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ABSTRACT

We give a simple example of a countable metric graph M such that M

Lipschitz embeds with distortion strictly less than 2 into a Banach space

X only if X contains an isomorphic copy of �1. Further we show that, for

each ordinal α < ω1, the space C([0, ωα]) does not Lipschitz embed into

C(K) with distortion strictly less than 2 unless K(α) �= ∅. Also C([0, ωωα
])

does not Lipschitz embed into a Banach space X with distortion strictly

less than 2 unless Sz(X) ≥ ωα+1.

1. Introduction

In 1974, Aharoni [1] proved that there exists D ≤ 6 such that every separable

metric space M Lipschitz embeds into c0 with distortion at most D (which we
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denote by M ↪→D c0, see Section 2 for the definition). He also proved that D ≥ 2

by showing that �1 ↪→D c0 only if D ≥ 2. The upper estimate on D was improved

non-trivially several times until in 2008 Kalton and Lancien [17] had the final

word D = 2. In the recent preprint [4], Baudier raised the following question:

given an infinite Hausdorff compact space K, what is the least constant D such

that M ↪→D C(K) for every separable metric space M?

In Section 3, we answer this question completely (D = 1 if K is not scattered,

D = 2 otherwise, see Corollary 3.2) by constructing a countable metric space

(a metric graph in fact) M with the property that M ↪→D X , D < 2, only if

the Banach space X contains an isomorphic copy of �1 (Theorem 3.1). It is

not without interest that, conversely, if X contains an isomorphic copy of �1

then M ↪→1(X, |·|) for some equivalent norm |·| on X (see Proposition 3.5). In

this section we also study bad embeddability properties of M into spaces with

non-trivial generalized roundness.1

Section 4 is dedicated to the second main result of this article (Theorem 4.1)

and its proof. It implies in particular that, for every countable ordinal α and

every β < ωα, the space C([0, ωα]) does not embed into the space C([0, β]) with

distortion strictly less than 2.

Section 5 deals with various consequences of Theorem 4.1. In particular, we

give a partial improvement of non-linear Amir–Cambern type theorems studied

by Jarosz [16], Dutrieux and Kalton [12] and Górak [14] (see Proposition 5.1

and Corollaries 5.2 and 5.3).

Finally, we show in Theorem 5.4 that if the Szlenk index of a Banach space X

satisfies Sz(X) ≤ ωα, then C([0, ωωα

]) does not embed into X with distortion

strictly less than 2 (Theorem 5.4). This can be understood as a refinement of

the fact that C([0, 1]) does not embed into any Asplund space with distortion

strictly less than 2 which is an immediate consequence of results of Section 3

(see also the original preprint [22] where this weaker result is proved without

using Rosenthal’s theorem).

Many open questions are scattered across the paper. In the next section,

we introduce our notation and some facts which we will use without further

reference.

1 Added in proof: a “non-reflexive” analogue of M as well as local version of Theorem 3.1

are studied in [21].
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2. Preliminaries

The notation we use is standard. In particular, BX stands for the closed unit

ball of a Banach space X , c0 is the Banach space of all real sequences converging

to 0 and �1 is the Banach space of all absolutely summable real sequences. If

K is a Hausdorff compact, C(K) is the space of continuous functions on K. If

A is a set, we denote by |A| its cardinality. The symbol ω, resp. ω1 stand for

the first infinte, resp. uncountable, ordinal. The symbol
⊔

denotes the disjoint

union of not necessarily disjoint sets.

The following definitions and facts can be found, e.g., in [11]. A Banach space

X is called Asplund if every closed separable subspace Y ⊂ X has separable

dual. A Hausdorff compact K is called scattered if there exists an ordinal α such

that the Cantor–Bendixson derivative K(α) is empty. A countable Hausdorff

compact is necessarily scattered. If K is a Hausdorff compact, then C(K) is

Asplund iff K is scattered.

If α is an ordinal, then the interval [0, α] = {β : 0 ≤ β ≤ α} becomes a

Hausdorff compact space when equipped with the order topology. It is a well

known theorem of Mazurkiewicz and Sierpiński (see [15, Theorem 2.56]) that

every countable Hausdorff compact is homeomorphic to the interval [0, ωα · n]

for some α < ω1 and 1 ≤ n < ω. Thus the corresponding spaces of continuous

functions are isometrically isomorphic. One also has

[0, ωα · n](α) = {ωα · 1, . . . , ωα · n}.

A mapping f : M → N between metric spaces (M,d) and (N, ρ) is called

Lipschitz embedding if there are constants C1, C2 > 0 such that

C1d(x, y) ≤ ρ(f(x), f(y)) ≤ C2d(x, y)

for all x, y ∈ M . The distortion dist(f) of f is defined as inf C2

C1
where the

infimum is taken over all constants C1, C2 which satisfy the above inequality.

In other words dist(f) = Lip(f) Lip(f−1)−1 where Lip(f) = supx �=y
ρ(f(x),f(y))

d(x,y) .

