robust.

Fact 7.11 ([9] Claim 2.14): If (T , �a) is a definable subtree of (Ta, �a) and

〈cα : α < κ〉 is a �a-increasing sequence of elements of T , then 〈cα : α < κ〉
has an upper bound in T if and only if it has an upper bound in Ta.

In the language of Definition 3.4, Fact 7.11 shows that if T ′ is a definable

subtree of Ta, Ta witnesses treetops and there is an infinite increasing sequence

in T ′ with no upper bound, then T ′ witnesses treetops. But there may not be

such a sequence, as, e.g., in the trivial case when T ′ consists just of the root.

Lemma 7.12: Let T1 be any theory with SOP2. Then T1 is maximal in �∗.

Proof. Let T0 be the theory Th(ω+ω∗) of an infinite discrete linear order with

a first and last element. As just explained, it will suffice to show that there is

a theory T∗ with the following properties:

For any M∗ |= T∗,

• there exists an interpretation of T1 in M∗, denoted M∗
[ϕ̄1],

• there exists an interpretation of T0 in M∗, denoted M∗
[ϕ̄0],

• for any infinite regular cardinal λ, if M∗
[ϕ1] is λ-saturated

then M∗
[ϕ0] is λ-saturated.

We build the theory T∗ in several steps. Let ϕ(x, y) be a formula of T1 which

has SOP2. Let nϕ = �(y); here and elsewhere, we may omit overlines. Without

loss of generality, τ(T1) has only predicates. To begin, fix:

• A model M1 |= T1 and a set of parameters 〈aη : η ∈ ω>ω〉 witnessing

SOP2 for ϕ. [Recall that by compactness, we may assume our tree

witnessing SOP2 is infinitely branching, with paths consistent and in-

comparable nodes inconsistent.]
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• A model M2 |= (H(ℵ1),∈). Without loss of generality, the domains of

M1 and M2 are disjoint, and the relation ε does not appear in τ(M1).

Let M be the model which is the disjoint union of M1 and M2, expanded by

the additional relations and functions {N,P, F} as follows and no additional

structure. (Without loss of generality, these symbols do not occur in τ(M1) or

τ(M2).)

• NM names ω in M2.

• PM names {aη : η ∈ n>n} ⊆ dom(M1).

• FM is a unary function with domain ω>ω ⊆ M2 and range PM ⊆M1,

such that FM (η) = aη.

For each n < ω, let Mn be the model M expanded further by the constant c

where cMn = n ∈ ω = NM = NMn . Let D be a nonprincipal ultrafilter on ω.

Let N∗ =
∏

nMn/D and let T∗ = Th(N∗). This completes the construction

of T∗, the theory of the ultraproduct as just defined. Note that

τ(T∗) = τ(N∗) = τ(M1) ∪ τ(M2) ∪ {N,P, F, c}.

In any model M of T∗, the constant cM is a nonstandard element of NM , i.e.,

of the (nonstandard) copy of ω.

In addition to T∗ and N∗ as just defined, let M∗ be an arbitrary but fixed

model of T∗ which satisfies: M∗ �τ(T1) is λ-saturated. Note that T∗ interprets T0

and T1, that is, there exist ϕ0, ϕ1 witnessing 7.6. This is because M∗ �τ(T1)|= T1

by construction, while

N0 := NM∗ � cM∗ = ({a ∈M∗ : M∗ |= a ∈ c},∈M∗) |= T0.

To analyze saturation, we define a cofinality spectrum problem as follows.

First, let Or0(s) be the smallest set containing the set of all finite nonempty

initial segments of NM∗ , in each case letting da = maxXa. [We may use any

non-empty order in H(ℵ0).] For each a,b ∈ Or0(s), let a× b be the definable,

pseudofinite linear order on Xa ×Xb given by the Gödel pairing function, and

let da×b = (da, db). Let Or(s) be the closure as just described of Or0(s) under

Cartesian product, as well as initial segment. [If b is an initial segment of a,

define db = min{maxXb, da}.]
Suppose for a moment that M∗ = N∗, i.e., suppose we are really in the case

of the ultrapower. Then for each a ∈ Or(s), ϕa is a formula ϕ(x, y, z) over the

empty set. Because we are inN∗, for each suitable parameter ā, the set ϕ(x, x, ā)

is contained in the ultraproduct of finite sets. Let ψ(w, z) be such that for each
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suitable ā ∈ �(z̄)Mn [though by construction, we can restrict to the case where

ā ⊆ NMn ] we have that Tϕ,ā = {η : M |= ψ(η, ā)} is the set of finite sequences of

members of the finite set Xϕ,ā = {b : M |= ϕ(b, b, ā)} of length < maxXϕ,ā. Let

� = {(η, ν) : η, ν ∈ Tϕ,ā and η is an initial segment of ν}. These are definable

in Mn by the choice of its theory. The length and evaluation functions lg

and val can be defined likewise. By �Los’ theorem, these formulas will define

the appropriate trees in the ultrapower. Thus, we get a cofinality spectrum

problem. Moreover, for each given ϕa, each ā of length �(z), and each t < ω,

we have that in each index model, the tree T = Tϕ,ā[t] is finite, so its flattening

(S, <S) [in the sense of 3.2 above] can be injectively mapped into NMn . That

is, Mn |= “there exists an injective order-preserving map of (S, <S) into N”.

As the flattening is uniformly definable from ψ, and we are in a model with

sufficient set theory, such an injection exists also in the ultrapower and so s has

(strong) exponentiation.

Returning to the case of arbitrary M∗ ≡ N∗, as we are in a model with suffi-

cient set theory, note that the existence of such associated trees and injections

are elementary properties of each given ϕ and ψ. Thus, also in this more general

case, s is a cofinality spectrum problem with exponentiation.

Having defined s, we now prove that ts ≥ λ. First we verify that it is suffi-

cient to look at one-dimensional trees, i.e., that treetops are witnessed by some

Ta where Xa ⊆ NM∗ . By Theorem 3.11, there is a (ts, ts)-cut in some Xa,

a ∈ Or(s). If Xa is one-dimensional, then by Claim 7.10, we finish. If not, Xa

is contained in some finite Cartesian power of NM∗ . Let f : Xa → NM∗ be a

definable injection, given by applying the Gödel pairing function finitely many

times. By the definition of s, this is an order-preserving map. (This appeal

to the definition is not necessary: we could simply use that such a map is an

injection of sets, so by Conclusion 8.4 of the next section, there is an injective

order-preserving map into some one-dimensional Xb.) Necessarily Xb will have

a (ts, ts)-cut, so again by Claim 7.10, we finish.

So to show ts ≥ λ, it will suffice to show that for any one-dimensional a,

and any κ < λ, any κ-indexed strictly increasing sequence 〈ηα : α < κ〉 in Ta
has an upper bound. Recall the constant c from the signature of N∗ and M∗.

Since M∗ ≡ N∗, any one-dimensional Xa is contained in a nonstandard initial

segment, i.e., for some m, NM∗ |= “c ≤ m and Xa ⊆ M∗ � m”. By Fact 7.11,

without loss of generality Xa is the full initial segment below m and Ta is the
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full tree m>m. In (H(ℵ0), ε)M∗ we define Ta = (m>m, �) and let

ψ(y,m) := (∃η ∈ Ta)(F (η) = y))

define the subset of PM∗ corresponding to the image F (Ta). Now if

η = 〈ηα : α < κ〉

is increasing in Ta, then recalling the SOP2-formula ϕ from the beginning of

the proof,

pη = {ϕ(x, F (ηα)) : α < κ}
is a consistent partial type14 in M∗ � τ(T1). By the assumption of λ-saturation

in that signature, some d ∈M∗ realizes p, hence

{η ∈ Ta : ϕ[d, F (η)]}

is a subset of a branch of Ta by definition of SOP2 and of F , and is definable

in M∗. Then the set

{a ∈ Xa : a < da ∧ (∃η)(η ∈ Ta ∧ ϕ[d, F (η)] ∧ a ∈ dom(η))}
of lengths of such elements is a definable, nonempty, bounded subset of Xa, so

contains a greatest element a∗. Any η along the distinguished branch whose

domain contains a∗ will be an upper bound for η. This completes the proof

that ts ≥ λ.

Recall that we had set N0 := NM∗ � cM∗ as the domain for our interpretation

of T0 in M∗. Since s is a CSP with exponentiation, ps = ts = λ by Theorem

3.11. By definition of ps, there are no (κ1, κ2)-cuts in any Xa, for a ∈ Or(s)

and κ1, κ2 < ts. This in particular is true for a with Xa = {a : M∗ |= a < c}
and da = maxXa. In fact, for arbitrarily large a ∈ NM∗ , Or(s) contains a such

that Xa ⊇ N �≤a, in which, therefore, we have no (κ1, κ2)-cuts.

