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ABSTRACT

In this paper we prove rigidity theorems for Poisson Lie group actions

on Poisson manifolds. In particular, we prove that close infinitesimal

momentum maps associated to Poisson Lie group actions are equivalent

using a normal form theorem for SCI spaces. When the Poisson structure

of the acted manifold is integrable, this yields rigidity also for lifted actions

to the symplectic groupoid.
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1. Introduction

In 1961 Palais proved that close actions of compact Lie groups on compact

manifolds can be conjugated by a diffeomorphism [29]. The interest of this

rigidity theorem relies in the approximation of actions by nearby ones. As an

application of this rigidity theorem of Palais we can recover normal form theo-

rems such as Bochner’s linearization theorem [5]. Several generalizations of this

result have been obtained in [15] and [25] for symplectic actions on symplectic

manifolds and in [26] for Hamiltonian actions of semisimple Lie algebras on

Poisson manifolds.

In this paper we generalize a rigidity result from [26] to the context of Poisson

Lie groups and pre-Hamiltonian actions. This addresses a question considered

by Ginzburg in [14].

Poisson Lie group actions on Poisson manifolds with non-trivial Poisson struc-

tures appear naturally in the study of R matrices. As explained in [21] this

generalization of Hamiltonian actions is useful to take into account the prop-

erties of the dressing transformations under the hidden symmetry group in the

case of R-matrices. For these, the notion of momentum mapping for Poisson

manifolds coincides with the monodromy matrix of the associated linear sys-

tem. Thus, rigidity for Poisson Lie group actions can be useful to understand

the stability of the integrable systems associated to R-matrices. On the other

hand, the generalization to Poisson Lie group actions represents a first step

towards quantization of symmetries, as studied in [12]. The first result of this

paper is the rigidity of Hamiltonian actions, i.e., Poisson Lie actions generated

by a G-equivariant momentum map J :M −→ G∗.
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Theorem 1.1: Let G be a compact semisimple Poisson Lie group G acting on

a compact Poisson manifold (M,π) in a Hamiltonian fashion with momentum

map J0 :M −→ G∗.
There exist a positive integer l and two positive real numbers α and β (with

β < 1 < α) such that, if J1 is another momentum map on M with respect to

the same Poisson structure and Poisson Lie group, satisfying

(1) ‖J0 − J1‖2l−1 ≤ α and ‖J0 − J1‖l ≤ β,

then there exists a Poisson diffeomorphism ψ of class C k, for all k ≥ l, on M

such that

J1 ◦ ψ = J0.

In other words, close Hamiltonian actions are equivalent. The proof uses

a global linearization theorem due to Ginzburg and Weinstein [15] and the

rigidity result for Hamiltonian actions on Poisson manifolds obtained in [26].

As a consequence of this rigidity theorem for momentum maps in the Poisson

Lie group setting, we obtain rigidity for lifted actions to the symplectic groupoid

when the Poisson structure is integrable.

As pointed out in [14], in many cases it is enough to consider the infinitesimal

version of the momentum map. Poisson actions generated by an infinitesimal

momentum map are called pre-Hamiltonian actions. The advantage of consid-

ering the infinitesimal momentum map relies on the fact that existence and

uniqueness are much simpler to prove and we have a big class of examples

given by semisimple Lie algebras [14]. Infinitesimal momentum maps are the

local counterpart to momentum maps and topology on the acted manifold is

an obstruction to its integration to global momentum maps. This is also the

case when the Poisson structure on G is not trivial but there are additional

obstructions as shown in [13].

The second result of this paper is the rigidity of the infinitesimal momentum

map.

Theorem 1.2: Let us consider a pre-Hamiltonian action of a semisimple com-

pact Poisson Lie group (G, πG) on a compact Poisson manifold (M,π) with

infinitesimal momentum map α.

There exist a positive integer l and two positive real numbers a and b (with

b < 1 < a) such that, if α̃ is another infinitesimal momentum map on M with
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respect to the same Poisson structure, satisfying

(2) ‖α− α̃‖2l−1 ≤ a and ‖α− α̃‖l ≤ b,

then there exists a map Φ : Ω1(M) → Ω1(M) of class C k, for all k ≥ l,

preserving the Lie algebra structure of Ω1(M) and the differential d, such that

Φ(αX) = α̃X .

The proof uses techniques native to geometrical analysis and an abstract nor-

mal form theorem from [26]. This abstract normal form encapsules a Newton’s

iterative method used by Moser and Nash to prove the inverse function theorem

in infinite dimensions (see for example [20]). Newton’s method is used to prove

normal form results by approximating the solution by means of an iterative

process. The solution is then presented as a limit. The abstract normal form

for SCI spaces (where SCI stands for scaled of C ∞-type) presented in [26] al-

lows to prove normal forms results (and, in particular, linearization and rigidity

theorems) without having to plunge into the details of the iterative method. In

this paper we provide a new application of this normal form for SCI spaces. The

abstract normal form theorem in [26] has had other applications in the theory

of generalized complex manifolds (see [2] and [3]) and a variant of it to normal

forms in a neighbourhood of a symplectic leaf of a Poisson manifold [28]. In

this paper we provide a new application of this normal form for SCI spaces. As

in [26] we first prove an infinitesimal rigidity result and then we apply the SCI

normal form theorem to conclude rigidity. Our theorem can be seen as another

reincarnation of Mather’s principle “infinitesimal stability implies stability” (see

[24] and its sequel).

Acknowledgements. We are grateful to Henrique Bursztyn for interesting

remarks that improved this paper and to Filippo Bracci for useful discussions

regarding the technical results of this paper. We are deeply thankful to the

referees for their suggestions.