We say that M Lipschitz embeds (embeds for brevity) into N with distortion

D (in short M ↪→D N) if there exists a Lipschitz embedding f : M → N with

dist(f) ≤ D (in short f : M ↪→D N). In this case, if the target space N is

a Banach space, we may always assume (by taking C−1
1 f) that C1 = 1. The

N -distortion of M is defined as cN (M) := inf{D : M ↪→D N}.
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Metric spaces M and N are called Lipschitz homeomorphic if there is a

surjective Lipschitz embedding from M onto N . Such embedding is then cal-

led Lipschitz homeomorphism. The Lipschitz distance of M and N is

dL(M,N) = inf dist(f) where the infimum is taken over all Lipschitz homeo-

morphisms f : M → N .

Recall that if X and Y are Banach spaces and u : X → Y is uniformly

continuous, the following Lipschitz constant of u at infinity,

l∞(u) = inf
η>0

sup
‖x−x′‖≥η

‖u(x) − u(x′)‖
‖x− x′‖ ,

is finite (sometimes called the Corson–Klee lemma, see [6, Proposition 1.11]).

The uniform distance between X and Y is

dU (X,Y ) = inf l∞(u) · l∞(u−1)

with u ranging over all uniform homeomorphisms between X and Y .

A net in a Banach space X is a subset N of X such that there exist a, b > 0

which satisfy

• for any x, x′ ∈ N with x �= x′, we have ‖x− x′‖ ≥ a, and

• for any x ∈ X , there exists y ∈ N with ‖x− y‖ ≤ b.

We say that two Banach spaces are net-equivalent when they have Lip-

schitz homeomorphic nets. The net distance between X and Y is the num-

ber dN (X,Y ) = inf dist(f) where the infimum is taken over all mappings

f : N → M with N ⊂ X and M ⊂ Y being nets.

Finally the Banach–Mazur distance of X and Y is

dBM (X,Y ) = inf dist(f)

with f ranging over all linear isomorphisms from X to Y . It is well known and

easy to see that for any couple of Banach spaces X and Y we have

dN (X,Y ) ≤ dU (X,Y ) ≤ dL(X,Y ) ≤ dBM (X,Y ).

3. An unwieldy metric graph

Let M = {0} ∪N ∪ F where

F = {A ⊂ N : 1 ≤ |A| < ∞}
is the set of all finite nonempty subsets of N. Notice that, for every n ∈ N, the

number n and the set {n} are distinct elements of M . We put an edge between
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two points a, b of M iff a = 0 and b ∈ N, or a ∈ N, b ∈ F and a ∈ b thus

introducing a graph structure on M . Let d be the shortest path metric on M .

For n �= m ∈ N ⊂ M and A �= B ∈ F , it has the following values:

d(0, n) =1, d(n,A) = 1 if n ∈ A, d(n,A) = 3 if n /∈ A,

d(0, A) =2, d(A,B) = 2 if A ∩B �= ∅, d(A,B) = 4 if A ∩B = ∅,
d(n,m) =2.

Thus (M,d) is a countable (in particular, separable) bounded, uniformly dis-

crete metric space.

Theorem 3.1: LetX be a Banach space and suppose that there existD ∈ [1, 2)

and f : M → X such that

d(x, y) ≤ ‖f(x) − f(y)‖ ≤ Dd(x, y).

Then X contains a copy of �1.

Proof. We plan to use the Rosenthal theorem [2]. Thus, we have to find a

sequence (xk) ⊂ X such that none of its subsequences is weakly Cauchy. We

claim that if we put xk := f(k), k ∈ N, then (xk) will have this property. First,

for any a, b ∈ N ⊂ M we consider the set

Xa,b = {x∗ ∈ BX∗ : 〈x∗, f(a) − f(b)〉 ≥ 4 − 2D},
and we will show that for every disjoint A,B ∈ F ,

XA,B :=
⋂

a∈A,b∈B

Xa,b �= ∅.

Indeed, let x∗ ∈ BX∗ be such that

〈x∗, f(A) − f(B)〉 = ‖f(A) − f(B)‖.
Then x∗ ∈ XA,B by the triangle inequality, the definition of M and the fact

that f : M ↪→D X .

Now, let (ki) ⊂ N be given. We define

An = {k2i : i ≤ n} and Bn = {k2i−1 : i ≤ N}
for every n ∈ N and observe that (XAn,Bn)n is a decreasing sequence of non-

empty w∗-compacts. Thus there exists x∗ ∈ ⋂∞
n=1 XAn,Bn . It is clear that

〈x∗, xk2n − xk2n+1〉 ≥ 4 − 2D for all n ∈ N and so (xki )
∞
i=1 is not weakly

Cauchy.
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Corollary 3.2: Let X be a C(K) space. Then the following assertions are

equivalent:

(i) Every separable Banach space embeds linearly isometrically into X .

(ii) cX(M) < 2

(iii) X is not Asplund, i.e., K is not scattered.

This together with the aforementioned theorem of Kalton and Lancien [17]

and the fact that c0 is isometric to a closed subspace of any infinite dimensio-

nal C(K) space answers completely Question 1 in [4], i.e., for an infinite (not

necessarily metrizable) Hausdorff compact K we have

sup{cC(K)(M) : M separable metric space} =

⎧⎨
⎩

1 if K is not scattered,

2 otherwise.