Finally, let us prove that M∗
[ϕ0], i.e., the τ0-submodel whose domain is N0,

is λ-saturated. We know that for models of T0, every formula is a Boolean

combination of the formulas x = y, x < y, and ϕk(x, z) = (∃!ky)(x < y < z).

Thus N0 |= T0 is λ-saturated iff every cut (C1, C2) of N0 ⊆ NM∗ of cofinality

(κ1, κ2) is filled, where κ1, κ2 are regular and κ1 + κ2 ≤ λ. This was proved in

the previous paragraph.

This completes the proof.

14 The fact that comparability of elements in the domain of F is reflected in the consistency

of their images will carry over from the models Mn to N∗ by �Los’ theorem and from

there to M∗ by elementary equivalence.
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Theorem 7.13 (GCH): T is �∗-maximal if and only if it has SOP2.

Proof. By Fact 7.2 (which assumes relevant instances of GCH) and Lemma

7.12.

8. Useful tools and additional definitions

Before turning to a structure theory for NSOP2, we prove several additional

facts about CSPs: Claim 8.3 and Conclusion 8.4, which show that from a suit-

able bijection of sets, we can recover an order-isomorphism. It follows that the

assumption that the order on all pairs was given by the Gödel pairing function

in the CSP constructed in Lemma 7.12 could be weakened, as mentioned in that

proof. Tying up loose ends, we show that one of the main consequences of 2.1(6)

can be recovered in weak hereditary CSPs, Claim 8.5, and discuss the barrier

to fully recovering [9] for such CSPs in 8.6. Finally, we include a definition of

“strong” CSPs, natural when the underlying model M+
1 is totally ordered.

Definition 8.1: Let b ∈ Or(s). We say that Z ⊆ Xb is small in Xb if:

(a) there is some definable V , Z ⊆ V ⊂ Xb such that M+
1 |= “there does

not exist x ∈ Tb such that x is a bijection from Xb into V ”,

(b) if Z �= ∅, then max(Z) < db.

When Z ⊆ Xb is small in Xb and is an initial segment, we call it a small

initial segment.

Remark 8.2: Condition 8.1(b) allows for concatenation.

Claim 8.3: Suppose we are given a weak cofinality spectrum problem s,

b ∈ Or(s), h ∈ M+
1 , (W,<W ) a definable and pseudofinite linear order, and Z

a small initial segment of Yb, such that:

M+
1 |= “ h is a partial bijection with W ⊆ dom(h), range(h) ⊆ Z”.

Then (W,<W ) is internally order-isomorphic to an initial segment of Yb.

Proof. Let (W ∗, <W∗) denote the definable set h(W ) ⊆ Xb with the definable

linear order given by x <W∗ y ⇐⇒ h−1(x) <W h−1(y). This allows us to

identify (W ∗, <W∗) definably with (W,<W ), and now we prove that (W ∗, <W∗)

is internally order-isomorphic to an initial segment of (Xb,≤b).
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Let T be the definable subtree of Tb given by ϕ(x), which says: “x ∈ Tb
is a one-to-one order-preserving function from an initial segment of (Xb,≤b)

onto an initial segment of (W ∗, <W∗)”. Thus if a <b b are in dom(x) then

x(a) <W∗ x(b).

First, note that the set F = {x ∈ T : ϕ(x)} is linearly ordered. This is

because any two elements x, x′ ∈ T must agree on the first element of their

domain; and if neither of x, x′ extends the other, then the set in their common

domain on which they agree is nonempty and definable. But if the last ele-

ment of this set is not max dom(x), we get a contradiction since the order is

pseudofinite.

Consider the subset of Xb given by

{a ∈ Xb : there is x such that ϕ(x) and a ∈ dom(x)}.

As this subset is nonempty and definable, by assumption it has a last element

a∗ ∈ Xb. Let x∗ ∈ T be a function witnessing this, i.e., such that a∗ ∈ dom(x∗).

Necessarily x∗ = maxF .

There are three cases.

Case 1. The desired case: range(x∗) = W ∗.

Case 2. Not case 1, but dom(x∗) = Xb. Then

M+
1 |= “x∗ ∈ Tb is an injection of Xb into Z”

contradicting Definition 8.1.

Case 3. Not case 1 or 2, so dom(x∗) � Xb and range(x∗) � W ∗. By Defin-

ition 8.1 and the hypotheses of the Claim, “not case 2” implies lg(x∗) < db.

Writing S for successor, note that as the orders are pseudofinite, the function

x∗
�〈S(f(a∗))〉 is well defined (meaning the function extending x∗ by the ad-

ditional condition S(a∗) �→ S(f(a∗)) is well defined). We may concatenate, so

this new function belongs to T , contradicting the choice of a∗.

As cases 2 and 3 are contradictory, we are necessarily in case 1, which com-

pletes the proof.

Conclusion 8.4: Suppose that s is a weak cofinality spectrum problem, and:

(1) N ⊆M1,s is definable and linearly ordered.

(2) Arbitrarily large initial segments of N are orders for s; more precisely,

there is ψ ∈ Δ so that for any a ∈ N there is a ∈ Or(s) with

{b ∈ N :|= b ≤ a} ⊆ {b ∈M1,s :|= ψ(b, b, a)} = Xa ⊆ N
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and a < da.

(3) Cardinality of initial segments of N grows internally; more precisely,

letting θ = θ(w, y) define the tree associated to ψ(x1, x2, y), we have

that M1,s |= “(∀y0 ∈ N)(∃y1 ∈ N)(there does not exist z ∈ θ(w, y1)

such that z is a bijection from ψ(x, x, y1) into ψ(x, x, y0))”.

Let (W,<W ) be a definable, pseudofinite linear order in the model. If there

is an internal injection f of sets from W into some initial segment of N , then

for some b ∈ Or(s) with Xb ⊆ N there exists an internal order-isomorphism g

from (W,<W ) onto an initial segment of Yb.

Proof. By the hypothesis, we can find b0 such that

Xb0 ⊇ f(W ) and db0 > max(f(W )).

Let ψ(z) be the formula in Δ defining the pseudofinite linear order correspond-

ing to the initial segment below z, and let θ(z) define its associated tree. Then

M1,s |= “(∃z)(there does not exist x ∈ θ(z) such that x is a bijection from ψ(z)

into Xb0)”. Let c be any such z. Again by hypothesis, there is b ∈ Or(s) such

that Xb ⊇ {x : x ≤ c} and db > c. Now apply Claim 8.3.

Claim 8.5: If s is a nontrivial weak c.s.p. and is hereditarily closed, then there

exist nontrivial a, a′ ∈ Or(s) which together satisfy (∗∗) of 2.5.

Proof. Let b (so also Tb) be nontrivial. In section 5 of [9], we showed that for

any b ∈ Or(s), it is possible to define addition, multiplication, and exponen-

tiation on any element of Or(s) (that is, to define relations on Xb which have

all the same properties as the graphs of these functions, except that they are

possibly not total). This does not require any assumptions on pairing. This is

done in the proof of [9] Lemma 5.3, essentially as follows. Addition is given by:

ϕ+(x, y, z) =

(∃η∈Tb)(lg(η)=y ∧ η(0)=x ∧ η(y−1)=z ∧ (∀i)(i< lg(η) =⇒ η(S(i))=S(η(i))).

[We omit the parameter c̄b for readability.] To obtain multiplication, ϕ×(x, y, z),

substitute “(i < lg(η) =⇒ η(S(i)) = η(i) + x)” as necessary, and define

exponentation ϕexp(x, y, z) by substituting in the appropriate place

“(i < lg(η) =⇒ η(S(i)) = η(i)×x),” i.e., requiring that the sequence increment

by a factor of x. These are graphs of partial functions, which need not be total.

We can therefore define “x is a prime.” Let ϕ4(x, y) assert that x is the yth
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prime by saying: y>0∧(∃η∈Tb)(lg(η)=y∧η(0)=2∧η(y−1)=x∧(∀i)(i< lg(η)

=⇒ “η(S(i)) is the ≤b-least prime number strictly greater than η(i)”)). Let

ϕ5(x, n,m) assert that x is divisible by the nth prime precisely m times, by

asserting the existence of η ∈ Tb of length m whose first element is x, whose

subsequent elements decrease by a factor of the nth prime and whose last ele-

ment has no more such factors. Let the formula ϕ6(x, η) assert that x ∈ Xb

is a Gödel code for η by stating: “η �= ∅, η ∈ Tb, x > 2 and for all i < lg(η),

writing m = η(i), we have that x is divisible by the ith prime precisely m+ 1

times”. Let θ(x) assert that

(∀y < x)(∃z)ϕ+(x, y, z) ∧ (∀y < x)(∃z)ϕ×(x, y, z) ∧ (∀y < x)(∃z)ϕexp(x, y, z).

Let ψ(y) be the formula

(∀x<y)θ(x)∧(∀η∈Tb)((lg(η)<y∧(∀i< lg(η))(η(i)<y)) =⇒ (∃x)(ϕ6(x, η)))

which asserts that Gödel codes exist for all functions from Xb �y to itself.

