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ABSTRACT

We first investigate the Lipschitz continuity of (K,K′)-quasiregular C2

mappings between two Jordan domains with smooth boundaries, satisfying

certain partial differential inequalities concerning Laplacian. Then two

applications of the obtained result are given: As a direct consequence, we

get the Lipschitz continuity of ρ-harmonic (K,K′)-quasiregular mappings,

and as the other application, we study the Lipschitz continuity of (K,K′)-
quasiconformal self-mappings of the unit disk, which are the solutions of

the Poisson equation Δw = g. These results generalize and extend several

recently obtained results by Kalaj, Mateljević and Pavlović.

1. Introduction and statement of the main results

1.1. Preliminaries.

1.1.1. (K,K ′)-quasiregular mappings. Let

A =

(
a b

c d

)
∈ R

2×2.

We will consider the matrix norm

|A| = max{|Az| : z ∈ C, |z| = 1}
and the matrix function

l(A) = min{|Az| : z ∈ C, |z| = 1}.
Let D and Ω be subdomains of the complex plane C, and let w = u+iv : D → Ω

be a function that has both partial derivatives at z = x+ iy in D. The notation

Dw always denotes the Jacobian matrix(
ux uy

vx vy

)
=

(
∇u
∇v

)
.

Obviously,

|Dw| = |wz |+ |wz| and l(Dw) = ||wz| − |wz ||.
We say that a function w : D → C is absolutely continuous on lines,ACL

in brief, in the region D if for every closed rectangle R ⊂ D with sides parallel

to the axes x and y, w is absolutely continuous on almost every horizontal line

and almost every vertical line in R. Such a function has, of course, partial



Vol. 220, 2017 LIPSCHITZ CONTINUITY OF MAPPINGS 455

derivatives wx and wy a.e. in D. Further, we say w ∈ ACL2 if w ∈ ACL and

its partial derivatives are locally L2 integrable in D.

We say that a sense-preserving continuous mapping w : D → Ω is (K,K ′)-
quasiregular if

(1) w is ACL2 in D and Jw �= 0 a.e. in D;

(2) there are constants K ≥ 1 and K ′ ≥ 0 such that

|Dw|2 ≤ KJw +K ′,

where Jw denotes the Jacobian of w, which is given by

Jw = |wz|2 − |wz |2 = |Dw|l(Dw).

In particular, w is called (K,K ′)-quasiconformal if w is a (K,K ′)-quasire-
gular homeomorphism; and if w is a K-quasiregular homeomorphism, then w

is K-quasiconformal.

IfK ′ = 0, then “(K,K ′)-quasiregular” (resp. “(K,K ′)-quasiconformal”) map-

pings reduce to “K-quasiregular” (resp. “K-quasiconformal”) ones.

We remark that there are (K,K ′)-quasiregular mappings which are not K1-

quasiregular for any K1 ≥ 1, and also there are (K,K ′)-quasiconformal map-

pings whose inverses are not (K1,K
′
1)-quasiconformal for any K1 ≥ 1 and

K ′
1 ≥ 0. See the examples in Sections 2 and 4 for the details.

The following result easily follows from the proof of Lemma 2.1 in [1].

Lemma 1.1: Suppose w is a (K,K ′)-quasiregular mapping. Then

|Dw| ≤ Kl(Dw) +
√
K ′.

A mapping f : D → Ω is proper if the preimage of every compact set in Ω is

compact in D. It is known that if D = Ω = D = {z : |z| < 1}, then a mapping

f is proper if and only if |f(z)| → 1 as |z| → 1 (cf. [16]).

1.1.2. Lipschitz continuity. We say that a mapping f : D → Ω is in Lipα if

there exists a constant L1 and an exponent α ∈ (0, 1] such that for all z, w ∈ D,

|f(z)− f(w)| ≤ L1|z − w|α.

Such mappings are also called α-Hölder continuous.

In particular, if α = 1, then we say that f is Lipschitz continuous.
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A mapping f is said to be coLipschitz continuous if there exists a constant

L2 such that for all z, w ∈ D,

|f(z)− f(w)| ≥ L2|z − w|.

1.1.3. Jordan domains. A Jordan curve is a set in the complex plane C which

is homeomorphic to a circle. For a Jordan domain, we mean a domain whose

boundary is a Jordan curve. In this paper, unless specially stated, all Jordan

domains are assumed to be bounded.

Denote by �(γ) the length of γ, and let Γ : [0, �(γ)] → γ be the arc length

parameterization of γ, i.e., the parameterization satisfying the condition

|Γ′(s)| = 1 a.e. in [0, �(γ)].

We say that γ is of class Cn,α for some n ∈ N and α ∈ (0, 1] if Γ is of class

Cn and

sup
t�=s∈[0,�(γ)]

|Γ(n)(t)− Γ(n)(s)|
|t− s|α <∞,

where Γn(t) denotes the nth derivative of Γ(t) with respect to t. The Jordan

domain D is called a Cn,α domain if its boundary ∂D is a Cn,α Jordan curve.

Let γ ∈ C1,α be a closed Jordan curve, and dγ(Γ(s),Γ(t)) the distance bet-

ween Γ(s) and Γ(t) along the curve γ, i.e.,

dγ(Γ(s),Γ(t)) = min{|s− t|, �(γ)− |s− t|}.
A closed rectifiable Jordan curve γ is said to enjoy a b-chord-arc condition

if there exists b > 1 such that for all z1, z2 ∈ γ,

dγ(z1, z2) ≤ b|z1 − z2|.
We remark that the unit circle S enjoys a π

2 -chord-arc condition.

1.1.4. Normalized mappings. For a closed curve β in C, three points a0, a1 and

a2 in β are said to be well-distributed if for i ∈ {0, 1},
�(β[ai, ai+1]) = �(β[ai+1, ai+2]),

where a3 = a0 and β[ai, ai+1] denotes the part of β with endpoints ai and ai+1.