Proof. The implication from (i) to (ii) is trivial as M embeds isometrically

into a separable subspace of �∞. The implication from (ii) to (iii) follows from

Theorem 3.1. Finally, the implication from (iii) to (i) is well known; let us

sketch it for the convenience of the reader. If C(K) is not Asplund, K is not

scattered. By a result of Pe�lczyński and Semadeni [20] there is a continuous

surjection of K onto [0, 1]. Thus C(K) contains isometrically C([0, 1]) as a

closed subspace. The proof is thus finished by the application of the Banach–

Mazur theorem [2].

Corollary 3.2 inspires the following question: Let X be a Banach space. As-

sume that there is some constant D < 2 such that

cX(M) ≤ D

for every separable metric space M . Does then every separable Banach space

linearly embed into X? Does at least c0 linearly embed into X?

Also, we do not know whether the condition (ii) above could be replaced by

the more natural condition

cX(�1) < 2.

(We refer to [5] for some lower bounds for cC(K)(�1) when K is a countable

compact of height less than ω.) We know that our methods cannot be employed

in a direct way to achieve this because M does not embed well into �1 either.

We will see this using Enflo’s generalized roundness. Let us recall the definition

as presented in [19].
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Definition 3.1: A metric space (X, d) is said to have generalized roundness q,

written q ∈ gr(X, d), if for every n ≥ 2 and all points a1, . . . , an, b1, . . . , bn ∈ X

we have ∑
1≤i<j≤n

((d(ai, aj)
q + d(bi, bj)

q) ≤
∑

1≤i,j≤n

d(ai, bj)
q.

Proposition 3.3: If f : (M,d) ↪→D(X, δ) and there is 0 < q ∈ gr(X, δ), then

D ≥ 2.

Proof. Let a1, . . . , an, b1, . . . , bn ∈ M . We have

∑
1≤i<j≤n

((δ(f(ai), f(aj))
q + δ(f(bi), f(bj))

q) ≤
∑

1≤i,j≤n

δ(f(ai), f(bj))
q

and so ∑
1≤i<j≤n

((d(ai, aj)
q + d(bi, bj)

q) ≤ Dq
∑

1≤i,j≤n

d(ai, bj)
q.

If a1, . . . , an ∈ N ⊂ M are arbitrary and bi = {a1, . . . , an} \ {ai} ∈ F , the above

inequality evaluates to

n(n− 1)2q ≤ Dqn((n− 1) + 3q),

which is possible for all n only if D ≥ 2.

Corollary 3.4: The metric space M does not embed with distortion strictly

less than 2 into any L1(μ).

Proof. This follows immediately from Proposition 3.3 and from the fact that

1 ∈ gr(L1(μ)) which is proved in [19, Corollary 2.6].

We do not know if c�1(M) = 2.2 By considering any mapping of M onto the

unit vector basis of �1, it is clear that c�1(M) ≤ 4. The next proposition does a

little bit better; it shows that M lives isometrically in a space that is isomorphic

to �1.

Proposition 3.5: There is an equivalent norm |·| on �1 such that M embeds

isometrically into (�1, |·|). More generally, if a Banach space contains a copy of

�1 then X admits an equivalent norm |·| such that M ↪→1(X, |·|).

2 Added in proof: c�1(M) = 3. See [21].
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Proof. The more general statement follows from the less general one by a stan-

dard argument: any equivalent norm on a subspace can be extended to an

equivalent norm on the whole space.

Let us prove the less general statement. For the definition and basic properties

of Lipschitz-free spaces see [13] and the references therein. The space M embeds

isometrically into F(M) where F(M) is the Lipschitz-free space over M . The

result thus follows from the following fact.

Fact: If (U, d) is a countable uniformly discrete bounded metric space, then

F(U) is isomorphic to �1.

First, it is easy to observe that if we equip N0 = {0} ∪ N with the distance

ρ(0, n) = 1 for every n ∈ N, and ρ(n,m) = 2 for every n �= m ∈ N, then F(N0)

is isometrically isomorphic to �1 where the isomorphism ϕ : F(N0) → �1 is the

unique linear extension of ϕ : N0 → �1 given by ϕ(0) = 0 and ϕ(n) = en.

Second, it is clear that (U, d) is Lipschitz homeomorphic to (N0, ρ). The free

spaces F(U) and F(N0) are thus linearly isomorphic. This finishes the proof of

the fact and of the proposition.

Again, we do not know whether the Banach–Mazur distance between F(M)

and �1 is 2. The above proof only shows that it is at most 4 while Corollary 3.4

shows that it is at least 2.3

4. Low distortion embeddings between C(K) spaces

Theorem 4.1: For every ordinal μ < ω1 there exists a countable uniformly

discrete metric space Mμ ⊂ C([0, ωμ]) such that Mμ does not embed with

distortion strictly less than 2 into C(K) if K(μ) = ∅.
We start by defining finite metric graphs (with 3 levels in the spirit of the

infinite graph M from Section 3) that do not embed well into �n∞ if n is small.

We then “glue” them together infinitely many times, via a relatively natural

procedure that we call sup-amalgamation. The sup-amalgamation is done in a

precise order which will be encoded by certain trees on N.