For our present case, apply this as follows. Recall that Xb is pseudofinite.

First step: Find nonstandard n∗ ≤ db so that the definable set Z of codes for

pairs of elements of [0, n∗]b is contained in Yb. Second step: Find n∗∗ ∈ Xb,

n∗∗ ≤ n∗ still nonstandard, so that Xb contains all codes for functions

from [0, n∗∗]b to itself. Third step: Let m∗ be maximal ≤b n∗∗ such that

〈m∗,m∗〉 ≤ n∗∗,

so necessarily m∗ is nonstandard too. Let a1 be such that Xa1 = [0, n∗∗]b and

da1 = m∗.

Now define a so that Xa = [0,m∗]b and da = m∗. What about the desired

tree T of functions from Xa to Xa × Xa? Recalling that da1 = m∗, this tree

is naturally isomorphic to the definable sub-tree T ⊆ Ta1 whose elements are

functions whose range consists only of codes for pairs of elements each of which

are ≤ m∗. By construction, the codes for elements of Ta1 and therefore for

elements of T form a definable subset of Xb. Finally, let a′ = b.

This completes the proof.

Discussion 8.6: By a similar argument, in any weak CSP which is hereditarily

closed, for some nontrivial a ∈ Or(s) we have available nontrivial elements

of Or(s) which can be thought of as canonically representing any given one

of the finite Cartesian powers a × · · · × a with the desired ordering, e.g., one

derived from repeated applications of the Gödel pairing function. However, as
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noted in Discussion 2.5, we don’t a priori have Cartesian products of distinct

a,b ∈ Or(s). This prevents us from obtaining the uniformity of functions such

as lcf across all Xa which was necessary for the main theorems of [9] to go

through.

Definition 8.7 (Strong CSPs): Call s a strong CSP, or lexicographic CSP if

the demands on Cartesian products from 2.1(5) are replaced by:15

(1) if a,b ∈ Or(s), then internally either |Ya| ≤ |Yb| or |Yb| ≤ |Ya|,
(2) if a ∈ Or(s) and d ≤a da, then there is b ∈ Or(s) such that:

(a) Xb = Xa, <b=<a, db = d,

(b) Tb = Ta � {η : (lga(η) ≤ d) ∧ (∀n < max dom(η))(η(n) ≤ d)},
(3) if a,b ∈ Or(s) and h is a definable16 isomorphism from (Ya, <a) onto

(Yb, <b) then there is c = a × b such that Xc = Xa ×Xb, <c is the

lexicographic order, dc = (da, 0b), and Tc is naturally defined.

Observation 8.8: Any strong CSP is a weak CSP, and the hereditary closure of

a strong CSP is a strong CSP.

Claim 8.9: If s is a strong CSP which is hereditarily closed, then:

(a) s satisfies Property (∗∗) of Discussion 2.5.

(b) Moreover, for any nontrivial a,b ∈ Or(s), there is a nontrivial c ∈ Or(s)

with either Xc = Xa × Yb or Xc = Xb × Ya.
(c) Suppose that for every a ∈ Or(s) there is a′ ∈ Or(s) such that Xa is

internally isomorphic to a subset of Xa′ and da′ = max(Xa′). Then s

is closed under Cartesian products.

Proof. (1) By Claim 8.5 and Observation 8.8.

(2) Fix nontrivial a,b ∈ Or(s). By condition 8.7(1), without loss of generality,

|Ya| ≤ |Yb| witnessed by an internal partial isomorphism h. Since Condition

8.7(3) requires h to be surjective, let d = h(da) ∈ Yb. Since s is hereditarily

closed and d ≤ db, apply Observation 2.12 to find b′′ ∈ Or(s) such that

Xb′′ = Yb and db′′ = d.

Now h : Ya → Yb′′ is onto, so by condition 2.7(c) there is c = a × b′′ with

Xc = Xa ×Xb′′ = Xa × Yb and dc is nonstandard, thus c is nontrivial.

15 So here Δ is retained.
16 Not necessarily via Δ.



992 M. MALLIARIS AND S. SHELAH Isr. J. Math.

(3) As da′ = max(Xa′), db′ = max(Xb′), we have that Ya′ = Xa′ , Yb′ = Xb′ ,

and the previous condition (2) shows that their Cartesian product exists. The

hypothesis of (3) allows us to find Cartesian products for any two elements of

Or(s) by first isomorphically embedding them in suitable larger elements a′,b′,

finding c′ = a′ × b′ and then applying hereditary closure.

9. Towards a structure theory for NSOP2

In Section 7, we gave the first real evidence that the strong tree property SOP2

is a dividing line. Motivated by this result, we now look for the beginnings

of a structure theory for NSOP2. The key objects are so-called higher formu-

las, defined using ultrafilters. The main results are first, Theorem 9.21, which

characterizes NSOP2 in terms of few higher formulas; second, the Symmetry

Lemma 9.15, which characterizes NSOP3 in terms of symmetric inconsistency

for higher formulas; and third, Theorem 9.30, which proves that SOP2 is suffi-

cient for a certain kind of exact saturation to fail.

Convention 9.1: Throughout this section, T is a complete first order theory and

C = CT is a monster model for T .

SOP2 was defined in 7.1 above. SOP3 was first defined in Shelah [19] as

a weakening of the strict order property; note that in Definition 9.2, the case

where ψ = ¬ϕ is the strict order property.

Definition 9.2 ([19] 2.20, [26] 1.3): T has SOP3 if there is an indiscernible se-

quence 〈ai : i < ω〉 and formulas ϕ(x, y), ψ(x, y) such that:

(1) {ϕ(x, y), ψ(x, y)} is contradictory,

(2) for each k < ω, the following is a consistent partial type:

{ψ(x, aj) : j ≤ k} ∪ {ϕ(x, ai) : i > k},

(3) for j < i, the set {ϕ(x, ai), ψ(x, aj)} is contradictory.

It is known that SOP3 implies SOP2 but it is open whether, on the level

of theories, the converse is true; so it is possible that the Symmetry Lemma

below will also characterize SOP2. (Still, for pairs (T,Δ) the converse fails

since SOP2, SOP3 are known to be distinct at the level of formulas.)

We first look for a useful way to capture the asymmetry of SOP3. This

approach relates to the idea of “semi-definability” from [17] VII.4.
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Definition 9.3: If D is an ultrafilter on A ⊆ Cm, then for any set B ⊆ C we

define

Av(D, B) = {ψ(x; b) : b ∈ B,ψ ∈ [L], {a ∈ A :|= ψ(a, b)} ∈ D},

so this is an element of Sm(B).

Definition 9.4: Let D be an ultrafilter on mA. (We sometimes write m = m(D)

for this arity.)

(1) We say that the infinite indiscernible sequence b = 〈bs : s ∈ I〉 is based

on D when

tp(b̄s, A+ b̄>s) = Av(D,A+ b̄>s))

where b̄>s =
⋃
{b̄t : t ∈ I, s <I t}.

(2) For each D, let ob(D) = ob(D, A) be the set of such b, i.e., the set of

all infinite indiscernible sequences based on D (assuming the monster

model C is well defined).

In Definition 9.4, the elements approach A; of course we could have inverted

the order. Given such an ultrafilter D and an infinite indiscernible sequence

built from it, we may naturally ask when a given formula instantiated along

this sequence is consistent.

Definition 9.5: Let A ⊆ C and ϕ = ϕ(x, y) = ϕ(x, y, c) for c ∈ C.17

(1) Let ufϕ(A) be the set of ultrafilters D on lg(ȳ)A such that if

b = 〈bs : s ∈ I〉 ∈ ob(D),

then

{ϕ(x, bs, c) : s ∈ I}
is a consistent partial type.

(2) For each k < ω, let ufϕ,k(A) be the set of ultrafilters D on lg(y)A such

that if b = 〈bs : s ∈ I〉 ∈ ob(D) and s0 <I · · · <I sk−1, then

{ϕ(x, bs� , c) : � < k}

is a consistent partial type. So when k = ∞, we may omit it.

We arrive at a key definition of the section: higher formulas (ϕ,A,D), triples

such that ϕ is indeed consistent when instantiated along any b̄ ∈ ob(D, A). Two

17 Usually, c is empty, and in any case, we can just incorporate it into the parameters y.
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subsequent theorems of the section will characterize SOP2 and SOP3 in terms

of the interaction of these higher formulas.

Definition 9.6 (Higher formulas): Let m̄ = (m0,m1). Writing m instead of m̄

means m0 = 1 and m = m1, or that m0 is clear from the context. Let HFm̄
k be

the set of triples ρ = (ϕ,A,D) where ϕ = ϕ(x̄, ȳ) with �(x̄) = m0, �(ȳ) = m1,

and no more parameters, D is an ultrafilter on m1A and

D ∈ ufϕ,k(A).