2. Preliminaries: Poisson Lie groups and pre-Hamiltonian actions

In this section we introduce a generalization of the notion of Hamiltonian actions

in the setting of Poisson Lie groups acting on Poisson manifolds. Let us recall

that a Poisson Lie group is a pair (G, πG), where G is a Lie group and πG is

a multiplicative Poisson structure. The Lie algebra g corresponding to the Lie
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group G is equipped with the 1-cocycle,

(3) δ = deπG : g → g ∧ g,

which defines a Lie algebra structure on the dual vector space g∗. For this

reason, the pair (g, δ) is said to be a Lie bialgebra. If G is connected and simply

connected there is a one-to-one correspondence between the Poisson Lie group

(G, πG) and the Lie bialgebra (g, δ), as proven in [10] (for this reason we assume

this hypothesis to hold throughout this paper). The dual Poisson Lie group G∗

is defined to be the Lie group associated to the Lie algebra g∗. Given a Poisson

Lie group (G, πG) and a Poisson manifold (M,π), we introduce the following

Definition 2.1: The action of (G, πG) on (M,π) is called Poisson action if the

map Φ : G×M →M is Poisson, that is

(4) {f ◦ Φ, g ◦ Φ}G×M = {f, g}M ◦ Φ ∀f, g ∈ C∞(M)

where the Poisson structure on G×M is given by πG ⊕ π.

Observe that if G carries the zero Poisson structure πG = 0, the action is

Poisson if and only if it preserves π. In general, when πG �= 0, the structure π

is not invariant with respect to the action.

Let Φ : G×M →M be a Poisson action and X̂ the fundamental vector field

associated to any element X ∈ g. For each X ∈ g we can also define the left

invariant 1-form θX on G∗ with value X at e.

Definition 2.2 (Lu, [22], [23]): A momentum map for the Poisson action

Φ : G×M →M is a map J : M → G∗ such that

(5) X̂ = π�(J∗(θX)).

Let us denote by λg the (left) dressing action of G on its dual G∗.

Definition 2.3: A momentum map for the Poisson action Φ is said to be

G-equivariant if for every g ∈ G we have J ◦ Φg = λg ◦ J .

We recall that, as proved in [22, Theorem 3.18 ], a momentum map is

G-equivariant if and only if it is a Poisson map given that G is connected,

i.e.,

(6) J∗π = πG∗ .
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Finally, we can say that a Hamiltonian action in this context is a Poisson

action given by an equivariant momentum map. This definition generalizes

Hamiltonian actions in the canonical setting of Lie groups acting on Poisson

manifolds. Indeed, we notice that, if the Poisson structure on G is trivial, the

dual G∗ corresponds to the dual of the Lie algebra g∗, the one-form J∗(θX) is

exact and the infinitesimal generator X̂ is a Hamiltonian vector field.

The notion of Hamiltonian action can be further generalized by using a weaker

definition of momentum map, first introduced by Ginzburg in [14] and further

developed in [12]. The basic idea is to consider the infinitesimal version of

an equivariant momentum map generating the fundamental vector fields of a

Poisson action. For this purpose, it is useful to recall that given a Poisson

structure π, the anchor map π� defined as π�(α) := π(α, ·) defines a skew-

symmetric operation [·, ·]π : Ω1(M)×Ω1(M) → Ω1(M). This operation is given

by the general formula

(7) [α, β]π = Lπ�(α)β − Lπ�(β)α− d(π(α, β)).

Furthermore, it provides Ω1(M) with a Lie algebra structure such that

π� : T ∗M → TM is a Lie algebra homomorphism (e.g., see Theorem 4.1 in

[30]).

Definition 2.4: Let (M,π) be a Poisson manifold and (G, πG) a Poisson Lie

group.

(i) An infinitesimal momentum map is a map α : g → Ω1(M) :X �→ αX

such that it generates the action by

(8) X̂ = π�(αX)

and satisfies the conditions to be a Lie algebra homomorphism

(9) α[X,Y ] = [αX , αY ]π

and a cochain map

(10) dαX = α ∧ α ◦ δ(X).

(ii) A pre-Hamiltonian action is an action of (G, πG) on (M,π) defining

an infinitesimal momentum map α : g → Ω1(M).

A similar definition can be found in [14], where the author defines the cotan-

gential action as an infinitesimal action g → Γ(TM) : X �→ X̂ that can be

lifted to Ω1(M). In other words, there exists a linear map α : g → Ω1(M) such
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that X̂ = π�(αX), called cotangent lift (or pre-momentum map). This

definition differs from the definition above since the equivariance (9) and the

condition (10) are not required. Moreover, the author in [14] does not require

the action to be Poisson. From our definition it follows immediately that the

infinitesimal momentum map defines a Poisson map, as proved in [8]. Thus, in

the light of Theorem 3.18 in [22], condition (9) is the analogue to equivariance.

Clearly this notion is weaker than the Hamiltonian notion, as it does not

reduce to the canonical one when the Poisson structure on G is trivial. In fact,

if πG = 0 we have δ = 0 and Eq. (10) implies that αX is a closed form, but in

general this form is not exact. IfM is not simply connected we can get examples

in the symplectic realm like rotations on a torus or more sophisticated ones for

general Poisson structures.

Example 2.1: Consider the torus T2, with Poisson structure π = sin θ1
∂

∂θ1
∧ ∂

∂θ2

where the coordinates on the torus are θ1, θ2 ∈ [0, 2π] . This Poisson structure

is symplectic away from the set Z = {θ1 ∈ {0, π}} and the Poisson structure

satisfies a transversality condition at the vanishing set. This Poisson struc-

ture pertains to a class called b-Poisson structures (or b-symplectic structures)

studied in [18]. The circle action of rotation on the θ2 coordinate defines a

pre-Hamiltonian action on T
2. Indeed it is possible to associate a b-symplectic

form to this Poisson structure (see [18]) and work with b-symplectic actions, in

this case 1
sin θ1

dθ1 ∧ dθ2. The circle action of rotation on the θ2 coordinate is

pre-Hamiltonian and the associated one-form is 1
sin θ1

dθ1 (see [19] for properties

of these actions on b-Poisson manifolds).