3 Added in proof: dBM (F(M), �1) = 3, see [21].
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4.1. Construction of 3-level metric graphs.

Definition 4.1: Let C1, . . . , Ch be pairwise disjoint finite sets not containing 0.

We put

M(C1, . . . , Ch) = {0} ∪
h⋃

i=1

Ci ∪ F (C1, . . . , Ch)

where F (C1, . . . , Ch) = {{c1, . . . , ch} : ci ∈ Ci}. The set M(C1, . . . , Ch) is

finite; we turn it into a graph by putting an edge between x, y ∈ M(C1, . . . , Ch)

iff x = 0 and y ∈ ⋃
Ci or x ∈ ⋃

Ci, y ∈ F (C1, . . . , Ch) and x ∈ y. We

consider the shortest path distance d on M(C1, . . . , Ch). For n �= m ∈ ⋃
Ci and

A �= B ∈ F , it has the following values:

d(0, n) =1, d(n,A) = 1 if n ∈ A, d(n,A) = 3 if n /∈ A,

d(0, A) =2, d(A,B) = 2 if A ∩B �= ∅, d(A,B) = 4 if A ∩B = ∅,
d(n,m) =2.

Lemma 4.2: Let C1, . . . , Ch be pairwise disjoint sets and let us assume that

C1 = {1, 2}. We denote F := F (C1, . . . , Ch). Then there is an isometric

embedding f : M(C1, . . . , Ch) → �∞(F ) which satisfies

• f(0) = 0,

• f(x)(A) ∈ {±1} for all x ∈ ⋃h
i=1 Ci and all A ∈ F ,

• f(1)(A) = 1 and f(2)(A) = −1 for all A ∈ F .

Proof. We define first a mapping g : M(C1, . . . , Ch) → �∞(F ) as

g(x)(A) = d(x,A) − d(0, A).

It is clearly 1-Lipschitz on M := M(C1, . . . , Ch) and an isometry on F . Given

x, y ∈ M , a case by case check shows that there are A,B ∈ F so that x and

y lie on a geodesic curve between A and B. As g is 1-Lipschitz on M and an

isometry on F , the triangle inequality implies that it preserves the length of any

sub-curve, hence, in particular, d(g(x), g(y)) = d(x, y). Observe that g(0) = 0

and also g satisfies the second additional property. For every A ∈ F we have

g(1)(A) = +1 iff 1 /∈ A iff 2 ∈ A iff g(2)(A) = −1. We thus define

f(x)(A) :=

⎧⎨
⎩
g(x)(A) if g(1)(A) = 1

−g(x)(A) if g(1)(A) = −1

for all x ∈ M(C1, . . . , Ch).
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4.2. Sup-amalgam of metric spaces.

Definition 4.2: Let (Mn, dn) be a sequence of uniformly bounded metric spaces,

all containing a fixed metric space A as a subset. Denote the common metric

on A by d, fix a distinguished point 0 ∈ A and assume for all n that

(1) sup{d(x,0) : x ∈ A} ≤ inf{dn(x, y) : n ∈ N, x ∈ A and y ∈ Mn \A}.
The sup-amalgam of (Mn) with respect to A is the space

MA := A ∪
⊔

(Mn \A)

with the original metric dn on each Mn and d(x, y) = max{dn(x,0), dm(y,0)}
whenever x ∈ Mn \A and y ∈ Mm \A for m �= n. By (1) and the triangle ine-

quality this is indeed a metric. We shall say that the Mn’s are “glued along A”

and denote MA = (Mn)∞n=1/A.

We shall only apply the construction when d(x,0)=1≤dn(x, y) for 0 �= x ∈ A

and y ∈ Mn \A, so (1) will certainly hold.

Let Mn and A be as above and consider isometries fn : Mn → Xn into Banach

spaces Xn. Their amalgamation is the map g : MA → (
⊕

Xn)∞ defined by

g(x) =

⎧⎨
⎩

(0, . . . , 0, fn(x), 0, . . .) for x ∈ Mn \A,
(f1(x), f2(x), . . .) for x ∈ A.

Note that (1) yields that g is an isometry.

We shall apply the amalgamation only when Xn = C([0, αn]) for some coun-

table ordinals αn > 0. We then identify (
⊕

C([0, αn]))∞ with CB([0,
∑

αn)),

the space of bounded continuous functions on the half open interval [0,
∑

αn).

Lemma 4.3: Let Mn, A, and αn be as above and assume that A is finite and

contains at least 3 points which we denote {0, 1, 2}. Assume that

fn : Mn → C([0, αn])

are isometries satisfying fn(0) ≡ 0, fn(1) ≡ 1, fn(2) ≡ −1 and fn(a)(β) = ±1

for all a ∈ A∗ = A \ {0} and β ≤ αn.

Then there are N ≤ 2|A
∗|−2 and an isometry f : MA → C([0, (

∑
αn) ·N ])

satisfying f(0)≡0, f(1)≡1, f(2)≡−1 and f(a)(β)=±1 for all a ∈ A∗ =A \ {0}
and β ≤ (

∑
αn) ·N .