Definition 9.7: In the context of 9.6:

(1) Let HFm̄ = HFm̄
∞ =

⋂
k HFm̄

k .

(2) We may wish to consider higher formulas over a fixed set A, or using a

fixed formula ϕ, in which case our notation will be:

(a) Given A, we may write HFm̄
k (A), or “(ϕ,D) ∈ HFm̄

k (A)”.

(b) Let HFm̄(A) = HFm̄
∞(A) =

⋂
k HFm̄

k (A).

(c) Given ϕ = ϕ(x̄, ȳ), with �(x̄) = m0 and �(ȳ) = m1, we may write

HFϕ = HFm̄
ϕ , HFm̄

ϕ,k(A), etc., where the subscript ϕ means we

restrict to triples whose first element is ϕ with the given partition

of variables.

(d) Call the elements of HFϕ(A) “higher ϕ-formulas over A.”

Convention 9.8: In Defintion 9.5(1), we may say “D is an ultrafilter over A”

without mentioning m1 when it is clear from the context.

We would like to study pairwise consistency or inconsistency of higher

formulas as follows. Suppose we are given (ϕ0, A0,D0), (ϕ1, A1,D1),

〈b0,s : s ∈ I0〉 ∈ ob(A0,D0) and 〈b0,t : t ∈ I1〉 ∈ ob(A1,D1). If we choose

s ∈ I0 and t ∈ I1, will ϕ0(x̄, b̄0,s) and ϕ1(x̄, b̄1,t) be consistent? What if we

choose finitely many instances from each list? The specter of SOP3 suggests

that we should first fix an interpolation of I0 and I1 into a single linear order I

and pay attention to the relative position of the indices s and t. The notation

we now introduce in 9.9–9.10 is one way to handle this (most of the time we

use σ = 2).

Definition 9.9 (Partitions of linear orders, [27] Definition 1.39): Let Kp,σ be the

class of triples

(I,<I , (P
I
i )i<σ)
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where I is linearly ordered by <I and 〈P I
i : i < σ〉 is a partition of I.

Definition 9.10: Fix σ and suppose 〈(ϕi, Ai, Di) : i < σ〉 is a sequence of higher

formulas. Let

Ā = 〈Ai : i < σ〉

and let

D̄ = 〈Di : i < σ〉.

Define

ob(D̄) = ob(D̄, Ā)

to be the set of b̄ = 〈b̄s : s ∈ I〉 such that:

(1) I ∈ Kp,σ ,

(2) if s ∈ P I
i then:

• �g(b̄s) = m(Di),

• tp(b̄s,
⋃

j<σ Aj ∪ b̄>s) ⊆ Av(Di) := Av(Di,Cτ ).

We may write A instead of Ā when all the Ai are the same. We may write

i = i(s) = i(s, I) and we may write Ib̄ = I[b̄] for I.

Note that in Definition 9.10, we do not require that b̄ be indiscernible; in

fact, it may consist of sequences of differing lengths, if the m(Di) differ.

Definition 9.11 (n-inconsistent higher formulas): Assume that for � = 0, 1,

ρ� = (ϕ�, A�, D�) ∈ HFm̄�

k�
.

(1) We say (ϕ0, A0, D0) is n-contradictory to (ϕ1, A1, D1) when: for every

b̄ ∈ ob(〈D0, D1〉, 〈A0, A1〉) and every s0 < · · · < s2n−1 with s� ∈ P I
0 [b̄]

for � < n and s� ∈ P I
1 [b̄] for � ∈ [n, 2n), we have that

{ϕ0(x̄, b̄s�) : � < n} ∪ {ϕ1(x̄, b̄s�) : � ∈ [n, 2n)}

is contradictory.

(2) In “n-contradictory,” if n = 1 we may omit it and writing n = ∞ means

“for some n”. Of course, “n-consistent” is the negation.

(3) We say that (ϕ0, A0, D0) and (ϕ1, A1, D1) are mutually n-contra-

dictory when (ϕ�, A�, D�) is n-contradictory to (ϕ1−�, A1−�, D1−�) for

� = 0, 1. On the symmetry of this notion, see Lemma 9.15 below.

(4) “The set of {ρi = (ϕi, Ai, Di) : i ∈ S} are pairwise n-contradictory”

will mean that each pair is mutually n-contradictory.
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Discussion 9.12: (1) In 9.11(1) we could have allowed the choice of elements

from the two partitions to alternate. However, we will see this is im-

material for NSOP3, and moreover is a little less natural when repla-

cing n-contradictory higher formulas by 1-contradictory derived formu-

las arising as n-fold conjunctions.

(2) This definition enforces an order between the elements si in differ-

ent partitions; one could give a different definition requiring only that

s0 < · · · < sn−1 and sn < · · · < s2n−1.

Definition 9.13: Say that T has symmetric inconsistency if, fixing m = �(x̄),

for any18 m1,m2 < ω, ϕ� = ϕ�(x̄[m], ȳ[m�]) and (ϕ�, A�,D�) ∈ HFm� for � = 1, 2,

we have that (ϕ1, A1,D1) is ∞-contradictory to (ϕ2, A2,D2) iff (ϕ2, A2,D2) is

∞-contradictory to (ϕ1, A1,D1).

As desired, this definition picks up on the asymmetry of SOP3:

Claim 9.14: If T has SOP3, then 1-inconsistency is not symmetric, i.e., T has

symmetric inconsistency in the sense of 9.13.

Proof. Let the sequence 〈ān : n < ω〉 and the formulas ϕ(x̄, ȳ), ψ(x̄, ȳ) witness

SOP3, see 9.2. Let A = {ān : n < ω}. Let D be an ultrafilter on lg(ȳ)A such

that {ān : n > k} ∈ D for every k < ω. Let ρ1 = (ϕ,A,D), ρ2 = (ψ,A,D). To

see that ρ2 is 1-consistent with ρ1 but ρ1 is not 1-consistent with ρ2, let I be

the linear order ω+ω∗. Let (P0, P1) be any partition of I into two infinite sets,

and let 〈b̄s : s ∈ I〉 be as in 9.10 for ((D,D), (A,A)).

Lemma 9.15 (Symmetry lemma): For T complete the following are equivalent.

(1) T is SOP3.

(2) T has symmetric inconsistency.

Proof. The direction (1) implies (2) is given by Claim 9.14.

For the other direction, we will show how an instance of symmetric incon-

sistency gives rise to SOP3. For notational simplicity, we use m = �(x̄) = 1,

since for SOP3 the arity does not matter. Suppose we are given m0,m1 < ω

and (ϕ�, A�,D�) ∈ HFm� for � = 0, 1.

18 The notation ϕ�(x̄[m], ȳ[m�]
) means that �(x̄) = m and �(ȳ) = m�.
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Let A = A0 ∪ A1, m = m0 +m1 and

D =D0 ×D1

={X ⊆ mA : {ā0 ∈ m0A0 : {ā1 ∈ m1(A1) : ā0
�ā1 ∈ X} ∈ D1} ∈ D0}.

By construction, D is an ultrafilter on mA. Suppose I is a linear order and

ā = 〈ās = a0,s
�ā1,s : s ∈ I〉

is an indiscernible sequence based on D, with �(a�,s) = m�, thus 〈a�,s : s ∈ I〉 is

also an indiscernible sequence based on D� for � = 0, 1. For any h : I → {0, 1},
we may consider the partition given by

Ih = (I,<I , (P
h
i )i<2) where P h

i = {s : h(s) = i}.

Then Ih ∈ Kp,{0,1} and āh := 〈ah(s),s : s ∈ I〉 is Ih-indiscernible based on

(D0, D1).

Figure 1. A sample partition of I; I indexes a sequence of m0 + m1-

tuples which is indiscernible based on D. Thus, restricting to the first m0

elements of tuples with indices in the black regions gives an indiscernible

sequence based on D0, whereas restricting to the last m1 elements of tuples

with indices in the grey regions gives an indiscernible sequence based

on D1.

Moreover, if 〈sα : α < ω + ω〉 is <I -increasing, then:

(1)n the following are equivalent:

(a) {ϕ0(x, ā0,sα) : α < n} ∪ {ϕ1(x, ā1,sω+α) : α < n} is contradictory.

(b) (ϕ0, A0, D0) is n-contradictory to (ϕ1, A1, D1).

Figure 2. Let the image indicate that we instantiate ϕ0 n times along

the D0-indiscernible sequence indexed by the black region and ϕ1 n times

along the D1-indiscernible sequence indexed by the grey region.

(2)n the following are equivalent:

(a) {ϕ1(x, ā1,sα) : α < n} ∪ {ϕ0(x, ā0,sω+α) : α < n} is contradictory.

(b) (ϕ1, A1, D1) is n-contradictory to (ϕ0, A0, D0).
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Figure 3. Let the image indicate that we instantiate ϕ1 n times along

the D1-indiscernible sequence indexed by the grey region and ϕ0 n times

along the D0-indiscernible sequence indexed by the black region. Then

for any given n, a disparity in consistency between Figures 2 and 3 leads,

by taking conjunctions, to an instance of SOP3.