Let D be a Jordan domain with rectifiable boundary. We will say that a

mapping f : D = D ∪ S → Ω is normalized if there are three well-distributed

points t0, t1, t2 in S; their images f(t0), f(t1) and f(t2) under f are also well-

distributed in ∂Ω = f(S) (cf. [14]).
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1.2. Lipschitz continuity for certain (K,K ′)-quasiregular mappings.

If a (K,K ′)-quasiregular (resp. (K,K ′)-quasiconformal) mapping is harmonic,

then it is said to be harmonic (K,K ′)-quasiregular (resp. harmonic (K,K ′)-
quasiconformal). Martio [19] was the first who considered harmonic quasi-

conformal mappings in C. Recent papers [1, 8, 12, 14, 15, 18, 22] and references

therein together bring much light on the topic of harmonic quasiconformal map-

pings in C. See [9, 11] for the discussions in this line in the space. In [17, 20],

the Lipschitz characteristic of harmonic quasiconformal mappings has been dis-

cussed. See [24, 25, 26, 27] for similar discussions in this line. In [3], Finn

and Serrin discussed the Hölder continuity of a class of elliptic mappings which

satisfy the following partial differential inequality

|wz |2 + |wz |2 ≤ KJw +K ′,

where K ≥ 1 and K ′ ≥ 0 are constants. See also [21].

Recently, in [14], Kalaj and Mateljević discussed the Lipschitz continuity

of (K,K ′)-quasiconformal harmonic mappings. In [12], they considered the

Lipschitz continuity of a quasiconformal C2 diffeomorphism w : D → Ω which

satisfies the partial differential inequality

(1.1) |Δw| ≤M |wz · wz |,
where M ≥ 0 is a constant and D (resp. Ω) denotes a C1,α (resp. C2,α) Jordan

domain, and in [10], as a generalization of the discussions in [12], Kalaj studied

the Lipschitz continuity of a K-quasiregular C2 mapping w : D → Ω which

satisfies the partial differential inequality

(1.2) |Δw| ≤M |Dw|2 +N

for some constants M ≥ 0 and N ≥ 0.

Obviously, if a mapping satisfies the partial differential inequality (1.1), then

it also satisfies (1.2). Observe that if M = N = 0 in (1.2), then w is harmonic.

The reader is referred to [2] for the properties of this class of mappings.

As the first aim of this paper, we consider the Lipschitz continuity of (K,K ′)-
quasiregular C2 solutions of (1.2). Our result is as follows.

Theorem 1.1: Suppose w is a proper (K,K ′)-quasiregular C2 mapping of a

Jordan domain D with C1,α boundary onto a Jordan domain Ω with C2,α

boundary. If w satisfies the partial differential inequality (1.2) for constants

M ≥ 0 and N ≥ 0, then w has bounded partial derivatives in D. In particular,

w is Lipschitz continuous.
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We remark that Theorem 1.1 is a substantial generalization of [10, Theorem

1.2] and [12, Theorem 1.3] (The example in Section 2 demonstrates this.) This

theorem will be proved in Section 3.

1.3. Lipschitz continuity for certainρ-harmonic (K,K ′)-quasiregular
mappings. A two times continuously differentiable complex-valued function f

between two domains D and Ω in C is said to be ρ-harmonic if it satisfies the

Euler–Lagrange equation

(1.3) fzz + ((log ρ)w ◦ w)fzfz = 0,

where w = f(z), and ρ(w)|dw| is an arbitrary conformal C1-metric defined in Ω.

If ϕ is a holomorphic mapping different from 0 and if ρ = |ϕ| in Ω, we call w

a ϕ-harmonic mapping.

Since ρ2 = ϕϕ, an elementary computation yields 2(log ρ)w = (logϕ)′. It

follows from (1.3) that if f is ϕ-harmonic, then

fzz +
( ϕ′

2ϕ
◦ w
)
fzfz = 0.

In [12], Kalaj and Mateljević considered the Lipschitz continuity of ρ-har-

monic quasiconformal mappings. As a direct consequence of Theorem 1.1,

we obtain the Lipschitz continuity of ρ-harmonic (K,K ′)-quasiregular map-

pings. Our first result concerns the Lipschitz continuity of ϕ-harmonic (K,K ′)-
quasiregular mappings, which is as follows.

Corollary 1.1: Suppose w is a ϕ-harmonic mapping of D onto a C2,α Jordan

domain Ω. If |(logϕ)′|∞ = sup{|(logϕ(z))′| : z ∈ D} < ∞ and w is a pro-

per (K,K ′)-quasiregular mapping, then w has bounded partial derivatives. In

particular, w is Lipschitz continuous.

Our next result, concerning approximately analytic metrics, generalizes Corol-

lary 1.1, where a C1 function h is said to be approximately analytic if there

is a constant C ≥ 0 such that |hz| ≤ C|h|.
Corollary 1.2: Suppose w is a ρ-harmonic mapping of D onto a C2,α Jor-

dan domain Ω. Further, if ρ is approximately analytic in Ω and w is a proper

(K,K ′)-quasiregular mapping, then w has bounded partial derivatives. In par-

ticular, w is Lipschitz continuous.
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We remark that Corollary 1.1 (resp. Corollary 1.2) is a generalization of [12,

Theorem 3.1] (resp. [12, Theorem 3.3]).

1.4. Lipschitz continuity for certain (K,K ′)-quasiconformal self-

mappings of the unit disk. This subsection deals with the discussion on the

Lipschitz continuity of (K,K ′)-quasiconformal solutions of the Poisson equation

(1.4) (see below) in D. We start with some necessary concepts. Let P be the

Poisson kernel, i.e., the function

P (z, eiθ) =
1− |z|2
|z − eiθ|2 ,

and let G denote the Green function of D, i.e.