In particular, N = 1 when |A| = 3, i.e., when A = {0, 1, 2}.
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Proof. Let g be the amalgamation of the fn’s. Note that for a ∈ MA \A∗, the

function g(a) is eventually zero. Hence limβ→γ g(a)(β) = 0 where γ =
∑

αn.

On the other hand, for a ∈ A∗ the function g(a) attains only the values ±1

on [0, γ) and limβ→γ g(a)(β) does not have to exist. For each choice of signs

ε ∈ {±1}A∗ we consider the set Tε =
⋂

a∈A∗{β ∈ [0, γ) : g(a)(β) = ε(a)}.

Denoting I = {ε ∈ {±1}A∗ : Tε �= ∅}, the sets (Tε)ε∈I form a finite partition

of [0, γ) into clopen disjoint sets. Note that since ε(1) = 1 and ε(2) = −1 for

every ε ∈ I we have |I| ≤ 2|A
∗|−2.

If x ∈ A∗, we define f(x) as the continuous function on [0, γ] × I such that

f(x)(β, ε) = ε(x) for every β ≤ γ and every ε ∈ I, i.e., f(x) is constant on each

[0, γ] × {ε}. If x ∈ MA \A∗ we define f(x)

f(x)(β, ε) =

⎧⎨
⎩
g(x)(β) when β ∈ Tε

0 otherwise

for each (β, ε) ∈ [0, γ] × I. Since Tε are clopen in [0, γ) and since

lim
β→γ

g(x)(β) = 0,

the function f(x) is continuous on [0, γ] × I. Notice that we have f(0) ≡ 0

and f(x)(β, ε) = ±1 for x ∈ A∗ and (β, ε) ∈ [0, γ] × I. Let us check that f is

an isometry. Using that g is an isometry and the definition of f and Tε, it is

obvious that

d(x, y) = ‖g(x) − g(y)‖
= sup{|f(x)(β, ε) − f(y)(β, ε)| : (β, ε) ∈ [0, γ] × I, β ∈ Tε}.

On the other hand, checking the four possibilities (x ∈ A∗ or x /∈ A∗) and

(y ∈ A∗ or y /∈ A∗) we see that

|f(x)(β, ε) − f(y)(β, ε)| ≤ d(x, y)

if (β, ε) ∈ [0, γ] × I are such that β /∈ Tε. Thus, f is an isometry from MA

into C([0, γ] × I). It is clear that [0, γ] × I is homeomorphic to [0, γ ·N ] where

N := |I|. Hence f maps isometrically MA into C([0, γ ·N ]).

4.3. The trees Tμ. We use trees here in a very basic fashion as index sets.

For any unexplained notion and for further information, check [15]. For two

finite sequences m = (m1, . . . ,mh) and n = (n1, . . . , nl), we write

m�n = (m1, . . . ,mh, n1, . . . , nl)



938 A. PROCHÁZKA AND L. SÁNCHEZ-GONZÁLEZ Isr. J. Math.

for their concatenation. The empty sequence ∅ is the two-sided neutral element

for the concatenation. We omit the parentheses for the sequences of length one,

thus (n) is written as n. Let us construct for every ordinal μ < ω1 the tree Tμ

on N as follows:

• T0 = {∅} (the tree containing only the empty sequence),

• if Tμ has been defined, we put Tμ+1 = {∅} ∪⋃∞
n=1 n

�Tμ,

• if μ is limit and Tα has been defined for every α < μ, we choose some

αn ↗ μ and put

Tμ = {∅} ∪
∞⋃
n=1

n�Tαn

where n�Tμ = {n�m : m ∈ Tμ}. Clearly, for each μ, the tree Tμ is well founded

The following derivation on trees is standard:

T ′ = {n ∈ T : n�k ∈ T for some k ∈ N} = T \ maxT.

We further put T (0) = T , T (α+1) = (T (α))′ and T (α) =
⋂

β<α T (β) whenever α

is a limit ordinal. We put o(T ) = inf{α : T (α) = T0} if the set is nonempty,

otherwise o(T ) = ∞. We will compute the index of the trees Tμ above.

Lemma 4.4: For each μ < ω1 we have o(Tμ) = μ.

Proof. We have clearly o(T0) = 0 and o(T1) = 1. Assume the claim to be

true for all α < μ; we try to prove it for μ. If μ = α + 1 is non-limit, we have

Tμ = {∅}∪⋃∞
n=1 n

�Tα. It is thus clear that T
(α)
μ = T1 and so o(Tμ) = α+1 = μ.

Finally assume that μ is limit, we have Tμ = {∅} ∪ ⋃∞
n=1 n

�Tαn for some

αn ↗ μ. It is thus clear that T
(αm)
μ = {∅} ∪ ⋃∞

n=m n�T (αm)
αn for all m ∈ N.

Hence T
(μ)
μ =

⋂
β<μ T

(β)
μ = T0, and so o(Tμ) = μ.

4.4. Iterative construction of Mμ. Let us fix μ < ω1 from now on. We

will describe how the tree T := Tμ encodes a construction of a metric space.

Observe first that for every n ∈ T the ordinal r(n) = inf{α : n ∈ maxT (α)} is

the unique ordinal α such that n ∈ maxT (α). Thus the sets r−1(α) = maxT (α),

0 ≤ α ≤ μ, form a partition of T .