Let ȳ = ȳ�0 ȳ1,

ϕ+
0 = ϕ+

0 (x, ȳ) = ϕ+
0 (x, ȳ0, ȳ1) = ϕ0(x, ȳ0),

and

ϕ+
1 = ϕ+

1 (x, ȳ) = ϕ+
1 (x, ȳ0, ȳ1) = ϕ1(x, ȳ1),

i.e., these are the given formulas formally considered as having more variables.

Then for each n, to (1)n above, we may add the equivalent condition:

(c)n {ϕ+
0 (x, āsα) : α < n} ∪ {ϕ+

1 (x, āsω+α) : α < n} is contradictory.

Likewise, for each n, to (2)n above, we may add the equivalent condition:

(f)n {ϕ+
1 (x, āsα) : α < n} ∪ {ϕ+

0 (x, āsω+α) : α < n} is contradictory.

Now if it is not the case that for all n (c)n iff for all n (f)n, we have a

witness to SOP3 for T (given by the conjunctions of n copies of ϕ0 and of ϕ1,

respectively). This completes the proof.

As a corollary of the proof of Lemma 9.15, we have:

Corollary 9.16: Assume T is NSOP3. If p� = (ϕ�, A�,D�) for � = 0, 1 and p0

is n-consistent with p1 for every n (i.e., not ∞-contradictory), then if I ∈ KP
σ ,

σ = 2 and we have 〈b̄s : s ∈ I〉 as usual, then {ϕ�(x, b̄s) : s ∈ P I
� , � < 2} is

consistent.

We now work towards Theorem 9.21, using higher formulas to characterize

NSOP2. First, we show that having SOP2 means many pairwise 1-contradictory

higher formulas. Recall that:

Definition 9.17: Ded+(λ) = sup{| lim(T )|+ : T ⊆ λ>2 is nonempty, closed

under initial segments and has no �-maximal members and has cardinality≤ λ}.
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Claim 9.18: Assume ϕ(x̄, ȳ) has SOP2 in T and λ < μ < Ded(λ). Then there is

A ⊆ CT of cardinality λ and Dα ∈ ufϕ(A) for α < μ such that 〈(ϕ,Dα) : α < μ)

are pairwise 1-contradictory.

Proof. Let the tree T witness that μ < Ded(λ) and let να ∈ lim(T ) (i.e., the

“leaves”) for α < μ be pairwise distinct. Let 〈āη : η ∈ T 〉 be such that:

(a) (ϕ(x̄, āη), ϕ(x̄, āν) are contradictory when η ⊥ ν are from T ,

(b) {ϕ(x, āη�α) : α ≤ �g(η)} is a consistent partial type for η ∈ T .

Let A = ∪{āη : η ∈ T } and for α < μ let Dα be an ultrafilter on �g(ȳ)A

concentrating on the branch να, i.e., such that:

if β < �g(να), α < μ then {āρ : να � β � ρ � να} ∈ Dα.

Clearly these ultrafilters are as desired.

We will need notation for finitary approximations to SOP2-trees.

Definition 9.19: We say that (T, ϕ) has NSOP2,n when there are no b̄η ∈ �g(ȳ)C

for η ∈ n>2 such that

(1) η ⊥ ν ⇒ ϕ(x̄, b̄η), ϕ(x̄, b̄ν) are incompatible,

(2) for η ∈ n2, {ϕ(x̄, b̄η��) : � < n} is a type.

Fact 9.20: (T, ϕ) |= NSOP2 iff
∨

n((T, ϕ) |= NSOP2,n).

We now arrive at the second theorem of the section, which shows how from

many pairwise contradictory higher formulas we may build an SOP2-tree, com-

plementing 9.18. Recall that by the Symmetry Lemma 9.15 above, as NSOP2

implies NSOP3, being contradictory is a symmetric notion.

Theorem 9.21: For a theory T the following are equivalent:

(1) For every infinite A and formula ϕ, there are no more than |A| pairwise
1-contradictory higher ϕ-formulas over A.

(2) T has NSOP2.

Proof. In Claim 9.18, it was shown that SOP2 implies many pairwise 1-con-

tradictory higher formulas. So it remains to prove the other direction: many

pairwise 1-contradictory higher formulas imply SOP2.

Step 0: Setup. Let λ = |A|+ and, by Fact 9.20, let n be such that (T, ϕ) has

NSOP2,n.

Assume for a contradiction that:
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(1) (ϕ,Dα) ∈ HFm
ϕ (A) for α < λ are pairwise 1-contradictory 19 and

(2) fixing some infinite linear order I, let b̄α = 〈bα,s : s ∈ I〉 ∈ ob(Dα) for

α < λ.

(Recall that the definition of 1-contradictory is for any such b̄.) We will use

just that λ = cf(λ) > |A| ≥ ℵ0.

Step 1: Approximations. We define the set AP of approximations (to a full

SOP2,n-tree) to be the set of x consisting of: 20

(1.1) Λ ⊆ n>2, ā where:

(a) Λ is non-empty downward closed,

(b) ā = 〈āη : η ∈ Λ〉 with each āη ∈ lg(ȳ)A,

(c) if η ⊥ ν are from Λ then ϕ(x̄, āη), ϕ(x̄, āν) are incompatible,

(d) if η ∈ Λ then {ϕ(x̄, āη��) : � ≤ �g(η)} is a consistent partial type,

(e) if ν�〈1〉 ∈ Λ then ν�〈0〉 ∈ Λ.

(1.2) Ū = 〈Uη : η ∈ frt(Λ)〉, where:

(a) frt(Λ) := {η ∈ Λ : �g(η) < n− 1 and ηˆ〈0〉 /∈ Λ or ηˆ〈1〉 /∈ Λ} (the

“frontier” for our inductive construction of a tree, i.e., the nodes

without two immediate successors),

(b) each Uη ⊆ λ has cardinality λ (the intention is a set of indices for

the b̄α from Step 0),

(c) Uη ∩ Uν = ∅ for η �= ν,

(d) if η � ν are from frt(Λ), k < ω, s0, . . . , sk−1 ∈ I, k+ �g(η) ≤ n and

α ∈ Uν , then

{ϕ(x, āη��) : � ≤ �g(η)} ∪ {ϕ(x, b̄α,s�) : � < k}

is a consistent partial type,

(e) if η ∈ frt(x), s ∈ I, α ∈ Uη and ν ∈ Λ,¬(ν � η), then ϕ(x̄, b̄α,s),

ϕ(x̄, aν) are incompatible.

Note the role of the two kinds of parameters: the b̄α,s from Step 0, and the

parameters āη for the tree. Informally, the Uη tell us in which sequences we can

expect to continue our consistent partial type while maintaining inconsistency

elsewhere.

19 Here HFm
ϕ,n(A) suffices.

20 Alternately, we could consider: in Λx, frt(x) is a set of pairwise incomparable elements,

e.g. the �-maximal η ∈ Λ of length < n− 1. This is simpler here, but then the induction

step would require two steps: add η�〈0〉 or η�〈1〉 for some η ∈ frt(x).
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We define a two-place relation ≤AP on AP in the natural way: x ≤AP y iff

(a) x,y ∈ AP,

(b) Λx ⊆ Λy,

(c) āx,η = āy,η for η ∈ Λx,

(d) if η ∈ frt(Λx) ∩ frt(Λy), then Uy,η ⊆ Ux,η,

(e) if η ∈ frt(Λx), ν ∈ frt(Λy) and η � ν but ν � (�g(η) + 1) /∈ Λx, then

Uy,ν ⊆ Ux,η .

Step 2: Strategy. Clearly ≤AP is a partial order on AP. By choice of n in Step

0, if x ∈ AP then Λ � n>2. Thus, to obtain a contradiction (and complete the

proof) it will suffice to show that:

(2.1) there is z ∈ AP with Λz = {<>}, i.e., AP �= ∅,
(2.2) if x ∈ AP, then there is y ∈ AP such that |Λx| < |Λy|; in fact, x <AP y.

Step 3: Verifying Condition (2.1). Let s0 <I · · · <I sn. For each α < λ clearly

C |= (∃x̄)
∧

�≤n ϕ(x̄, b̄α,s�). So by (1) and (2) of Step 0,

Xα =

{
ā ∈ �g(ȳ)A : C |= (∃x̄)

[
ϕ(x̄, ā) ∧

n∧
�=1

ϕ(x, b̄α,s�)

]}
∈ Dα.

For each α < λ, choose b̄α ∈ Xα. [So b̄α is “canonically consistent” with the

partial ϕ-type given along the sequence b̄α by any n members.] As |A| < λ,

the set �g(ȳ)A has cardinality < λ = cf(λ), so for some b̄ the set

U = {α < λ : b̄α = b̄}

has cardinality λ.
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Now define z by:

• Λz = {<>},
• ā<> = b̄,

• U<> = U ,

and z is as required.