G(z, ω) =
1

2π
log
∣∣∣1− zω

z − ω

∣∣∣,
where z ∈ D \ {ω}. Obviously, P is harmonic in D (cf. [2]), and G is harmonic

in D \ {ω}.
Let f : S → C be a bounded integrable function in S, and let g : D → C be

continuous. It is known that the solutions of the Poisson equation

(1.4) Δw = g

in D satisfying the boundary condition w|S = f ∈ L1(S) has the following

expression:

w = P [f ]−G[g],

where

P [f ](z) =
1

2π

∫ 2π

0

P (z, eiϕ)f(eiϕ)dϕ,

G[g](z) =

∫
D

G(z, ω)g(ω)dm(ω)

and dm(ω) denotes the Lebesgue measure in C. Also, it is known that if f and

g are continuous in S and D, respectively, then w has a continuous extension w̃

to S and w̃|S = f (cf. [7]).

For convenience, in the following, we always set

P = P [f ] and G = G[g].

Let DD(g) denote the family of all solutions w of the Poisson equation (1.4)

from D onto D, which satisfy that (1) each element w is a C2 diffeomorphism;
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(2) each restriction w|S = f is normalized; (3) every function f(eit) = eiψ(t) is

homeomorphic and absolutely continuous; and (4) ψ(2π) = ψ(0) + 2π.

Observe that any element in DD(g) is proper and satisfies the partial diffe-

rential inequality (1.2) with M = 0 and N = |g|∞.

In [16], Kalaj and Pavlović discussed the Lipschitz continuity of quasicon-

formal self-mappings of D satisfying the Poisson equation (1.4). As the main

application of Theorem 1.1, we study the Lipschitz continuity of (K,K ′)-quasi-
conformal solutions of (1.4). The aim is to generalize the arguments in [16]

to the case of (K,K ′)-quasiconformal solutions of (1.4). The following is our

result.

Theorem 1.2: Suppose that w ∈ DD(g) is a (K,K ′)-quasiconformal mapping

and that g ∈ C(D).

(1) Then for all z1 and z2 ∈ D,

|w(z1)− w(z2)| ≤M |z1 − z2|,

whereM =M(K,K ′, |g|∞), which means that the constantM depends

only on K, K ′ and |g|∞.

(2) If w−1 is also (K,K ′)-quasiconformal, then for all z1 and z2 ∈ D,

|w(z1)− w(z2)| ≥ N |z1 − z2|,

where N = N(K,K ′, |g|∞). Here N is positive if K ′ and ‖g‖∞ are

small enough.

By comparing with [16, Theorem 1.2], a natural question is whether the

assumption “w−1 being (K,K ′)-quasiconformal” in the second statement in

Theorem 1.2 is necessary or not. We will construct an example (Example 4.1

below) to show that there is a solution of the Poisson equation such that it is

(K,K ′)-quasiconformal, its inverse is not (K,K ′)-quasiconformal for any K ≥ 1

and K ′ ≥ 0, and it is not coLipschitz continuous. This fact shows that the

mentioned assumption in Theorem 1.2 is necessary. Section 4 is devoted to the

proof of Theorem 1.2 together with the statement and the proof of Example

4.1.

In Section 2, we will construct an example to show that Theorem 1.1 is a

substantial generalization of the corresponding results in [10] and [12], respecti-

vely.
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2. An example

In this section, we will construct an example to show the existence of the

(K,K ′)-quasiregular solutions of the partial differential inequality (1.2), which

satisfy the requirements in Theorem 1.1, but fail to satisfy the assumptions in

the corresponding results in [10] and [12], respectively.

Example 2.1: Let w(z) = 2|z|4z2 − |z|10z2 in D. Then

(1) w is a (1, 144)-quasiregular mapping of D onto D;

(2) w is proper;

(3) w is not K-quasiregular for any K ≥ 1;

(4) w satisfies |Δw| ≤ |Dw|2 + 76;

(5) w doesn’t satisfy |Δw| ≤M1|Dw|2 for any M1 ≥ 0;

(6) w doesn’t satisfy |Δw| ≤M2|wzwz| for any M2 ≥ 0;

(7) w is Lipschitz continuous.

Proof. Obviously, w(eiθ) = e2iθ for θ ∈ [0, 2π],

wz = 8|z|4z − 7|z|10z and wz = 4|z|2z3 − 5|z|8z3.
It follows that

|wz(z)| − |wz(z)| =
⎧⎨
⎩2|z|5(2− |z|6) > 0, if 0 < |z|6 < 4/5,

12|z|5(1 − |z|6) > 0, if 4/5 ≤ |z|6 < 1,

and

|Dw|2 − Jw ≤ |Dw|2 =

⎧⎨
⎩144|z|10(1 − |z|6)2 < 144, if 0 < |z|6 < 4/5,

4|z|10(2− |z|6)2 < 16, if 4/5 ≤ |z|6 < 1.

Let z1 = reiθ and z2 = rei(θ+π) with 0 < r < 1. Then z1 �= z2 ∈ D and

w(z1) = w(z2). Hence we have proved that w satisfies the first two assertions

in the example.

The limits

lim
|z|→1−

|wz|
|wz| = lim

|z|→1−

5|z|11 − 4|z|5
8|z|5 − 7|z|11 = 1

and

lim
|z|→1−

(|wz(z)|+ |wz(z)|) = 2

tell us that w is not K-quasiregular for any K ≥ 1, which implies that the third

assertion is satisfied.
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Obviously,

|Δw| = ∣∣64|z|4 − 140|z|10∣∣ ≤ 76 ≤ |Dw|2 + 76

and

lim
|z|→0

|Δw|
|Dw|2 = lim

|z|→0

16− 35|z|6
36|z|6(1− |z|6)2 = +∞.

Hence the assertions (4)–(6) in the example hold.

It remains to show the Lipschitz continuity of w. This easily follows from the

estimate |Dw| < 12 in D, and so the proof of the example is complete.

3. Lipschitz continuity for certain (K,K ′)-quasiregular mappings be-

tween Jordan domains

The main purpose of this section is to prove Theorem 1.1. Before the proof,

some preparation is needed.

3.1. Some auxiliary results. We start this subsection with a lemma.

Lemma 3.1: Suppose that w is a (K,K ′)-quasiregular mapping from D to Ω,

where bothD and Ω are Jordan domains in C, and that w has the decomposition

w = ρS, where ρ = |w|. Then we have

(3.1) |Dw| ≤ K|∇ρ|+
√
K ′

and

(3.2)
|∇ρ| − √

K ′

K
≤ ρ|DS| ≤ K|∇ρ|+

√
K ′

a.e. in D.