Definition 4.3: Let (Ck
i )∞k=1, i ∈ N, be pairwise disjoint increasing sequences of

finite sets with |Ck
i | = k+1 for all i, k ∈ N, such that the set {0, 1, 2} is disjoint

from their union. We denote C0 = {1, 2}.
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We will first define

Mn = M(C0, C
n1

1 , . . . , Cnh

h )

for each n = (n1, . . . , nh) ∈ maxT (0). Then, once Mn has been defined for

every n ∈ ⋃
β<α maxT (β), we put

Mn = (Mn�k)∞k=1/({0} ∪ C0 ∪ Cn1
1 ∪ · · · ∪Cnh

h )

for every n = (n1, . . . , nh) ∈ maxT (α). Since r(n�k) < r(n) = α, the definition

makes sense.

Observe that maxT (μ) = {∅}. We will show that M∅ satisfies the require-

ments of Theorem 4.1.

Proposition 4.5: For every 0 ≤ α ≤ μ for every n = (n1, . . . , nh) ∈ maxT (α)

(or rather n = ∅ in the case α = μ) there are Nn < ∞ and an isometric

embedding f : Mn → C([0, ωα ·Nn]) satisfying

(2) f(0) = 0, f(1) ≡ 1, f(2) ≡ −1 and f(x)(γ) = ±1

for x ∈ C0 ∪ Cn1
1 ∪ · · · ∪ Cnh

h and γ ≤ ωα ·Nn. When α = μ, we have N∅ = 1,

i.e., M∅ ↪→1 C([0, ωμ]).

Proof. By the definition of the spaces {Mn : n ∈ maxT (0)}, we get the claim

for α = 0 using Lemma 4.2. Here the ordinals ω0 · Nn = Nn are finite so the

spaces C([0, Nn]) and �∞([0, Nn]) are the same.4 For α > 1, the proof is a

standard transfinite induction argument exploiting Lemma 4.3. Let 0 < α ≤ μ

be an ordinal. Let n = (n1, . . . , nh) ∈ maxT (α). By the inductive hypothesis,

for each k ∈ N, there are αk < α, Nk < ∞ and an isometric embedding

fk : Mn�k ↪→1 C([0, ωαk ·Nk]) satisfying (2) for all x ∈ C0∪Cn1
1 ∪· · ·∪Cnh

h ∪Ck
h+1

and all γ ≤ ωαk ·Nk. (If α = β+1, then αk = β for all k. If α is limit, αk ↗ α.)

Recalling the definition of Mn and applying Lemma 4.3 we get that there is

some Nn < ∞5 and an isometric embedding

f : Mn ↪→
1
C

([
0,

( ∞∑
k=1

ωαk ·Nk

)
·Nn

])
= C([0, ωα ·Nn])

satisfying (2) for all x ∈ C0 ∪ Cn1
1 ∪ · · · ∪ Cnh

h and all γ ≤ ωα ·Nn.

4 Nn = |F (C0, C
n1
1 , . . . , C

nh
h )| = 2

∏
(ni + 1).

5 Nn ≤ 2(n1+1)+...+(nh+1) by Lemma 4.3
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Finally, when α = μ, the space M∅ is obtained by glueing along the three

point set {0, 1, 2}, thus N∅ = 1.

Given a metric space M , a mapping f : M → C(K), points a, b ∈ M and a

constant 1 ≤ D < 2, we denote

Xf
a,b := {x∗ ∈ K : |〈x∗, f(a) − f(b)〉| ≥ 4 − 2D}.

The duality above means the evaluation at the point x∗ ∈ K. We do not

indicate the dependence on D since it will always be clear from the context

which D we have in mind.

Proposition 4.6: (i) For each 1 ≤ D < 2 there exists a constant

CD =
(

log
(⌊ D

2 −D

⌋
+ 1

))−1

> 0

such that for every α < μ and every n = (n1, . . . , nh) ∈ maxT (α) and

every f : Mn ↪→D C(K) we have

∣∣∣∣Xf
1,2 ∩

h−1⋂
i=1

Xf
ai,bi

∩K(r(n))

∣∣∣∣ ≥ CD log(nh)

for all ai �= bi ∈ Cni

i , 1 ≤ i ≤ h − 1 (with the obvious meaning when

h = 1).

(ii) For each 1 ≤ D < 2 and every f : M∅ ↪→D C(K) we have

Xf
1,2 ∩K(μ) �= ∅.

Proof. We will proceed by a transfinite induction on α. Let first α = 0,

n ∈ maxT and let f : Mn ↪→D C(K). We may assume that f(0) = 0. For

given ai �= bi ∈ Cni

i , 1 ≤ i < h and a �= b ∈ Cnh

h we put

A = {1, a} ∪ {ai : 1 ≤ i < h} and B = {2, b} ∪ {bi : 1 ≤ i < h}.
Let x∗

a,b ∈ K be such that |〈x∗
a,b, f(A) − f(B)〉| = ‖f(A) − f(B)‖. Then, using

the triangle inequality,

x∗
a,b ∈ Xf

1,2 ∩
h−1⋂
i=1

Xf
ai,bi

∩Xf
a,b.