Step 4: Proving Condition (2.2). Let Λ = Λx.

The situation at the inductive step is essentially as follows. We would like

the tree to become full, so we choose � which is minimal for the property of not

having two successors; say, ��i is missing (there are minor adjustments at the

end of this step depending on whether it has a successor at 0 or 1). We try to

find a corresponding a��i for the missing successor of this node, and its set of

compatible indices U��i, subject to the following constraints:

(i) consistency of ā��i with comparable nodes, (1.1)(d),

(ii) inconsistency of ā��i with incomparable nodes, (1.1)(c),

(iii) consistency of ā��iwith large subsets of Uν , for compatible ν for (1.2)(d),

(iv) inconsistency of ā��i with Uη, for incompatible η, for (1.2)(e),

(v) disjointness of U��i from large subsets of Uν , for incompatible ν, for

(1.2)(c).

In this informal explanation, “large” stands in for the fact that we will also

have to refine the other Uη to get actual inconsistency or an actual empty

intersection. This completes the description of intent.

Now to begin, choose � ∈ frt(Λ) to be of minimal length, hence necessarily

�g(�) < n− 1 and we can choose ι < 2 such that �ˆ〈ι〉 /∈ Λ. Let k = n− lg(�).

Fix for a while a choice of a distinguished element of Uη for each η ∈ frt(Λ),

that is, ᾱ = 〈αη : η ∈ frt(Λ)〉 where αη ∈ Uη, and let s0 <I · · · <I sk−1.

By our choice of � and (1.2)(c), for every21 η ∈ frt(Λx)\{�} we have that

αη �= αρ, hence the following set belongs to Dα� :

Xᾱ,η =X 1
ᾱ,η ∪ X 2

ᾱ,η where

X 1
ᾱ,η ={b̄∈ lg(ȳ)A :ϕ(x̄, b̄), ϕ(x̄, āν) are incompatible, where ν∈Λ∧¬(ν�ρ)},

X 2
ᾱ,η ={b̄∈ �g(ȳ)A : ϕ(x̄, b̄), ϕ(x̄, b̄αη,s0) are incompatible},

since the (ϕ,Dα) are pairwise 1-contradictory and as 〈α� : � ∈ frt(x)〉 is without

repetitions by the assumption (1.2)(c) for X 2
ᾱ,η and (1.2)(e) for X 1

ᾱ,η.

21 If ρ has precisely one successor in the tree, this successor may be from frt(Λx).
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Furthermore, as (1.2)(d) holds for x, the following set belongs to Dα� :

Zᾱ,� := {b̄ ∈ �g(ȳ)A :{ϕ(x̄, āη��) : � ≤ �g(�)}
∪ {ϕ(x̄, b̄)}
∪ {ϕ(x̄, b̄α�,s�) : � < n− �g(�)− 1} is a type}.

Let Xᾱ = ∩{Xᾱ,η : η ∈ frt(Λ)\{�} and not comparable to � } ∩ Zᾱ,�. Since

Λ is finite and Dα� is a filter, Xᾱ ∈ Dα� .

By the choice of our sequence of ultrafilters in Step 0, for every β ∈ Ux,�\{α�},
we know that (ϕ,Dα�), (ϕ,Dβ) are 1-contradictory. So

Yᾱ,β = {b̄ ∈ �g(ȳ)A : ϕ(x, b̄), ϕ(x, b̄β,s0) are incompatible}

belongs to Dα� . So we may choose b̄ᾱ,β ∈ �g(ȳ)A which belongs to Xᾱ ∩ Yᾱ,β.

As |Ux,�| = λ = cf(λ) > |A|, there is b̄ᾱ ∈ �g(ȳ)A such that

Wᾱ = {β ∈ Ux,� : b̄ᾱ,β = b̄ᾱ}

has cardinality λ.

Recall that all of this is for a fixed ᾱ, 〈s0, . . . , sk−1〉.
Now continue to fix s0 <I · · · <I sk−1. For every γ < λ we let

ᾱγ = 〈αγ,η : η ∈ frt(Λ)〉 be defined by

αγ,η = min(Ux,η\γ)

which is well defined as Ux,η is an unbounded subset of λ. So for every γ < λ,

we have that ᾱγ , b̄ᾱγ ,Wᾱγ are well defined. So for some b̄∗ we have

Wb̄∗ = {γ < λ : b̄ᾱγ = b̄∗}

is an unbounded subset of λ.

We can now define the necessary objects, in two cases. For Case 1 below, the

final definitions depend on whether the node we are dealing with has a sibling

or not.

Case 1: 1 = |Λx ∩ {�ˆ〈0〉, �ˆ〈1〉}|
Let ι be such that �ˆ〈ι〉 /∈ Λx. We define y as follows:

⊕ (a) Λy = Λx ∪ {�ˆ〈ι〉}, hence frt(Λy) = frt(Λ) ∪ {�ˆ〈ι〉}\{�},
(b) b̄y,η is b̄x,η if η ∈ Λx,

(c) b̄y,η is b̄∗ if η ∈ �ˆ〈ι〉,
(d) if η ∈ frt(Λ)\{�}, then Uy,η is

{α ∈ Ux,η : for some γ < λ, b̄ᾱγ = b̄∗ and α = αγ,η},
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(e) if η = �ˆ〈ι〉 then

Uy,η = {α ∈ Ux,� : for some γ < λ, bᾱγ = b̄∗ and α = αγ,�}.

For clause (e) recall b̄∗ ∈ Xᾱ,� ⊆ Zᾱγ ,�.

As � ∈ frt(x), we are left with Case 2:

Case 2: 0 = |Λx ∩ {�ˆ〈0〉, �ˆ〈1〉}| and let ι = 0. The only difference is that

• in clause (a), frt(Λy) = Λ ∪ {�ˆ〈ι〉}
so we have to add

(f) if η = �, then Uy,η = Wᾱγ for some γ < λ such that b̄ᾱγ = b̄∗.

Step 5: Finish. Recalling Step 2, we have shown that the assumption of |A|+-

pairwise 1-contradictory higher formulas contradicts NSOP2. This completes

the proof.

In this theorem, replacing 1-contradictory by n-contradictory would be

straightforward as we can replace ϕ by a conjunction, defined as follows:

Definition 9.22: Given ϕ and n, let

ϕ[n] =ϕ[n](x, ȳ[n])

=ϕ[n](x̄, 〈yi : i < �g(ȳ) · n〉)

=
∧
�<n

ϕ(x̄, 〈y�g(η)·�+j : j < �g(ȳ)〉).

We say ϕ = ϕ(x̄, ȳ) has NSOP2 robustly when no ϕ[n] has SOP2.

Observation 9.23: If T is NSOP2, then every ϕ(x̄, ȳ) ∈ L(τT ) has NSOP2

robustly in T .

In the last main result of this section, we apply Theorem 7.13 characterizing

the maximal class in �∗ to prove another property of SOP2, related to so-called

exact saturation (meaning for which singular κ a given theory T has a model

which is κ-saturated but not κ+-saturated). Exact saturation was studied in

Shelah [23] §2 (pp. 31–37) and in a manuscript of Kaplan and Shelah [4] in pre-

paration, which deal with elementary classes and (D, κ)-sequence homogeneity.

Definition 9.24 (see [23], [4]): For any theory T , define

spec(T ) = {κ : κ ≥ |T |, κ singular

and there exists a κ-saturated not κ+-saturated model of T}.
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The papers [23] and [4] find sufficient conditions but not necessary and suffi-

cient conditions for exact saturation. In the present paper, we define a pseudo-

elementary version22 of this spectrum, which we will connect to SOP2 via �∗.

Definition 9.25: The exact saturation spectrum for T is defined to be the set:

ESS(T ) = {(κ, μ) : κ ≥ μ ≥ |T |, κ singular and for any T1 ⊇ T , |T1| ≤ μ,

there is a κ-saturated not κ+-saturated

member of PC(T1, T )}.

In future work, we hope to be able to get necessary and sufficient conditions

for ESS(T ) to be empty (at least restricting ourselves to κ strong limit of large

enough cofinality), and it seems plausible that this may be SOP2. Here, using

the methods of Section 7, we will prove one direction: if T has SOP2 then

ESS(T ) = ∅, and discuss several open questions. First we recall two known

examples.

Fact 9.26 ([23], [4]): Let T be the theory of dense linear order without endpoints.

Then for any singular κ ≥ |T |, if M |= T is κ saturated then it is κ+-saturated.

Thus spec(T ) = ∅.

Proof. By quantifier elimination, it suffices to show that the cofinality and

coinitiality of M are at least κ and for any regular κ1, κ2, every (κ1, κ2)-pre-

cut is filled. Since cofinality and coinitiality of the model and of pre-cuts are

necessarily regular cardinals, the result is immediate.