Proof. First, we prove the inequality (3.1). Since ρ = |w|, a similar approach

as in the proof of [10, Lemma 2.2] implies that

∇ρ =
1

|w|w
TDw,

where T denotes the transpose of matrices. Here and hereafter, we regard

w = u + iv as not only a number in C, but also a 2 × 1 column vector, where

both u and v are real. Then

(3.3) ∇ρh =
1

|w| 〈Dwh,w〉,
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and so

(3.4) |∇ρ| = max
|h|=1

|∇ρh| = max
|h|=1

|〈Dwh,w〉|
|w| ≤ |Dw|.

It follows from Lemma 1.1 that to prove (3.1), it suffices to show

l(Dw) ≤ |∇ρ|.
Since Jw = det(Dw) �= 0 a.e. in D, we know that there exists h1 such that

(3.5) Dwh1 =
w

|w| a.e. in D.

Then we infer from (3.3) that

∇ρh1 =
〈 w|w| , w〉
|w| = 1,

and so for h = h1

|h1| , it easily follows that ∇ρh = 1
|h1| . Also, by (3.5), we get

h1 = (Dw)−1 w
|w| a.e. in D, and thus

|∇ρ| ≥ |∇ρh| = 1

|h1| =
∣∣∣(Dw)−1 w

|w|
∣∣∣−1

.

Since∣∣∣(Dw)−1 w

|w|
∣∣∣ ≤ |(Dw)−1| and |(Dw)−1| = 1

min{|Dwh| : |h| = 1} ,

we obtain that

(3.6) |∇ρ| ≥ |(Dw)−1|−1 = min{|Dwh| : |h| = 1} = l(Dw),

as required. Hence the inequality (3.1) holds.

Now, we check the truth of the right side of the inequality (3.2). We infer

from a similar argument as in the proof of [10, Lemma 2.2] that

DS =
Dw

|w| − ((Dw)Tw) ⊗ w

|w|3 ,

and so for all h ∈ C,

DSh =
Dwh

|w| − w〈Dwh,w〉
|w|3 ,

where ⊗ is the tensor product between column vectors, i.e., for two vectors −→a
and

−→
b , −→a ⊗−→

b =
−→
b · (−→a )T . Then

(3.7) ρ2|DSh|2 = |Dwh|2 −
〈
Dwh,

w

|w|
〉2

≤ |Dw|2|h|2,
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whence

ρ|DS| = sup
|h|�=0

{
ρ
∣∣∣DS h

|h|
∣∣∣} ≤ |Dw|.

Hence we obtain from Lemma 1.1 and (3.6) that

ρ|DS| ≤ |Dw| ≤ Kl(Dw) +
√
K ′ ≤ K|∇ρ|+

√
K ′,

as needed.

Next, we check the truth of the left side of (3.2). Since, obviously, there is

an h1 such that 〈Dwh1, w|w|〉 = 0 with |h1| = 1, we see from (3.7) that

ρ2|DSh1|2 = |Dwh1|2,

which, together with Lemma 1.1, guarantees that

ρ|DS| ≥ ρ
∣∣∣DS h1

|h1|
∣∣∣ = ∣∣∣Dw h1

|h1|
∣∣∣ ≥ l(Dw) ≥ |Dw| − √

K ′

K
,

and then we get from (3.4) that

ρ|DS| ≥ |Dw| − √
K ′

K
≥ |∇ρ| − √

K ′

K
,

which is what we want. Therefore, the proof of the lemma is complete.

Remark 3.1: Lemma 3.1 is a generalization of [10, Lemma 2.2].

The proof of Theorem 1.1 also needs the following known results.

Lemma A ([10, Proposition 2.5] or [4, 23, 28, 29]): If D and Ω are Jordan

domains having Cn,α (n ≥ 1) boundary and if ω is a conformal mapping of D

onto Ω, then

(a) |ω′(z)| ≥ inf{|ω′(ζ)| : ζ ∈ D} > 0 for z ∈ D;

(b) ω(n) ∈ Cα(D). In particular |ω(n)|∞ = sup{|ωn(z)| : z ∈ D} <∞.

Lemma B ([5, Theorem 4′] or [13, Proposition 3.2]): Suppose u is a continuous

function from D into the real axis R and satisfies the following conditions:

(1) u is C2 in D;

(2) ub(θ) = u(eiθ) is C2; and

(3) |Δu| ≤M0|∇u|2 +N0 in D for some constants M0 and N0.

Then |∇u| is bounded in D.
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3.2. The proof of Theorem 1.1. We are ready to prove the Lipschitz con-

tinuity of w. We divide the proof into two steps. In the first step, we construct

a (K1,K
′
1)-quasiregular self-mapping τ in D satisfying the partial differential

inequality (1.2) for some constants M1 and N1. In the second step, by applying

the mapping τ , we show that |Dw| is bounded in D, which completes the proof.

Step 3.1: The construction of τ .

Let ϕ be a conformal mapping of D onto D, g a conformal mapping of Ω

onto D, and

τ = g ◦ w ◦ ϕ.
In the following, we apply Lemma A to show that this τ satisfies our requi-

rements as mentioned in the first paragraph in this subsection.

First, it follows from

(3.8) |Dτ | = |τz|+ |τz | and |Dτ | = |g′ϕ′||Dw|
that

Jτ = |g′ϕ′|2Jw.
Meanwhile, by Lemma A, we know that the function |g′| (resp. |ϕ′|) is bounded
from above and below. Hence we easily know that τ is a (K,K ′|g′|2∞|ϕ′|2∞)-

quasiregular self-mapping in D.