Denoting Γ = {x∗
a,b : a, b ∈ Cnh

h , a �= b} one can check that

{(〈f(a), γ〉)γ∈Γ : a ∈ Cnh

h } ⊂ B�∞(Γ)(0, D)

is a (4−2D)-separated set of cardinality nh. We thus get that |Γ| ≥ CD log(nh).
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Let us now assume the result to be true for every β < α with the goal of

proving it for α ≤ μ. Let n = (n1, . . . , nh) ∈ maxT (α). Let f : Mn ↪→D C(K).

We have Mn = (Mn�k)∞k=1/({0} ∪ C0 ∪ Cn1
1 ∪ · · · ∪ Cnh

h ). Since Mn�k ⊂ Mn

canonically isometrically, the inductive hypothesis yields that∣∣∣∣Xf
1,2 ∩

h⋂
i=1

Xf
ai,bi

∩K(r(n�k))

∣∣∣∣ ≥ CD log(k)

for every k ∈ N and every ai �= bi ∈ Ani

i (1 ≤ i ≤ h). If α is a limit ordinal we

have r(n�k) ↗ α, and if α = β + 1 we have r(n�k) = β for all k. In both cases

Xf
1,2 ∩

h⋂
i=1

Xf
ai,bi

∩K(α) �= ∅

by compactness. In the case when α = μ we can stop as we have proved point

(ii). In the remaining case we have h ≥ 1 and so we get by the same volume

argument as above that∣∣∣∣Xf
1,2 ∩

h−1⋂
i=1

Xf
ai,bi

∩K(r(n))

∣∣∣∣ ≥ CD log(nh).

Proof of Theorem 4.1. Let μ < ω1 be given. We put Mμ := M∅. This space

embeds isometrically into C([0, ωμ]) by Proposition 4.5. By Proposition 4.6 (ii)

we see that if M∅ ↪→D C(K), D < 2, then K(μ) �= ∅.

5. Further consequences of Theorem 4.1

Remark 5.1: Let μ < ω1 and let K be a Hausdorff compact space such that

K(μ) �= ∅. We denote by C0(K) the closed subspace of C(K) of the functions

whose restrictions on K(α) are identically zero. Assume that Mμ embeds into

C0(K) with distortion strictly less than 2. Then f(1) and f(2) are null on

K(μ), thus Xf
1,2 ∩ K(μ) = ∅ contradicting Proposition 4.6 (ii). In particular,

C([0, ωμ]) does not embed with distortion strictly less than 2 into C0([0, ωμ]).

For μ = 1 the last statement means that c does not embed with distortion

strictly less than 2 into c0. This also follows from [17, Proposition 3.1] as an

easy but entertaining exercise.

Remark 5.2: Let us recall the following result of Bessaga and Pe�lczyński [8, 15]:

Let ω ≤ α ≤ β < ω1. Then C([0, α]) is linearly isomorphic to C([0, β]) iff

β < αω . It is a longstanding open problem whether C([0, β]) can be Lipschitz

homeomorphic to a subspace of C([0, α]) if β > αω. Theorem 4.1 implies that
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the distortion of any such Lipschitz homeomorphism onto a subspace, if it exists,

must be at least 2.

5.1. Relation to the non-linear Amir–Cambern theorem. The reader

can consult Section 2 for the definition of the distances between Banach spa-

ces that we are about to use. The theorem of Amir [3] and Cambern [9] is

the following generalization of Banach–Stone theorem: Let K and L be two

compact spaces. If dBM (C(K), C(L)) < 2, then K and L are homeomorphic.

A result of Cohen [10] shows that the constant 2 above is optimal but at the

present it is not clear whether one could draw the same conclusion under the

weaker hypothesis of dL(C(K), C(L)) < 2 or even dN (C(K), C(L)) < 2. The

results of Jarosz [16], resp. Dutrieux and Kalton [12], resp. Górak [14], show

that K and L are homeomorphic if dL(C(K), C(L)) < 1 + ε (with ε > 0 univer-

sal but small), resp. dN (C(K), C(L)) < 17/16, resp. dN (C(K), C(L)) < 6/5.

Theorem 4.1 also implies that if K and L are two countable compacts, then as-

suming dL(C(K), C(L)) < 2 it implies that K and L have the same height (see

also the stronger Corollary 5.2). Observe that we do not require surjectivity in

order to get this result.

We do not know whether one has

cC([0,ωμ·m])(C([0, ωμ · n])) = 2

for 1 ≤ m < n < ω, but we get as a byproduct of the proof of our main result

the following proposition.

Proposition 5.1: Let 1 ≤ D < 2 be given. Then for every 1 ≤ m < ω there is

1 ≤ n < ω such that for all μ < ω1 the space C([0, ωμ · n]) does not embed into

the space C([0, ωμ ·m]) with distortion D. More precisely, there is a uniformly

discrete and bounded countable metric space M ⊂ C([0, ωμ ·n]) which does not

embed into the space C([0, ωμ ·m]) with distortion D.