Fact 9.27 ([23] Example 2.23): There is a theory T with the independence prop-

erty such that: if T has an exactly κ-saturated model then κ is regular. (In fact

it is necessary and sufficient that κ be regular.) Thus spec(T ) = ∅.

Recall the order �∗ from Definition 7.7 above. In the following, countability

is not essential.

Observation 9.28: Suppose T0, T1 are countable theories which are equivalent

under the �∗ order. Then there exists a theory T∗ which interprets both T0

and T1, say via ϕ0 and ϕ1 respectively, such that: for any model M |= T∗, and

any uncountable κ,

N [ϕ0] is κ-saturated if and only if N [ϕ1] is κ-saturated.

22 Compare the results of [17] VI.5 connecting the minimum class in Keisler’s order to

saturation properties of a PC-class.
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Proof. We may assume T0 and T1 have no finite models.

The hypotheses on T0, T1 give the following information. Let μ be such that

we have Ta witnessing T0 �∗ T1 and Tb witnessing T1 �∗ T0, and we may

assume |Ta|, |Tb| < μ. Let ϕa
� interpret T� in Ta for � = 0, 1, and let ϕb

� interpret

T� in Tb for � = 0, 1. Without loss of generality:

• τ(T0) and τ(T1) are disjoint.

• ϕa
� says that for any model M |= Ta the universe of M [ϕa

� ] is (P a
� )M , for

some unary predicate P a
� , and Ta implies that P a

0 and P a
1 are disjoint.

• Similarly for Tb.

• ϕa
� is the identity, where this means:

– τ(Ta) ⊇ (τ(T0) ∪ τ(T1)),

– P ∈ τ(T�) implies ϕa
�,P = P , and

Ta � (∀x̄)(P (x̄) =⇒ ∀�<lg(x̄)P�,a(x)),

– similarly for function symbols F ∈ τ(T�), adding that they are

interpreted as partial functions with domain the predicate P a
� (al-

ternately, we could have assumed without loss of generality that

τ(T�) has only predicates).

• Each ϕb
� is likewise the identity.

• τ(Ta) ∩ τ(Tb) = (τ(T0) ∪ τ(T1)).

Consider now the statement of the Observation. In order to prove it, it

would suffice if we could find a model Ma |= Ta and a model Mb |= Tb such

that the interpretations of T0 in Ma and Mb, respectively, are isomorphic, and

likewise the respective interpretations of T1 in Ma and Mb are isomorphic. Why

would this suffice? Because given such Ma and Mb, assuming w.l.o.g. F0, F1,

A, B are not already used symbols in the language, we may simply consider a

third structure M∗ whose universe is the disjoint union of a copy of Ma (whose

universe is the interpretation of the predicate A) and a copy of Mb (whose

universe is the interpretation of the predicate B) and which contains partial

function symbols F0, interpreted as a bijection between the interpretation of T0

in the copy of Ma and in the copy of Mb, and F1, interpreted as a bijection

between the interpretation of T1 in the copy of Ma and in the copy of Mb. Now

T∗ := Th(M∗) is the theory we were looking for. That is, in any sufficiently

saturated model M� |= T∗, M� � A behaves like a model of Ta (so saturation

transfers from the interpretation of T0 to that of T1) and likewise M� � B

behaves like a model of Tb (so saturation transfers from the interpretation of T1
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to that of T0) and the functions F0, F1 identify the two interpretations of T0,

T1 respectively.

One way to construct such models is to recall that ultrapowers commute

with reducts, and that any two elementarily equivalent models have isomorphic

ultrapowers. Begin with M0,a |= Ta and M0,b |= Tb. Choose the ultrafilter

D0 so that the D0-ultrapowers of M
[ϕa

0 ]
0,a and M

[ϕa
0 ]

0,b are isomorphic. Call these

ultrapowersM1,a andM1,b respectively. (As ultrapowers commute with reducts,

we may consider M1,a and M1,b as models of the full Ta and Tb respectively.)

Consider the model Mc which is the disjoint union of M1,a and M1,b and expand

Mc by adding symbols giving the isomorphism between M
[ϕa

0 ]
1,a and M

[ϕa
0 ]

1,b . Let

M
[ϕa

1 ]
c have the obvious meaning of M

[ϕa
1 ]

1,a considered within this model Mc.

Next, choose the ultrafilter D1 so that M
[ϕa

1 ]
c and M

[ϕa
1 ]

c are isomorphic. Let

M∗ be the D1-ultrapower of Mc. In this model, as sketched above, we may

expand Tc so as to make the interpretations of T1 isomorphic. Let T∗ be the

theory of this expanded model. This completes our construction.

We had fixed an infinite μ so that |Ta| + |Tb| < μ, and |T0| + |T1| = ℵ0 by

assumption. The construction gives that also |T∗| < μ.

Corollary 9.29:

(1) Let T0 be any theory for which spec(T0) = ∅. Let T1 be any theory such

that T0 and T1 are equivalent in the order �∗. Then ESS(T1) = ∅.
(2) Suppose T0, T1 are �∗-equivalent, as witnessed by T∗ with |T∗| ≤ μ.

Suppose κ ≥ μ is singular and (κ, μ) /∈ ESS(T0). Then (κ, μ) /∈ ESS(T1).

Proof. (1) Let T∗ be a theory witnessing their equivalence, such as that given

by Observation 9.28. Let Let ϕ0 and ϕ1 witness the interpretations of T0 and of

T1, respectively, and let N [ϕ] and N [ϕ∗] denote the respective interpretations in

a given model N |= T∗. Now let κ be a singular cardinal, κ > |T1| and suppose

M ∈ PC(T∗, T1) is κ-saturated. Let N |= T∗ with M = N � τ(T1) witness

that M ∈ PC(T∗, T1). The fact that M is κ-saturated says precisely that N [ϕ1]

is κ-saturated. By hypothesis of equivalence, N [ϕ0] is κ-saturated as well. By

choice of T0, N
[ϕ1] is κ+-saturated. Applying the hypothesis of equivalence in

the other direction, N [ϕ0] is κ+-saturated. This completes the proof.

(2) As (κ, μ) /∈ ESS(T0) there is a theory T00 ⊇ T0, |T00| ≤ μ, and a κ-

saturated not κ+-saturated member of PC(T00, T0). In order to make use of this,

we would first modify the construction of the theory T∗ (by means of a better
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choice of Ta, Tb) so that for any M∗ |= T∗ we have that M∗
[ϕ0] ∈ PC(T00, T0).

Since |T00| ≤ μ, we can do this while preserving |T∗| ≤ μ. Then the proof

continues as in part (1).

Theorem 9.30: If T has SOP2, then ESS(T ) = ∅. That is, if T has SOP2, then

for some T1 ⊇ T of cardinality |T |, for every singular κ > |T |, ifM ∈ PC(T1, T )

is κ-saturated then it is κ+-saturated.

Proof. By Theorem 7.13, Fact 9.26 and Corollary 9.29(1).

Question 9.31: Does Theorem 9.30 hold for the theory Trg of the random graph?

In the case of spec(Trg) rather than ESS(Trg), note that:

Claim 9.32: If κ > cf(κ) + |T | then κ ∈ spec(Trg).

Proof. Let M be a κ+-saturated model of Trg. Let 〈aα : α < κ〉 be pairwise

distinct members of M which form an empty graph, i.e.,

α < β < λ =⇒ M |= ¬R(aα, aβ).

Consider the submodel N ⊆M whose domain is

{b ∈M : (∃<κα < κ)(R(b, aα))}.

Then N is a model of Trg which is as required: it is κ-saturated but it is not

κ+-saturated, as {R(x, aα) : α < κ} is omitted.

Before giving some further evidence, we record here that there are other

natural directions these investigations could take.

Discussion 9.33: Instead of asking whether κ ∈ ESS(T ) for κ > cf(κ) + |T |, we

may fix a specific way to construct a κ-saturated model and ask if this implies

that the constructed model is κ+-saturated. For example:

(a) We may consider T dependent, |M | = {aα : α < α∗}, uα ∈ [α]<κ,

tp(aα, {aβ : β < α}) does not split over {aβ : β < α}, and M is

κ-saturated; see [21].

(b) As in (a), but we may ask that T has Skolem functions.

(c) As in (b), and also tp(aα, {aβ : β < α}) is finitely satisfiable in

Sk({aβ : β ∈ uα}); see [17], VII, section 4.

(d) We may consider models built using P−(n)-diagrams in some explicit

way.
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Returning to ESS, on the positive side we can settle the case of stable T .

Claim 9.34: Let T be a complete theory. If T is stable, κ = κ|T | > cf(κ), and

κ ≥ μ ≥ T , then (κ, μ) ∈ ESS(T ).

Proof. Recall that under these cardinal hypotheses there is a model of T of

cardinality κ which is κ-saturated; see [17] Chapter III Theorem 3.12. Clearly

this model is not κ+-saturated. Given any T1 ⊇ T , |T1| ≤ μ, we may build

a model of T1 of cardinality κ in the same way whose restriction to T is κ-

saturated but evidently not κ+-saturated.