Furthermore, it is clear that any Hamiltonian action is pre-Hamiltonian be-

cause the equivariant momentum map J induces the infinitesimal one α by

αX = J∗(θX). But not every infinitesimal momentum map arises from a mo-

mentum map J . Here we recall an example of pre-Hamiltonian action which is

not Hamiltonian (see Remark 3.3 in [14]).

The study of the conditions in which an infinitesimal momentum map deter-

mines a momentum map can be found in [13]. The authors here proved that if

M and G are simply connected and G is compact, then D = {αξ − θξ, ξ ∈ g}
generates an involutive distribution on M ×G∗ and a leaf µF of D is a graph

of a momentum map if

(11) π(αξ, αη)− πG∗(θξ, θη)|F = 0, ξ, η ∈ g.



764 C. ESPOSITO AND E. MIRANDA Isr. J. Math.

In other words, ifM andG are simply connected andG is compact the authors

in [13] found the obstructions for a pre-Hamiltonian action to be Hamiltonian.

The advantage of working with infinitesimal momentum map is that the study

of its existence and uniqueness is much simpler than for the G-equivariant mo-

mentum map of Definition 2.2. In particular, it has been proven in [14] that

any action of a compact group with H2(g) = 0 admits an infinitesimal momen-

tum map. Since assuming g semisimple implies automatically H2(g) = 0, we

can conclude that whenever g is semisimple the action admits an infinitesimal

momentum map.

3. Rigidity of Hamiltonian actions

As introduced in Section 1, by rigidity of the actions we mean that close actions

are equivalent, i.e., they are conjugated by a diffeomorphism. In what follows,

we recall the rigidity theorem in the context of Hamiltonian actions and, as a

consequence, we prove the rigidity of Hamiltonian actions.

3.1. The case of zero Poisson structure on the Poisson Lie group G.

Let us consider a Lie group G acting on a Poisson manifoldM and assume that

the action is Hamiltonian, i.e., there exists a G-equivariant momentum map

μ : M → g∗. The rigidity of Hamiltonian actions was proved in [26] via a

rigidity theorem for the momentum map. More precisely,

Theorem 3.1 (Miranda, Monnier, Zung [26]): Consider a compact Poisson

manifold (M,π) and a Hamiltonian action on M given by the momentum map

λ :M −→ g∗ where g is a semisimple Lie algebra of compact type.

There exist a positive integer l and two positive real numbers α and β (with

β < 1 < α) such that, if μ is another momentum map on M with respect to

the same Poisson structure and Lie algebra, satisfying

(12) ‖λ− μ‖2l−1 ≤ α and ‖λ− μ‖l ≤ β,

then there exists a diffeomorphism ψ of class C k, for all k ≥ l, on M such that

μ ◦ ψ = λ.

Remark 3.1: This theorem holds in the C p-category assuming λ is of class C 2p−1

and the statement also holds in the C ∞-category. From the construction in [26]

the diffeomorphism ψ can be chosen to depend continuously on μ in the terms

of [17](Appendix B) as it happens in Palais’ construction [29].
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The main idea to prove this theorem is to use Newton’s iterative method

applied to momentum maps. As explained in [17], a first approach to prove the

equivalence of Lie group actions on manifolds would be the following steps. In

general, a Lie group action gives an element in M = Hom(G,Diff(M)) and we

can consider the additional action

β : Diff(M)× M �−→ M

(φ, α) �→ φ ◦ α ◦ φ−1.

Two actions α0 and α1 are conjugate if they are on the same orbit under β so,

in particular, if β has open orbits the action is rigid. Observe that:

• The tangent space to the orbit of β coincides with 1-coboundaries of the

group cohomology with coefficients in V = Vect(M) and the tangent

space to M are the 1-cocycles.

• The generalized Whitehead lemma implies that for compact G the coho-

mology group H1(G;Vect(M)) vanishes. This phenomenon is known as

infinitesimal rigidity. In this case the tangent space to the orbit equals

the tangent space to M .

• If M is a manifold (or tame Fréchet) we can apply the inverse function

theorem of Nash–Moser to go from the tangent space to the manifold.

We can use this fact to prove that β has open manifolds and thus the

action is rigid.

In general, it is hard to verify the “tame Fréchet” condition but we can apply the

method used in the proof of Nash–Moser’s theorem (Newton’s iterative method).

This method allows to prove several results of type infinitesimal rigidity implies

rigidity. For Hamiltonian actions on Poisson manifold the authors [26] consider

the Chevalley–Eilenberg complex associated to the representation given by the

momentum map following the next steps:

(1) Assume that the close momentum maps are μ :M → g∗ and λ :M → g∗.
The difference

φ = μ− λ

defines a 1-cochain of the complex which is a near 1-cocycle.

(2) We define Φ as the time-1 map of the Hamiltonian vector field XSt(h(φ))

with h the homotopy operator of the Chevalley–Eilenberg complex and

St is a smoothing operator.
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(3) The Newton iteration is given by

φd = φ1XSt(h(ηd))

with ηd = (μ− λ) ◦ φd−1. This converges to a Poisson diffeomorphism

that conjugates both actions.

Convergence is a hard part of the proof. In order to circumvent these difficulties,

in [26] a strong use of geometric analysis tools is performed to check convergence

using the paraphernalia of SCI spaces. In particular, the theorem needed to

prove convergence is an abstract normal form presented in Section 4.2.

3.2. The case of non-trivial Poisson structure on the Poisson Lie

group G. In this section we prove rigidity of Hamiltonian actions, i.e., we show

that two close Hamiltonian actions with momentum maps J0, J1 : M −→ G∗

are equivalent. This result has been obtained by combining well-known results

of Ginzburg and Weinstein concerning linearization of Poisson Lie groups with

the rigidity theorem 3.1 for canonical momentum maps.