Proof. We find k∈N such that CD log(k)>m. Let n=2k+1. Let T =Tμ+1 and

consider k=(k)∈T . Then r(k)=μ. Proposition 4.6 (i) yields that

|Xf
1,2 ∩K(μ)| ≥ CD log(k) > m

for every f : Mk ↪→D C(K). Hence no such embedding f can exist as

K(μ) ={ωμ ·1, . . . , ωμ ·m}. On the other hand Mk ↪→1 C([0, ωμ · n]) by Proposi-

tion 4.5, the footnotes in its proof and the choice of n. Consequently C([0, ωμ·n])

does not embed into C(K) with distortion D.
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The next corollary answers partially Problem 4.2 in [14].

Corollary 5.2: Let γ �= α < ω1 and n,m ∈ N. Then

dN (C([0, ωγ · n]), C([0, ωα ·m])) ≥ 2.

Proof. In fact, we are going to prove the stronger claim that for β < ωα and

for every net N in C([0, ωα]) there is no Lipschitz embedding f : N → C([0, β])

such that dist(f) < 2.

Let us suppose that such f and N exist. Assume that N is an (a, b)-net

and consider a mapping π : C([0, ωα]) → N such that ‖x − π(x)‖ ≤ b. Let

us consider Mα as a subset of C([0, ωα]) which we can by Theorem 4.1. Since

d(x, y) ≥ 1 for all x �= y ∈ Mα, we have, for λ > 2b, that

dist(π �λMα) ≤
(

1 +
2b

λ

)(
1 +

2b

λ− 2b

)
.

Thus it is clear that for λ large enough we have dist(g) < 2 for the embedding

g : Mα → C([0, β]) defined as

g(x) =
1

λ
f(π(λx))

for x ∈ Mα. According to Theorem 4.1, such embedding cannot exist. Contra-

diction.

Corollary 5.3: Let 1 ≤ D < 2 be given. Then for every 1 ≤ m < ω there is

1 ≤ n < ω such that

dN (C([0, ωμ · n]), C([0, ωμ ·m])) ≥ D

for all μ < ω1.

The proof follows the lines of the proof of Corollary 5.2 with Theorem 4.1

replaced by Proposition 5.1. The details are left to the reader.

5.2. Lower bounds on the Szlenk index. Finally, we will give a lower

bound on the Szlenk index of a Banach space X that admits a certain Mα with

distortion strictly less than 2 (for the definition and properties of the Szlenk

index, the reader can consult [15, 18]).

Theorem 5.4: Let X be an Asplund space and assume that Mωα embeds into

X with distortion strictly less than 2 for an ordinal α < ω1. Then

Sz(X) ≥ ωα+1.
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For the proof we will need the following version of Zippin’s lemma as presented

in [7, page 27]; see also [23, Lemma 5.11].

Zippin’s lemma: Let X be a separable Banach space with separable dual and

let 1
2 > ε > 0. Then there exist a compact K, an ordinal β < ωSz(X, ε8 )+1, a

subspace Y of C(K), isometric to C([0, β]) and an embedding i : X → C(K)

with ‖i‖‖i−1‖ < 1 + ε such that for any x ∈ X we have

dist(i(x), Y ) ≤ 2ε‖i(x)‖.
Proof of Theorem 5.4. Let us assume that Mωα ↪→D X with D < 2. Let ε > 0

be small enough so that D′ = D(1 + ε) < 2 and also that η := 2εD′ < 1
2

and 1+4ε
1−2ηD

′ < 2. Let K and β < ωSz(X, ε8 )+1 be as in Zippin’s lemma. Then

Mωα embeds into C(K) with distortion D′ < 2 via some embedding g such

that d(x, y) ≤ ‖g(x) − g(y)‖ ≤ D′d(x, y) and, without loss of generality, that

g(0) = 0. Thus for every x ∈ Mωα we have ‖g(x)‖ ≤ 2D′. We know that for

each x ∈ Mωα there is f(x) ∈ C([0, β]) such that

‖g(x) − f(x)‖ ≤ η.

This implies that ‖g(x)−g(y)‖−2η ≤ ‖f(x)−f(y)‖ ≤ ‖g(x)−g(y)‖+2η. Now

since 1 ≤ d(x, y) we have

d(x, y)(1 − 2η) ≤ ‖f(x) − f(y)‖ ≤ d(x, y)D′(1 + 4ε).

This proves that f is a Lipschitz embedding of Mωα into C([0, β]) with distortion

strictly less than 2 and so, according to Theorem 4.1, we have β ≥ ωωα

. This

implies that Sz(X) > ωα and so Sz(X) ≥ ωα+1 by [15, Theorem 2.43].

An interesting immediate consequence of the above theorem is the fact that,

for every γ < α < ω1 and for every equivalent norm |·| on C([0, ωωγ

]), the space

Mωα does not embed with distortion strictly less than 2 into (C([0, ωωγ

]), |·|).
We do not know if every Banach space X such that Sz(X) ≥ ωα+1 admits an

equivalent norm |·| such that Mωα ↪→X isometrically or at least with distortion

strictly less than 2.
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as he had succumbed few days earlier to his life’s passion – mountain climbing.

I miss him terribly ever since.

(Tony Procházka, Besançon, March 16, 2017)
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