Question 9.35: What about simple theories?

Problem 9.36: Determine whether the following is true: for T complete and

countable,

ESS(T ) = ∅ if and only if T has SOP2.

These investigations suggest some interesting parallel questions for ultrafil-

ters. The reader may recall that if λ is a singular cardinal and the ultrafilter is

λ-good, then it is λ+-good (since linear order is in the maximal Keisler class,

[17].VI.2, a proof similar to that of Fact 9.26 goes through).

Problem 9.37: Suppose λ is singular. Does there exist a regular ultrafilter which

λ-saturates but does not λ+-saturate ultrapowers of the random graph?

The property of an ultrafilter being “(λ,ℵ0)-perfect” was defined in [11].

Problem 9.38: Suppose λ is singular. If D is a regular ultrafilter which is (κ,ℵ0)-

perfect for every κ < λ, is D also (λ+,ℵ0)-perfect? If not, must it at least

produce λ+-saturated ultrapowers of the random graph?

10. Balanced pairs of models of PA

Having understood the importance of symmetric cuts of models of PA earlier in

the paper, we may wonder what else can be asked about such cuts. In this final

section, we consider a question of Kossak, based on work of Schmerl, concerning

so-called balanced pairs of models of PA. The analysis applies some work of the

second author on EM models.

Definition 10.1: Let M �end N be models of Peano arithmetic. Call M bal-

anced when the cut described by a sequence cofinal in M and a sequence coini-

tial in N\M is symmetric, i.e., the cofinalities of both sides of the cut are equal.
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Theorem F (Schmerl, Theorem 4.6 [16]): Suppose thatM |= PA is saturated.

Then there are continuum many different theories of (N,M) where M �end N

and M is balanced.

Question 10.2 (Kossak [6]): We know of continuum many nonisomorphic bal-

anced (κ, κ) pairs, surely there must be more?

To resolve this we will apply a theorem from Shelah [20]. Let τ be a given

signature. For Theorem G which we now quote, there is no restriction on the

cardinality of τ , but in our application we will assume τ is countable to get an

end extension type. For our purposes, ‘weakly skeleton like’ may be taken as a

black box, as will be explained.

Theorem G ([20] Theorem 3.19 p. 38): Suppose that λ > κ, Kλ is a family of

τ -models, each of cardinality λ, ϕ(x, y) is an asymmetric formula with vocab-

ulary ⊆ τ , and lg(x) = lg(y) < ℵ0. Suppose that for every linear order J of

cardinality λ there are M ∈ Kλ and as ∈ M for s ∈ J such that 〈as : s ∈ J〉
is weakly (κ, ϕ(x, y))-skeleton-like in M . Then in Kλ, there are 2λ pairwise

non-isomorphic models.

Corollary 10.3: Suppose λ > κ, Kλ is a family of τ -models as in G, each of

cardinality λ. Suppose that for every linear order J of cardinality λ there are

M ∈ Kλ and Φ such that M = EMτ (J,Φ). Then in Kλ, there are 2λ pairwise

non-isomorphic models.

Proof. The condition “〈as :s∈J〉 is weakly (κ, ϕ(x, y))-skeleton-like in M ,” [20]

Definition 3.1 p. 28, is always satisfied when M=EMτ (J,Φ), [20] 3.2 p. 29.

Definition 10.4:

(1) By FPAτ we mean τ-feeble Peano arithmetic, that is, the vocabulary

τ consists of the two-place predicate {<} and the axioms say < is a

discrete linear order with first and no last element, as well as all the

cases of the induction scheme in Lτ .

(2) PAτ is defined similarly but includes +, ×.

The “feeble” is because we do not require +, × to be present.

Definition 10.5: Let M be a model which is linearly ordered and let p be a type

which is unbounded in M . We call p an end extension type of M if every

model N ⊃ M , which is generated by M and a single new element realizing p,

is an end extension of M .
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Example 10.6: The first-order theory of any expansion M of (ω,<) is a model

of FPAτ(M). The existence of end-extension types in such models is proved by

MacDowell–Specker for the case PAτM , i.e., with plus and times, and without

this in [18].

Claim 10.7: Suppose that:

(a) M∗ |= PA (or just: M∗ is a model in a countable signature τ of FPAτ ),

(b) ℵ0 ≤ κ� = cf(κ) ≤ λ, for � = 1, 2,

(c) |M∗| ≤ λ.

Then the class

{N :N is an end extension of M∗, ||N || = λ, cf(N) = κ2,

and the co-initiality of N \M∗ is κ1}

has 2λ pairwise nonisomorphic models.

Proof of 10.7. There are two steps.

Step 1: EM end extensions. Let p be the definition of an end extension

type. If we are in a model of PA, this exists by a theorem of Gaifman [2], or

MacDowell–Specker [14]; or see [7]. (Gaifman also proved, e.g., that p can be

taken to be minimal, which does not follow from [14].) If M∗ is just a model of

the feeble PA FPAτ(M∗), then it exists by [18]. [Note: for the rest of the proof,

we do not use that the language is countable, just that |τ | ≤ λ. On eliminating

the restriction of countability, see [24].]

Fix a model N so that M∗ � N and N is (2λ)+-saturated, and I a (< λ+)-

universal23 linear order of cardinality 2<λ ≤ ||N ||, and I0 ⊆ I of order-type ω.

Write Sk(X,N) for the Skolem hull in N of X ⊆ N . By induction on t ∈ I we

may choose 〈at : t ∈ I0〉 such that:

• at ∈ N , and

• tp(at, Sk(M∗∪{as : s <I t}), N) is defined by the end extension type p.

Then 〈at : t ∈ I0〉 is an indiscernible sequence over M∗ inside N . But N is

λ+-saturated, hence we can find at ∈ N for t ∈ I \ I0 such that 〈at : t ∈ I〉 is

an indiscernible sequence over M∗ in M .

For J ⊆ I, let MJ denote Sk(M∗ ∪ {at : t ∈ J}).
Let τ∗ = τ(T ) ∪ {ca : a ∈ M∗}, and let T∗ = Th(M∗, ca)a∈M∗ , where ca is

interpreted as a.

23 Recall that a linear order is < μ-universal if any linear order of cardinality < μ may be

embedded into it.
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Then for some Φ, MJ = EMτ∗(J,Φ). Moreover, for each such J ,

• MJ is an end extension of M∗,

• MJ has cardinality θ + |J |, where ||M∗|| = θ,

• if J has no first element then the co-initiality of MJ \M is equal to the

coinitiality of J .

Step 2: Observation. Let K0
λ be the set of models N such that: M∗ �end N ,

||N || = λ. We may already quote 10.3 which, by the analysis just given, shows

that K0
λ has 2λ nonisomorphic models whose coinitiality is determined by the

order J which is input to the EM skeleton.

In the next step, we need to show that this count remains true when we

restrict to coinitiality κ (since κ was given in advance). As regards symmetric

pairs, recall M∗ is arbitrary but fixed for the proof, so by the end of this proof

we will have the result for all M∗, and in particular for M∗ of cofinality κ.

Step 3: A correspondence. We now translate between K0
λ from Step 2 and the

set

Kλ = K1
λ(κ,M∗) = {N : M∗ �end N, ||N || = λ, N \M∗ has coinitiality κ}

For regular κ1, κ2 ≤ λ, whenever N = EMτ∗(I,Φ) there is Φ2 such that:

(a) |τΦ| = ||M∗||+ κ1 + κ2,

(b) for any linear order J ,

EMτΦ(J,Φ2) = EMτ∗(κ∗1 + J + κ2,Φ),

(c) thus (by (b) and Step 1) EMτφ(J,Φ2) is an end extension of M∗ and

has cofinality κ2 and co-initiality κ1 over M∗.

Let κ1 = κ and κ2 = λ, so κ1 + κ2 + ||M∗|| = λ. So for each linear order J

of cardinality λ and each skeleton Φ there is Φ2 such that EMτΦ(J,Φ2) ∈ Kλ.

Quoting 10.3, in Kλ there are 2λ pairwise non-isomorphic models.

Conclusion 10.8: Let κ ≤ λ be regular. Then there are 2λ balanced (κ, κ)

pairs of models of PA of cardinality λ, i.e., 2λ many pairs (N,M) where

M �end N , the cut described by a sequence cofinal inM and a sequence coinitial

in N \M is symmetric of cofinality κ, and |N | = λ.

Proof. Apply 10.7 in the case where M∗ has cofinality κ.

Discussion 10.9: So in fact, to get many pairs of models we do not need to vary

M∗ as the question might suggest.
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Moreover, alternatively, we could use I = (I1 + I2 + I3) where I1 ∼= κ+1 ,

I2 = κ2, I2 a (< λ+)-universal linear order, and for J ⊆ I2 let MJ be the

Skolem hull of M∗ ∪ {at : t ∈ I1 + J + I3}.
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