Observe that since a Poisson structure on a Poisson Lie group (with Poisson

structure πG) must vanish at e ∈ G, its linearization at e is well-defined (recall

that deπG : g −→ g ∧ g). The following theorem says that if G is compact and

semisimple, the Poisson structure πG is linearizable, thus equivalent to deπG by

diffeomorphisms.

Theorem 3.2 (Ginzburg, Weinstein [15]): Let G be a compact semisimple

Poisson Lie group. Then the dual Poisson Lie groupG∗ is globally diffeomorphic

to g∗ with the linear Poisson structure defined as {f, g}η = 〈η, [dfη, dgη]〉.

Combining Theorem 3.2 and Theorem 3.1 we obtain rigidity for the Hamil-

tonian action, as stated below.

Theorem 3.3: Let G be a compact semisimple Poisson Lie group G acting

on a compact Poisson manifold (M,π) in a Hamiltonian fashion given by the

momentum map J0 :M −→ G∗.
There exist a positive integer l and two positive real numbers α and β (with

β < 1 < α) such that, if J1 is another momentum map on M with respect to

the same Poisson structure and Poisson Lie group, satisfying

(13) ‖J0 − J1‖2l−1 ≤ α and ‖J0 − J1‖l ≤ β,

then there exists a Poisson diffeomorphism ψ of class C k, for all k ≥ l, on M

such that J1 ◦ ψ = J0.
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Proof. Denote by Φ the linearizing Poisson diffeomorphism1 Φ : G∗ −→ g∗ given
by Theorem 3.2 and consider the compositions μ0 = Φ ◦ J0 and μ1 = Φ ◦ J1.
The mappings μ0 : M −→ g∗ and μ1 : M −→ g∗ are canonical momentum

maps and we may consider the infinitesimal Hamiltonian actions of g (β0 and

β1). These actions integrate to infinitesimal standard Hamiltonian actions of

the Lie group G which preserve the Poisson structure onM . We may now apply

Theorem 3.1 to obtain a diffeomorphism ψ such that μ1 ◦ψ = μ0 and therefore

J1 ◦ ψ = J0.

This result is just telling us that rigidity of the standard momentum map

implies rigidity of Lu’s momentum map. In general, this will work whenever we

have a linearization theorem for the Poisson Lie group G.

Metatheorem 3.1: Whenever the Poisson Lie group structure in G is lineariz-

able, the rigidity of the momentum map μ : M → g∗ implies the rigidity of the

momentum map J :M → G∗ for linearizable Poisson Lie groups G.

The linearization of Poisson Lie groups has been studied by Enriquez, Etingof

and Marshall [11] in the context of quasitriangular Poisson Lie groups and fur-

ther generalized to coboundary Poisson Lie groups by Alekseev and Meinrenken

[1]. In particular, for coboundary Poisson Lie groups the authors define a mod-

ified exponential E : g∗ → G∗ and prove that it is a Poisson diffeomorphism.

If a rigidity result would work for coboundary Poisson Lie groups, then the

metatheorem above would imply rigidity for this class too because Ji = E ◦ μi.

To the authors’ knowledge, such a rigidity result for Hamiltonian actions is not

known to hold in general for non-semisimple Lie groups.

Remark 3.2: It would be possible to relax the SCI hypotheses in order to prove

rigidity for Poisson Lie group actions on compact manifolds. The SCI apparatus

is indeed thought for the semilocal case (neighbourhood of a compact invariant

submanifold). However, thanks to the SCI scheme the rigidity statement for

compact manifolds is automatically valid in the semilocal setting (due to the

need to control the convergence of the radii of shrank neighbourhoods in the

iterative process).

1 The differentiability class can be assumed to be k by the construction in the proof of

Theorem 3.2.
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3.2.1. An application to groupoids. Theorem 3.1 has a direct application to the

study of momentum maps lifted to symplectic groupoids. Let us consider an

integrable Poisson manifold M and its symplectic groupoid Σ(M) over M . We

recall that, as proved in [31], if one has a Hamiltonian action of (G, πG) on

(M,π) with momentum map J :M → G∗, then JΣ(M) : Σ(M) → G∗ is exact:

(14) JΣ(M)(x) = J(t(x))J(s(x))−1 ,

where s, t are the source and target maps. Thus, using the fact that Poisson

morphisms can be integrated (see [7]) we get the following

Corollary 3.4: Given two close momentum maps Ji : M −→ G∗, i = 1, 2

on an integrable Poisson manifold M , then there exists a symplectic groupoid

morphism φ on Σ(M) such that the corresponding lifted moment maps J
Σ(M)
i

satisfy J
Σ(M)
1 = J

Σ(M)
2 ◦ φ.

In other words, rigidity of the momentum maps implies rigidity of the cor-

responding lifted momentum maps. The general case of momentum maps on

symplectic groupoids is still open and this corollary gives a motivating example

to investigate the rigidity of JΣ(M) when J does not exist.

4. Rigidity of pre-Hamiltonian actions

In this section we prove rigidity of pre-Hamiltonian actions. More precisely, we

consider two Poisson actions generated by the infinitesimal momentum maps

α and α̃ and we prove a rigidity property: close implies equivalent. The proof

follows the same lines discussed in Section 3.1.

First, we have to set up the concepts of close and equivalent for infinitesimal

momentum maps. We can define the topology by using the associated infini-

tesimal momentum maps, i.e., we can also use the C k-norm of the infinitesimal

momentum map

α : g → Ω1(M)

and work with αX , for X ∈ g as mappings

αX : M → T ∗M.