Second, since

|4τzτz| ≤(|τz |+ |τz |)2 = |Dτ |2,

|Δw| ≤M |Dw|2 +N =M
|Dτ |2

|g′|2|ϕ′|2 +N,

and since elementary computations lead to

Δτ = (4g′′wzwz + g′Δw)|ϕ′|2 =
(4g′′τzτz

g′2
+ g′|ϕ′|2Δw

)
,

we have

(3.9) |Δτ | ≤
( |g′′|∞

|g′|21
+

M

|g′|1
)
|Dτ |2 + |g′|∞|ϕ′|2∞N,

where

|g′|1 = inf{|g′(z)| : z ∈ Ω}.
The boundedness of |g′′|∞ follows from Lemma A. Hence τ satisfies (1.2), and

so this τ is what we need.
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Step 3.2: |Dw| is bounded in D.

It follows from (3.8) that

|Dw| = |Dτ ||g′ϕ′|−1,

and then we know from Lemma A that to prove the boundedness of |Dw| in
D, it suffices to show the boundedness of |Dτ | in D. Now, we are going to

prove the boundedness of |Dτ |. Obviously, it follows from the fact w ∈ C2(D)

that τ ∈ C2(D), and then |Dτ | is bounded in Dr for any r ∈ (0, 1), where

Dr = {z ∈ C : |z| ≤ r}. To prove the boundedness of |Dτ | in D, it is enough to

show that |Dτ | is bounded in D \ Dr for some r ∈ (0, 1). For this, we let

τ = ρS,

where ρ = |τ |. Then the inequality (3.1) in Lemma 3.1 makes sure that if |∇ρ|
is bounded, then so is |Dτ |. To prove that |Dτ | is bounded in D, it is sufficient

to find an r ∈ (0, 1) such that |∇ρ| is bounded in D \ Dr.
In the following, we apply Lemma B to show the existence of the needed r.

To reach this aim, we need the following existence of a function related to ρ.

Claim 3.1: There is a function ρ2 in D such that

(1) ρ2 satisfies all assumptions in Lemma B; and

(2) ρ2 and ρ coincide with each other in D \ Dr for some r ∈ (0, 1).

We will applyWhitney’s Theorem [30, Theorem 1] to construct such a function

ρ2. Since w is a proper (K,K ′)-quasiregular mapping, it follows that τ is a pro-

per self-mapping of D. Thus

lim
|z|→1−

ρ(z) = 1.

Therefore, there exists an r1 > 0 such that r1 ≤ |z| ≤ 1 implies

ρ(z) ≥ 1/2.

Let 0 < r1 < r2 < 1 and r2 > 1/2. Since ρ ∈ C2(A), where

A = {z : r1 ≤ |z| ≤ r2},
according to Whitney’s Theorem, there exists an extension ρ1 of the restriction

ρ|A such that ρ1 ∈ C2(C). Let

ρ2 =

⎧⎨
⎩
ρ, z ∈ D \ D r1+r2

2
,

ρ1, z ∈ D r1+r2
2

.
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Since

ρ2(e
iθ) = lim

r→1−
ρ2(re

iθ) = lim
r→1−

ρ(reiθ) = 1,

ρ2 obviously satisfies the assumptions (1) and (2) in Lemma B. In order to show

that this ρ2 is what we need, it remains to check that ρ2 satisfies (1.2), i.e., the

third assumption in Lemma B. We will apply Lemma 3.1 to reach this goal.

It follows from [10, Lemma 2.4] that

|Δρ| =
∣∣∣1
2
〈Δτ, S〉+ 2ρ|DS|2

∣∣∣ ≤ 1

2
|Δτ |+ 2ρ|DS|2.

Then the inequality (3.2) in Lemma 3.1 along with (3.9) implies

|Δρ| ≤1

2
|Δτ |+ 2

ρ
(K|∇ρ|+

√
K ′)2

≤1

2

( |g′′|∞
|g′|21

+
M

|g′|1
)
|Dτ |2 + 1

2
|g′|∞|ϕ′|2∞N +

4

ρ
(K2|∇ρ|2 +K ′),

and further, we get from the inequality (3.1) in Lemma 3.1 that

|Δρ| ≤ N1(ρ)|∇ρ|2 +M1(ρ),

where

N1(ρ) =
(4
ρ
+

|g′′|∞
|g′|21

+
M

|g′|1
)
K2

and

M1(ρ) =
(4
ρ
+

|g′′|∞
|g′|21

+
M

|g′|1
)
K ′ +

1

2
|g′|∞|ϕ′|2∞N.

Since for all z ∈ D \ Dr1 , ρ(z) ≥ 1
2 , we see that

|Δρ2| ≤ N1

(1
2

)
|∇ρ2|2 +M1

(1
2

)
in D \ Dr1 .
Let

M0 = max{|Δρ2(z)| : z ∈ D r1+r2
2

}.
Since ρ1 ∈ C2(C), by the definition of ρ2, we see that M0 < +∞, and so for all

z ∈ D,

|Δρ2| ≤ N1

(1
2

)
|∇ρ2|2 +M1

(1
2

)
+M0,

which shows that ρ2 satisfies the third assumption in Lemma B.

Since the definition of ρ2 implies that ρ2 = ρ in D \ D r1+r2
2

, we see that this

ρ2 justifies our need and the proof of our claim is complete.
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It follows from Claim 3.1 and Lemma B that |∇ρ2| is bounded in D. Hence

|∇ρ| is bounded in D \ D r1+r2
2

, and so this radius r1+r2
2 is what we want.

We see from the existence of the radius r = r1+r2
2 that |∇ρ| is bounded in D,

and so the proof of the theorem is complete.

4. Lipschitz continuity for certain (K,K ′)-quasiconformal self-map-

pings of the unit disk

This section is devoted to the proof of Theorem 1.2 together with the statement

and the proof of Example 4.1. We start with a lemma.

4.1. A lemma. By Theorem 1.1, the following assertions easily follow from

Lemmas 2.7 and 2.8 in [16].

Lemma C: Under the assumptions of Theorem 1.2, we have

(i) limr→1− DG(reiθ) = DG(eiθ);
(ii) limr→1− DP(reiθ) = DP(eiθ) a.e. in [0, 2π];

(iii) limr→1− Dw(re
iθ) = Dw(eiθ) a.e. in [0, 2π];

(iv) maxz∈D{|Gz(reiθ)|, |Gz(reiθ)|} ≤ 1
3 |g|∞;

(v) max0≤θ≤2π{|Gz(eiθ)|, |Gz(eiθ)|} ≤ 1
4 |g|∞; and

(vi) |Jw(eiθ)− ψ′(θ)
2π

∫ 2π

0
|f(eiθ)−f(eiϕ)|2

|eiθ−eiϕ|2 dϕ| ≤ 1
2ψ

′(θ)|g|∞,

where w|S = f and f(eiθ) = eiψ(θ).

4.2. The proof of Theorem 1.2. First, we prove the first statement of the

theorem, i.e., the Lipschitz continuity of w in D. Let

M1 = supz∈D|Dw(z)|.
Obviously, we only need to show that M1 has an upper bound. Since w + G is

harmonic, we see from [11, Lemma 2.2] and Lemma C that for all z ∈ D,

|Dw(z)| ≤|Dw(z) +DG(z)|+ |DG(z)|
≤esssup0≤θ≤2π|Dw(eiθ) +DG(eiθ)|+ |DG(z)|

≤esssup0≤θ≤2π|Dw(eiθ)|+
7

6
|g|∞,

which implies that for every ε > 0, there exists a θε such that

(4.1) M1 ≤ (1 + ε)|Dw(eiθε )|+ 7

6
|g|∞.

Obviously, to estimate M1, it is sufficient to estimate the quantity |Dw(eiθε)|.
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Now, we are going to estimate |Dw(eiθε)|. It follows from Lemma C and the

assumption w being a (K,K ′)-quasiconformal mapping that

(4.2)

|Dw(eiθ)|2 = lim
r→1−

|Dw(reiθ)|2 ≤ K lim
r→1−

Jw(re
iθ) +K ′

≤Kψ′(θ)
(

1

2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2
|eiθ − eiϕ|2 dϕ+

1

2
|g|∞

)
+K ′

a.e. in [0, 2π].

Now, we need a relationship between ψ′(θ) and |Dw(eiθ)|. Since Theorem

1.1 guarantees that |Dw(z)| is bounded by a constant in D, we deduce from the

Lebesgue Dominated Convergence Theorem that

f(eiθ) = lim
r→1−

w(reiθ) = lim
r→1−

∫ θ

θ0

∂

∂ϕ
w(reiϕ)dϕ+ f(eiθ0)

=

∫ θ

θ0

lim
r→1−

( ∂

∂ϕ
w(reiϕ)

)
dϕ+ f(eiθ0)

=

∫ θ

θ0

lim
r→1−

(rDw(reiϕ)ieiϕ)dϕ+ f(eiθ0).

Since f(eiθ) = eiψ(θ) is absolutely continuous, by differentiating in θ, we obtain

(4.3)
d

dθ
f(eiθ) = lim

r→1−

∂

∂θ
w(reiθ) = lim

r→1−
(rDw(reiθ))ieiθ

and

(4.4)
d

dθ
f(eiθ) = iψ′(θ)eiψ(θ)

a.e. in [0, 2π], whence combining Lemma C, we have

(4.5) ψ′(θ) = lim
r→1−

|Dw(reiθ)| = |Dw(eiθ)|,

which is our desired relationship between ψ′(θ) and |Dw(eiθ)|.
Using (4.5), the relation (4.2) is changed into the following form:

|Dw(eiθ)|2 ≤ K|Dw(eiθ)|
(

1

2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2
|eiθ − eiϕ|2 dϕ+

1

2
|g|∞

)
+K ′,

which, necessarily, implies that

|Dw(eiθ)| ≤ K

2π

∫ 2π

0

|f(eiϕ)− f(eiθ)|2
|eiϕ − eiθ|2 dϕ+

K

2
|g|∞ +

√
K ′,



470 J. CHEN, P. LI, S. K. SAHOO AND X. WANG Isr. J. Math.

and thus we easily know from (4.1) that

(4.6)

M1 ≤(1 + ε)

[
K

2π

∫ 2π

0

M1−μ
1 |eiθε − eiϕ|μ2+μ−2 |f(eiθε)− f(eiϕ)|1+μ

|eiθε − eiϕ|μ2+μ

× |f(eiθε)− f(eiϕ)|1−μ
M1−μ

1

dϕ

]

+ (1 + ε)
[K
2
|g|∞ +

√
K ′
]
+

7

6
|g|∞,

where

(4.7) μ =
1

K(1 + π)2
.

Now, we need an auxiliary result which is (4.8) below: Since for any z1 = reiθ

and z2 = reiη in D,

|w(z1)− w(z2)| ≤
∫
[z1,z2]

|Dw(z)||dz| ≤M1|z1 − z2|,

by letting r → 1−, we obtain

(4.8) |f(eiθ)− f(eiη)| ≤M1|eiθ − eiη|.

Let us continue the proof. Since S enjoys the π
2 -chord-arc condition, we get

from (4.6) along with (4.8) and [14, Lemma 2.4] that

M1 ≤(1 + ε)

[
1

2π
KP 1+μ

S

∫ 2π

0

M1−μ
1 |eiθε − eiϕ|μ2−1dϕ

]

+ (1 + ε)
[1
2
K|g|∞ +

√
K ′
]
+

7

6
|g|∞,

where

(4.9) PS = 4(1 + π)2μ

√
max

{2π2K

log 2
,

2πK ′

K(1 + π)2 + 4

}
.

Hence

M1 ≤ (1 + ε)[M2M
1−μ
1 ] + (1 + ε)

[1
2
K|g|∞ +

√
K ′
]
+

7

6
|g|∞,

where

M2 =
1

2π
KP 1+μ

S

∫ 2π

0

|eiθε − eiϕ|μ2−1dϕ.
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For the convergence of the integral
∫ 2π

0
|eiθε − eiϕ|μ2−1dϕ, the reader is referred

to [9, Lemma 1.6]. Also, we easily know that M2 does not depend on θε. By

letting ε→ 0, we get

(4.10) M1 ≤M2M
1−μ
1 +

(1
2
K +

7

6

)
|g|∞ +

√
K ′.