On the other hand, two infinitesimal momentum maps are said to be equivalent

if there exists a morphism of Lie algebras conjugating them.
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As in the Hamiltonian setting, we aim to prove that infinitesimal rigidity im-

plies rigidity, thus the first step is to consider the Chevalley–Eilenberg complex

associated to the infinitesimal momentum map. The first cohomology group of

this complex can be interpreted as infinitesimal deformations and when it van-

ishes we obtain infinitesimal rigidity. Then, using the techniques of SCI spaces

we can prove the equivalence of infinitesimal momentum maps via Lie algebra

morphisms. More explicitly, let α and α̃ be two close infinitesimal momentum

maps. The idea is to construct a sequence αn which are equivalent, with α0 = α

and such that αn tends to α̃ when n tends to +∞.

(1) We consider the difference β = α− α̃, which defines a 1-cochain of the

associated complex which is a near 1-cocycle.

(2) We define Φ as the time-1 map of the vector field

Xh(β) = π�(h(β))

with h the homotopy operator.

(3) The Newton iteration is given by,

Φn = φ1X(h(βn))

with βn = Φn−1 ◦ (α − α̃). This converges to a Lie algebra morphism

that conjugates both momentum maps.

Instead of checking convergence of this sequence, we are going to use a normal

form theorem for SCI spaces.

4.1. A Chevalley–Eilenberg complex and infinitesimal rigidity.

First we define the Chevalley–Eilenberg complex associated to an infinitesi-

mal momentum map α : g → Ω1(M) and discuss the properties that will be

used to prove the rigidity theorem. The infinitesimal momentum map defines

a representation of the Lie algebra g on the space of 1-forms on M as we prove

in the following

Lemma 4.1: Let α : g → Ω1(M) : X �→ αX be the infinitesimal momentum

map. It defines a representation ρ of g on Ω1(M) by

(15) ρX(β) := [αX , β]π

for any X ∈ g.
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Proof. This is a direct consequence of properties of the Lie bracket [·, ·]π and

of α since we have

ρXρY (β) − ρY ρX(β) = [αX , [αY , β]π]π − [αY , [αX , β]π ]π

= [[αX , αY ]π, β]π

= [α[X,Y ], β]π

= ρ[X,Y ](β).

This concludes the proof.

Thus, for q ∈ N, Cq(g,Ω1(M)) = Hom(
∧q

g,Ω1(M)) is the space of alternat-

ing q-linear maps from g to Ω1(M), with the convention

C0(g,Ω1(M)) = Ω1(M).

. The associated differential is denoted by ∂i. Explicitly, we have

Ω1(M)
∂0 �� C1(g,Ω1(M))

∂1 �� C2(g,Ω1(M))

where

(16)
∂0(β)(X) = ρX(β) = [αX , β]π ,

∂1(γ)(X ∧ Y ) = ρX(γ(Y ))− ρY (γ(X))− γ([X,Y ]),

for any β ∈ Ω1(M), γ ∈ C1(g,Ω1(M)) and X,Y ∈ g. These differentials satisfy

∂i ◦ ∂i−1 = 0 and we can define the quotients

Hi(g,Ω1(M)) = ker(∂i)/ im(∂i−1) ∀i ∈ N.

The first cohomology group can be interpreted as infinitesimal deformations of

the infinitesimal momentum maps modulo trivial deformations. In the compact

semisimple case, it is known that the first and second cohomology groups van-

ish, so we have the infinitesimal rigidity. To prove that infinitesimal rigidity

implies rigidity we need to prove that our spaces comply with the SCI spaces

requirement (for more details about SCI spaces see [26]). In particular, certain

inequalities have to be checked for the homotopy operators, necessary to control

the loss of differentiability in the iterative process. In the Hamiltonian case, the

trick used in [26] and [6] in order to prove the desired inequalities is to first

use Sobolev metrics and then Sobolev inequalities and then take the real part.

For the Chevalley–Eilenberg complex defined above we need those inequalities

applied to mappings α : g → Ω1(M) and work with αX , for X ∈ g, as mappings
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αX :M → T ∗M . Since M is compact, Sobolev inequalities holds too. A differ-

ent way to do this is to consider Sobolev norms in the space of one-forms2 and

C k-topology for the space of one-forms (see for instance [9] or [16]) and adapt

the same steps.

Lemma 4.2: In the Chevalley–Eilenberg complex associated to ρ:

Ω1(M)
∂0 �� C1(g,Ω1(M))

∂1 �� C2(g,Ω1(M))

there exists a chain of homotopy operators

Ω1(M)
∂0 �� C1(g,Ω1(M))

∂1 ��
h0

�� C2(g,Ω1(M))
h1

��

such that

∂0 ◦ h0 + h1 ◦ ∂1 = idC1(g,Ω1(M))),

∂1 ◦ h1 + h2 ◦ ∂2 = idC1(g,Ω1(M))) .

Moreover, for each k, there exists a real constant Ck > 0 such that

(17) ‖hj(S)‖k,r ≤ Ck‖S‖k+s,r, j = 0, 1, 2

for all S ∈ Cj+1(g,Ω1(M)).

Proof. We apply the same strategy of [26] replacing the Sobolev inequalities

for smooth functions by the analogous expressions for differential forms. A key

point is that those Sobolev norms are invariant by the action of the Lie group

which is linear. The linearity of the action is needed to decompose the Hilbert

space into spaces which are invariant.

In our case we can assume that this action is also linear using an appropriate

G-equivariant embedding by virtue of the Mostow–Palais theorem ([27], [29]).3

As was done in [26], we can check the regularity properties of the homotopy op-

erators with respect to these Sobolev norms and then deduce, as a consequence,

regularity properties of the initial norms by looking at the real part. The proof

2 For one-forms on oriented manifolds, we may consider the higher degree versions of the

following norm: 〈α, β〉 = ∫
X

α ∧ ∗β where ∗β stands for the Hodge dual of β.
3 Using an orthonormal basis in the vector space E for this action, we can define the

corresponding Sobolev norms in the ambient spaces provided by the Mostow–Palais em-

bedding theorem. This norm is invariant by the action of G (we can even assume G is a

subgroup of the orthogonal group).
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holds step by step by replacing the standard Sobolev inequalities by the ones

for differential one-forms.