To get an estimate on M1, we need a lower bound on M1 which is (4.11)

below. Since ∫ 2π

0

ψ′(θ)dθ = ψ(2π)− ψ(0) = 2π,

we know that

esssup0≤θ≤2πψ
′(θ) ≥ 1.

Since

ψ′(θ) = |ψ′(θ)| =
∣∣∣∂f(eiθ)
∂eiθ

∂eiθ

∂θ

∣∣∣ = ∣∣∣∂f(eiθ)
∂eiθ

∣∣∣
and

esssup0≤θ≤2π lim
η→θ

∣∣∣f(eiη)− f(eiθ)

eiη − eiθ

∣∣∣ ≤ esssup0≤θ �=η<2π

∣∣∣f(eiη)− f(eiθ)

eiη − eiθ

∣∣∣,
it follows from the inequality (4.8) that

(4.11) 1 ≤ esssup0≤θ≤2πψ
′(θ) ≤ esssup0≤θ �=η<2π

∣∣∣f(eiη)− f(eiθ)

eiη − eiθ

∣∣∣ ≤M1.

Now, we are able to get an upper bound for M1. Using (4.11), the relation

(4.10) implies

M1 ≤
(
M2 +

(1
2
K +

7

6

)
|g|∞ +

√
K ′
)
M1−μ

1 ,

and so

M1 ≤
(
M2 +

1

2
K|g|∞ +

7

6
|g|∞ +

√
K ′
)K(1+π)2

= C0.

Moreover, by [16, Lemma 2.9] and (4.10), we see that if

(1− μ)M2 =
1

2π

(
1− 1

K(1 + π)2

)
KP 1+μ

S

∫ 2π

0

|eiθε − eiϕ|μ2−1dϕ < 1,

then

M1 ≤ M2 +
1
2K|g|∞ + 7

6 |g|∞ +
√
K ′ − (1 − μ)M2

1− (1− μ)M2
= C1.

Let

M =

⎧⎨
⎩C0, if (1− μ)M2 ≥ 1,

min{C0, C1}, if (1− μ)M2 < 1.
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Then we see that

M1 ≤M,

and so the proof of the first statement of the theorem is complete.

Next, we are going to prove the second statement of the theorem, i.e., the

coLipschitz continuity of w under the assumption that w−1 is also (K,K ′)-
quasiconformal. It follows from Lemma C that

(4.12) l(Dw) ≥ l(DP)− |DG| ≥ l(DP)− 2

3
|g|∞

a.e. in D.

Obviously, to prove the coLipschitz continuity of w, it is sufficient to find the

lower bound of l(Dw) in D, and (4.12) implies that it is enough to find the lower

bound of l(DP). For this purpose, we need the following claim.

Claim 4.1: For a.e. θ ∈ [0, 2π], we have

Kψ′(θ) ≥ 1

2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2
|eiθ − eiϕ|2 dϕ− 1

2
|g|∞ −

√
K ′ ≥ N1,

where

N1 =
1

2π
P

− 2
μ

S

∫ 2π

0

|eiθ − eiϕ| 2μ−2dϕ− 1

2
|g|∞ −

√
K ′.

First, we prove the inequality

(4.13) Kψ′(θ) ≥ 1

2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2
|eiθ − eiϕ|2 dϕ− 1

2
|g|∞ −

√
K ′

a.e. in [0, 2π].

It follows from (4.3) and (4.4) that

ψ′(θ) =
∣∣∣df(eiθ)

dθ

∣∣∣ = ∣∣∣ lim
r→1−

∂w(reiθ)

∂θ

∣∣∣.
Since Lemma C guarantees that

ψ′(θ) =
∣∣∣ lim
r→1−

∂w(reiθ)

∂θ

∣∣∣ ≥ |wz(eiθ)| − |wz(eiθ)| = l(Dw(eiθ))

and

Jw(e
iθ)

ψ′(θ)
≥ 1

2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2
|eiθ − eiϕ|2 dϕ− 1

2
|g|∞



Vol. 220, 2017 LIPSCHITZ CONTINUITY OF MAPPINGS 473

a.e. in [0, 2π], we have

1

2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2
|eiθ − eiϕ|2 dϕ− 1

2
|g|∞ ≤Jw(e

iθ)

ψ′(θ)
≤ |Dw(eiθ)|

≤Kl(Dw(eiθ)) +
√
K ′

≤Kψ′(θ) +
√
K ′

a.e. in [0, 2π], as required.

Next, we get an estimate on the integral in Claim 4.1, which is as follows:

(4.14)
1

2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2
|eiθ − eiϕ|2 dϕ ≥ 1

2π
P

− 2
μ

S

∫ 2π

0

|eiθ − eiϕ| 2μ−2dϕ.

By [14, Lemma 2.4] and the assumptions that “w−1 is (K,K ′)-quasiconformal

and w is normalized”, we have that for all z1 and z2 ∈ S,

|z1 − z2| ≤ PS|w(z1)− w(z2)|μ,

i.e.,

|w(z1)− w(z2)| ≥ P
− 1

μ

S
|z1 − z2| 1μ ,

where PS and μ are the same as in (4.7) and (4.9). Then we have

1

2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2
|eiθ − eiϕ|2 dϕ ≥ N2,

where

N2 =
1

2π
P

− 2
μ

S

∫ 2π

0

|eiθ − eiϕ| 2μ−2dϕ ≤ P
− 2

μ

S
2

2
μ−2.

Here we remark that by using the substitution in the integral, we easily see that

N2 is independent of θ, i.e., N2 = N2(K,K
′).

Obviously, the proof of Claim 4.1 follows from (4.13) and (4.14).

Now, we are ready to finish the proof of our theorem by applying Claim 4.1.