Remark 4.1: If we restrict to exact forms, it follows immediately that

(18) ∂0(β)(X) = [αX , β]π = [dHX , d f ]π = d{HX , f}.

Thus, the Chevalley–Eilenberg complex Cq(g,Ω1(M)) recovers Cq(g,C∞(M)).

4.2. An abstract normal form for SCI spaces. As announced, we need

to recall the normal form theorem proved in [26] for SCI spaces. SCI spaces

(where SCI stands for scaled C∞-type) are a generalization of scaled spaces

and tame Fréchet spaces. This analytical apparatus is needed to prove normal

form theorems in the most possible general setting which includes the neigh-

bourhood of a point, a compact invariant submanifold or a compact manifold.

We refer to [26] for the basic definitions of SCI spaces, SCI groups and SCI ac-

tions. It is good to keep in mind the following archetypical example: an example

of SCI spaces is the set of Poisson structures, an example of an SCI group is the

group of diffeomorphisms (which can be germified, semilocal or global), and in

this case an example of SCI action is the push-forward of a Poisson structure

via a diffeomorphism.

The scheme of proof of a normal form theorem in this abstract setting is the

following:

(1) G (for instance, diffeomorphisms) which acts on a set S (of structures).

(2) We consider the subset of structures in normal forms N inside S.
(3) The equivalence of an element in S to a normal form is understood in

the following way: for each element f ∈ S there is an element φ ∈ G
such that φ · f ∈ N .

For practical purposes it is convenient to assume that a S (in the example above,

the set of Poisson structures) is a subset of a linear space T (in the example

above T would be the set of bivector fields). The SCI group G acts on T and

the set of normal forms N = F ∩ S, where F is a linear subspace of T .

The following theorem is an abstract normal form theorem for SCI spaces.

In order to apply it to particular situations, we need to identify the sets S, F ,

T and the SCI group G in each case. We also need to identify G0, a closed

subgroup of G which is not necessarily an SCI subgroup. As a consequence the

equivalence to the normal form is given by the existence of ψ ∈ G (or in a closed

subgroup, G0) for each f ∈ S such that ψ · f ∈ N .
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Theorem 4.3 (Miranda, Monnier, Zung [26]): Let T be a SCI space, F a SCI

subspace of T , and S a subset of T . Denote N = F ∩ S. Assume that there is

a projection π : T −→ F (compatible with restriction and inclusion maps) such

that for every f in Tk,ρ, the element ζ(f) = f − π(f) satisfies

(19) ‖ζ(f)‖k,ρ ≤ ‖f‖k,ρ Poly(‖f‖[(k+1)/2],ρ)

for all k ∈ N (or at least for all k sufficiently large), where [·] is the integer part.
Let G be an SCI group acting on T by a linear left SCI action and let G0 be

a closed subgroup of G formed by elements preserving S. Let H be a SCI space

and assume that there exist maps H : S −→ H and Φ : H −→ G0 and an integer

s ∈ N such that for every 0 < ρ ≤ 1, every f in S and g in H, and for all k in

N (or at least for all k sufficiently large), we have the three properties:

(20)
‖H(f)‖k,ρ ≤‖ζ(f)‖k+s,ρ Poly(‖f‖[(k+1)/2]+s,ρ)

+ ‖f‖k+s,ρ‖ζ(f)‖[(k+1)/2]+s,ρ Poly(‖f‖[(k+1)/2]+s,ρ),

(21) ‖Φ(g)− id ‖k,ρ′ ≤ ‖g‖k+s,ρ Poly(‖g‖[(k+1)/2]+s,ρ)

and

(22)

‖Φ(g1) · f − Φ(g2) · f‖k,ρ′

≤‖g1 − g2‖k+s,ρ‖f‖k+s,ρ Poly(‖g1‖k+s,ρ, ‖g2‖k+s,ρ)

+ ‖f‖k+s,ρ Poly(2)(‖g1‖k+s,ρ, ‖g2‖k+s,ρ)

if ρ′ ≤ ρ(1 − c‖g‖2,ρ) in (21) and ρ′ ≤ ρ(1 − c‖g1‖2,ρ) and ρ′ ≤ ρ(1 − c‖g2‖2,ρ)
in (22).

Finally, for every f in S denote

φf = id+χf = Φ(H(f)) ∈ G0

and assume that there is a positive real number δ such that we have the in-

equality

(23) ‖ζ(φf . f)‖k,ρ′ ≤ ‖ζ(f)‖1+δ
k+s,ρQ(‖f‖k+s,ρ, ‖χf‖k+s,ρ, ‖ζ(f)‖k+s,ρ, ‖f‖k,ρ)

(if ρ′ ≤ ρ(1 − c‖χf‖1,ρ)), where Q is a polynomial of four variables and whose

degree in the first variable does not depend on k, and with positive coefficients.

Then there exist l ∈ N and two positive constants α and β with the following

property: for all p ∈ N∪{∞}, p ≥ l, and for all f ∈ S2p−1,R with ‖f‖2l−1,R < α

and ‖ζ(f)‖l,R < β, there exists ψ ∈ G0
p,R/2 such that ψ · f ∈ Np,R/2.
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Here we use the following notation:

• Poly(‖f‖k,r) stands for a polynomial term in ‖f‖k,r where the polyno-

mial has positive coefficients and does not depend on f (though it may

depend on k and on r continuously).

• The notation Poly(p)(‖f‖k,r), where p is a strictly positive integer, de-

notes a polynomial term in ‖f‖k,r, where the polynomial has positive

coefficients and does not depend on f (though it may depend on k and

on r continuously) and which contains terms of degree greater than or

equal to p.

4.3. Rigidity of infinitesimal momentum maps. Finally, we can state the

main theorem of this paper in which we prove the rigidity of pre-Hamiltonian ac-

tions of Poisson Lie groups on Poisson manifolds with infinitesimal momentum

map α : g → Ω1(M). In Section 4.1 we introduced the associated Chevalley–

Eilenberg complex and the infinitesimal rigidity. In what follows we use Theo-

rem 4.3 to prove the equivalence of two close momentum maps. In order to prove

that our spaces satisfy the hypotheses of Theorem 4.3 we need some technical

lemmas (they are generalizations of the Lemmas in [26, Appendix 2]).

Lemma 4.4: Let r > 0 and 0 < η < 1 be two positive numbers. Consider a

one-form ω on a ball Br(1+η) ∈ R
n and a smooth map χ : Br → R

n such that

χ(0) = 0 and ‖χ‖1,r < η. Then the composition (id+ χ∗) ◦ ω is a one-form on

a ball Br which satisfies the following inequality:

(24) ‖(id+ χ∗) ◦ ω‖k,r ≤ ‖ω‖k,r(1+η)(1 + Pk(‖χ‖k,r)),

where Pk is a polynomial of degree k with vanishing constant term (and which

is independent of ω and χ).

Proof. The proof follows the same lines of [26, Lemma B.1].

Before stating the second technical lemma we need to recall some basic results

of Poisson calculus, following [4]. In particular, we introduce a Lie derivative

Lα in the direction of a 1-form α. We will see that Lα integrates to a flow

Φ∗
t on Ω1(M) which preserves the Lie algebra structure. Recall from Section 2

that the space of one-forms on M is endowed with a Lie bracket [·, ·]π defined

by Eq. (7). We set

(25) Lαβ = [α, β]π .
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It is clear that this operation gives Ω1(M) the structure of an Ω1(M)-module,

since it is a Lie algebra. Now, let us consider a vector field π�(α) and assume

that its flow φt is defined for all t ∈ R.

Theorem 4.5 (Ginzburg, [14]): There exist families of fiber-wise linear auto-

morphisms Φ∗
t of the vector bundle p : T ∗M →M covering φ−t by p◦Φ∗

t = φ−t

such that

(i) Φ∗
t is a flow:

Φ∗
t1+t2 = Φ∗

t1Φ
∗
t2

for any t1, t2 ∈ R.

(ii) For any β ∈ Ω1(M) the time-dependent form β(t) = Φ∗
tβ is a unique

solution of the differential equation

(26)
dβ(t)

d t
= Lαβ(t), β(0) = β.

From now on we say that the flow Φ∗
t is a Poisson flow and it is known

that it has many interesting features; here we just recall the one that will be

necessary for our purposes.

Proposition 4.6 (Ginzburg, [14]): The Poisson flow Φ∗
t has the following prop-

erties:

(i) It preserves the algebra structure:

(27) Φ∗
t (β1 ∧ β2) = Φ∗

tβ1 ∧ Φ∗
tβ2.

(ii) Φ∗
t : Ω1(M) → Ω1(M) is a Lie algebra morphism:

(28) Φ∗
t [β1, β2]π = [Φ∗

tβ1,Φ
∗
tβ2]π.

The definition and the properties of Poisson flows allow us to prove the fol-

lowing

Lemma 4.7: Let r > 0 and 0 < η < 1 be two positive numbers. With the

notation above, we have the following two properties:

(i) For any positive integer k we have

(29) ‖∂(α− α̃)‖k,r ≤ c‖α− α̃‖2k+1,r,

where ∂ denotes the Chevalley–Eilenberg differential introduced in Sec-

tion 4.1, while c is a positive constant independent of α and α̃.
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(ii) There exists a constant a > 0 such that, if ‖α− α̃‖s+2,r(1+η) < aη, then

we have, for any positive integer k,

(30) ‖Φ∗ ◦ α− α̃‖k,r ≤ ‖α− α̃‖2k+s+2,r(1+η)P (‖α− α̃‖k+s+1,r(1+η)),

where P is a polynomial with positive coefficients, independent of α and

α̃.

Proof. (i) Let us consider a basis {X1, . . . , Xn} of the Lie algebra g and

the structure constants of the Lie algebra ckij defined by

[Xi, Xj ] =

n∑
k=1

ckijXk.

Let us denote by αi the one-form αXi associated to the element Xi ∈ g

and by β the difference α − α̃ of two infinitesimal momentum maps

(with respect to the same Poisson structure). Using the definition of

the Chevalley–Eilenberg differential ∂ introduced in Section 4.1, we have

(31) ∂β(Xi ∧Xj) = [αi, βj]π − [αj , βi]π − β([Xi, Xj ]),

where [·, ·]π is the Lie bracket induced on Ω1(M) by the Poisson struc-

ture π on M . Thus we can write the following equality:

(32) [βi, βj ]π = [αi, αj ]π − [αi, α̃j ]π − [α̃i, αj ]π + [α̃i, α̃j ]π.

Since α and α̃ are infinitesimal momentum maps, we can use Eq. (9) to

obtain

(33) [αi, αj ]π =

n∑
k=1

ckijαk and [α̃i, α̃j ]π =

n∑
k=1

ckijα̃k.

This yields

(34) ∂β(Xi ∧Xj) = [βi, βj ]π.

Finally, we just write the following estimates:

(35) ‖∂β‖k,r ≤ n(n− 1)‖π‖k,r‖β‖2k+1,r.

(ii) The difference β = α− α̃ can be seen as a 1-cochain in the Chevalley–

Eilenberg complex C•(g,Ω1(M)). Thus h(β) is an element of Ω1(M)

that we can contract with the Poisson structure π to get a vector field



Vol. 219, 2017 RIGIDITY OF INFINITESIMAL MOMENTUM MAPS 777

π�(h(β)). Let Φ∗
t be the associated Poisson flow introduced in Theorem

4.5 and consider

(36) Φ∗αi − α̃i = Φ∗αi − Φ∗α̃i +Φ∗α̃i − α̃i.