It follows from Claim 4.1, together with the inequalities (4.5), Lemmas 1.1 and

C, that

N1 ≤ Kψ′(θ) = K|Dw(eiθ)| ≤ K2l(Dw(eiθ)) +K
√
K ′
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a.e. in [0, 2π], whence again Lemma C implies

(4.15)

l(DP(eiθ)) = lim
r→1−

l(DP(reiθ)) = lim
r→1−

(|Pz(reiθ)| − |Pz(reiθ)|)
≥ lim
r→1−

(|wz(reiθ) + Gz(reiθ)| − |wz(reiθ) + Gz(reiθ)|)
≥ lim
r→1−

(l(Dw(reiθ)) − |DG(reiθ)|)

≥N1

K2
−

√
K ′

K
− 1

2
|g|∞.

Let

N =
N1

K2
−

√
K ′

K
− 7

6
|g|∞.

Then N = N(K,K ′, |g|∞) since N1 = N1(K,K
′, |g|∞), and next, we are going

to show the following.

Claim 4.2: The inequality l(Dw) ≥ N holds in D.

Without loss of generality, we assume that N > 0. Obviously,

N1

K2
−

√
K ′

K
− 1

2
|g|∞ > 0.

Under this assumption, we need to get a lower bound for l(DP) in D (see

(4.16) below). We will employ the famous Heinz Theorem [6] to reach this aim.

Since f(eiθ) = eiψ(θ) is an increasing homeomorphism on S, we see from the

Choquet–Radó–Kneser Theorem (cf. [2, p. 29]) that P is a sense-preserving

harmonic diffeomorphism. Then the Heinz Theorem implies

2|Pz|2 ≥ |Pz|2 + |Pz|2 ≥ 1

π2
.

Let

ϕ(z) =
Pz(z)
Pz(z) and φ(z) =

1

Pz(z)
(N1

K2
−

√
K ′

K
− 1

2
|g|∞

)
.

Then both ϕ and φ are holomorphic, |ϕ(z)| < 1, and further

|φ| ≤
√
2π
(N1

K2
−

√
K ′

K
− 1

2
|g|∞

)
in D. Since (4.15) leads to

|ϕ(eiθ)|+ |φ(eiθ)| = |Pz(eiθ)|+ (N1

K2 −
√
K′
K − 1

2 |g|∞)

|Pz(eiθ)| ≤ 1,

we see that

|ϕ(z)|+ |φ(z)| ≤ P [|ϕ|S|](z) + P [|φ|S|](z) ≤ 1,



Vol. 220, 2017 LIPSCHITZ CONTINUITY OF MAPPINGS 475

which implies

|Pz(z)|+ N1

K2
−

√
K ′

K
− 1

2
|g|∞ ≤ |Pz(z)|

in D, i.e.,

(4.16) l(DP) ≥ N1

K2
−

√
K ′

K
− 1

2
|g|∞

in D, as required.

Now, it follows from (4.12) and (4.16) that

l(Dw) ≥ N,

and hence the claim is proved.

Since the second statement in Theorem 1.2 (2) easily follows from Claim 4.2,

we see that the proof of the theorem is complete.

4.3. An example. The following example shows that the assumption “w−1

being (K,K ′)-quasiconformal” in the second assertion in Theorem 1.2 is neces-

sary.

Example 4.1: Let w(z) = 1
2n ((2n+ 1)z − z|z|2n) in D, where n ≥ 1. Then

(1) w is a (K,K ′)-quasiconformal mapping of D onto D;

(2) w is not K-quasiconformal for any K ≥ 1;

(3) w−1 is not a (K,K ′)-quasiconformal mapping for any K ≥ 1 and

K ′ ≥ 0;

(4) w is Lipschitz continuous but not coLipschitz.

Proof. Elementary calculations show that

wz(z) =
1

2n
((2n+ 1)− (n+ 1)|z|2n) and wz(z) = −1

2
|z|2n−2z2.

It follows from

Jw(z) =
1

4n2
(|wz(z)|2 − |wz(z)|2) = 1

4n2
(2n+ 1)(1− |z|2n)(2n+1− |z|2n) > 0,

together with the fact w(eiθ) = eiθ and the degree principle, that w is a sense-

preserving homeomorphism from D onto D. Furthermore,

l(Dw)(z) =
1

2n
((2n+1)− (2n+1)|z|2n) and |Dw(z)| = 1

2n
((2n+1)−|z|2n).

Then w is a (1, (1 + 1
2n )

2)-quasiconformal mapping since

|Dw|2 ≤ Jw + |Dw|2 ≤ Jw +
(
1 +

1

2n

)2
.
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The limit

lim
|z|→1−

|Dw|2
Jw

= +∞
tells us that w is not a K-quasiconformal mapping for anyK ≥ 1. The Lipschitz

continuity of w easily follows from the estimate |Dw| ≤ 1 + 1
2n .

It is well known that for the nonsingular matrix Dw, we have

|Dw−1| = 1/l(Dw) and l(Dw−1) = 1/|Dw| (cf. [11]).

Hence

|Dw−1(z)| = 2n

(2n+ 1)− (2n+ 1)|z|2n and l(Dw−1(z)) =
2n

(2n+ 1)− |z|2n .

Then for any K ≥ 1,

lim
|z|→1−

(|Dw−1(z)|2 −KJw−1(z)) = lim
|z|→1−

|Dw−1|(|Dw−1|−Kl(Dw−1)) = +∞.

This shows that w−1 is not a (K,K ′)-quasiconformal mapping.

Let ∂αw(z) denote the directional derivative of w. Note that if w is Lipschitz

continuous with Lipschitz constant C, then

|∂αw(z)| =
∣∣∣ lim
r→0

w(z + reiα)− w(z)

r

∣∣∣ = lim
r→0

|w(z + reiα)− w(z)|
r

≤ C.

Hence it follows from the obvious fact |Dw(z)| = maxα
∣∣∂αw(z)∣∣ that

|Dw| ≤ C,

namely, “w being Lipschitz continuous” is equivalent to “|Dw| being bounded”.

Since

lim
|z|→1−

∣∣D(w−1)(z)
∣∣ = +∞,

we see that w−1 is not Lipschitz continuous and so w is not coLipschitz conti-

nuous. The proof is finished.
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