Using the definition of Poisson flow given by Eq. (26) we have, for each

i ∈ {1, . . . , n},

(37)

Φ∗α̃i − α̃i
(26)
=

∫ 1

0

Φ∗
tLh(β)α̃i d t

(25)
=

∫ 1

0

Φ∗
t [h(β), α̃i] d t

(16)
= −

∫ 1

0

Φ∗
t∂(h(β))i d t.

From Lemma 4.2, we have the equality

(38) β = ∂h(β) + h∂(β).

Then, substituting Eq. (38) in Eq. (37), we obtain

(39) Φ∗
t (α̃i)− α̃i = −

∫ 1

0

Φ∗
tβi d t+

∫ 1

0

Φ∗
t h∂(β)i d t.

Thus

(40)

Φ∗(αi)− α̃i
(36)
= Φ∗(αi)− Φ∗(α̃i) + Φ∗(α̃i)− α̃i

(39)
= Φ∗βi −

∫ 1

0

Φ∗
tβi d t+

∫ 1

0

Φ∗
t h∂(β)i d t

(37)
=

∫ 1

0

∫ 1

t

Φ∗
τ [h(β), βi] d τ d t+

∫ 1

0

Φ∗
t h∂(β)i d t.

The first integral can be estimated just using estimate (24) for the

Chevalley–Eilenberg differential of the difference of two infinitesimal

momentum maps. To estimate the second integral we first need to

apply the estimate for the homotopy operator (17) and then again (24).

Finally, combining these estimates we obtain the following:

(41) ‖Φ∗ ◦ α− α̃‖k,r ≤ ‖α− α̃‖2k+s+2,r(1+η)P (‖α− α̃‖k+s+1,r(1+η)),

which concludes our proof.

These estimates finally let us prove
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Theorem 4.8: Consider a pre-Hamiltonian action of a semisimple compact

Poisson Lie group (G, πG) on a compact Poisson manifold (M,π), generated by

an infinitesimal momentum map α.

There exist a positive integer l and two positive real numbers a and b (with

b < 1 < a) such that, if α̃ is another infinitesimal momentum map on M with

respect to the same Poisson structure, satisfying

(42) ‖α− α̃‖2l−1 ≤ a and ‖α− α̃‖l ≤ b,

then there exists a Lie algebra morphism Φ : Ω1(M) → Ω1(M) preserving the

chain map property (10) of class C k, for all k ≥ l, onM such that Φ(αX) = α̃X .

Remark 4.2: This theorem holds in the C∞-category (there is also a C p state-

ment assuming α is of class C 2p−1 ). The resulting morphism Φ can be chosen

to depend continuously on α̃.

Proof. Here we just need to check that the hypotheses of Theorem 4.3 are

satisfied. First, we make the following identifications:

– The SCI space T is defined to be the space Tk of C k-differentiable maps

from g to Ω(M).

– The subset S is given by the infinitesimal momentum maps.

– The origin of the affine space is given by α and F = N = 0, so that the

estimate (19) is obvious.

– The SCI group G consists of the C k-differentiable maps from Ω1(M) to

itself, where the action is ψ · α = ψ ◦ α, with ψ ∈ G and α ∈ T .

– The closed subgroup G0 of G is given by the Lie algebra morphisms.

The elements of G0 preserve S.
– The SCI space H is by the space of one-forms on M .

Let us consider the difference of two infinitesimal momentum maps β = α−α̃ as

a 1-cochain in the Chevalley–Eilenberg complex Cq(g,Ω1(M)), i.e., an element

in S. Thus the image of β by the map H : S → H is simply h0(β). Using

the estimate of the homotopy operator Eq. (17), the relation (20) is obvious.

As stated in Proposition 4.6 the flow φt of the vector field X̂ = π�(h(β)) can

be recovered by a fiber-wise linear automorphism Φ∗
t on Ω1(M), which is a

Lie algebra morphism (see Eq. (28)). By construction, Φ∗
t commutes with the
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differential so it preserves Eq. (10):

d α̃X = dΦ∗
tαX

= Φ∗
t dαX

(10)
= Φ∗

t (α ∧ α ◦ δ(X))

= Φ∗
t (αXi ∧ αXj )

(27)
= Φ∗

tαXi ∧Φ∗
tαXj

= α̃Xi ∧ α̃Xj

= α̃ ∧ α̃ ◦ δ(X).

Thus it provides the map Φ : H → G0. The estimates (21)–(22)–(23) are direct

consequences of Lemmas 4.4 and 4.7.

Finally, we observe that the equivalence of two infinitesimal momentum maps

implies the equivalence of the corresponding actions under an additional as-

sumption.

Corollary 4.9: Let α and α̃ be two infinitesimal momentum maps generating

the fundamental vector fields X̂ = π�(αX) and X̂ ′ = π�(α̃) of two different

actions, respectively. Under the assumptions of Theorem 4.8, if αX vanishes on

the symplectic leaves, then X̂ ′ = φ∗X̂.

Proof. From Theorem 4.8 we know that the two momentum maps are equiva-

lent, i.e., α̃X = Φ∗
tα. It is clear that if αX vanishes on the symplectic leaves,

we have Φ∗
tαX = φ∗tαX , where φt is the flow onM underlying Φ∗

t (see Theorem

4.5). Thus

X̂ ′ = π�(α̃)

= π�(Φ∗
tαX)

= π�(φ∗tαX)

= φt∗π
�(αX)

= φt∗X̂.

Since we have used the machinery of SCI spaces, the analogue of Theorem

4.8 also holds in the local and semilocal case (the neighbourhood of an invariant

compact submanifold). Thus, in the same spirit of [26] we also obtain rigidity for
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pre-Hamiltonian actions for actions in a neighbourhood of an invariant compact

submanifold (which can be reduced to a single point in the case of fixed points

for the action).
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male Supérieure 36 (2003), 403–430.




